
 
Abstract: MeQWal diVeaVeV aUe iQcUeaViQgl\ cRmmRQ. AmRQg WheVe, biSRlaU diVRUdeUV heaYil\ affecW SaWieQWV¶ 
lives given the mood swings ranging from mania to depression. Voice has been shown to be an important cue 
to be investigated in relation with this kind of disease. In fact, several speech-related features have been used 
to characterize voice in depressed speakers. The goal is to develop a decision support system facilitating 
diagnosis and possibly predicting mood changes. Recently, efforts were devoted to studies concerning bipolar 
patients. A spectral analysis of F0-contours extracted from audio recordings of a text read by bipolar patients 
and healthy control subject is reported. The algorithm is automatic and the obtained features describe 
parsimoniously speech rhythm and intonation. Bipolar patients were recorded while experiencing different 
mood states, whereas the control subjects were recorded at different days. Feature trends are detected in 
bipolar patients across different mood states, while no significant differences are observed in healthy subjects.  
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1. INTRODUCTION 

 
Mental illnesses have an increasing impact in contemporary society [1]. In particular, the lives of persons 

suffering from bipolar disorder may be impaired due to periodic, and sometimes extreme, mood swings. Patients may 
experience oscillations between depression, mania or hypomania, euthymia and a mixed condition [2]. More 
specifically, depression is a very low mood state characterized by sadness and hopelessness. Mania and hypomania, 
i.e. a less sever form of mania, are states of hyperarousal that leads to euphoria or irritability, excessive energy, and 
increased activity. Euthymia is a mood state in which symptoms are mostly absent, and mixed condition is a mood 
state in which both depressive and manic symptoms are associated. The development of decision support systems 
may be useful in helping physicians in formulating a diagnosis. With this aim some biomedical studies have been 
carried out to detect physiological correlates of mood changes [3, 4]. Moreover, several studies have focused on 
possible relations between voice and mental disease, especially in persons suffering from depression. Indeed, almost 
the whole central nervous system is involved in voice production [5]. The speech motor system is able to finely 
control the laryngeal muscles, mucosae, tongue and lips, while the vagus nerve, that is also responsible for the 
innervation of the motor parasympathetic fibers, activates the pharynx, the soft palate and the laryngeal muscles [5]. 
In addition, because both the autonomic and somatic nervous systems control the respiratory system, they are 
expected to affect also the speakers’ prosody. As a consequence, speech analysis represents an interesting, non-
invasive and economic approach to the study of a speaker’s mental state since speech production is modulated by 
different psychological and/or mental states [6].  

Usually three different categories of speech related features can be taken into account in speech analysis: source, 
vocal tract and prosody-related features [7]. Source features aim at describing the glottal excitation. Vocal tract 
features report indirectly different shapes of the vocal tract cross-section during articulation. Finally, prosodic 
features describe the supra-segmental modulation of intonation and intensity of speech. Several studies have been 
conducted on the latter, because prosody has a role in conveying emotion. Moreover, prosodic feature estimation is 
fairly robust in noise. Therefore, a system based on a smartphone device, and aiming at analyzing prosodic features 
in running speech, has been proposed to monitor bipolar patients [8]. 
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Till recently, the study of speech changes in depression was the most often investigated topic [9, 10, 11, 12, 13]. 
Especially, speaking rate has been found to correlate negatively with the Hamilton Depression Rating Scale score 
[9]. Five possible descriptors, i.e. decreased speaking intensity, decreased vocal frequency range, slower speech, flat 
intonation and a lack of linguistic stress, have been highlighted in depressed patients by Hollien [11]. F0 contours 
were perceptually investigated and demonstrated to contain information about a wide range of prosodic information 
such as F0 variability, speech rate and pause time [13]. On the contrary, the relationship between mania and speech 
features has been less explored. More precisely, pressured speech, i.e. the tendency to speak quickly and loudly [14], 
has been observed to be one of the most common symptoms in children and adolescent affected by mania [15]. 
Recently, more attention has been paid to the analysis of speech changes in bipolar disorder. To our knowledge, two 
European Projects investigated speech of patients affected by Bipolar Disorder: namely PSYCHE [3] and 
MONARCA [4]. As a result, several articles on this topic have been published [16, 17, 18, 19, 20, 21, 22, 23]. 
Additional studies focused on that topic are [24, 25]. Specifically, intra-subject studies [16, 18] reported significant 
differences in vocal frequency (F0) variability and average between different mood states. Moreover, the speech 
intonation contour has been found to be a reliable indicator of mood changes from an euthymic to either a depressed 
or a manic state in [17, 20]. A system, based on smartphone-sensing, aiming at the recognition of depressive and 
manic states and the detection of state changes in patients suffering from bipolar disorder was studied in [21, 22, 24]. 
In these studies, statistics about the phone calls, the verbal interaction of the patients with the other talker, and 
speech-related features, extracted with the open-source “openSmile” toolbox [26] providing several low-level 
descriptors, were investigated.  A good performance in terms of pattern recognition accuracy was obtained [22]. In 
[25], a smartphone-based system was proposed to monitor bipolar patients in terms of social rhythms by 
investigating statistics about conversations, speaking rate and F0 changes. Audio, accelerometer and self-assessment 
related data were used to classify mood states in bipolar patients in day-to-day phone conversation, achieving an 
accuracy better than 80% [23].  

Despite the relevance of these studies, the analysis of speech changes in mood disorders remains a challenging 
task. Particularly, the direction of the features changes was not always coherent across subjects [17]. The need of 
selecting patient specific features and building personalized models was stressed in [22] and [24], respectively. 
Moreover, in some studies, no significant correlation between F0 variables and depression was found [9, 27]. The 
improvement of existing models performance could be obtained both by improving subject status characterization, 
e.g. by evaluating anxiety level [17, 28, 29], and by investigating other features. Novel speech features might in fact 
capture relevant information about the specific phenomenon under investigation [30]. Furthermore, the exploration of 
novel speech features [30] that parsimoniously describe the phenomenon of interest in a specific application could 
improve the classification performance, by avoiding overfitting.  

The aim of the present study is to explore a new feature set to characterize speech production in patients affected 
by bipolar disorder. More precisely, a spectral analysis of the F0 contour is proposed to investigate differences in 
mood states in patients suffering from bipolar disorder. Specifically, a parsimonious description of the F0-contour is 
presented. The proposed features are related both to modulation of F0 and to speech rhythm, i.e. speech rate, distance 
between pauses and pause lengths. Moreover, to better characterize the proposed features, we explore whether and to 
what extent they are related to rhythm features or whether they represent a complementary source of information. 
Therefore the rhythmic properties of the audio recordings and a correlational analysis between rhythm features and 
F0-contour features have been studied. The analysis is carried out in patients and healthy controls. Patients have been 
recorded at different days, while reading a neutral text. In addition, a study of healthy control speakers is presented. 
Preliminary results are reported and discussed. 

 
2. METHODS 

 
2.1. Experimental protocol and data 
 

In this study, eleven patients (5 females and 6 males, 40.00 ± 9.02 years) suffering from bipolar disease were 
enrolled in the Psyche European project [3]. All were able to lead independent and active lives, and they were free 
from substance use disorder. Seven psychiatric patients were French native speakers, while four of them were Italian 
native speakers. The experimental protocol, approved by the clinical ethical committee, consisted in the reading of a 
neutral text during each recording session. Sessions were held at two or three different days. Seven patients out of 
eleven (patients A-G) (Table 1) were recorded twice each day. A physician labeled the patient’s mood status before 
each recording using clinician-administered rating scales. Four different mood states were identified in this study, 
namely depressed, euthymic, hypomanic and mixed. A high quality directional microphone was used to record 
signals at a sampling frequency of 48 KHz and with a resolution of 32 bits (AKG Perception P220 Condenser 
Microphone, M-Audio Fast-Track). 



Eighteen healthy control subjects (9 males and 9 females, 30.00 ± 5.00 years) were enrolled. Healthy control 
subjects did not report any actual or past psychiatric disorder, and had no history of neurological or major somatic 
conditions. They were recorded twice at two different days to test for inter-day variability. Typically, the second 
session took place 7 days after the first one. All healthy subjects were Italian native speakers.  

The CMU Arctic Database [31] was used to evaluate the performance of a Voice Activity Detection (VAD) 
algorithm that is used to classify audio frames. The database provides audio and electroglottographic (EGG) 
recordings. The EGG signal is a signal that is related to the impedance changes during vocal folds contact. The 
corpus is formed of about 1100 short sentences, comprising more than 8000 vowels. Audio and EGG recordings 
were sampled at a rate of 32 kHz with a resolution equal to 32 bit. 

 
2.2. Algorithm 
 

Two different sets of features have been investigated in this study. The first aims at describing the properties of 
the F0 contour in terms of the shape of its spectrum. The second takes into account rhythm. 

 

 
Figure 1: Chart of VAD algorithm, where <·> stands for the average, and ȡ is the autocorrelation function. 

 
Spectral shape features. In a first step, VAD, which is inspired by Hess’s study [32], is carried out by means of 

the autocorrelation function (ρ) and speech energy as described in [33]. Audio frames are classified as silent, voiced 
and unvoiced. Frames characterized by a high relative energy and a high autocorrelation function are labeled as 
voiced, while low relative energy frames are labeled as silent. Finally, high relative energy but low autocorrelation 
function frames are labeled as unvoiced (see Figure 1). In a second step, the F0 contour is estimated within each 
voiced fragment by means of Camacho’s Swipe’ algorithm [34]. It estimates F0 via the fundamental frequency of the 
sawtooth waveform whose spectrum best matches the spectrum of the input audio signal. The performance of the F0 
estimation algorithm has been assessed via a comparison with other state of the art algorithms in [34, 35, 36], while a 
validation of the implemented VAD algorithm is proposed in the following. A cubic spline interpolation is used to 
obtain simulated F0 contours in unvoiced fragments, while F0 within silent pauses is set to 0 Hz (Figure 2). At last, a 
set of 7 features is obtained from the spectrum of each mean-subtracted F0-contour of the whole utterance. Power 
spectral density is estimated for each recording via the periodogram. The estimated features are the median frequency 
(Fmedian), the power amplitude at the median frequency (Amedian), the maximum peak power amplitude (Apeak) and the 
corresponding frequency (Fpeak), the ratios between amplitudes and corresponding frequencies as well as the slope 
according to (Eq. 1-3) (Figure 3). 
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Figure 2: Example of F0 contour. F0 is set to 0 Hz during silent segments, and spline-interpolated during 

unvoiced segments (marked by green and red lines). 
 
 

 
Figure 3: Illustration of the F0-contour power spectral density and of the proposed features. 

 
Rhythm features. The output of the VAD algorithm was used to obtain six rhythm features. According to [37, 38], 

pauses were categorized into two classes: brief pauses, i.e. the ones having a duration shorter than 200 ms, and 
medium-long pauses, with a duration longer than 200 ms. In [37] the authors identified also pauses having a duration 
longer than 1000 ms, but since the authors reported that these are only present in spontaneous speech, they were 
lumped with the medium pauses (200-1000 ms) in this study. Due to the time resolution of the VAD, pauses shorter 
than 10 ms cannot be detected. The median duration of the brief pauses (DurBriefPauses), the median duration of the 
medium-long pauses (DurLongPauses), and the median duration of all the pauses (DurAllPauses) were estimated as well as 
the median time distance between two consecutive voiced fragments (DistVoiced). The durations of the voiced and 
unvoiced fragments were combined in the voiced/unvoiced rate (V/UV). Finally, an estimate of the speaking rate was 
obtained via the number of voiced fragments divided by the duration of the whole utterance, i.e. the voiced fragment 
rate (VRate). 

 
2.3. VAD algorithm validation 

 
The performance of the VAD method was evaluated by exploiting a database of audio and concurrent 

electroglottographic (EGG) recordings [31]. Specificity and sensitivity of the VAD were evaluated separately for 
voiced and silent segments. An overall accuracy was estimated taking also into account unvoiced segments. 
Segmentation performed via EGG signals was considered as ground truth for the detection of voiced segments, 
because the EGG signal is directly related to vocal folds contact. Differently, the algorithm proposed by Sohn et al. 
[39] and based on the likelihood ratio, was used as ground truth segmentation pertaining the detection of silent 
segments. Finally, the remaining segments were labeled as unvoiced. 
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2.4. Statistical analysis and Feature Normalization 
 

In this study, intra and inter-subject analyses are carried out. Intra-subject analyses are possible because several 
recordings of the same subject in different mood states are available. Intra-subject analysis thus enables investigating 
whether coherent changes can be observed within subjects when switching from one mood state to another. When 
independent samples are available, i.e. only one observation for each subject, an inter-subject investigation is 
performed, the goal of which is to study differences in the features values acquired in different mood states. In this 
case, a possible confounding factor is speaker identity [27, 40]. For this reason, speech features are normalized 
before inter-subject analysis. Normalization is carried out by dividing speech features obtained in depressive or 
hypomanic states by those obtained in the euthymic state.  

When the same mood state was recorded twice the same day for the same speaker, then the features obtained for 
the two recordings were averaged for inter-mood comparisons. Friedman’s test was used to assess statistically 
significant differences in paired data corresponding to different mood states in the same patients, and to evaluate the 
intra-day variability in the patients who carried out the task twice a day. For the latter, recordings at the same 
acquisition day were not averaged. 

A Mann-Whitney U-test was used to assess differences between depression and hypomania for independent 
samples (i.e., different patients and different mood states). This test was carried out with and without normalization 
with respect to the same patient’s feature data obtained in the euthymic state. 

Possible statistical differences due to the language spoken were studied by means of a Mann-Whitney U-test. 
Patients in the depressed state were compared to test for feature differences due to native language. These tests were 
applied to normalized data with respect to the euthymic state data. The same comparison was not possible for 
hypomania due to the small number of subjects. A p-value lower than or equal to 0.05 was considered significant. 

A correlational study of the features was performed by means of principal component analysis (PCA) and their 
representation in the correlation circle. The aim is to highlight whether and to what extent the spectral features share 
information with the rhythm features. Moreover, the correlation circle enables analyzing which are the features that 
explain the larger portion of variance in the data. Only the principal components that explain up to 80% of the data 
variance are taken into account.  Both bipolar patients and healthy control subjects were involved in the correlational 
analysis.  

 
3. RESULTS 

 
Regarding VAD performance, each frame label was compared with the corresponding obtained from the EGG. An 

overall accuracy equal to 85% was obtained for the classification of the three frame categories, voiced, unvoiced and 
silent. With regard to voiced segment detection, a specificity equal to 76% and a sensitivity equal to 83% were 
observed, while a specificity of 82% and a sensitivity of 91% were obtained for unvoiced segment detection. 

On average, the reading of the neutral text by bipolar patients and control subjects lasted about 4 minutes. Each 
bipolar patient but one, i.e. patient E, reported a euthymic state in one of the recording days (Table 1). Table 1 
enables selecting the subjects that can be used for both paired and independent data tests. Some features share the 
same behavior for all subjects. In particular, Fpeak was always lower than Fmedian, thus resulting in negative Slope 
values and in a Ratiopeak that was always higher than Ratiomedian. 

A paired test was applied to data of patients A, B, C and G to investigate possible statistically significant 
differences between hypomanic and euthymic states, while data of patients B, D, F, H, I, L and M were used to study 
statistically differences between depressed and euthymic states. 

Mann-Whitney U-test for independent data was applied to compare features obtained from patients in a depressed 
state, i.e. D, F, H, I, L, M, with features of patients in a hypomanic state, i.e. A, B, C, G. 

Inter-language tests for independent data were applied to compare patients in depressed state. Specifically, patients 
H, I, L, M and B, D F were involved in an inter-language, but intra-depressed state study. 

 
Table 1: Patient mood labels. 



 
 
3.1. Results for spectral shape features 
 

Analysis of paired data (Table 2) shows statistically significant differences between hypomania and euthymia 
states for Apeak, Fpeak, Ratiopeak and Slope (patients A, B, C and G). For all subjects (but one), Fpeak (Figure 4) as well 
as Slope (Figure 5) were lower in the hypomanic state, while for all the subjects Apeak (Figure 4) and Ratiopeak (Figure 
4) were higher in the hypomanic state. 

 
Table 2: Bipolar patients – spectral shape features: p-values < 0.05 are in bold. 

 
 

   
Figure 4: Fpeak (left), Apeak (center), and Ratiopeak (right) in patients switching from hypomania to euthymia. 

 
 

  
Figure 5: Slope in patients switching from hypomania to euthymia. 

 
Analysis of paired data (patients B, D, F, H, I, L and M) show that differences between depression and euthymia 

were statistically significant for Fmedian, Apeak and Slope. For all subjects, Fmedian (Figure 6) and Slope (Figure 6) were 
lower in the depressed state, while Apeak (Figure 6) was higher. 

 

subj. Label�day1 Label�day2 Label�day3
A Hypomania Euthymia
B Hypomania Euthymia Depression
C Hypomania Euthymia
D Depression Euthymia
E Depression Hypomania
F Depression Euthymia
G Hypomania Euthymia
H Depression Euthymia
I Depression Euthymia
L Depression Euthymia
M Mixed Depression Euthymia

Test Fmedian Amedian Fpeak Apeak Slope Ratiopeak Ratiomedian

Hyp.�Vs.�Eut. Paired 3.17E-01 3.17E-01 4.55E-02 4.55E-02 4.55E-02 4.55E-02 3.17E-01
Dep.�Vs.�Eut. Paired 8.15E-03 7.05E-01 7.05E-01 8.15E-03 8.15E-03 7.05E-01 2.57E-01
Dep.�Vs.�Hyp. UnPaired 9.52E-03 1.71E-01 3.52E-01 4.76E-01 6.67E-02 4.76E-01 2.57E-01
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Figure 6: Fmedian (left), Slope (center) and Apeak (right) in patients switching from depression to euthymia. 

 
 

Comparisons carried out via the Mann-Whitney U-test on unpaired normalized data between depression and 
hypomania (Table 2) showed statistically significant differences for Fmedian (Figure 7). Fmedian was lower in the 
depressed state with respect to hypomania. Without normalization, the features did not show any statistically 
significant differences. In the box-plots reported in this study, median values are marked by a change in color. 

 

  
Figure 7: Boxplot of normalized Fmedian in patients switching from depression to hypomania.  

 
 

3.2. Results for rhythm features 
 
Statistical pairwise analysis of the rhythm features (Table 3) showed statistically significant differences for 

DurLongPauses, DurAllPauses  as well as V/UV, when comparing hypomania and euthymia, and in DurLongPauses, DistVoiced as 
well as VRate, when comparing depression and euthymia. DurLongPauses is significantly lower (Figure 8) in the 
hypomanic state, and significantly higher (Figure 9) in the depressed state with respect to euthymia. Similarly, 
DurAllPauses is lower (Figure 8) in the hypomanic state with respect to euthymia. Moreover, the V/UV ratio (Figure 8) 
is significantly higher in hypomania. DistVoiced (Figure 9) is higher in the depressed state, while the opposite is 
observed for VRate (Figure 9). 

 
Table 3: Bipolar patients – rhythm features: p-values < 0.05 are in bold. 

 
 

 

   
Figure 8: DurLongPauses (left), DurAllPauses (center) and V/UV (right) in patients switching from hypomania to 

euthymia. 
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Figure 9: DurLongPauses (left), DistVoiced (center) and VRate (right) in patients switching from depression to 

euthymia. 
 

 
Analyses of unpaired normalized data of depression and hypomania (Table 3) show statistically significant 

differences for DurLongPauses (Figure 10), DurAllPauses (Figure 10), DistVoiced (Figure 11), and VRate (Figure 11). 
DurlongPauses, DurAllPauses and DistVoiced were higher in depression than hypomania, while VRate was higher in 
hypomania than depression. No statistically significant difference was found without data normalization. 

 

  
Figure 10: Boxplot of normalized DurLongPauses (left) and DurAllPauses (right) in patients switching from depression 

to hypomania.  
 

 

  
Figure 11: Boxplot of normalized DistVoiced (left) and VRate (right) in patients switching from depression to 

hypomania.  
 

3.3. Test for intra-day variability 
 
Seven patients, recorded twice at each acquisition day, were taken into account comparing same-label data. 

Friedman’s test for paired data did not show any statistically significant differences between the two audio 
recordings carried out the same day (data not shown).  

 
3.4. Test for inter-language variability 

 
Possible differences in feature trends, depending on language, were evaluated by applying the Mann-Whitney U-

test (data not shown). The tests did not report any statistically significant differences when applied to normalized 
data . 

 
3.5. Results for healthy control subjects 
 

Analysis of the data of the healthy control subjects did not return statistically significant differences between 
features obtained from audio samples recorded at two different days. The p-values are reported in Tables 4 - 5, while 
the Fmedian trends in healthy control subjects are displayed in Figure 12. 
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Figure 12: Fmedian trends in healthy control subjects. 

 
Table 4: Healthy control subjects – spectral shape features: p-values. 

 
 

Table 5: Healthy control subjects – rhythm features: p-values. 

 
 

 
3.6. Correlational study 
 

An analysis of the principal components (PCs) shows that the first component (PC1) is able to explain 41.80% of 
the total variability, PC2 explains 18.18%, PC3 13.05% and PC4 the 11.13%. Therefore, a total variability equal to 
84.16% is explained by the first four PCs. Two circles of the correlations, in which the original variables are located 
as a function of the correlation between variables and principal components (i.e. loadings), are shown in Figure 13.  
In Figure 13 the principal component space defined by PC1 and PC2 and by PC3 and PC4 are shown. The analysis 
reveals that Ratiopeak and Apeak are at the same time very close to each other and very close to the unit circle which 
means that those variables share the same behavior and are likely to be correlated. The Pearson’s correlation (U) 
coefficient is equal to 0.93. The same property holds for Ratiomedian and Amedian (U =0.99) and Slope (correlates with 
Amedian U� ������and with Ratiomedian U� �������. VRate and DistVoiced show similar loadings with respect to PC1 and 
PC2, but with opposite signs (U =-0.91). Similarly, Apeak and VRate show similar loadings with respect to PC1 but 
opposite with respect to PC2 (U =0.48), while Apeak and DistVoiced show opposite loadings with respect to PC1 but 
similar with respect to PC2 (U =-0.44). Again, Slope shows to be positively correlated with VRate (U =0.34) and 
negatively with DistVoiced (U =-0.36). Only VRate and Fmedian show similar loadings in the PC1-PC2 plane (U =0.56) 
when exploring correlations between spectral and rhythm features. In the PC3-PC4 plane (Figure 13), DurLongPauses 
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and Fpeak reveal similar loadings but with opposite signs. These two variables are mainly related to PC3. PC4 seems 
to be mainly related to the V/UV ratio and only weakly related to DurLongPauses and Fpeak. 

 
 

  
Figure 13: Correlation circle – PC1 vs. PC2 (left) and PC4 vs. PC3 (right). Spectral shape features are reported 

in blue, while rhythm features are in red. 
 

 
4. DISCUSSION 

 
In this study an automatized spectral analysis of F0-contours is carried out. Conventionally, the F0-contour is 

studied in the time domain. We demonstrated that an analysis in the frequency domain may provide a compact 
description of the F0-related prosodic information. Because F0 was set to zero in silent fragments, spectral features 
summarize the contribution of rhythm as well as intonation. In particular, results depend not only on syllabic rhythm 
(4Hz typically), but also on pauses between words or sentences. This has been confirmed by the PCA and correlation 
analysis we performed taking into account rhythm features. Specifically, a significant correlation was found among 
speech rate features such as VRate and DistVoices, and spectral shape features such as Fmedian, Apeak and Slope. 
Moreover, the PCA analysis revealed that the two families of variables, related to the spectral description of the F0-
contour and speech rhythm respectively, carry complementary information. In fact, they are differently related to the 
PCs that together describe a large percentage of the variance.  

The performance of the VAD algorithm was also evaluated. Although the performance of this processing step can 
be improved, the proposed algorithm shows interesting properties in terms of ease of implementation. Such a 
property might enable a battery-saving implementation on mobile platforms, such as smartphone devices.  

Statistical analyses were carried out on speech features of bipolar patients experiencing different mood states, and 
on control subjects recorded at different days. Statistically significant differences were found between features across 
different mood states. Some features showed a good specificity, insofar they were similar for control subjects 
recorded at different days and for patients recorded in the same state at the same day.  

With regard to the paired data analysis of the spectral shape features, a comparison of euthymia and depression 
showed that Apeak increases and Fmedian and Slope decrease in depression (Figure 6). Since Fpeak is lower than Fmedian 
this indicates a larger contribution of the low frequency spectral components in depression. Preliminary results from 
independent samples show a decrease of Fmedian in depressed with respect to hypomanic patients (Figure 7). Given the 
correlation observed between Fmedian and speaking rate, VRate in particular (Figure 11), these results are in good 
agreement with the literature. Some studies indeed report a decrease of speaking rate in depressed patients [9, 11], 
while an increase was observed in patients affected by mania [15]. Since Fmedian takes also into account vocal 
frequency changes, these results might also reflect a concomitant decrease of F0. Interestingly, F0 was often 
observed to decrease during depressive episodes [27] and to increase in patients experiencing hypomania [18]. The 
paired analysis of the hypomanic and euthymic states revealed a significant increase of Apeak (Figure 4) and a 
decrease of Fpeak (Figure 4) as well as of Slope (Figure 5) in hypomania, while no coherent change of Fmedian was 
observed. Since Apeak is positively correlated with the VRate and negatively with the DistVoiced, these results indicate 
a specific prosodic dynamic that is compatible with a pressured speech. 

These results may suggest that Apeak and Slope may be used as a “no symptoms marker” to discriminate euthymia 
from both depression and hypomania. Again, these findings may indicate that Fmedian may be used to discriminate 
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depression from both euthymia and hypomania. Although these mood states may appear easily differentiable, such a 
result may not be trivial since both depression and mania can share symptoms, e.g. psychomotor agitation [41], that 
might confound their speech-based recognition.  

With regard to statistical tests on independent samples, it is important to stress that statistically significant results 
were obtained only after normalizing the feature values. We believe that the normalization step is necessary to 
mitigate the effect of speaker identity. Confounding factors in inter-subject comparisons could be related to language 
but also to speaking style. Since we were interested in highlighting possible differences in the speech features due to 
mood change, we decided to normalize with respect to the euthymic state. This normalization was performed 
assuming that euthymia is the emotional point of reference since it lacks relevant symptoms. The analysis of inter-
linguistic differences revealed no statistically significant differences between Italian and French speakers when the 
features were normalized with reference to euthymia. The population size here involved allowed to carry out this test 
with depressed subjects.  

Notwithstanding the small number of patients who have been analyzed, we perceive the results to be relevant 
because common feature trends have been detected in patients across mood states. Due to the sample size, it was not 
possible to perform any statistical tests on paired data involving depression and hypomania. Also, we believe that the 
results are relevant because they report a novel feature set that parsimoniously describes the changes in bipolar 
patients’ speech. The proposed features are related to changes in the modulation of the vocal frequency and to speech 
rhythm.  

 
5. CONCLUSION 

 
This study has investigated a spectral analysis of F0-contours to characterize mood changes in bipolar patients. 

The features report the modulation of the vocal frequency as well as speech rhythm. The small number of enrolled 
patients does not enable generalizing the results, but observed trends suggest that the proposed features may warrant 
further study. Statistically significant differences were discovered between features describing a neutral text read by 
bipolar patients in different mood states. Common feature trends were observed in enrolled patients across mood 
states. But, no statistically significant differences were found in healthy control subjects from one day to the next or 
between patients in the same mood state at different times of the day or when speaking different languages.  

The proposed approach is automatic and the features enable a parsimonious description of prosodic changes 
between mood states that could be integrated in a decision support system to help clinicians in the difficult task of 
making diagnosis and tailoring treatments.  
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