
 

Iminothioethers as hydrogen sulfide donors: from 

the gasotransmitter release to the vascular effects. 

Elisabetta Barresi,†# Giulia Nesi,†# Valentina Citi,† Eugenia Piragine,† Ilaria Piano,† Sabrina 

Taliani,† Federico Da Settimo,† Simona Rapposelli,† Lara Testai,† Maria Cristina Breschi,† 

Claudia Gargini,† Vincenzo Calderone,† Alma Martelli,†*  

†Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy. 

# These authors equally contributed to the manuscript 

* Corresponding author 

KEYWORDS: hydrogen sulfide, vascular smooth muscle, iminothioethers, thioamides, H2S-

donors, vasorelaxation, gasotransmitter. 

ABSTRACT: The gasotransmitter hydrogen sulfide (H2S) is an important tuner of the 

cardiovascular homeostasis and its deficiency is etiologically associated with a number of 

cardiovascular diseases. Therefore, the research of original moieties able to release H2S 

represents a timely issue for drug discovery. In this work, we developed a collection of 

iminothioethers (ITEs), exhibiting H2S-releasing properties and producing vasorelaxing effects 

on rat aortic rings. Derivatives 4 and 11, selected as representative of slow and fast rate H2S-

donors respectively, produced a complete recovery of the basal coronary flow, reverting the 

AngII-induced effects in isolated rat hearts. In addition, studies on human aortic smooth muscle 



 

cells (HASMCs) demonstrated membrane hyperpolarizing effects, well related with intracellular 

generation of H2S. Taken together, the results obtained support ITEs 4 and 11 as new 

pharmacological tools, as well as effective and innovative H2S-donors for cardiovascular drug 

discovery. 

INTRODUCTION: 

Hydrogen sulfide (H2S) is presently recognized as a fundamental mediator, which controls the 

homeostasis of many biological systems in the mammalian body.1,2 This gasotransmitter is 

biosynthetized by specific enzymes, such as cystathionine-beta-synthase (CBS), cystathionine-

gamma-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3MST) starting from the 

aminoacid L-Cysteine. Among its numerous roles, H2S is a key regulator of the cardiovascular 

system, where it is mainly produced by CSE. H2S acts as a vasodilator3 through several 

mechanisms of action often involving the modulation of ion channels or phosphodiesterase 

(PDE) in vascular smooth muscle.4-8 The deletion of CSE gene in experimental animals is 

associated with a significant reduction of endogenous H2S in blood, and in vascular and 

myocardial tissues; such a reduction leads to the impairment of endothelium-mediated 

vasorelaxation and increase in blood pressure.9 These data clearly indicate that vascular H2S is a 

key factor in the regulation of blood pressure and the defective production of endogenous H2S is 

likely to be one of the most important etiopathogenetic factor in several forms of hypertension.10 

The roles played by endogenous H2S in the regulation of the cardiovascular homeostasis pave the 

way to appealing therapeutic purposes, based on effective and rational pharmacological 

modulation of the H2S pathway.11 Indeed, the administration of exogenous H2S has been proven 

to exert significant anti-hypertensive effects in several experimental models of hypertension,12,13 

indicating that "druggable" H2S-releasing agents can actually be viewed as promising tools to 



 

obtain novel cardiovascular drugs.14,15 The poor posological control and the high probability of 

toxic effects strongly exclude the use of gaseous H2S. Some sulfide salts, such as sodium 

hydrogen sulfide (NaHS) and calcium sulfide (CaS)16 are H2S-generating agents widely used for 

experimental purposes, but the rapid formation of H2S (due to the protonation of hydrosulfide 

and sulfide anions, respectively, at physiological pH) seems to be poorly appropriate for clinical 

uses. Ideal H2S-donor drugs should produce H2S with relatively slow and constant rates. 

Accordingly, the search of novel H2S-releasing chemical moieties suitable for the development 

of clinically effective H2S-donors is strongly required. 

An interesting H2S-donor feature has been early recognized in natural organosulfur derivatives, 

such as the polysulfides of Alliaceae (for example, diallyl disulfide 1 (DADS), Chart 1).17 More 

recently, H2S-releasing properties have been recognized also in another important class of 

natural sulfur compounds: the isothiocyanates typical of Brassicaceae.18 Synthetic H2S-releasing 

agents are also known; among them, the 4-

methoxyphenyl(morpholino)phosphinodithioatemorpholinium salt 2 (GYY4137, Chart 1) is one 

of the most widely used in pharmacological studies.19 As well, H2S-releasing dithiolethiones and 

thioamides (TAs) are largely used, especially for the synthesis of multitarget drugs.20-22 

Satisfactory H2S-releasing features of aminothiol and aryl isothiocyanate derivatives have been 

also reported.23,24 

Very recently, original examples of “smart” H2S-donors, able to generate the gasotransmitter 

based on specific mechanisms of release, which may be useful in specific biological targets, have 

been described. Among these, molecules exhibiting esterase-mediated production of H2S25, pH-

controlled mechanisms26 or initial release of intermediates such as carbonyl sulfide27 have been 

reported. 



 

 

In this context, we recently studied a small library of arylthioamides that exhibited satisfactory 

properties, including stability in water and relatively slow H2S generation, triggered by the 

presence of organic thiols.28 Slight structural modifications, such as the insertion of small 

substituents in the benzene ring or the replacement of the benzene ring with heterocycles, 

afforded different rates of H2S release, even comparable to or even higher than that of 2.28 In 

addition, a compound from this series produced typical vascular effects of H2S, both in in vitro 

and in vivo experiments, including: (i) inhibition of the norepinephrine-induced vasoconstriction 

in isolated rat aortic rings; (ii) membrane hyperpolarization in human vascular smooth muscle 

cells; (iii) reduction of the systolic blood pressure after oral administration.28 

Despite the huge amount of data on the potential pharmacological usefulness of H2S donors and 

H2S-hybrids, to date, there is poor heterogeneity of H2S-releasing moieties. Thus, the 

development of original H2S-donors characterized by varying physicochemical, biological and 

pharmacological features represents a very timely issue for drug discovery. 

In this paper, we report the synthesis and the pharmacological evaluation of some iminothioether 

derivatives (ITEs 3-11, Chart 1), with the aim to investigate such a novel and original chemical 

moiety as a H2S-releasing functional group with potential pharmaceutical interest. In addition, a 

small collection of closely analogous TAs (12-15, Chart 1) were synthetized and investigated.  

 



 

 

Chart 1. Chemical structures of reference H2S-donors (1, 2) and of the novel synthetized 

compounds 3-15. 

 

CHEMISTRY 

As reported in Scheme 1A, the synthetic procedure for the preparation of the target 

benzimidothioate derivatives 3-5 started from the commercially available benzamide 18  or 4-

methoxybenzamide 19, obtained through a condensation between the appropriate benzoyl 

chloride (16 or 17) and NH4OH in the presence of triethylamine. Compounds 18  and 19 were 

allowed to react with Lawesson’s reagent in dry THF solution, to give products 20 and 21 

. Compounds 3 and 4 were then obtained by alkylation of compounds 20  and 21, respectively, 

with benzylbromide in refluxing CHCl3. Finally, compound 4  was demethylated by treatment 

with BBr3 in nitrogen atmosphere, to obtain compound 5  (Scheme 1A). 

The preparation of the target N-benzylbenzothioamide derivatives 12-14 started from the 

commercially available N-benzylbenzamide 22, or N-benzyl-4-methoxybenzamide 23 obtained 



 

through a condensation between 4-methoxybenzoyl chloride and benzylamine in the presence of 

triethylamine. Compounds 22 and 23  were allowed to react with Lawesson’s reagent in dry THF 

solution to give products 12  and 13, respectively. Compound 13  was finally demethylated by 

treatment with BBr3, under nitrogen atmosphere, to obtain compound 14  (Scheme 1A). 

The arylimidothioate derivatives 6-8  were prepared by treatment of the appropriate 4-substituted 

benzonitrile 24-26  with thiophenol under an atmosphere of HBr, as previously reported by Baati 

et al.29(Scheme 1B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Scheme 1. Synthesis of imithioether 3-8  and thioamide 12-14  derivatives. 

 

 

Reagents and conditions. I: NH4OH, NEt3, dry toluene, 24 h, r.t.; II: Lawesson’s reagent, dry 

THF, 12 h, r.t.; III: benzylbromide, NaH, CHCl3, 12 h, reflux; IV: BBr3, dry CH2Cl2, 24 h, r.t.; 



 

V: benzylamine, NEt3, dry toluene, 24 h, r.t.; VI: Lawesson’s reagent, dry THF, 12 h, r.t.; VII: 

BBr3,dry CH2Cl2, 24 h, r.t.; VIII: thiophenol, Et2O, HBr, 0 °C, 0.5 h. 

The experimental procedures for the preparation of compounds 9-11, 15  are outlined in Scheme 

2.  

The thiophene derivatives 9, 10  and 15 were synthesized as reported in Scheme 2A. Reaction of 

2-thiophenecarboxamide 27 with the Lawesson’s reagent in chlorobenzene yielded the 

corresponding thioamide 28, which was then condensed with benzylbromide or naphth-2-

ylmethylbromide to give the target products 9 and 10, respectively. The thioamide 15  was 

obtained by two sequential reactions of 2-thiophenecarboxamide 27  with benzyl bromide, in the 

presence of NaH, and then with Lawesson’s reagent (Scheme 2A). 

The phenyl thiophene-2-carbimidothioate 11 was prepared starting from the 2-thiophene-nitrile 

30  by the same procedure applied for compounds 6-8.29(Scheme 2B). 

All the target compounds 3-15  were finally purified by flash chromatography, when necessary 

(see Experimental section). 

 

 

 

 

 

 

 



 

 

Scheme 2. Synthesis of imithioether 9-11  and thioamide 15 derivatives. 

  

Reagents and conditions: I: Lawesson’s reagent, C6H5Cl, 12 h, 130 °C; II: appropriate 

arylbromide, CHCl3, 12 h, reflux; III: benzyl bromide, NaH, DMF, 1 h, r.t.; IV: Lawesson’s 

reagent, C6H5Cl, 12 h, 130 °C; V: thiophenol, Et2O, HBr, 0 °C, 0.5 h. 

 

RESULTS AND DISCUSSION 

Evaluation of H2S-release by the amperometric assay. 

The investigation of the H2S-releasing properties of the novel synthesized compounds was 

carried out in vitro by an amperometric assay, by means of a H2S-selective minielectrode, to 

have a real-time determination of the H2S-release and thus to perform a qualitative/quantitative 



 

description of the process. Table 1 lists the parameters of Cmax (the highest concentration 

achieved in the recording time) and t1/2 (the time required to reach a concentration = ½ Cmax) 

from the tested compounds (incubated at the concentration 1mM), recorded in the absence (-L-

Cys) or in the presence (+L-Cys) of an excess of L-Cysteine (4 mM). Data of reference H2S-

donors 1 and 2 were also reported for comparison purposes. 

In general, all the compounds (ITEs and TAs) showed very poor H2S-release in the absence of L-

Cys, consistently with the H2S-releasing profile exhibited by the reference H2S-donors (1 and 2), 

in previous experiments.28 In particular, in the absence of L-Cys, the H2S-generation from the 

ITE 10 and TA 13  was almost negligible (under the levels of determination), while all the other 

compounds and the reference H2S-donors exhibited low but evident release of H2S, although in 

some cases it was under the level of accurate quantification (compounds 11, 14, 15, 1 and 2). 

The pre-incubation with an excess of L-Cys (4 mM) improved the H2S-release from almost all 

the synthesized molecules, as well as from 1 and 2. In particular, the maximal concentrations of 

H2S (Cmax), generated from the tested compounds upon incubation (for 30 min) in the presence 

of L-Cys, ranked from 0.31 M (15) to 19.0 M (11); the Cmax of 1 was 19.4 M. In the 

presence of L-Cys, H2S-release from compound 13 was low but evident (under the level of 

accurate quantification), while no detectable release of H2S was recorded for 10 (Table 1). 

Looking at the L-Cys mediated effects, almost all the compounds showed progressive and time-

related "slow" H2S-releasing profiles, with t1/2 values ranging from 4.4 and 11.9 min. The H2S-

releasing profile of 4 is shown in Figure 1, as representative example; in previously published 

data, 1 exhibited a relatively faster, but clearly time-related, H2S-releasing process, with t1/2 

value of 1.5 min.28 Compound 11 exhibited a profile of relatively "rapid" donor (t1/2 = 0.28 min, 



 

Table 1), reaching the peak concentration (19.0 M) in about 1 min, followed by a progressive 

decrease of the H2S concentration (Figure 1). 

Taken together, these data indicate that, in the presence of organic thiols (L-Cys), most of the TA 

and ITE compounds behaved as H2S-donors, albeit with different features both in the 

quantitative and in the kinetic aspects that can be related to their chemical structure. Specifically, 

the “rank order” for quantitative H2S release within the ITEs series was: 11 >4 ≥5 >9 >3 >10. 

From a structure-activity relationship point of view, it could be observed that the insertion of a 

substituent (OCH3, OH) on the phenyl ring featuring the iminothioether function of 3 determines 

a slight improvement in the H2S-releasing properties in compounds 4 and 5. The replacement of 

the same phenyl ring of 3 with a thienyl moiety in 9 did not produce significant effects on Cmax 

values. On the contrary, the direct comparison between 11 and 9 indicates that the S-phenyl 

substitution is highly effective in increasing the quantitative H2S release and its rate; in addition, 

this effect seems to be due to the presence of the phenyl substituent on the S atom, rather than the 

thiophene ring, as compound 9 exhibited almost equivalent levels of H2S release if compared 

with phenyl derivatives 3-5. Replacement of the benzyl group in compound 9  with a naphth-2-

ylmethyl moiety gives compound 10 that is devoid of any H2S-releasing activity, probably due to 

chemical-physical issues connected to its high lipophilicity. 

Finally, the H2S release from TA compounds was significant, but quite low (Table 1). The 

comparison between the ITEs 3-5, 9 and the corresponding analogous 12-15, indicates that the 

former functional group leads to a general quantitative improvement in H2S release, suggesting 

ITE as a novel original H2S-donor group useful in the future development of innovative 

cardiovascular drugs. 



 

Noteworthy, it is widely accepted that the biological activity of H2S-donors is not directly related 

with the mere quantitative aspects of the release: indeed, even small amounts of H2S generated in 

a long-lasting manner, can evoke effects better than those evoked by fast and transient generation 

of large amounts of the gasotransmitter. This has been described for slow H2S-donors, such as 

219 or some aryl-isothiocyanates,24 which caused vasorelaxing effects with potency values higher 

than sodium hydrosulfide, a widely used salt that instantaneously generates H2S at physiological 

pH. As well, the effects of H2S donors on inflammatory processes are strongly influenced by the 

rate of the H2S release, and again slow H2S-donors exhibited more favorable profiles of 

activity.19 

Therefore, ideal H2S donors for many clinical uses should produce H2S with slow releasing rates, 

ensuring low and long-lasting concentration.14 In this perspective, the L-Cys-induced H2S-

release from almost all the compounds tested in this study exhibited quite "slow" rate, 

comparable and even longer than those exhibited by well-known donors, such as 1 and 2 (see 

Table 1), when tested in the same experimental conditions.28 Only compound 11 exhibited a 

short t1/2 value (< 1 min), generating an early peak of H2S concentration, followed by a 

progressive decrease (Figure 1). 

 



 

 

Figure 1. Amperometric recordings of the H2S-release from 4 and 11 in the presence of L-Cys 

(+ L-Cys). The curves describe the increase of the H2S concentration with respect to time, 

following the incubation of tested compounds, highlighting a slow and gradual increase of the 

H2S production after 4 administration and, conversely, a rapid and massive H2S production 

followed by a rapid decrease after 11 administration; the vertical bars indicate SEM. Two-way 

ANOVA showed extremely significant difference between the two curves (P < 0.001). 

 

Functional evaluation of the vasorelaxant effects on rat aortic rings.  

The vasorelaxing effects of ITEs and TAs were tested on pre-contracted rat aortic rings. Almost 

all the tested compounds showed full or almost full vasorelaxant efficacy (Emax) on 

endothelium-denuded rat aortic rings pre-contracted with 25 mM KCl, with potency indexes 

(pIC50) ranging between 3.20 and 3.89 (Table 1). The vasorelaxing effects were also exhibited by 

compounds 13. This compound released well detectable, but very low (under the level of 
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accurate quantification), H2S concentrations in the amperometric assay. Therefore, it cannot be 

excluded that the vasorelaxing activity can be attributable even to other mechanisms different 

from H2S release.  Consistent with the data previously obtained, compound 10, which lacks of 

any detectable H2S-releasing activity, showed very poor vasorelaxant activity and a non-

calculable potency index, strongly suggesting that the vasorelaxing effect of the other 

compounds is actually mediated by H2S. 

 

N H2S-release Vasorelaxing Effect 

 -L-Cys  +L-Cys 4mM Emax pIC50 

 Cmax (μM) t1/2(min) Cmax (μM) t1/2(min) 

1 < 0.30 N.C. 19.4 ± 5.5 1.5 ± 0.3 41.7 ± 1.7 N.C. 

2  < 0.30 N.C. 10.3 ± 2.6 2.5 ± 0.8 60.2 ± 3.7 3.68 ± 0.01 

3  2.30 ± 0.40 3.61 ± 0.38 3.20 ± 0.50 5.23 ± 0.58 86.5 ± 3.6 3.37 ± 0.02 

4  1.18 ± 0.30 17.35 ± 2.90 7.20 ± 0.80 5.73 ± 0.52 89.9 ± 3.3 3.59 ± 0.02 

5  0.50 ± 0.10 5.28 ± 0.71 6.80 ± 0.80 5.10 ± 0.62 82.1 ± 3.4 3.31 ± 0.01 

6  N.T.a - N.T. a - N.T. a - 

7  N.T. a - N.T. a - N.T.a - 

8  N.T. a - N.T.a - N.T. a - 

9  1.90 ± 0.1 26.91 ± 4.18 4.60 ± 0.90 6.66 ± 0.73 89.9 ± 2.1 3.58 ± 0.03 

10  N.D. N.D. N.D. N.D. 20.4 ± 3.3 N.C. 

11  < 0.30 10.24 ± 2.11 19.0 ± 4.90 0.28 ± 0.13 99.7 ± 0.3 3.20 ± 0.01 

12  0.70 ± 0.10 8.70 ± 1.20 1.90 ± 0.40 11.86 ± 1.35 92.7 ± 0.4 3.79 ± 0.03 

13  N.D. N.D. < 0.30 N.C. 96.8 ± 0.6 3.89 ± 0.01 

14  < 0.30 1.25 ± 0.23 1.10 ± 0.10 4.43 ± 0.30 88.2 ± 0.4 3.46 ± 0.02 

15  < 0.30 4.3 ± 0.71 0.31 ± 0.09 7.53 ± 0.70 91.7 ± 0.7 3.62 ± 0.03 

 

Table 1. Parameters of Cmax and t1/2, emerging from the amperometric detection of H2S-release 

from the tested compounds (incubated at the concentration 1mM) in the absence (-L-Cys) or in 

the presence (+L-Cys) of an excess of L-Cys (4 mM), and parameters of Emax (maximal 



 

vasorelaxing effect evoked by the tested compounds 1mM) and pIC50 of the vasorelaxing effects 

recorded on pre-contracted rat aortic rings. In the amperometric detection, the lower limit of 

reliable quantitative determination of H2S was 0.3 μM. Data are expressed as means ± standard 

error. N.T.= Not tested (chemically unstable in experimental conditions); N.D. = not detectable; 

N.C. = not calculable. All the synthetized compounds, except compound 10, exhibited 

vasorelaxing efficacy parameters significantly higher (P<0.01) than 1 and 2.  

 

Functional evaluation of the effects on coronary flow. 

On the basis of the results emerging from the amperometric assay and the functional data on the 

aortic rings, two iminothioether derivatives, 4 and 11, were selected as representative for further 

pharmacological investigation on the basis of the following issues: (i) 4 exhibited high 

vasorelaxant potency, appreciable quantitative H2S-release and a slow releasing rate; (ii) 11 

showed lower vasorelaxant potency, but it generated the highest concentration of H2S, with a 

quite fast rate. The two selected compounds were then evaluated in Langendorff-perfused rat 

hearts. As expected, the perfusion with Angiotensin II (AngII, 0.1 μM) caused a significant 

reduction (by about 25%) of the coronary flow (CF) in isolated rat hearts when compared to the 

basal CF (basal flow = 10.45 ± 0.64 ml/min/g). The "add-on" perfusion with the ITE 4 (300 M) 

produced extremely significant effects in the coronary bed, leading to an intense increase of the 

coronary flow, up to 165%, i.e. higher than the basal one. (Figure 2). In contrast, perfusion with 

11 (300 M) led to an apparent increase of the coronary flow, but this effect was not 

significantly different than that induced by the vehicle (Figure 2). 

 



 

 

Figure 2. Changes (in %) of CF, induced by perfusion of AngII, followed by the add-on 

perfusion of vehicle, 4  or 11. After the equilibration time, three measurements of the basal flow 

were carried out at 5 min intervals, starting from min 0. Immediately after the recording of the 

third basal value, AngII was perfused from min 10; the perfusion with AngII was maintained 

until the end of the experiment (upper bar). Starting from min 25, the tested compound (TC) or 

the vehicle were perfused (lower bar), together with AngII. Data are expressed as a % of the 

mean basal coronary flow, and are expressed as means± standard error, from hearts of 6-9 

animals. NS = the differences between the curves are not statistically significant; *** the 

differences between the curves are extremely significant (P < 0.001). 

 

Evaluation of membrane hyperpolarization of human aortic smooth muscle 

cells (HASMCs).  

Among the heterogeneous mechanisms of action accounting for the vasorelaxant activity of H2S, 

the activation of ATP-sensitive potassium (KATP) channels5,30 and of vascular Kv7 potassium 
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channels,4 with membrane hyperpolarization of vascular smooth muscle cells, seem to play a 

relevant role. In this view, it was thought interesting to evaluate the effects of 4  and 11  on the 

membrane potential of cultured human vascular smooth muscle cells (HASMCs), taking 1,3-

dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one 31 

(NS1619), a well-known potassium channel activator, as reference hyperpolarizing agent31. 

Both ITEs 4  and 11  (100 M - 1 mM) caused a significant and concentration-related membrane 

hyperpolarization of HASMCs. In particular, the hyperpolarizing response evoked by the highest 

tested concentration of 11  (1mM) was significantly lower (36 ± 5 %) than that evoked by the 

reference 31 (Figure 3). Actually, in previous works, we could observe that even the fast H2S-

donor, sodium hydrosulfide, evokes moderate hyperpolarizing effects.4,24 Compound 4  evoked 

strong membrane hyperpolarization, exhibiting high level of efficacy (149 ± 2%) and 

significantly overcoming 31 (Figure 3).   

The effects observed on the coronary flow, in rat isolated hearts, and on the membrane potential 

of HASMCs witness again that a "slow" and moderate H2S-release seems to be preferable to a 

“fast” H2S-release for the vascular effects.  

 



 

 

Figure 3. The graph shows the hyperpolarizing effect of tested compounds on sarcolemmal 

membrane of HASMCs. Data are expressed as mean ± standard error. Six different experiments 

were performed, each in six replicates. Asterisks indicate significant difference from the effect 

evoked by 31 (* = P < 0.05; ** = P < 0.01; *** = P < 0.001). 

 

Evaluation of H2S-release in HASMCs.  

The amperometric technique well defines the kinetics (i.e., the rate) of the L-Cys-dependent H2S-

release of compounds 3-5 , 9-15, suggesting that many of these may act as "smart" donors: they 

are expected to be relatively stable in water, but they behave as H2S-generating agents in 

biological environments (for example, the cell cytosol), where they can interact with endogenous 

organic thiols (L-Cys, glutathione, etc). However, this assay was carried out only in buffer 

aqueous solution in the absence and in the presence of L-Cys. Therefore, a further evaluation 

was performed in order to demonstrate that the H2S-release actually occurs in cells, without 

adding exogenous thiols. In particular, the H2S generation was detected in HASMCs by 
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spectrofluorometric measurements using the dye 3'-methoxy-3-oxo-3H-spiro[isobenzofuran-1,9'-

xanthen]-6'-yl 2-(pyridin-2-yldisulfanyl)benzoate (Washington State Probe-1,WSP-1), which 

specifically and irreversibly interacts with H2S.32 The fluorescence produced by this interaction 

was quantitatively recorded by a spectrofluorometric approach, and also observed by 

fluorescence microscopy. 

Spectrofluorometric measurements showed that the addition of the vehicle did not cause any 

significant increase of fluorescence. In contrast, the addition of 1mM 11  to HASMCs, pre-

loaded with the fluorescent dye WSP1, led to a massive time-dependent increase of fluorescence 

(FI, fluorescence index), indicating an extremely significant generation of H2S (P<0.01 vs 

vehicle). The maximal value of FI, recorded after 1 h of incubation, was about 50-fold higher 

than that evoked by 300 M reference 1 (Figure 4A). After 1 h of incubation, the fluorescence 

increase reached an apparently stable "steady state", suggesting that the H2S-releasing process is 

completed, and thus confirming the profile of "fast" donor for 11. 

In contrast, the addition of 1mM 4  to WSP1-preloaded HASMCs led to a significant (P<0.01 vs 

vehicle) but moderate time-dependent increase of FI. The maximal level of FI recorded after 1 h 

of incubation was significantly lower (P < 0.01) than that evoked by 11  (1 mM) and was almost 

completely comparable to that evoked by 1 (300 M). In addition, after 1 h of incubation, the 

fluorescence increase did not yet reach a "steady state" and was still in progress, indicating that 

the H2S-releasing process is not complete, thus confirming the profile of "slow" donor for 4  

(Figure 4B).  

Fluorescence microscopy allowed us to observe a clear increase of WSP-1-evoked fluorescence 

inside the HASMCs treated with 4, indicating an intracellular localization of the H2S release 

from this ITE (Figure 5). 1 showed a similar feature (Figure 5). In contrast, a significant cell loss 



 

was observed in HASMCs treated with 11  (data not shown), suggesting that ITE may have 

caused cell damage and consequent vulnerability in the experimental procedures used in the 

microscopy approach, which are more "invasive" if compared with the spectrofluorometric 

technique. 
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Figure 4. The graphs show the WSP-1 fluorescence increase evoked by the administration of 

vehicle, 11  and 1 (A), 4  and 1 (B) on HASMCs. Data were expressed as mean ±standard error. 

Three different experiments were carried out, each in triplicate. *** = significantly different 

from the vehicle (P < 0.01). 

 

- 

Figure 5. Fluorescence microscopy images, showing the fluorescence evoked in HASMCs (pre-

loaded with WSP-1 dye), after the administration of vehicle, compound 4  (300μM) and 1 (300 

μM). The green fluorescence indicates a significant activation of the fluorophore, due to the 

generation of H2S and its interaction with WSP-1. Propidium iodide was used to identify the 

nuclei, in red. 

 

Evaluation of cGMP in HASMCs.  

Intracellular contents of cGMP in HASMCs were determined by ELISA assay. In basal 

conditions no detectable levels of cGMP could be observed both in vehicle treated cells and also 

in HASMCs treated with the selected H2S-donors. In contrast, in sodium nitroprusside (SNP) 

pre-treated cells treated with the vehicle (DMSO 0.1%) well-detectable and significant 

concentration of cGMP was detected (0.446 ± 0.005 pmol/ml). The administration of compound 

4 to SNP-pretreated cells, led to small but significant increase in cGMP concentration (0.489 ± 



 

0.014 pmol/ml). Finally, compound 11 determined in SNP_pretreated cells a larger and 

significant increase of cGMP intracellular concentration (0.667 ± 0.021 pmol/ml). 

 

 

Figure 6. Effects of selected H2S-donors on intracellular increase of cGMP. HASMC were pre-

treated with SNP (1mM) and then incubated with vehicle (DMSO 0.1%), compound 4 or 

compound 11 (300 μM), for 20 min. Data are expressed as mean ± SEM. The asterisks indicate 

significant differences vs vehicle (* = P < 0.05; *** = P < 0.001). 

 

Effects of selected H2S-donors on blood pressure. 

Normotensive Wistar rats showed basal systolic pressure (Psys) of 137 ± 2 mmHg. 

Intraperitoneal administration of L-NAME (100 mg/Kg) caused a significant increase of Psys 

158 ± 2 mmHg. The administration of vehicle (DMSO 0.33ml/Kg i.p.) did not cause any 

significant change of Psys in rats with L-NAME-induced hypertension. In contrast, the reference 

H2S-donor 1 (133 µmol/Kg) caused a significant (P < 0.01) decrease of Psys (-39 ± 5%). 
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Compound 4 (133 µmol/Kg) exhibited a similar pharmacological behavior. In particular, it 

promoted a significant (P < 0.01) decrease of Psys (-36 ± 4%) in L-NAME-induced hypertensive 

animals. Compound 11 (133 µmol/Kg) did not influence the Psys. 

 

 

 

 

Figure 7. Changes in Psys (expressed as a % of the L-NAME-induced hypertensive Psys), 

following the i.p. administration of compounds 4 and 11, the reference H2S-donor 1 or the 

corresponding vehicle. The asterisk indicates significant difference vs vehicle (** = P < 0.01). 

 

CONCLUSIONS 

In this work, the ITE group was investigated as potential new H2S-releasing moiety, in view of 

its similarity with TA (a consolidated H2S-donor moiety). Thus, a small collection of ITE 

derivatives were synthesized and pharmacologically characterized. 
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In the amperometric assay, many of the ITE derivatives behaved as smart H2S-donors (quite 

stable in water, but able to generate H2S in the presence of L-Cys, mimicking the endogenous 

thiols), and showed a general increase in H2S release with respect to their TA analogues. Thus, 

the H2S-donor profile of ITEs can be considered as an original and innovative finding of this 

work. In addition, almost all the TAs and ITEs exhibited full vasorelaxing effects when tested on 

pre-contracted rat aortic rings, with pIC50 values that significantly correlate with t1/2 values.  

On the basis of the H2S-releasing profile emerging from the amperometric assay (i.e., a “cell-

free” experimental model), two iminothioether derivatives, 4 and 11, were selected for further 

pharmacological investigation, as representative of slow and fast rate H2S-donors, respectively.  

To demonstrate the ability of ITEs to release H2S in a cell-based experimental model, without the 

adding of exogenous thiols, the H2S generation from the compounds in HASMCs was 

investigated by means of a spettrofluorometric approach. The incubation of the two derivatives 

on WSP-1-preloaded HASMCs confirmed the profile of "fast" and "slow" donor, respectively for 

4 and 11. In particular, the incubation of 11 led to a massive increase of FI, indicating a 

dramatically efficient production of H2S inside cells. In contrast, compound 4 led to a moderate 

and more gradual increase of fluorescence, related with the intracellular production of H2S. 

Fluorescence microscopy confirmed the intracellular localization of the H2S-generation for 11. 

As concerns the functional pharmacological effects, the "add-on" perfusion in isolated hearts 

with 11 showed an apparent trend to increase the coronary flow, however, this effect did not 

reach the level of statistical significance. In contrast, in the same experiments, 4 exhibited 

stronger effects, evoking an intense and extremely significant increase of coronary flow, up to 

165%, i.e. higher than the basal one. 



 

The possible involvement of membrane hyperpolarizing effects in the H2S-induced 

vasorelaxation by 4 and 11 was also investigated. The results confirmed that the slow H2S 

releasing compound 4 is able to promote strong and concentration-dependent hyperpolarizing 

responses, exhibiting high level of efficacy and significantly overcoming the reference 

hyperpolarizing drug 31. While, the fast H2S-donor 11 showed lower hyperpolarizing effects.  

Beside the membrane hyperpolarizing effects, even the inhibition of phosphodiesterases (PDEs) 

and consequent rise of intracellular cGMP are recognized as relevant mechanisms of action 

accounting for the vasorelaxing effects of H2S6,33. Thus, the effects of compounds 4 and 11 on 

the intracellular levels of cGMP have been also investigated. In HASMC, the guanylate cyclase 

activation was triggered by the nitric oxide donor SNP and the concentration of cGMP was 

significantly increased by the tested compounds, suggesting a probable involvement of H2S-

mediated inhibition of PDE. In particular, compound 11 evoked the higher effect seeming to 

indicate that a more rapid release would be preferable for this specific effects and further 

stressing that both the different kinetics of release and the H2S concentration may influence the 

overall pharmacodynamic profiles of H2S-donors.  

Finally, the in vivo anti-hypertensive effects of 4 and 11 were evaluated in an experimental 

model of L-NAME-induced hypertension. In this experimental protocol, the slow H2S-donor 4 

evoked marked hypotensive activity, fully comparable with those shown by the reference drug 1. 

In contrast, the fast donor 11 did not promote any significant decrease of blood pressure. 

Taken together, the data reported in this work demonstrated that ITE can be considered as a 

satisfactory new H2S-releasing moiety and that ITE-based compounds, endowed with 

appropriate H2S-releasing profile, may represent an original and promising class of “smart” H2S-

donors for the development of cardiovascular drugs. 



 

EXPERIMENTAL SECTION 

Chemistry 

General Material and Methods. Melting points were determined on a Kofler hot-stage apparatus 

and are uncorrected. Chemical shifts (δ) are reported in parts per million downfield from 

tetramethylsilane and referenced from solvent references; coupling constants J are reported in 

hertz. 1H NMR and 13C NMR spectra of all compounds were obtained with a Varian Gemini 200 

MHz or a Bruker TopSpin 3.2 400 MHz spectrometer. 13C NMR spectra were fully decoupled. 

The following abbreviations are used: singlet (s), doublet (d), triplet (t), double−doublet (dd), 

and multiplet (m). Chromatographic separation was performed on silica gel columns by flash 

(Kieselgel 40, 0.040−0.063 mm; Merck) or gravity column (Kieselgel 60, 0.063−0.200 mm; 

Merck) chromatography. The ≥95% purity of the tested compounds was determined by HPLC, 

using a Shimadzu LC-20AD SP liquid chromatograph equipped with a DDA Detector at 196 nm 

(column C18 (250 mm x 4.6 mm, 5 µm, Shim-pack)); the mobile phase, delivered at isocratic 

flow, consisted of methanol (70–80%) and water (20–30%) and a flow rate of 1.0 mL/min. 

Reactions were followed by thin-layer chromatography (TLC) on Merck aluminum silica gel (60 

F254) sheets that were visualized under a UV lamp. The microwave-assisted procedures were 

carried out with a CEM Discover LabMate microwave. Evaporation was performed in vacuo 

(rotating evaporator). Sodium sulfate was always used as the drying agent. Commercially 

available chemicals were purchased from Sigma-Aldrich. 

Benzyl benzimidothioate (3). A solution of benzylbromide (0.17 mL, 1.40 mmol) in 1.0 mL of 

CHCl3 was added dropwise to a stirred solution of benzothioamide 20  (0.200 g, 1.40 mmol) in 

3.0 mL of the same solvent. The reaction mixture was heated to reflux for 12 h (TLC analysis). 

Then the solvent was concentrated under reduced pressure. Then diethylether was added until the 



 

formation of a precipitate, which was collected by vacuum filtration and then washed with cold 

ether. Yield: 55%; mp = 168-170 °C; 1H NMR (DMSO-d6, ppm): 4.75 (s, 2H); 7.36-7.46 (m, 

3H); 7.52-7.54 (m, 2H); 7.63-7.67 (m, 2H); 7.79-7.83 (m, 1H); 7.89-7.91 (m, 2H). 13C NMR 

(DMSO-d6, ppm): 37.34; 128.87; 128.95; 129.53; 129.92; 130.01; 131.44; 133.38; 135.75; 

186.98.34 

Benzyl 4-methoxybenzimidothioate (4). Compound 4  was obtained from compound 21  (0.234 

g, 1.40 mmol) and benzylbromide (0.17 mL, 1.40 mmol) following the same procedure described 

for 3 . The crude product was collected by vacuum filtration and then washed with cold ether. 

Yield: 52 %; mp = 195-197 °C; 1H NMR (DMSO-d6, ppm): 3.89 (s, 3H); 4.70 (s, 2H); 7.18 (d, 

2H, J = 8.8 Hz); 7.36-7.45 (m, 3H); 7.51-7.54 (m, 2H); 7.95 (d, 2H, J = 8.8Hz); 11.69 (bs, exch. 

D2O, 1H). 13C NMR (DMSO-d6, ppm): 37.14; 56.59; 115.55; 122.80; 128.93; 129.52; 129.92; 

131.62; 133.45; 165.91; 185.46.34 

Benzyl 4-hydroxybenzimidothioate (5). To a stirred suspension of benzyl-4-

methoxybenzimidothioate 4  (0.270 g, 1.00 mmol) in 10.0 mL of dry dichloromethane, cooled at 

-10 °C, a solution of BBr3 (1.26 mL, 7.31 mmol) in 1.0 mL of the same solvent, was added 

dropwise. The mixture was left under stirring at room temperature for 24 h under nitrogen 

atmosphere (TLC analysis). The solvent was evaporated at reduced pressure, and the solid 

precipitate was washed several times with methanol. The product was finally purified by flash 

chromatography eluting with petroleum ether 60-80 °C/AcOEt (7/3). Yield: 60%; mp = 133-136 

°C; 1H NMR (DMSO-d6, ppm): 4.32 (s, 2H); 6.82 (d, 2H, J= 8.2 Hz); 7.28-7.44 (m, 5H); 7.65 (d, 

2H, J= 8.4 Hz); 11.09 (bs, exch. D2O, 1H); 11.52 (bs, exch. D2O, 1H). 13C NMR (DMSO-d6, 

ppm): 33.96; 115.78; 127.69; 128.01; 128.98; 129.30; 129.42; 129.90; 160.58; 168.09. 



 

Phenyl benzimidothioate hydrobromide (6). A solution of benzonitrile 24 (0.94 g, 9.16 mmol) 

and thiophenol (0.93 ml, 9.16 mmol) in Et2O (1mL) was kept under an atmosphere of HBr in an 

ice-bath. A precipitate separated very quickly. After stirring for 0.5 h at r.t., the white precipitate 

was filtered and washed with Et2O. The crude compound was sufficiently pure to be used 

without further purification. Yield: 41%; white hygroscopic solid. 1H NMR (DMSO-d6, ppm): 

7.71-7.62 (m, 5H); 7.78-7.83 (m, 3H); 7.95-7.97 (m, 2H). 13C NMR (DMSO-d6, ppm): 168.33, 

136.23, 134.72, 131.66, 129.95, 128.66, 128.06, 127.91, 127.66.  

4-Methoxyphenyl benzimidothioate hydrobromide (7). Compound 7  was obtained from 4-

methoxybenzonitrile 25 (1.22 g, 9.16 mmol) and thiophenol (0.93 mL, 9.16 mmol) in Et2O 

(1mL) following the same procedure described for 6. Yield: 55%; mp = 198-200 °C. 1H NMR 

(DMSO-d6, ppm): 3.85 (s, 3H); 7.21 (d, 2H, J = 9.0 Hz); 7.63-7.70 (m, 3H); 7.76-7.78 (m, 2H); 

8.00 (d, 2H, J = 9.0 Hz). 13C NMR (DMSO-d6, ppm): 165.78; 135.98; 132.68; 131.78; 131.43; 

123.73; 122.56; 115.42; 56.59.  

4-Hydroxyphenyl benzimidothioatehydrobromide (8). Compound 8 was obtained from 4-

hydroxybenzonitrile 26 (1.09 g, 9.16 mmol) and thiophenol (0.93 mL, 9.16 mmol) in Et2O (1mL) 

following the same procedure described for 6.Yield: 65%; mp = 204-206 °C. 1H NMR (DMSO-

d6, ppm): 7.01 (d, 2H, J = 7.8 Hz); 7.63- 7.72 (m, 3H); 7.76- 7.78 (m, 2H); 7.93 (d, 2H, J = 7.8 

Hz); 11.09 (bs, exch. D2O, 1H). 13C NMR (DMSO-d6, ppm): 165.46; 135.98; 132.64; 132.21; 

131.42; 123.69; 120.58; 116.81.  

Benzyl thiophene-2-carbimidothioate (9). Benzyl bromide (0.360 g, 2.10 mmol) was added to 

a solution of the compound 28 (0.300 g, 2.10 mmol) in CHCl3 (10.0 mL). The resulting mixture 

was refluxed for 12 h. After cooling to r.t. the reaction mixture was added with Et2O (5 mL). The 

white precipitate was filtered and washed with Et2O. The crude product was sufficiently pure to 



 

be used without further purification. Yield: 65%; mp = 180-183 °C. 1H NMR (CDCl3, ppm): 

5.07 (s, 2H); 7.28-7.30 (m, 1H); 7.33-7.38 (m, 3H); 7.47-7.49 (m, 2H); 7.83 (d, 1H, J=4.8 Hz); 

8.76 (d, 1H, J=3.6 Hz). 13C NMR (CDCl3, ppm): 176.95, 137.83, 137.04, 132.48, 131.78, 

130.39, 129.76, 129.27, 128.91, 40.04.  

Naphth-2-ylmethyl thiophene-2-carbimidothioate (10). Compound 10 was obtained from 

compound 28 (0.300 g, 2.10 mmol) and 2-(bromomethyl)naphthalene (0.460 g, 2.10 mmol) 

following the same procedure described for 9. The crude product was sufficiently pure to be used 

without further purification. Yield: 55%; mp = 200-201 °C; lit. ref. n.35: mp = 198-199 °C.13C 

NMR (CDCl3, ppm): 176.97, 137.89, 137.12, 133.42, 133.29, 132.58, 130.46, 129.40, 129.32, 

129.08, 128.11, 127.88, 126.90, 126.82, 126.81, 40.48. 

Phenyl thiophene-2-carbimidothioate hydrobromide (11). Compound 11 was obtained from 

2-thiophenecarbonitrile 30 (1.00 g, 9.16 mmol) and thiophenol (0.93 mL, 9.16 mmol) in Et2O 

(1mL) following the same procedure described for 6. Yield: 63%; mp = 220-221°C. 1H NMR 

(CDCl3, ppm): 7.36 (dd, 1H, J=5.2,4.8 Hz ); 7.63-7.66 (m, 4H ); 7.70-7.73 (m, 1H ); 7.98 (dd, 

1H, J = 5.2, 1.2 Hz ); 8.10 (br s, 1H, NH); 8.99 (dd, 1H, J= 4.8, 1.2 Hz). 13C NMR (CDCl3, 

ppm): 178.05, 139.25, 139.18, 136.05, 133.82, 132.03, 130.85, 130.72, 121.22. 

N-Benzylbenzothioamide (12) . A mixture of N-benzylbenzamide 22 (0.300 g, 1.40 mmol) and 

Lawesson’s reagent (0.679 g, 1.70 mmol) in 15.0 mL of dry THF was stirred at room 

temperature for 12 h (TLC analysis). Then, the organic solvent was evaporated to dryness. The 

resulting solid was washed with a 5% solution of NaHCO3 and then extracted with AcOEt . The 

organic layer was dried over anhydrous sodium sulfate, filtered and evaporated under reduced 

pressure. The product was finally purified by flash chromatography (petroleum ether 60-80 

°C/AcOEt=6/4 as eluent).Yield: 90%; mp = 78-80 °C; lit. ref. n.36: mp = 84-85 °C. 



 

N-Benzyl-4-methoxybenzothioamide (13). Compound 13 was obtained from compound 23 

(0.300 g, 1.20 mmol) and Lawesson’s reagent (0.604 g, 1.50 mmol) following the same 

procedure described for 12. The product was finally purified by flash chromatography 

(petroleum ether 60-80 °C/ AcOEt = 6/4 as eluent). Yield: 65%; mp = 90-93 °C; lit. ref. n.36: mp 

= 97-98 °C. 

N-Benzyl-4-hydroxybenzothioamide (14). Compound 14 was obtained from compound 13  

(0.180 g, 0.70 mmol) and BBr3 (0.83 mL, 5.00 mmol) following the same procedure described 

for 5. The product was finally purified by flash chromatography eluting with petroleum ether 60-

80 °C/AcOEt (7/3). Yield: 67%; mp = 82-84 °C; 1H NMR (DMSO-d6, ppm): 4.98 (d, 2H, J= 6.0 

Hz); 6.79 (d, 2H, J = 8.6 Hz); 7.25-7.37 (m, 5H); 7.78 (d, 2H, J= 8.6Hz); 10.02 (bs, exch. D2O, 

1H); 10.45 (t, exch. D2O, 1H, J = 5.6 Hz). 13C NMR (DMSO-d6, ppm): 49.33; 114.96; 127.42; 

128.00; 128.74; 129.90; 132.09; 138.28; 160.73; 197.12. 

N-Benzylthiophene-2-carbothioamide (15). N-Benzylthiophene-2-carboxamide 29 (0.310 g, 

1.43 mmol) and Lawesson’s reagent (0.580 g, 1.43 mmol) were added to 5 mL of chlorobenzene. 

The solution was heated to 130 °C for 4 h. The solvent was removed under vacuum and the 

crude product was purified by flash column chromatography eluting with hexane/AcOEt (8:2) to 

give 15. Yield: 37%; mp = 87-88 °C; lit. ref. n.37: mp = 85-86 °C. 

4-Methoxybenzamide (19). A solution of NH4OH (0.07 mL, 1.93mmol) in 3.0 mL of dry 

toluene was added dropwise to a stirred solution, cooled at 0°C, of 4-methoxybenzoylchloride 17 

(0.300 g, 1.72 mmol) in 3.0 mL of the same solvent, followed by addition of a solution of 

triethylamine (0.28 mL, 2.0 mmol). The reaction mixture was allowed to room temperature, 

stirred for 24 h (TLC analysis). The precipitate formed was collected by vacuum filtration and 



 

washed with a 5% solution of NaHCO3 to afford 0.103 g of pure 19. Yield: 40%; mp = 164-167 

°C; lit. ref. n.38: mp = 166-168 °C. 

Benzothioamide (20). Compound 20 was obtained from compound 18 (0.300 g, 2.40 mmol) and 

Lawesson’s reagent (1.165 g, 2.80 mmol) following the same procedure described for 9. The 

product was finally purified by flash chromatography (petroleum ether 60-80 °C/ AcOEt = 6/4 as 

eluent).Yield: 40%; mp = 110-112 °C; lit. ref. n.39: mp = 114-116 °C. 

4-Methoxybenzothioamide (21). Compound 21 was obtained from compound 19  (0.600 g, 3.90 

mmol) and Lawesson’s reagent (1.928 g, 4.80 mmol) following the same procedure described for 

9 . The product was finally purified by flash chromatography (petroleum ether 60-80 °C/ AcOEt 

= 6/4 as eluent).Yield: 30%; mp = 139-141 °C; lit. ref. n.39: mp = 144-146 °C. 

N-Benzyl-4-methoxybenzamide (23). A solution of benzylamine (0.14 mL, 1.31mmol) in 3.0 

mL of dry toluene was added dropwise to a stirred solution, cooled at 0 °C, of 4-

methoxybenzoylchloride 17  (0.200 g, 1.20 mmol) in 3.0 mL of the same solvent, followed by 

addition of triethylamine (0.20 mL, 1.42 mmol). The reaction mixture was allowed to room 

temperature, stirred for 24 h (TLC analysis). The precipitate formed was collected by vacuum 

filtration and washed with a 5% solution of NaHCO3 to afford 0.260 g of 23. Yield: 90%; mp = 

120-122 °C; lit. ref. n.38 :mp = 124-126 °C. 

Thiophene-2-carbothioamide (28). 2-Thiophenecarboxamide 27  (1.00 g, 7.86 mmol) and 

Lawesson’s reagent (3.18 g, 7.86 mmol) were added to 10.0 mL of chlorobenzene. The solution 

was heated to 130 °C for 12 h. The solvent was removed under vacuum and the crude product 

was purified by flash column chromatography eluting with hexane/AcOEt (7:3) to give 28. 

Yield: 65 %; mp = 102-103 °C; lit. ref. n.28: mp = 104-105 °C. 



 

N-Benzylthiophene-2-carboxamide (29). To a stirred solution of NaH (0.540 g, 23.59 mmol, 

60% dispersion in mineral oil) in dry DMF (10mL) and under N2 atmosphere, was added the 2-

thiophenecarboxamide 27  (1.00 g, 7.86 mmol). After 30 min at room temperature, the reaction 

mixture was cooled to 0 °C and a solution of benzyl bromide (1.61 g, 9.44 mmol) in DMF (2 

mL) was added. The mixture was stirred at room temperature for 1 h. Then water was added and 

the aqueous phase was extracted with AcOEt. The combined organic phases were washed with 

ice and NaCl, dried, filtered, and concentrated. The residue was purified by flash column 

chromatography eluting with hexane/AcOEt (8:2) to afford 29. Yield: 20%; mp = 114-115 °C; 

lit. ref. n.40: mp = 118-119 °C. 

 

Determination of H2S by amperometry. The H2S-generating properties of the tested 

compounds have been evaluated by amperometric approach, through an Apollo-4000 Free 

Radical Analyzer (WPI) detector and H2S-selective mini-electrodes. The experiments were 

carried out at room temperature. Following the manufacturer's instructions, a “PBS buffer 10×” 

was prepared (NaH2PO4·H2O 1.28 g, Na2HPO4·12H2O 5.97 g, NaCl 43.88 g in 500 ml H2O) and 

stocked at 4 °C. Immediately before the experiments, the “PBS buffer 10×” was diluted in 

distilled water (1:10), to obtain the assay buffer (AB); pH was adjusted to 7.4. The H2S-selective 

minielectrode was equilibrated in 10 ml of the AB, until the recovery of a stable baseline. Then, 

100 μl of a dimethyl sulfoxide (DMSO) solution of the tested compounds was added (final 

concentration of the H2S-donors 100 μM; final concentration of DMSO in the AB 1%). The 

generation of H2Swas observed for 30 min. When required by the experimental protocol, 4 mM 

L-Cysteine was added, before the H2S-donors.The correct relationship between the amperometric 

currents (recorded in pA) and the corresponding concentrations of H2S was determined by 



 

opportune calibration curves with increasing concentrations of NaHS (1 μM, 3 μM, 5 μM, 10 

μM) at pH 4.0.The lower limit of reliable quantitative determination was 0.3 μM. The curves 

relative to the progressive increase of H2S vs time, following the incubation of the tested 

compounds, were analyzed by the equation: 

Ct=Cmax−(Cmax·e−k·t) 

where Ct is the concentration at time t, and Cmax is the highest concentration achieved in the 

recording time. The constant k is 0.693/t1/2, where t1/2 is the time required to reach a 

concentration = ½ Cmax. At least 5 different experiments were performed for each compound.  

 

Animal procedures. All the experimental procedures were carried out following the guidelines 

of the European Community Council Directive 86–609 and in accordance with the Code of 

Ethics of the World Medical Association (Declaration of Helsinki, EU Directive 2010/63/EU for 

animal experiments). The experiments were authorized by the Ethical Committee of the 

University of Pisa (Protocol number 0037321/2013). 

Evaluation of the functional effects on rat aortic rings. To determine a possible vasodilator 

mechanism of action, the compounds were tested on isolated thoracic aortic rings of male 

normotensive Wistar rats (250–350 g). Rats were sacrificed by cervical dislocation under 

overdose of sodium pentobarbital and bled. Heart and aorta were immediately excised and freed 

of extraneous tissues. The endothelial layer was removed by gently rubbing the intimal surface 

of the aortae with a hypodermic needle. Five mm wide aortic rings were suspended, under a 

preload of 2 g, in 20 ml organ baths, containing Tyrode solution (composition of saline in mM: 

NaCl 136.8; KCl 2.95; CaCl2·2H2O 1.80; MgSO4·7H2O 1.05; NaH2PO4·H2O 0.41; NaHCO3 

11.9; Glucose 5.5), thermostated at 37 °C and continuously gassed with Clioxicarb, a mixture of 



 

O2 (95%)and CO2 (5%). Changes in tension were recorded by anisometric transducer (Grass 

FTO3), connected with a preamplifier (Buxco Electronics) and with a software for data 

acquisition (BIOPAC Systems Inc., MP 100). After an equilibration period of 60 min, the 

endothelial removal was confirmed by the administration of acetylcholine (ACh, 10 μM) to KCl 

(25 mM)-precontracted vascular rings. A relaxation <10% of the KCl-induced contraction was 

considered representative of an acceptable lack of the endothelial layer, while the organs, 

showing a relaxation ≥10% (i.e. significant presence of the endothelium), were discarded. Then, 

45 min after the confirmation of the endothelium removal, the aortic preparations were re-

contracted by 25 mM KCl and when the contraction reached a stable plateau, the tested H2S-

donors were added cumulatively (1 μM–1 mM). Preliminary experiments showed that the KCl 

(25 mM)-induced contractions remained in a stable tonic state for at least 40 min. The 

vasorelaxing efficacy (Emax) was defined as maximal vasorelaxing response achieved with the 

highest concentration (1 mM) of the tested compounds, and was expressed as a percentage of the 

contractile tone induced by KCl. The parameter of potency was expressed as pIC50, calculated as 

negative Logarithm of the molar concentration evoking a half-reduction of the KCl-induced 

contraction.  

Data were obtained from aortae of 6–9 animals/group. ANOVA and Student t test were selected 

as statistical analysis, P < 0.05 was considered representative of significant statistical differences. 

 

Effects of H2S-donors on angiotensin II-reduced Coronary Flow (CF). The heart was 

mounted on a Langendorff apparatus, perfusion was carried out at constant pressure (70-80 

mmHg). The heart rate (HR) and left ventricular developed pressure (LVDP) were continuously 

monitored in order to discard hearts showing severe arrhythmia or unstable LVDP and HR 



 

values. Coronary flow (CF) was volumetrically measured at 5 min intervals and expressed as 

ml/min, normalized by the heart weight (g). After a 20 min equilibration period, the effects of the 

selected H2S-donors on angiotensin II-reduced CF were assessed: 0.1µM angiotensin II (AngII) 

was administered through the perfusion. Once obtained a stable coronary spasm (evaluated as a 

reduction of the CF), compounds 11  or 4  (300 µM) were administered for 20 min (in the 

constant presence of 0.1 µM AngII). Preliminary experiments demonstrated that 0.1 µM AngII 

caused a rapid decrease of the CF, which reached and maintained a stable level for at least 1h. 

Changes in CF, were expressed as percentage of the basal CF. Experiments were carried out in 

hearts from 6-9 animals/group.  

 

Effects of H2S-donors on blood pressure in vivo. 

The effects of the selected H2S-donors and of the reference drug compound 1 on blood pressure 

were tested on an experimental model of hypertension, induced by the administration of L-NG-

nitroarginine methyl ester (L-NAME), inhibitor of nitric oxide synthase41. Male 12-weeks-old 

normotensive Wistar rats (250 g) were anaesthetized with sodium thiopental 60 mg/Kg. After the 

administration of the anaesthetic drug, the animal tails were exposed to a 15 min of irradiation 

with an IR lamp to determine a vasodilation of the tail-vessel, permitting an easier recording of 

the basal systolic blood pressure with the “tail-cuff” method by a BP recorder (Ugo Basile 

58500).Basal level of systolic blood pressure (Psys) was recorded for 20 min, at 5 min intervals. 

Then, the rats received an i.p. injection of 100 mg/Kg L-NAME, and the Psys increase was 

further monitored for 20 min at 5 min intervals. Thereafter, 1 (133 µmol/Kg), or equimolar doses 

of the tested compounds (4  and 11), or the corresponding vehicle (DMSO, 0.33 ml/Kg), were 



 

administered i.p. to different groups, each composed of six rats. Starting from the administration 

of the tested compounds, the Psys values were recorded, for 30 at 5 min intervals. 

Basal Psys was expressed as a mean of the four measurements carried out in each rat before the 

administration of L-NAME. L-NAME-induced hypertensive Psys was expressed as a mean of 

the four measurements carried out in each rat after the administration of L-NAME. 

Change in systolic blood pressure, recorded after the drug administration, was expressed as 

percentage of the L-NAME-increased Psys and calculated as mean value of the six recordings 

carried out after the drug administration. Blood pressure measurements were carried out in 6 

animals/group.  

 

Evaluation of the membrane hyperpolarizing effects on HASMCs. The membrane 

hyperpolarizing effects were evaluated on human aortic smooth muscle cell (HASMC, Life 

Technologies) by spectrofluorometric methods, as already described.42 Briefly, HASMCs were 

cultured in Medium 231 (Life technologies) supplemented with Smooth Muscle Growth 

Supplement (SMGS, Life Technologies) and 1% of 100 units/ml penicillin and 100 mg/ml 

streptomycin (Sigma Aldrich) in tissue culture flasks at 37 °C in a humidified atmosphere of 5% 

CO2. HASMCs were cultured up to about 90% confluence and 24 h before the experiment cells 

were seeded onto a 96-well black plate, clear bottom pre-coated with gelatine1% (from porcine 

skin, Sigma Aldrich), at density of 72 × 103 per well. After 24 h to allow cell attachment, the 

medium was replaced and cells were incubated for 1 h in the buffer standard (HEPES 20 mM, 

NaCl 120 mM, KCl 2 mM, CaCl2·2H2O 2 mM, MgCl2·6H2O1 mM, Glucose 5 mM, pH 7.4, at 

room temperature) containing the bisoxonol dye bis-(1,3-dibutylbarbituric acid) DiBac4(3) 

(Sigma Aldrich) 2.5 μM. This membrane potential-sensitive dye DiBac4(3) allowed us a non-



 

electrophysiological measurement of cell membrane potential;5 in fact, this lipophilic and 

negatively-charged oxonol dye shuffles between cellular and extracellular fluids in a membrane 

potential-dependent manner (following the Nernst laws), thus allowing to assess changes in 

membrane potential by means of spectrofluorometric recording. In particular, an increase of 

fluorescence, corresponding to an inward flow of the dye, reflects a membrane depolarization; in 

contrast, a decrease in fluorescence, due to an outward flow of the dye, is linked to membrane 

hyperpolarization. The spectrofluorometric recording is carried out at excitation and emission 

wavelengths of 488 and 520 nm, respectively (Multiwells reader, Enspire, PerkinElmer). 31 (10 

μM), a well-known activator of BKCa channels, was used as reference hyperpolarizing drug. 

After the assessment of base-line fluorescence, the tested compounds were added and the trends 

of fluorescence was followed for 40 min. The relative fluorescence decrease, linked to 

hyperpolarizing effects, was recorded every 2.5 min and was calculated as: 

(Ft−F0)/F0 

where F0 is the basal fluorescence before the addition of the tested compounds, and Ft is the 

fluorescence at time t after their administration. The area under curve (AUC) was calculated and 

the changes in fluorescence were expressed as % of that induced by 31 10μM. Six different 

experiments were performed, each carried out in six replicates. 

 

Evaluation of H2S release on HASMCs. HASMCs were seeded (30000/per well)  in a culture 

slide pre-coated with gelatine1% (from porcine skin, Sigma Aldrich)and after 24h were pre-

loaded with a 100μM solution of the fluorescent dye WSP-1 (Washington State Probe-1,3’-

methoxy-3-oxo-3H-spiro[isobenzofuran-1,9’-xanthen]-6’-yl-2(pyridin-2-yldisulfanyl) benzoate, 

Cayman Chemical). In particular, WSP-1 was first incubated with HASMC for 30 min (allowing 



 

cells to up-load the dye), then the supernatant was removed and replaced with a solution of tested 

compounds in buffer standard. 1 300 M was used, on the basis of previous set-up experiments, 

as a reference H2S-donor. When WSP-1 reacts with H2S, it releases a fluorophore detectable with 

a spectrofluorometer at λ=465-515 nm. The increasing of fluorescence (expressed as 

fluorescence index=FI) was monitored for 1h, by means of an EnSpire (Perkin-Elmer) 

spectrofluorometer. Six different experiments were performed, each carried out in six replicates.  

Cell fluorescence was also evaluated by a fluorescence microscope (Nikon): after the tested 

compounds incubation (1h), cells were washed and fixed with Bouin solution for 10 min, then 

cells were washed again 2 times and propidium iodide was added to highlight nuclei. Then, the 

culture slide was examined at fluorescence microscope. 

 

Determination of cGMP increase on HASMC. Confluent human aortic smooth muscle cells 

(HASMCs) were first washed with Dulbecco's phosphate buffered saline (DPBS), and then 

incubated in Hanks’ balanced salt solution (HBSS) with or without sodium nitroprusside (SNP) 

1mM for 2 hours. Then, cells were treated with the tested compounds 300 μM or with vehicle for 

20 min. After the treatment, cells were washed with Hanks’ balanced salt solution and cGMP 

was extracted using 0.1N HCl. cGMP content was measured in the extracts using a commercially 

available cGMP ELISA kit following the manufacturer’s instructions (Cayman Chemical). Three 

different experiments were performed, each carried out in three replicates.  

 

Statistical analysis. All the experimental data were analyzed by a computer fitting procedure 

(software: GraphPad Prism4.0) and expressed as mean ±standard error. ANOVA and Student t 



 

test were selected as statistical analysis. When required, the Bonferroni post hoc test has been 

used. P < 0.05 was considered representative of significant statistical differences.  
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ABBREVIATIONS 

AB, assay buffer; Ach, acetylcholine; AngII, angiotensin II; AUC, area under curve; CBS, 

cystathionine-beta-synthase; CF, coronary flow; Cmax, the highest concentration achieved in the 

recording time; CSE, cystathionine-gamma-lyase; DADS, diallyl disulfide; DiBac4(3), bisoxonol 

dye bis-(1,3-dibutylbarbituric acid); DMSO, dimethyl sulfoxide; Emax, vasorelaxing efficacy; 

FI, fluorescence index; HASMCs, human aortic smooth muscle cells; HR,  heart rate; ITEs, 

iminothioethers; KATP, ATP-sensitive potassium channels; L-Cys, L-Cysteine; LVDP, left 

ventricular developed pressure; 3MST,  3-mercaptopyruvate sulfurtransferase; pIC50, potency 

index; PDE, phosphodiesterase; SMGS, Smooth Muscle Growth Supplement; t1/2, the time 

required to reach a concentration = ½ Cmax; TAs, thioamide compounds; TC, tested compounds; 

WSP-1: Washington State Probe-1. 
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