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Abstract. The paper presents a mechanical model of a four-point bending test on a delaminated 

specimen, considered as an assemblage of laminated beams partly connected by an elastic in-

terface. A differential problem with suitable boundary conditions is formulated to describe the 

model. Then, an analytical solution is determined for both the pre- and post-critical stages. A 

mixed-mode fracture criterion is applied to predict the onset of delamination growth. The model 

is illustrated through comparison with some experimental results taken from the literature. 
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1 INTRODUCTION 
Delamination, or interlaminar fracture, is a major failure mode for composite laminates. In-

terlaminar cracks may have many causes – such as manufacturing defects or low-energy im-

pacts – and propagate under static or dynamic loads producing high interlaminar stresses. In 

particular, local buckling in the region of an existing delamination may promote further crack 

extension [1]. 

In this paper, we analyse the delamination growth promoted by local buckling in a composite 

laminate with a central, through-the-width delamination, subjected to four-point bending test 

[2]. By extending an approach already adopted to analyse delamination buckling in a different 

problem [3, 4], we model the specimen as an assemblage of sublaminates, some of which are 

connected by an elastic interface. Thanks to symmetry, the analysis is limited to the left-hand 

half of the specimen, which is subdivided into three zones: a first zone, between the support 

and the load application point, where the specimen is schematised as a single laminate; a second 

zone, between the load application point and the delamination front, where the specimen con-

sists of two sub-laminates connected by the elastic interface; a third zone, between the delami-

nation front and the symmetry axis, where the two previous sub-laminates are not connected by 

the interface. All sub-laminates are considered as extensible and flexible beams undergoing 

small elastic deformations, except for the compressed sub-laminate in the third zone, which 

may undergo large displacements. 

The mechanical problem is described by a set of differential equations with suitable bound-

ary conditions, which are solved analytically in the pre- and post-critical stages. The buckling 

load is determined through the numerical solution of a suitable transcendental equation. In the 

post-critical stage, the energy release rate and mode mixity are evaluated to predict the load 

corresponding to the onset of delamination growth. The theoretical predictions of the model are 

in good agreement with some experimental results of the literature [5–7]. 

2 FORMULATION OF THE PROBLEM 
2.1 Mechanical model 

Let us consider a laminate of length 2L, whose cross section has thickness H and width B. A 

delamination crack of length 2a is present at the mid-span cross section at distances H1 and H2

from the top and bottom surfaces of the laminate, respectively. The laminate is subjected to 

four-point bending test with two loads of intensity P, both placed at distances l1 from the outer 

supports and l2 from the delamination crack tips (Figure 1). 

Figure 1: test specimen. 
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The mechanical model considers the specimen as an assemblage of sub-laminates. Due to 

the symmetry of the problem, it is possible to limit the study to the left-hand half specimen by 

introducing appropriate constraints at the symmetry axis (Figure 2). In particular, the model can 

be divided into three zones with different behaviour: a first zone of length l1, between the sup-

port and the load application point, in which the laminate is schematised as a single sub-lami-

nate (1); a second zone of length l2, between the load application point and the delamination 

crack tip, in which the laminate is schematised as two sub-laminates (2) and (3) connected by 

an elastic interface; lastly, a third zone of length a, where the laminate consists of two uncon-

nected sub-laminates (4) and (5). Three local abscissas, s1, s2, and s3, are used in each zone. 

All sub-laminates are considered as extensible and flexible elastic beams. Sub-laminate (4) 

is modelled according to Euler’s model for beam-columns in compression. The different mod-

elling assumption for sub-laminate (4) is consistent with experimental evidence, showing that 

this portion undergoes compression and eventually buckles under high testing loads. Let Ai and 

Ji (i = 1, 2, …, 5) respectively denote the area and moment of inertia of sub-laminates (with A4

= A2, J4 = J2, A5 = A3, and J5 = J3). The longitudinal Young’s modulus E = E1 is considered 

constant throughout the specimen. Let vi, wi and �i, respectively denote the transverse and axial 

displacements, and rotations (positive if clockwise) of a generic cross section. 

The elastic interface is considered as a continuous distribution of linearly elastic springs 

acting in the normal and tangential directions with respect to the interface plane. Let ky and kz

respectively denote the elastic interface constants in the normal and tangential directions. 

Figure 2: mechanical model. 

2.2 Differential problem 
As described in detail in [8], by imposing static equilibrium and accounting for the constitu-

tive laws, the following differential problem is obtained that describes the elastic response of 

the specimen in the pre- and post-critical stages: 
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where .! � �1! is the compressive axial force in sub-laminate (4). 

2.3 Boundary conditions 
The solution of the differential problem (1) will be different in the pre- and post-critical 

stages. In both cases, the solution includes thirty unknown integration constants. To determine 

these, the differential problem needs to be completed by thirty boundary conditions, which 

guarantee balance and kinematical compatibility at the end cross sections of sub-laminates: 
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Formally, the boundary conditions are the same in pre- and post-critical stages. However, 

when substituting the corresponding solutions of Eqs. (1) into (2), two different sets of equa-

tions are obtained in the two stages. In the pre-critical stage, the system of boundary conditions 

does not involve particular difficulties because it furnishes a single solution for the integration 

constants, which are all linear in the load intensity, P. In the post-critical stage, instead, the 

solution of the boundary condition system is complicated by the fact that the solution of the 

differential problem depends non-linearly on the axial force P4. To overcome this difficulty, the 

adopted solution strategy is to represent the solution as a function of the parameter P4, by in-

troducing the applied bending moment, M = P l1, as an auxiliary unknown. 
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3 SOLUTION OF THE PROBLEM 
As described in detail in [8], by suitable manipulation, the system of differential equations 

is uncoupled and solved, yielding the following general solution: 
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where C1, C2, …, C30 are the main integration constants; in addition, �, � and � are three real 

constants, which describe the roots of the characteristic polynomial of the differential equation 

for the sublaminates (2) and (3) [8]. The roots of the characteristic polynomial have the follow-

ing form (where i denotes the imaginary unit):  

W� � �Y(2�W� � �Y(2�W� � �@ � Z(2�W! � �@ � Z(2 (13) 

W0 � �@ � Z2�W: � @ � Z(2�WL � WH � WJ � �2 (14) 

D1, D2,…, D5, χ2, ω2, ζ2, χ3, ω3, ξ3 are constants, whose expressions are given in the Appendix. 

4 NUMERICAL EXAMPLE 
To better understand the predicted behaviour of the specimen, we consider a numerical ex-

ample and compare our theoretical predictions to experimental results taken from the literature. 

It should be pointed out that our model furnishes acceptable predictions only if there is no con-

tact and interpenetration between sub-laminates (4) and (5). For this reason, appropriate con-

straints are introduced in the following. 
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4.1 Geometric and mechanical characteristics 
The geometric and mechanical properties of the specimen correspond to what reported by 

Kinawy et al. [7]. These are summarized in Tables 1 and 2. 

H (mm) a (mm) l1 (mm) l2 (mm) H1 (mm) H2 (mm) B (mm) 

4.25 20 15 60 – a H/8 H – H1 10.27 

Table 1: geometric characteristics of the specimen. 

E1 (N/mm2) E3 (N/mm2) G31 (N/mm2) GIc (J/m2) GIIc (J/m2) 

139000 9000 4980 550 1400

Table 2: mechanical characteristics of the specimen. 

Table 3 shows the values of the stiffness constants of the elastic interface, ky and kz. These 

have been calibrated to match the experimental results of Kinaway et al. [7] in the pre- and 

post-critical stages. 

kz (N/mm3) ky (N/mm3) 

475.11 732.35

Table 3: stiffness constants of the elastic interface. 

4.2 Behaviour of the specimen in post-critical stage 
After solving the system of boundary conditions Eqs. (2), with the above-mentioned strategy, 

we found the trend of the applied bending moment, M = P l1, vs. the compressive axial force of 

sub-laminate (4), P4 (Figure 3). Also, we determined the trend of the applied bending moment 

vs. the relative displacement between the sub-laminates (4) and (5), ∆v(a), at the mid-span cross 

section (Figure 4). 

Figure 3: applied bending moment vs. axial force of sub-laminate (4) 
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Figure 4: applied bending moment vs. relative displacement between the sub-laminates (4) and (5). 

The curves shown in Figures 3 and 4 represent all theoretical solution points. However, at a 

closer examination, it appears that some portions of the solution curves must be excluded be-

cause they represent physically unfeasible states. For example, all those points in which the 

applied bending moment is negative are to be excluded as they would require negative, i.e. 

upwards directed, loads. Instead, in the four-point bending test, the testing machine always ap-

plies downward loads. Moreover, Figure 4 shows some equilibrium paths where the sub-lami-

nates (4) and (5) are in contact, where ∆v(a) = 0, or interpenetrate, where ∆v(a) < 0. Also, these

solutions are physically unfeasible. A further limitation is given by the compressive strength of 

sub-laminate (4), which must not be overcome. Thus, by excluding also these physically unac-

ceptable solutions, we finally arrive at the desired physically feasible solution path. 

Figures 5 and 6 respectively correspond to Figures 3 and 4 after the physically unfeasible 

solutions have been excluded. The unfeasible paths are represented by dashed blue lines and 

the feasible ones by a continuous red line. The pre-critical path in Figure 6 has been traced 

simply by assuming that sub-laminates (4) and (5) stay in contact until instability occurs, as 

experimentally observed by many researchers [5-7, 9]. Also in line with experimental evidence, 

we expect that instability will not occur through equilibrium bifurcation, but snapping. Finally, 

in Figure 6, we have plotted with grey dots the experimental results by Kinawy et al. [5-7] for 

comparison with our model. 
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Figure 5: applied bending moment vs normal stress P4 of sub-laminate (4)

Figure 6: predicted response and experimental data. 

Further insight into the predicted behaviour can be obtained by inspection of Figure 7, which 

illustrates the deformed configurations corresponding to solution paths A, B, C, D, and E. Only 

path C is feasible, as it does not feature upward loads and interpenetration. 
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Figure 7: deformed configurations of the specimen for each solution path. 

4.3 Prediction of delamination growth 
In the post-critical stage, we expect a progressive increase in the interfacial stresses, eventu-

ally leading to further growth of the delamination crack. Since both normal and tangential 

stresses are present at the crack tips, fracture will occur under I/II mixed-mode conditions. To 

predict the onset of delamination growth, we first evaluate the energy release rate and mode 

mixity. Then, we compare the available energy release rate with the critical value according to 

the criterion of Hutchinson and Suo [10]. 

The normal and tangential stresses at the crack tip (s2 = l2) respectively are 

[�4�
 � ������4�
 � ���4�

, (15) 

\�4�
 � �� ?���4�
 � ���4�
 � ������] �4�
 � ������^�4�
N. (16)�
The available energy release rate is 

_ � _� � _�� (17)�
where 

_� � �� `�aV
V=> (18)�
� _�� � �� b�aV
V=c (19)�
are the contributions related to fracture modes I and II, respectively. 
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Furthermore, we compute the mode-mixity angle as follows: 

d � 7eOf7Sg_hh�_h. (20)�
According to the chosen mixed-mode fracture criterion, the critical value of _ is estimated 

by the formula 

_O�� �
ijkV�l�
mhi nkopV�l�
mhhi

, (21)�
with _�q and _��q are the values of fracture toughness in modes I and II, respectively. 

Figure 8 shows a plot of the available (green curve) and critical (red curve) energy release 

rates as functions of the compressive axial force in sub-laminate (4). The intersection point 

between the two curves corresponds to the predicted onset of delamination growth. In this nu-

merical example, delamination growth is expected at P4 = 378.84 N, corresponding to an ap-

plied bending moment M = 1917.1 Nmm/mm. This value slightly underestimates the 

experimentally measured average bending moment at propagation M = 2725 Nmm/mm [5]. 

Figure 8: Available and critical mixed-mode energy release rates. 

5 CONCLUSIONS 
• A mechanical model of a four-point bending test on a delaminated specimen has been de-

veloped, whereby the specimen is considered as an assemblage of laminated beams partly 

connected by an elastic interface. 

• The model is described by a differential problem with suitable boundary conditions. An 

analytical solution to this problem has been determined for both the pre- and post-critical 

stages. 

• The developed model does not take into account explicitly contact between the debonded 

sub-laminates and interpenetration is not prevented. However, the predicted response 
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stemming from the model has been filtered out in order to exclude all physically unfeasible 

responses. 

• As a result, the theoretical specimen response has been figured out and compared with 

some experimental results taken from the literature. 

• A mixed-mode fracture criterion has been applied to predict the onset of delamination. 

• The theoretical model proves able to predict the qualitative behaviour observed in the tests, 

albeit some quantitative discrepancies exist, in particular for the applied bending moment 

corresponding to the onset of delamination growth. 

• Future developments include the design and conduction of ad hoc experimental tests to 

remove any doubts about some uncertain experimental parameters from the literature. 

• Besides, the model could be improved in order to explicitly take into account contact, at 

the price of losing the possibility of a complete analytical solution in favor of some numer-

ical methods. 
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APPENDIX 
The constants entering the analytical solution in the post-critical regime have the following 

expressions: 

K� � ���������@� � A�
�����r@! � s�@�A� � A!
 � �EA� � T@�
��
 ��sE����� � ����@� � A�
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 � sE��
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�tT������� (22) 
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UVV�U<nUV
�wVnxV
=c (28) 
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����� ���
�� � T�9�!��� (32)
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