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INCREMENTAL BUNDLE METHODS USING UPPER MODELS∗

WIM VAN ACKOOIJ† AND ANTONIO FRANGIONI‡

Abstract. We propose a family of proximal bundle methods for minimizing sum-structured
convex nondifferentiable functions which require two slightly uncommon assumptions that are sat-
isfied in many relevant applications: Lipschitz continuity of the functions and oracles which also
produce upper estimates on the function values. In exchange, the methods: (i) use upper models
of the functions that allow one to estimate function values at points where the oracle has not been
called; (ii) provide the oracles with more information about when the function computation can be
interrupted, possibly diminishing their cost; (iii) allow one to skip oracle calls entirely for some of
the component functions, not only at “null steps” but also at “serious steps”; (iv) provide explicit
and reliable a posteriori estimates of the quality of the obtained solutions; (v) work with all possible
combinations of different assumptions on how the oracles deal with not being able to compute the
function with arbitrary accuracy. We also discuss the introduction of constraints (or, more generally,
of easy components) and use of (partly) aggregated models.
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1. Introduction. We are concerned with the following minimization problem:

(1.1) min

{
f(x) =

∑
k∈K

fk(x) : x ∈ X

}
,

where K is a finite index set, X ⊆ Rn is closed, convex, and “easy” in a sense specified
later, and each component fk : Rn → R of f is convex but possibly nondifferentiable.
Customarily, we assume that each fk is available through an (approximate) oracle,
i.e., a procedure which, given x, returns (approximate) information about the value
of f(x) and the first-order behavior of f at x; our specific definition is given in (2.2).
Our development hinges on a somewhat stronger assumption than usual, though:

(1.2) each fk is globally Lipschitz on Rn with known Lipschitz constant Lk.

We are especially motivated by the case of a block-structured problem

(1.3) sup

{ ∑
k∈K

ckuk :
∑
k∈K

Akuk = b , uk ∈ Uk k ∈ K
}

,

where f is the Lagrangian function w.r.t. the “complicating” constraints that link
together blocks of variables that would otherwise be independent, i.e., with

(1.3kx) fk(x) := sup
{
(ck − xAk)uk : uk ∈ Uk

}
,

(1.4) f(x) = xb+
∑
k∈K

fk(x) .
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For each k ∈ K, any optimal solution uk
∗ of (1.3kx) provides the function value

fk(x) = (ck−xAk)uk∗ and the subgradient zk = −Akuk∗ ∈ ∂fk(x). For such f , (1.2) is
often true, for instance, because Uk is nonempty and compact and finite bounds−∞ <
uk ≤ uk ≤ ūk <∞ are known for each uk ∈ Uk (very often, Uk ⊆ {0, 1}nk). Minimiz-
ing f solves the Lagrangian dual of (1.3), which has countless applications, e.g., [5,
6, 14, 17, 18, 20, 28, 31] among the many others. Typically (1.3) is “difficult,” due
to either being large-scale, NP-hard, or both. Hence, computing f (i.e., computing a
valid bound) is cheaper than solving (1.3), if only because it separates into |K| smaller
subproblems. However it may still be costly, as each (1.3kx) may still be NP-hard, |K|
may be large, or both. Thus, finding ways to reduce the function evaluation cost may
be useful. An attractive strategy is to compute f only approximately to within some
error ε, an issue that has seen substantial interest of late [11, 12, 13, 15, 33, 36, 37]. In
our sum-function context, this may actually mean two different things: that problems
(1.3kx) are approximately solved, or that some of them are not solved at all. Ap-
proaches doing the latter are called incremental. However, in all proposals so far [10,
15, 21], avoiding the solution of some (1.3kx) is only possible at “bad” iterations where
the f -value does not improve (a.k.a. null steps (NS)), while “good” iterations (serious
steps (SS)) require that all the fk are computed. This is basically due to the fact that,
in order to prove that any x ∈ X is approximately optimal to some accuracy ε, one has
to compute its function value f(x) with at least the same accuracy [9, Observation 2.7].
Yet, our development will clarify that what is really needed is an upper bound on f(x).

Upper bounds on f(x) are not directly mentioned in the literature about bundle
methods, except in the recent [35] for a different context. They are indirectly used
in the fundamental reference [12]; in particular, the controllable lower oracle there
explicitly produces lower estimates only, but it has a known maximum error out of
which worst-case upper estimates can be derived. This is used to define the conser-
vative decrease [12, (5.8)], which is basically what we will use (cf. (3.4)), except that
our upper estimates may be tighter than the worst-case ones. Hence, the control-
lable bundle method [12, Algorithm 5.4] and the asymptotically exact bundle method
of [12, section 7.1.4] are very close to the methods we analyze here. However, in our
analysis upper estimates take center stage: they are explicitly produced by the oracle,
which can at some iteration produce only them. We show that availability of upper
estimates allows one to refine somewhat the standard convergence analysis of inexact
bundle methods; in particular, it allows one to produce explicit a posteriori estimates
of the quality of the obtained solution and to define three different forms of the crucial
noise reduction (NR) step, only one of which was previously known. As a conse-
quence, we don’t require the accuracy to be nonincreasing, as in [12, Remark 6.8], nor
to be exactly zero when the function value is below a given target, as in [12, section
7.1.2], [21].

Also, explicitly considering upper estimates helps in providing the oracle(s) with
a better description of the conditions that are needed from the returned information
so that the optimization can proceed under the form of two targets, an upper and a
lower one, and the accuracy. For the Lagrangian case (1.3)/(1.4), this might allow one
to terminate early on the solution of problems (1.3kx). All these advantages actually
apply to the general inexact case, even if the function is not a sum one, only provided
the oracle produces explicit upper estimates.

Finally, and crucially for the inexact case, having upper estimates available also
allows one to complement the usual lower model(s of the individual components fk)
of f , that traditionally drive the optimization process, with an upper model that
provides upper estimates of f(x) even if no oracle has ever been called at x. This has
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already been done in [1], but only on a small subset of the search space: exploiting
(1.2) we extend the upper model to all of X . This is the fundamental technical idea
that allows us to prove convergence without necessarily requiring that all components
have been evaluated at SS.

This work is organized as follows. In section 2 we introduce the different ingre-
dients of the algorithm, their rationale, and key notation. The algorithm is given in
section 3, where we also discuss the convergence analysis in detail. In section 4 we
extend the framework to three different classes of oracles that may not be able to
provide information with arbitrary accuracy, and we conclude in section 5.

2. Ingredients of the algorithm. We start by illustrating the main compo-
nents that have to be assembled to form a complete algorithm.

2.1. The oracle. For our development we extend the definition of the inexact,
informative, on-demand oracle of [35]. Any oracle Ok for fk, when called at some
given x ∈ X , has to provide information about the function value and the first-order
behavior of fk at x. We require these to define a standard lower linearization of fk,
i.e., a lower estimate fk ≤ fk(x) and a vector zk ∈ Rn such that

(2.1) fk(·) ≥ fk +
〈
zk, · − x

〉
.

In order to control the accuracy of fk (and therefore of zk), besides x ∈ X our oracle

inputs three parameters −∞ ≤ tark ≤ tar
k ≤ ∞ (the lower and upper targets, with

tar
k
> −∞ and tark <∞) and 0 ≤ εk ≤ ∞ (the accuracy), and provides

(2.2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

(i) function value information: two values fk and f̄k s.t.

−∞ ≤ fk ≤ fk(x) ≤ f̄k ≤ ∞ and f̄k − fk ≤ εk;

(ii) first-order information: if fk > −∞, a zk ∈ Rn s.t. (2.1) holds;

(iii) s.t. at least one between f̄k ≤ tar
k
and fk ≥ tark holds.

We will denote by Ok(tark, tar
k
, εk, x) a call to the oracle. It is easy to realize that

it is always possible for the oracle to provide a correct answer, possibly at the cost of
computing fk(x) with “infinite” accuracy. Also, requiring a finite accuracy εk < ∞
entails the restitution of finite bounds and a subgradient, even if tar

k
= ∞ and

tark = −∞. Indeed, since (2.2(i)) then holds with εk < ∞, both f̄k and fk must

be finite, so (2.2(ii)) together with (2.1) gives zk ∈ ∂εkf
k(x). As a consequence the

following holds.

Lemma 2.1. Under (1.2),
∥∥zk∥∥ ≤ Lk for each zk produced by (2.2).

Proof. A zk is produced whenever fk > −∞, and hence zk ∈ ∂εf
k(x) for ε =

fk(x) − fk < ∞. It is immediate to prove by the definition that
∥∥zk∥∥ ≤ Lk for any

zk ∈ ∂εf
k(x) (or use [25, Proposition 4.1.2]).

Our setting is therefore, at least initially, biased toward subproblems (1.3kx) that
can be solved with arbitrary accuracy; however, the extension to more relaxed as-
sumptions will be provided in section 4.

It may be worth remarking that three oracle parameters may seem somewhat
redundant, especially as all other approaches in the literature only use one or two.
For instance, if both f̄k ≤ tar

k
and fk ≥ tark, then f̄k − fk ≤ tar

k − tark, and

εk might be deemed useless. However, (2.2) is more flexible than previous definitions
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of approximate oracles in that it allows εk = ∞, whereby it then requires only one
between f̄k and fk to be finite. This is particularly relevant if (1.3kx) is NP-hard,
since then computing fk(x) typically amounts to three different processes:

1. finding a “good enough” feasible solution ūk ∈ Uk by (arbitrarily complex)
heuristics, providing both the lower bound fk = ckūk ≤ ν(1.3kx) and the first-

order information zk = −Akūk, where ν(·) denotes the optimal value of an
optimization problem;

2. producing a “good enough” upper bound f̄k ≥ ν(1.3kx) by the exact solution
of some appropriate relaxation of the problem (or a feasible solution of an
appropriate dual problem, if available), again an arbitrarily complex process,
considering that the solution of (1.1) for (1.4) is often nothing but the compu-
tation of an upper bound on ν(1.3);

3. if fk and f̄k are not “close enough” (cf. (2.2)(i)), performing an arbitrary
amount of branching and/or tightening (say, by valid inequalities) to make
them so.

When, say, a general-purpose MILP solver is used to solve (1.3kx), these three processes
are tightly integrated; however, they nonetheless remain conceptually distinct. Thus,
any such solver typically produces candidate values fk ≤ ν(1.3kx) ≤ f̄k and gradually
reduces the distance between the two. Given the three parameters in (2.2) it is easy
to stop the solution process (e.g., via appropriate callback functions) as soon as the
required conditions are satisfied. The parameters are not redundant to each other:
while tar

k
and tark set specific targets on ν(1.3kx), but are independent from one

another, εk requires both bounds, but it makes no assumptions on where ν(1.3kx) lies.
For εk =∞, this means that the computation can be interrupted without having one
of the two bounds at all. For instance, if ūk ∈ Uk is found such that ckūk ≥ tark,
one can entirely avoid computing any relaxation, since then f̄k = ∞ is allowed.
Symmetrically, if a bound ν(1.3kx) ≤ f̄k ≤ tar

k
is obtained, one can stop without

producing any ūk ∈ Uk, and therefore any zk, since fk = −∞ is allowed. This is more
flexible than all approaches proposed so far in the literature. For instance, [11, 35] for
the nonsum case (the former a level method, the latter for a discrete case) produce
upper estimates (the former implicitly, the latter explicitly) but only have one target
and must always produce zk. The recent [10] for the sum case does not set any target
to the individual oracles, although a global (upper) target is set for f . Our setting
therefore has the potential to reduce the number of iterations in which (1.3kx) is solved
with high accuracy.

2.2. Lower models. In standard bundle methods, all components k ∈ K are
evaluated at each point in a sequence {x�} of iterates, producing information zk� and

fk

�
. This is then used to define aggregated information z� =

∑
k∈K zk� and f

�
=∑

k∈K fk

�
satisfying (2.1) for the whole of f . For reasons to become clearer shortly

(cf. (2.8)), one customarily replaces f
�
with α� = 〈z�, x�〉−f �

to define the (aggregated
lower) bundle B = { (zi, αi) }, which is the basis of the (aggregated) cutting plane
model

(2.3) f̌B(x) = max
{ 〈zi, x〉 − αi : i ∈ B }

(with the useful shorthand “i ∈ B” for “(zi, αi) ∈ B”). Upon first reading one may
assume i = �, which, via (2.1), immediately proves that f̌B ≤ f , i.e., f̌B is a lower
model of f . However, in general the pairs in B are not directly correlated with the
iterates, as we shall see, whence the different index. While f̌B is not the only possible
(lower) model of f [2, 3, 32], our development only uses cutting plane models.
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The issue with f̌B is that it requires to compute all components at all iterations,
which is precisely what we want to avoid. For this it is necessary to consider individual
lower models for each component, i.e.,

(2.4) f̌k
B(x) = max

{ 〈
zki , x

〉− αk
i : (zki , α

k
i ) ∈ Bk

} ≤ fk(x)

depending on individual (lower) bundles Bk = { (zki , αk
i =

〈
zki , xi

〉 − fk

i
) }. It will be

appropriate to still refer to B = [Bk ]k∈K as “the lower bundle,” with the distinction
between this and the aggregated version easily made by the context. In our algorithm,
not all individual lower bundles will be updated at all iterations �. Indeed, not only we
will strive not to call the oracles for all components at every iterate, but even if called,
an oracle may return fk = −∞, and therefore no zk, and this may still be enough
for the algorithm to proceed. This is not the only reason why i and � are different
indices: the well-known aggregation technique (cf. (3.9)) can be used to produce pairs
(zki , α

k
i ) that bear no direct relationship with any specific x�.

In the analysis, whenever possible we will not distinguish between (2.3) and the
disaggregated lower model f̌B(x) =

∑
k∈K f̌k

B(x) ≤ f(x). Note that here we are dis-
regarding possible “simple” terms in f , like the linear one in (1.4) associated to the
right-hand-side of the relaxed coupling constraints, or constraints x ∈ X ; these will
be dealt with in section 3.5. It has to be remarked that the choice between aggre-
gated and disaggregated lower models is by no means inconsequential. In fact, while
using (2.4) is well-known to improve, often substantially, the convergence speed of
the algorithm, it may also come at a significant cost in terms of solution time of the
master problem (cf. section 2.4). So, while (2.4) is often preferable (e.g., [19]), there
are cases where (2.3) is more efficient. In the recent [38], for instance, both models
are actually used depending on the type of iteration (NS or SS). While we initially
present our approach with the use of disaggregated models, different choices will be
briefly discussed in section 3.4.

2.3. Upper models. The fact that our oracles (2.2) explicitly produce upper
estimates f̄k ≥ fk(x) also allows us to define upper models of fk. For each k ∈ K we
define the (individual) upper bundle Pk = { (xi, f̄

k
i ) } with fk(xi) ≤ f̄k

i < ∞. Then,
the upper bundle is P = [Pk ]k∈K; although it may make conceptually sense to define
an aggregated upper bundle made of pairs (xi, f̄i =

∑
k∈K f̄k

i ), we won’t pursue this

direction. As for Bk, while some (xi, f̄
k
i ) ∈ Pk will have xi = x� and f̄k

i as the oracle
output when called on x�, in general not all upper bundles will be updated at each
iterate, both because some k ∈ K may not be evaluated, and because, even if it is,
the oracle may report f̄k = ∞. Furthermore, aggregation techniques akin to those
known for the lower bundles (cf. (3.7)) can add pairs (xi, f̄

k
i ), where xi is not any of

the previous (or future) iterates x�. Yet, using the standard shorthand, it is clear that

(2.5) ḟk
P(x) = inf

{ ∑
i∈Pk

f̄k
i θ

k
i :

∑
i∈Pk

xiθ
k
i = x , θk ∈ Θk

}
≥ f(x)

for all x ∈ X with Θk the unitary simplex in appropriate dimension. However,
(2.5) may admit no solution: ḟk

P(x) = ∞ for x /∈ X̄k
P = conv( { xi : i ∈ Pk } ).

Furthermore, since f̄k
i 
 fk(xi) may happen, there is no guarantee that ḟk

P satisfies
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(1.2) with Lk. Yet, exploiting (1.2) we can improve ḟk
P by defining

f̂k
P(x) = inf{ ḟk

P(w) + Lk‖x− w‖2 : w ∈ X }

= inf

{ ∑
i∈Pk

f̄k
i θ

k
i + Lk‖sk‖2 :

∑
i∈Pk

xiθ
k
i + sk = x , θk ∈ Θk

}
.(2.6)

Clearly, fk(x) ≤ f̂k
P(x) < ∞: (1.2) implies that fk(x) ≤ fk(w) + Lk ‖x− w‖ ≤

ḟk
P(w) + Lk ‖x− w‖ for any x ∈ X and arbitrary w. This kind of regularization has

been studied in [24, section XI.3.4]; Proposition XI.3.4.5 there proves that f̂k
P(x) =

ḟk
P(x) ⇐⇒ ∃zk ∈ ∂ḟk

P(x) such that
∥∥zk∥∥ ≤ Lk. As previously remarked this may not

happen, not even for x ∈ int X̄k
P ; thus, f̂

k
P both extends and (potentially) improves

ḟk
P . As (2.6) shows, f̂k

P can be computed “cheaply”; thus, the same holds for the

global upper model f̂P(x) =
∑

k∈K f̂k
P(x) ≥ f(x). Clearly, f̂P(x) <∞ for all x ∈ X ,

whenever Pk �= ∅ for all k ∈ K.
Introducing f̂P is instrumental in avoiding the asymmetry that was present in all

previous analyses of incremental bundle approaches. Producing lower estimates on
f(x) has always been easy, since f̌B(x) < ∞ for all x ∈ X . However, proving for a
given x that z ∈ ∂εf(x) requires actually producing an upper bound f̄ ≥ f(x), i.e.,
some f̄k ≥ fk(x) for all k ∈ K. This is why all incremental bundle approaches so far
have required computing all the components, at least in selected iterations. As we
will see, the availability of f̂k

P(x) <∞ will allow us to relax this strong requirement.

2.4. The master problem. The main use of the lower model is to drive the
search for the next iterate. In the standard cutting-plane (CP) approach this would
be the minimum of f̌B over X , but this is well-known to suffer from instability is-
sues. Bundle methods try to avoid that by ensuring that the next iterate lies in an
appropriate (most often, implicitly defined) neighborhood of a suitably chosen point
x̄ ∈ X , called the stability center. In particular, proximal bundle methods such as
those studied here obtain this by solving the stabilized master problem

(2.7) x+ = argmin
{
f̌B(x) + 1

2t ‖x− x̄‖2 }
.

The stabilizing term ‖x− x̄‖2 /(2t), governed by the stabilization parameter t > 0,
ensures that x+ will be “near” x̄, thereby limiting the violent oscillations of the iterates
typical of the unstabilized CP method, and frequently held responsible for its slow
convergence. Additionally, it ensures that (2.7) is always bounded from below.

The introduction of the stability center x̄ suggests to translate the lower models
(2.4) using x̄ as the origin. In the context of exact bundle methods, it is customary to
also set the origin of the objective axis to f(x̄), i.e., the reference value against which
the decrease of f (and of fB) is measured. In inexact bundle methods it is necessary to
choose a reference value to replace f(x̄); in [12] this is the (lower) level l ≤ f(x̄), which
is used to compute the crucialmodel decrease [12, equation (3.8)]. That general choice
allows us to analyze convergence of many different inexact bundle variants, among
which those with upper oracles that do not even guarantee (2.1). However, the model
decrease using l as the reference can then be compared with an effective decrease that
uses instead an upper estimate f̄ ≥ f(x̄) ≥ l as reference value [12, equation (5.8)].
We take a different path by defining the linearization error of zki w.r.t. x̄ and P as

(2.8) αk
i (x̄,P) = f̂k

P(x̄)− [ fk

i
+ zki (x̄ − xi) ] ,
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i.e., using the upper estimate f̂P(x̄) ≥ f(x̄) as the reference for measuring both
decreases. Although the difference with previous approaches may look minor, in fact
this decision has a significant impact on the convergence arguments. Clearly, (2.8)
unavoidably hinges on availability of upper estimates. In our incremental setting this
requires the combination of two assumptions:

1. the informative oracle (2.2) producing them;
2. the definition of the upper model (2.6) allowing to transport them to points

where the oracle has not been called, which in turn requires (1.2).
However, in the nonincremental case—that is, either one single oracle, or calling all
oracles at all iterates—the upper model is not necessary, and so neither is (1.2); in
other words, the upper bundle P returns to be just the (upper estimate on the)
function value(s) at x̄, as in standard approaches. As we shall see, a large part of
our analysis remains valid, and interesting, for the general case of an inexact bundle
method with the informative oracle (2.2), even if no incremental strategy is employed.
Indeed, it is only the availability of upper estimates for all k ∈ K, however they be
obtained, that allows us to use (2.8); its immediate consequence, using convexity of

fk, fk

i
≤ fk(xi) and f̂k

P(x̄) ≥ fk(x̄), is

(2.9) zki satisfies (2.1) =⇒ αk
i (x̄,P) ≥ 0 =⇒ zki ∈ ∂αk

i (x̄,P)f
k(x̄) .

That is, αk
i (x̄,P) measures the accuracy of zki as first-order information of fk in x̄.

This measure is easily recomputed if the stability center is updated to any other x̃
(with corresponding f̃k ≥ fk(x̃)) by the well-known information transport property

(2.10) αk
i (x̃,P) = zki ( x̄− x̃ ) + αk

i (x̄,P) + ( f̂k
P(x̃)− f̂k

P(x̄) ) (≥ 0 ) .

Since x̄ and P are usually clear from the context, to alleviate the notation it is
customary to use just αk

i in place of αk
i (x̄,P). Care will have to be taken, since in

the standard analysis the linearization errors only change when x̄ does (i.e., during
SS), whereas in our case they can change even if x̄ doesn’t. This dependency will
be appropriately discussed when needed. It is also important to remark that, with
our definition, the linearization errors “take into account the gap f̂k

P(x̄)− f̌k
B(x̄) ≥ 0”

between the upper and lower models at x̄. Indeed, plug f̌k
B(x̄) ≥ fk

i
+ zki (x̄− xi) into

(2.8) to obtain

(2.11) f̂k
P(x̄)− f̌k

B(x̄) = min {αk
j : j ∈ Bk } ≤ αk

i ∀i ∈ Bk .

For fixed x̄ and P , the (disaggregated, cf. (2.4)) master problem (2.7) can then be
written

(2.12) min

{ ∑
k∈K

vk +
1

2t
‖d‖2 : vk ≥ zki d− αk

i i ∈ Bk , k ∈ K
}

and its optimal solution d∗ gives x+ = x̄ + d∗, where the oracle is typically called.
Note that vk ≥ f̌k

B(x+)− f̂k
P(x̄) (cf. (2.8)), and therefore for the optimal value vk∗

(2.13) v∗ = f̌B(x+)− f̂P(x̄) =
∑
k∈K

(
vk∗ = f̌k

B(x+)− f̂k
P(x̄)

)
,

a relationship that will be crucial later on. The usefulness of defining the linearization
errors precisely via (2.8) lies in the fact that the dual of (2.12) is

(2.14) min

{
1

2
t

∥∥∥∥∑
k∈K

∑
i∈Bk

zki θ
k
i

∥∥∥∥
2

+
∑
k∈K

∑
i∈Bk

αk
i θ

k
i : θk ∈ Θk , k ∈ K

}
,
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where Θk is the unitary simplex of dimension |Bk|. Standard duality theory guarantees
that ν(2.12) = −ν(2.14), and the relationships

(2.15) d∗ = −tz∗ , v∗ = −t ‖z∗‖2 − α∗ =
∑
k∈K

(d∗zk∗ − αk
∗) =

∑
k∈K

vk∗

between the primal and dual optimal solutions, where

(2.16) zk∗ =
∑
i∈Bk

zki θ
k
∗,i , αk

∗ =
∑
i∈Bk

αk
i θ

k
∗,i , z∗ =

∑
k∈K

zk∗ , α∗ =
∑
k∈K

αk
∗

“translate in the (z, α)-space” the dual optimal solution θ∗ of (2.14). Consequently,
we define

(2.17) Δ∗ := ν(2.14) = (t/2) ‖z∗‖2 + α∗ = −ν(2.12) = −v∗ − ‖d∗‖2 /(2t) (> 0) .

These relationships are crucial in the analysis of the method, since their obvious
consequence

(2.18) zk∗ ∈ ∂αk∗f
k(x̄) k ∈ K =⇒ z∗ ∈ ∂α∗f(x̄)

(cf. (2.16)) formally proves that z∗ = 0 (=⇒ d∗ = 0) and α∗ = 0 imply that 0 ∈ ∂f(x̄),
i.e., x̄ is optimal. In practice one therefore stops when ‖z∗‖ and α∗ are “small.”
Hence, whenever one does not stop, v∗ < 0 (cf. (2.15)); in particular it is not small,
i.e., d∗ is a (significant) descent direction. Note that this is not true for the individual
components, i.e., vk∗ > 0 may happen for some (but not all) k. The predicted descent
(2.13) is crucial in the analysis: its componentwise characterization

(2.19) f̌k
B(x+) = f̂k

P(x̄) + d∗zk∗ − αk
∗ = f̂k

P(x̄) + vk∗

(cf. (2.13) and (2.15)) shows that v∗ also “includes the gap f̂P(x̄)− f̌B(x̄) ≥ 0,” since

(2.11) implies αk
∗ ≥ f̂k

P(x̄)− f̌k
B(x̄), which in turn (using (2.15) for the first inequality)

gives

(2.20) − v∗ ≥ α∗ =
∑
k∈K

αk
∗ ≥

∑
k∈K

(
f̂k
P(x̄)− f̌k

B(x̄)
)
= f̂P(x̄)− f̌B(x̄) .

3. The base algorithm. We now describe a first version of the algorithm that
mimics as closely as possible those for the exact case, and discuss its convergence. To
alleviate the heavy notation we will use shorthand whenever possible, for instance,
f̂�(·) for f̂P�

(·) and f̌�(·) for f̌B�
(·), � being the iteration index. The reference point

where f is estimated is x̄�, so it makes sense to use f̌� = f̌�(x̄�) and f̂� = f̂�(x̄�). We
will also dismiss � altogether when no confusion arises, as in x̄ and x+ for x̄� and x�+1,
f̂k, f̌k, f̂k

+, and f̌k
+ for f̂k

� , f̌
k
� , f̌

k
� (x+) and f̂k

� (x+), respectively. Each time we obtain

function value estimates from the oracle we ensure they are consistent with f̂k and
f̌k by

(3.1) f̄k
+ := min

{
f̄k
+ , f̂k

P(x+)
}

, fk

+
:= max

{
fk

+
, f̌k

B(x+)
}

.

Minimal care in the handling of Bk and Pk will therefore ensure that

(3.2) −∞ < f̌k
+ = f̄k + vk∗ ≤ fk

+
≤ fk

+ ≤ f̄k
+ ≤ f̂k

+ <∞ ,

so that (3.1) always allows us to assume−∞ < fk

+
≤ f̄k

+ <∞, even thoughOk has not

been called yet (or has produced infinite values). It is also necessary to estimate the
linearization error of zk w.r.t. x̄, whenever it was produced: the fact that x+ = x̄+d∗
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gives, using (2.8)

(3.3) αk = f̂k − fk

+
+ zkd∗ .

We will frequently need to restrict sums to subsets H ⊆ K of the components, e.g.,
as in

f̄H
+ =

∑
k∈H

f̄k
+ , fH

+
=

∑
k∈H

fk

+
, zH =

∑
k∈H

zk , αH =
∑
k∈H

αk .

We will use “−H” to refer to (sums over) the complement of H, i.e., K \ H; taking
“k” to mean “{ k }”, “−k” then has to be read as K \ { k }.

3.1. Presentation of the algorithm. We will present the pseudocode of our
algorithm in two parts. The “main loop” described next is as close as possible to that
of standard bundle methods, so that we can prove its convergence with basically the
very same arguments. This requires the full power of oracle (2.2), i.e., the ability to
solve (1.3kx) with arbitrary accuracy; relaxing this assumption is analyzed in section
4. The main loop is parametric on the exact way in which the oracles are called,
possibly repeatedly, on a subset of components in order to attain the crucial relation-
ships required to ensure convergence (cf. (3.5)/(3.6)); this is the task of the “inner
loop,” presented and analyzed in section 3.3. We will refer to iterations in the main
loop (indexed by �) as outer iterations, to distinguish them from the inner iterations
performed within the inner loop. The pseudocode of the main loop is

0 (Input and initializations) input the algorithmic parameters δ1 ≥ 0, δ2 ≥
0, and 0 < m1 < m2 < 1; set the iteration counter �←↩ 1; choose arbitrarily
x̄1 and t1 > 0; for all k ∈ K, call Ok(−∞,∞, εk, x̄1) with arbitrary 0 ≤ εk <
∞, collect −∞ < fk ≤ (fk(x̄1) ≤)f̄k < ∞ and zk; set Pk

1 ←↩ { (x̄1, f̄
k) },

Bk
1 ←↩ { (zk, αk(x̄1,P)) };

1 (Master problem) solve (2.12)/(2.14) for the optimal solutions d∗,�, vk∗,�,
θk∗,�, z

k
∗,�, and αk

∗,�;
2 (Stopping condition) if ‖z∗,�‖ ≤ δ1, and α∗,� ≤ δ2, then stop else

compute Δ∗,� ←↩ t� ‖z∗,�‖2 /2+α∗,�; x�+1 ←↩ x̄�+d∗,�; f̌�(x�+1) = f̂�(x̄�)+v∗,�;
define the global upper and lower targets

(3.4) tar� ←↩ f̌�(x�+1)−m2v∗,� , tar� ←↩ f̌�(x�+1) +m1Δ∗,�

and set the global accuracy ε� ←↩ tar� − tar� = −m2v∗,� −m1Δ∗,�;
3 (Inner loop) call the inner loop with parameters B�, P�, x̄�, x�+1, ε�, v

k
∗,�

for each k ∈ K, Δ∗,�, m1, and m2; let B�+1, P�+1 be those output by the
inner loop;

4 (NS/SS test) check the conditions

f̂�+1(x�+1) ≤ tar�,(3.5)

f̌�+1(x�+1) ≥ tar�;(3.6)

if (3.5) holds and (3.6) does not, then perform SS, i.e., x̄�+1 ←↩ x�+1; if (3.6)
holds and (3.5) does not, then perform NS: x̄�+1 ←↩ x̄�; if both (3.5) and
(3.6) hold, then choose arbitrarily to perform either an SS or an NS;

5 (Bookkeeping) appropriately update P�+1 and B�+1 and select t�+1; � ←↩
�+ 1; go to Step 1.
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Fig. 1. Illustration of the main quantities in the SS/NS decision.

A few initial remarks are in order. The fact that 0 ≤ Δ∗,� ≤ −v∗,� (cf. (2.17)) and
0 < m1 < m2 < 1 imply f̌�(x�+1) < tar� < tar� < f̂�(x̄�), and therefore 0 < ε� <∞.
Figure 1 pictorially illustrates the relationships between the main quantities involved
in the crucial SS/NS decision, which will be useful while discussing convergence of the
main loop in section 3.2. While we will strive to closely follow standard convergence
arguments for (proximal) bundle methods, there will be some significant differences
with the exact case. A striking one is that, in Step 4, it may well happen that
both (3.5) and (3.6) hold true, which is quite unlike previous proposals; this might
actually happen when evaluating the case depicted in Figure 1. Hence, the algorithm
may have the choice between performing an SS and an NS, which may be useful in
practice. Note that, at least until section 4, we will assume that at least one of the
two conditions holds; cf. Assumption 1.

Another phenomenon that is specific of our setting is the fact that computing
some f̄k at x�+1 and adding the corresponding pair (x�+1, f̄

k) to Pk
� may, through

(2.6), decrease the upper estimate at the stability center x̄�. In other words, one

might have Δf̂k
� = f̂k

� (x̄�) − f̂k
�+1(x̄�) > 0, in which case all the αk

i would decrease

(by Δf̂k
� ) within the inner loop. Yet, the algorithm computes the crucial targets (3.4)

(and, similarly, (3.15)) before any oracle call and it does not revise them within the
inner loop, so that the crucial targets in (3.5) and (3.6) only depend on the value of
the upper model at the beginning of each outer iteration. Conversely, at least one
among f̂�+1(x�+1) < f̂�(x�+1) and f̌�+1(x�+1) > f̌�(x�+1) holds because B�+1 and
P�+1 include the new information generated during the inner loop.

Avoiding updating the main algorithmic thresholds during inner iterations has
somewhat counterintuitive consequences that are worth commenting upon: the al-
gorithm may perform “fake” SS or NS. Indeed, assume that the algorithm performs
an SS—i.e., (3.5) holds—in an iteration where Δf̂k

� > 0, i.e., f̂k
�+1 < f̂k

� . Clearly,
the “true” decrease of f due to moving the stability center to x�+1 is less than what
was originally estimated using the initial value of f̂k

� , and it therefore may be less

than what (3.5) requires. Yet, this is not really an issue, as f̂k
�+1 is indeed “signifi-

cantly smaller” than f̂k
� : that part of the decrease could have also been obtained by

keeping x̄�+1 = x̄� is, in the end, irrelevant. An extreme form of this phenomenon
can be seen in the case that d∗,� = 0 =⇒ x�+1 = x̄�, and still the algorithm does
not stop. This occurrence, which cannot happen in exact bundle methods, implies
that α∗,� 
 0: that is, x̄� is the best estimate of the minimum of f provided by the
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lower model f̌�, but there is a large gap between f̂� and f̌� (which is “comprised”
in the αk

i and therefore in α∗,�; cf. (2.11)/(2.20)). As in [9], this just results in the
oracle being called again in x�+1 = x̄�, resulting in improved function estimates and,
very possibly, ultimately yielding a fake SS that is actually only improving the upper
estimate at x̄�. This may even happen infinitely many times (say, if x̄1 is optimal and
zk = 0 throughout): basically, instead of asking to the Ok exact information from the
start, one is continuously asking them more and more refined ones. Analogously, the
NS condition (3.6) is designed to ensure that the information introduced into B in
the inner loop “decreases enough the value of ν(2.14)” (cf. Lemma 3.11). Since α∗,�
decreases if Δf̂k

� > 0, ν(2.14) would already decrease even if B would not changed:
however, once again the desired reduction of ν(2.14) is achieved, and, as we shall see,
this is enough to ensure convergence.

3.2. Convergence of the main loop. Global convergence of the algorithm is
simple to prove using only slightly modified versions of the standard analysis of prox-
imal bundle methods. Of course, it hinges on the fact that the inner loop ultimately
works as intended, summarized by the following.

Assumption 1 (correctness of the inner loop). At each iteration, the inner loop
finitely terminates producing Pk

�+1 and Bk
�+1 such that at least one of (3.5) and (3.6)

holds.

In section 3.3 we will show that the inner loop can satisfy Assumption 1. This
is quite obvious in the nonincremental case (say, only one oracle), and therefore our
analysis applies to the general inexact case, although for that it gives only slightly
refined results w.r.t. those already available in the literature. Indeed, we proceed
along well-established guidelines; with δ1 = δ2 = 0, we prove

1. in an infinite sequence of SS, ‖z∗,�‖ → 0 and α∗,� → 0, which means that
the corresponding sequence { x̄� } is a minimizing one, if f is bounded from
below;

2. in an infinite sequence of consecutive NS, ‖z∗,�‖ → 0 and α∗,� → 0, which
means that the (fixed) corresponding stability center x̄ is optimal.

We start from the first point: let LSS be the index set of SS, and assume |LSS| =∞.
Rules for “appropriate” handling of Pk and t at Step 5 are required. The management
of Pk is obviously specific to our analysis, but for this we can exploit the analogue
of the aggregation technique that is well-know for the (lower) bundle management
(cf. (3.9)). The idea is that the optimal primal solution (θk∗ , sk∗) to (2.6) for x̄� imme-
diately provides the aggregated primal pair and the corresponding poorman’s upper
bundles

(3.7) Pk
∗ =

{
(xk

∗ , f̄
k
∗ ) =

( ∑
i∈Pk

xiθ
k
∗,i + sk∗ ,

∑
i∈Pk

f̄k
i θ

k
∗,i + Lk‖sk∗‖2

) }

so that f̂k
P∗(x̄�) = f̂k

P(x̄�). In plain words, one can substitute P with P∗ while ensuring
that the value of the upper model at the stability center does not change (increase).
This immediately suggests the following.

Assumption 2 (upper model management).
(i) For all � and k ∈ K, let (θk∗,�, sk∗,�) be the optimal solution to (2.6) with x = x̄�

having produced the value f̂k
� . Then, either all the (xi, f̄

k
i ) ∈ Pk

�−1 such that

θk∗,i,� > 0 also belong to Pk
� , or (xk

∗ , f̄
k
∗ ) of (3.7) belongs to Pk

� .
(ii) If |LSS| =∞, then

∑
�∈LSS

t� =∞.
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The immediate consequence is that f̂� ≥ f̂�+1 holds for all �: (3.5) works for an
SS, and Assumption 2(i) readily ensures that the optimal solution of (2.6) at itera-
tion � always remains feasible (albeit, if (3.7) has been used, in a “surrogate form”) at
iteration �+1, so that the optimal value cannot increase during an NS. Note that, as
discussed in section 3.1, f̂� can actually decrease when an NS is performed; however,
this just means that it is a fortiori nonincreasing. Clearly, standard (exact) bun-
dle methods invariably resort to (3.7), only keeping the (exact) upper approximation
value in the stability center, for all components. Instead, our general form of As-
sumption 2(i) allows us to have “richer” upper bundles, possibly leading to avoiding
to compute some components at some x�+1 provided that tight enough upper esti-
mates are generated by “nearby” iterates. As far as management of t� is concerned,
Assumption 2(ii) just requires that it does not converge to 0 “too fast,” written in
an abstract form (since it is impossible to know beforehand if |LSS| =∞); the easiest
way to ensure that it holds is to impose 0 < t ≤ t� for all �. Global convergence of
infinite sequences of SS is now at hand using standard arguments.

Theorem 3.1. Under Assumptions 1 and 2, if |LSS| =∞, then limLSS��→∞ f̂� =
lim infLSS��→∞ f(x̄�) = ν(1.1). If moreover, (1.1) admits any optimal solution, i.e.,
ν(1.1) > −∞, then ‖z∗,�‖ → 0 and α∗,� → 0. In addition, if {t�} is bounded from
above, then the sequence { x̄� } converges to the optimal solution of problem (1.1).

Proof. Assumption 2(i) guarantees that the sequence { f̂� } is nonincreasing, and
therefore it has a limit f̂∞. If f̂∞ = −∞, then ν(1.1) ≤ limLSS��→∞ f(x̄�) ≤ f̂∞ =
−∞, i.e., { x̄� }�∈LSS

is a minimizing sequence (which cannot converge to an optimal

solution to (1.1) since there is none). For the case where f̂∞ > −∞, since (3.5) holds
at SS

f̂�+1 ≤ f̂� + (1−m2)v∗,� ≤ f̂� − (1−m2)
(
Δ∗,� = t� ‖z∗,�‖2 /2 + α∗,�

)
=⇒

∑
�∈LSS

(
t� ‖z∗,�‖2 /2 + α∗,�

)
<∞ =⇒ t� ‖z∗,�‖2 → 0 and α∗,� → 0 .(3.8)

Using (3.8) together with (2.20) and the fact that f̂� − f(x̄�) ≤ f̂� − f̌� gives

limLSS��→∞ f̂�− f(x̄�) = 0: asymptotically, the upper estimate becomes tight. Hence,

limLSS��→∞ f̂� = lim infLSS��→∞ f(x̄�). The rest follows from [7]: for � ∈ LSS, one is
performing a step of t� along z∗,� ∈ ∂α∗,�f(x̄�) (cf. (2.18)), which is the basic scheme [7,
equations (1.1)–(1.2)]. Since (3.8) are [7, equations (1.5)–(1.6)] and Assumption 2(ii)

is [7, equation (1.4)], limLSS��→∞ f̂� = ν(1.1) comes from [7, Proposition 1.2]. The last
part of the theorem follows as in [7, Theorem 4.4]: (3.8) and the assumption that {t�}
is bounded give

∑
�∈LSS

t�( t� ‖z∗,�‖2 /2 + α∗,� ) <∞, i.e., [7, equation (2.8)], which is
all that is needed to invoke [7, Proposition 1.3].

We remark that imposing boundedness of {t�} would be easy by requiring t� ≤
t̄ <∞ in Assumption 2(ii): this would be free in this section but would create issues
later on in section 4, and hence we avoid it. Also, convergence of iterates requires no
hypotheses on t� if, e.g., the level sets of f are compact. None of this is particularly
relevant, so we now turn to the case |LSS| <∞: the “last SS” �̄SS occurs, after which
only NS are performed, which means that x̄ is fixed. The result hinges on estimating
how much the insertion of new elements in B changes ν(2.14) if an NS is performed.
Our version is quite similar to those that have been repeatedly used (cf., e.g., [1, 2]),
except that it explicitly deals with the fact that only a subset of the components may
have been evaluated. To simplify the notation, we temporarily drop the iteration
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index �, and we denote with (2.14+) and t+, respectively, the master problem and the
stabilization parameter at iteration �+ 1. Crucial in our argument is the well-known
aggregation technique, which inspired (3.7) for P and that is also central to lower
bundle management (cf. Assumption 3). Again, the (dual) optimal solutions (2.16)
can be used to define the poorman’s lower bundles

(3.9) Bk
∗ = { (zk∗ , αk

∗) }, k ∈ K ,

which have the property that if each Bk is replaced with the corresponding Bk
∗ , and

nothing else (i.e., x̄ and t) is changed in the master problem, then the primal optimal
solutions d∗ and vk∗ remain the same, as (2.15) readily shows. In particular, this means

that f̌k
B∗(x+)− f̂k

P(x̄) = f̌k
B(x+)− f̂k

P(x̄) = d∗zk∗ − αk
∗ = vk∗ . To proceed, as in section

3.3 we denote by Z ⊆ K the set of the components for which a pair (zk+, α
k
+) has been

added to Bk. Since we examine the case of an NS, in the lemma we will assume that
the condition

(3.10) ΔfZ :=
∑
k∈Z

(
Δfk := fk

+
− f̌k

+

) ≥ m1Δ∗ ⇔ fZ
+
≥ f̌Z

+ +m1Δ∗

holds. It is easy to see that (3.10) is equivalent to (3.6), since for all k /∈ Z one has
fk

+
= f̌k

+ (the lower model has not been improved, cf. (3.1)), i.e., Δfk = 0; as a

consequence, f
+
− f̌+ = ΔfZ .

Lemma 3.2. If (3.10), Bk∗ ⊆ Bk
+ for all k ∈ K, {(zk, αk)} ⊆ Bk

+ for all k ∈ Z and
t+ ≤ t hold, then

(3.11) ν(2.14)− ν(2.14+) ≥ ΔfZ

2
min

{
1 ,

ΔfZ

t+ ‖zZ∗ − zZ‖2
}

.

Proof. We define the “minimal, aggregated” form of (2.14+) as

(3.12) min
{ 1

2
t
∥∥z−Z

∗ + (1− θ)zZ∗ + θzZ
∥∥2+α−Z

∗ +(1−θ)αZ
∗ +θαZ : θ ∈ [0, 1]

}
.

Clearly, (3.12) is a restriction of (2.14+) even under the minimal assumption that
Bk
+ = Bk∗ ∪ {(zk, αk)} (cf. (3.9)). Indeed, (3.12) is the dual of (2.7) using the aggre-

gated model (2.3) (cf. (3.19))—as opposed to the sum of individual models (2.4) as
in (2.12)—with

(3.13) B =
{
(z∗, α∗) , (z̄Z , ᾱZ) =

(
zZ + z−Z

∗ , αZ + α−Z
∗

) }
.

In other words, (3.12) is a restriction of (2.14+)—with “minimal” dual bundle—where
θk = θ for all k ∈ K. Whichever way it is looked at, it is clear that, under Assumption
3, ν(3.12) ≥ ν(2.14+) holds (using t+ ≤ t). Hence, we want to estimate

ν(2.14)− ν(2.14+) ≥ ζ = ν(2.14)− ν(3.12) ≥ 0 ,

where the last inequality comes from the fact that (z∗, α∗) is optimal for (2.14), and
θ = 0 is feasible in (3.12) and produces the same solution. Estimating ζ requires
simple but tedious algebra, starting with

ζ =
t

2
‖z∗‖2 + α∗ − min

θ∈[0,1]

{ t

2

∥∥z−Z
∗ + (1− θ)zZ∗ + θzZ

∥∥2
+ α−Z

∗ + (1− θ)αZ
∗ + θαZ

}

= max
θ∈[0,1]

{ t

2
‖z∗‖2 + α∗ − t

2

∥∥z−Z
∗ + (1− θ)zZ∗ + θzZ

∥∥2 − α−Z
∗ − (1− θ)αZ

∗ − θαZ
}
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and then using z∗ = z−Z
∗ + zZ∗ , α∗ = α−Z

∗ + αZ
∗ to rewrite the objective function as

t

2

∥∥z−Z
∗ + zZ∗

∥∥2 − t

2

∥∥z−Z
∗ + (1− θ)zZ∗ + θzZ

∥∥2 + θ(αZ
∗ − αZ) =

=
t

2

[ ∥∥z−Z
∗

∥∥2
+ 2z−Z

∗ zZ∗ +
∥∥zZ∗ ∥∥2 − ∥∥z−Z

∗
∥∥2 − (1− θ)2

∥∥zZ∗ ∥∥2 − θ2
∥∥zZ∥∥2

− 2(1− θ)z−Z
∗ zZ∗ − 2θz−Z

∗ zZ − 2(1− θ)θzZ∗ zZ
]
+ θ(αZ

∗ − αZ )

=− t

2
θ2

∥∥zZ∗ − zZ
∥∥2 + θ

[
t(zZ∗ + z−Z

∗ )zZ∗ − t(z−Z
∗ + zZ∗ )zZ + αZ

∗ − αZ
]

=− t

2
θ2

∥∥zZ∗ − zZ
∥∥2 + θ

( − d∗zZ∗ + d∗zZ + αZ
∗ − αZ )

,

where in the last step we have used (2.15): d∗ = −t(z∗ = zZ∗ + z−Z
∗ ). By summing

(3.3) and (2.19) over k ∈ Z we obtain, respectively, fZ
+
− f̂Z = zZd∗ − αZ and

d∗zZ∗ − αZ∗ = vZ∗ . Plugging these in the last line of the above derivation we finally
conclude

(3.14) ζ ≥ max
{
h(θ) = θΔfZ − 1

2θ
2MZ : θ ∈ [0, 1]

}
,

where MZ = t
∥∥zZ∗ − zZ

∥∥2 (≥ 0), and, by (3.10), ΔfZ = fZ
+
− f̌Z

+ (≥ 0). Obviously,

ν(3.14) ≥ 0 (θ = 0 is feasible), showing that ζ ≥ 0. Since h′(θ) = ΔfZ −MZθ, if
MZ = 0⇔ zZ = zZ∗ , then h is linear and h′ = ΔfZ ≥ 0: hence, the optimal solution
to (3.14) is θ∗ = 1. Otherwise, the unconstrained maximum of h is θ̄ = ΔfZ/MZ ≥ 0.
If θ̄ ≤ 1, then θ∗ = θ̄ with h(θ∗) = h(θ̄) = (ΔfZ)2/(2MZ). If, instead, θ̄ > 1, then
again θ∗ = 1, and therefore h(θ∗) = h(1) = ΔfZ −MZ/2. Hence,

ΔfZ ≤MZ =⇒ ζ ≥ (ΔfZ)2/(2MZ) ,

ΔfZ > MZ =⇒ h(1) = ΔfZ − 1

2
MZ >

1

2
ΔfZ =⇒ ζ ≥ 1

2
ΔfZ .

Furthermore ΔfZ ≤ MZ ⇔ ΔfZ/MZ ≤ 1 ⇔ (ΔfZ)2/(2MZ) ≤ 1
2ΔfZ , which

finally allows us to conclude that

ζ ≥ ν(3.14) ≥ min

{
ΔfZ

2
,
(ΔfZ)2

2MZ

}
=

ΔfZ

2
min

{
1 ,

ΔfZ

t ‖zZ∗ − zZ‖2
}

,

i.e., (3.11) holds. The formula also works when zZ∗ = zZ =⇒ θ∗ = 1 =⇒ ζ ≥ ΔfZ by
considering min{ 1 , ΔfZ/0 } = min{ 1 , ∞} = 1.

The lemma immediately suggests the analogue of Assumption 2 for B. (Actually,
as the following is well-known, it is Assumption 2 that has been suggested by analogy.)

Assumption 3 (lower bundle management).
(i) For all � > �̄SS and k ∈ K, let θk∗,� be the optimal solution to (2.14): then,

either all the (zki , α
k
i ) ∈ Bk

� such that θk∗,i,� > 0 also belong to Bk
�+1, or

( zk∗ , αk∗ ) ∈ Bk
�+1 (cf. (3.9)).

(ii) There exists �′ ≥ �̄SS such that t� is nonincreasing for all � ≥ �′.

Assumption 3 is again written in an abstract form, in that it only has to hold
within the last infinite sequence of consecutive NS (if any). Since it is impossible
to say if � > �̄SS, the conditions have to hold, eventually, within any sequence of
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consecutive NS. Yet, as soon as an SS is performed, each Bk can be entirely reset:
hence, Assumption 3(i) is weaker than Assumption 2(i). Assumption 3(ii) allows on-
line tuning of t�, which is well-known to be crucial in practice: it is not necessarily true
that “the best” t�+1 after an NS is smaller than t� (e.g., [1]). Of course, assuming that
t� decreases whenever an NS is performed, as done, e.g., in [12, (6.14)], is a simple way
to achieve the desired property. The combined effect of 3(i) and 3 (ii) is that, during a
sequence of consecutive NS, eventually the values ν(2.14) are nonincreasing. Indeed,
the previous optimal solution of (2.14) remains feasible (albeit, if (3.9) has been used,
in a “surrogate form”), so that ν(2.14) cannot increase, since t� is also nonincreasing.
This is the crux of the analysis of the case of an infinite sequence of consecutive NS.

Theorem 3.3. Under Assumptions 1 and 3, if |LSS| < ∞ and |L| = ∞, then

‖z∗,�‖ → 0 and α∗,� → 0. Hence, x̄ is optimal for (1.1) and lim inf�→∞ f̂� =
lim sup�→∞ f̌� = f(x̄) = ν(1.1).

Proof. We claim that Δ∗,� = ν(2.14�) → 0 as � → ∞, which implies ‖z∗,�‖ → 0
and α∗,� → 0. Once the claim is proven, the statement easily follows: (2.18) proves

that 0 ∈ ∂f(x̄), and lim inf�→∞ f̂� = lim sup�→∞ f̌� = f(x̄) = ν(1.1)—asymptotically,
both the upper and the lower estimates become tight—is proved exactly as in Theorem
3.1.

By contradiction, assume Δ∗,� ≥ ε > 0 for all �. Because NS are always per-
formed, (3.6) (and therefore (3.10)) always holds: ΔfZ

� ≥ m1Δ∗,� ≥ m1ε > 0. The
hypotheses of Lemma 3.2 are satisfied, and therefore (3.11) holds for all � (≥ �′).
By Lemma 2.1, ‖zki ‖ ≤ Lk; hence zk∗,� as a convex combination satisfies ‖zk∗,�‖ ≤ Lk

as well. Consequently, ‖zZ∗,� − zZ� ‖ is bounded above by some constant, and since
t�+1 ≤ t�, t� is also bounded above. The denominator of the rightmost term in (3.11)
is also bounded above. Therefore, since ΔfZ

� ≥ m1ε > 0, the whole rightmost term
in (3.11) is bounded away from zero: hence, ν(2.14�+1) < ν(2.14�)− δ for some δ > 0.
But this means that ν(2.14�) → −∞ as � → ∞, which contradicts ν(2.14) ≥ 0,
thereby proving the claim and concluding the proof.

All in all, we reproduce the standard result.

Theorem 3.4. Under Assumptions 1, 2, 3, and ν(1.1) > −∞, if δ1 > 0 and δ2 >
0, then the algorithm finitely terminates with an approximately δ2-optimal solution.
If δ1 = 0, then { x̄� } converges (possibly, finitely) to a δ2-optimal solution of problem
(1.1).

Proof. Irrespectively of which among |LSS| =∞ and |LSS| <∞ happens, ‖z∗,�‖ →
0 and α∗,� → 0 (by Theorems 3.1 and 3.3, respectively); hence, if δ1 > 0 and
δ2 > 0, then the algorithm finitely terminates. When this happens, z∗,� ∈ ∂α∗,�f(x̄�)
(cf. (2.18)), which, since ‖z∗,�‖ is “small,” is an appropriate notion of approximate
δ2-optimality (as α∗,� ≤ δ2). If δ1 = 0 and the algorithm terminates, then x̄� is
δ2-optimal. Otherwise Theorems 3.1 and 3.3 give the desired result.

As the proof shows, if it ever happens that z∗,� = 0, then the algorithm provides
a correct a posteriori estimate of the error: x̄� is, then, α∗,�-optimal. This is specific
of our setting, and due to the fact that the oracles produce upper estimates, whose
gap with the lower ones is “incorporated” in the αk

i .

3.3. The inner loop. The goal of the inner loop is to attain Assumption 1 “with
the least possible computational effort.” This means calling as few oracles as possible
with the loosest possible parameters (larger upper target and accuracy, smaller lower
target). A general scheme of inner loop is as follows:



394 WIM VAN ACKOOIJ AND ANTONIO FRANGIONI

0 (Input and initialization) Input initial lower/upper bundles B/P , the sta-
bility center x̄ and iterate x+ to be evaluated, global lower/upper targets
tar/tar and accuracy ε, disaggregated values vk∗ for all k ∈ K, the aggre-
gated value Δ∗, parameters 0 < m1 < m2 < 1. Set Z ←↩ ∅. For each k ∈ K,
evaluate (2.6) at x+ and add (x+, f̂

k
+) to Pk. With arbitrary weights βk ≥ 0

such that
∑

k∈K βk = 1, define the individual upper and lower targets
(3.15)

f̌k
+ = f̂k + vk∗ < tark ←↩ f̌k

+ +m1β
kΔ∗ < tar

k ←↩ f̌k
+ −m2β

kv∗ .

1 (Oracle call) Arbitrarily select k ∈ K and the accuracy εk ≥ βkε. Call

Ok(min{ tark , tar − f−k

+
},max{ tark , tar − f̄−k

+ } , εk , x+ ), collect the

output fk

+
, f̄k

+ and possibly zk. Update fk

+
and f̄k

+ according to (3.1).

2 (Bundle management) Add (x+, f̄
k
+) to Pk replacing the previous pair. If

fk

+
> −∞ held before the update (3.1), and therefore zk has been produced,

then Z ←↩ Z ∪ {k} and add (zk, αk
+(x̄,P)) to Bk.

3 (Termination) If neither (3.5) nor (3.6) hold, then go to Step 1.
4 (Output) Output updated lower/upper bundles B/P .

We now discuss the rationale of the specific choice of the oracle targets. First of all,
that the targets are defined as in “min{ tark , tar− f−k

+
}” depends on the fact that

one of the two terms corresponds to being able to immediately declare an SS/NS. For
instance, if tark > tar−f−k

+
, and fk

+
≥ tar−f−k

+
, then (3.6) immediately holds and

the inner loop can immediately end, and similarly for the upper target. We need only
then discuss the case where the oracle targets are actually defined by (3.15). Then,
due to (2.2)(iii), after the call to Ok at least one of the “partial” SS/NS conditions

(3.16) (i) f̂k
+ ≤ tar

k
, (ii) f̌k

+ ≥ tark

holds. By summing over k, one establishes that if (3.16)(i) holds for all k ∈ K, then
(3.5) holds, and, similarly, if (3.16)(ii) holds for all k ∈ K, then (3.6) holds. Hence,
initially calling Ok with a “large” εk, say, εk = ∞, makes sense: if the oracles of all
components satisfy the same relation in (3.16), then either an SS or an NS is done,
possibly without having ever produced a single lower/upper estimate at that iterate.
Actually, due to the use of the upper/lower models an SS/NS can be performed even
(quite) before having computed all components. However, this may not happen; for
instance, some oracle may return an upper estimate but no lower one, and some may
do the converse. Thus, ultimately it may be necessary to call the oracles with “small
enough” accuracy, in order to ensure that one among (3.5) and (3.6) holds. It is easy
to verify that such a small enough accuracy exists. Indeed, calling Ok with εk = βkε
for all k ∈ K clearly suffices, because then (2.2)(i) gives f̂k

+− f̌k
+ ≤ βkε for each k ∈ K,

and therefore f̂+ − f̌+ ≤ ε. If both (3.5) and (3.6) were not satisfied one would have

(3.17) f̂+ − f̌+ > tar− tar = −m2v∗ −m1Δ∗ = ε ,

i.e., a contradiction. This immediately suggests the following.

Assumption 4 (accuracy management in the inner loop). After a finite number
of inner iterations, for all k ∈ K the oracle Ok has been called with εk = βkε.

By the above discussion, it is clear that Assumption 4 readily implies Assumption
1. There are many possible ways in which this can be obtained. It is sensible to start
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by setting εk = ∞ for all k ∈ K, so as to give the oracles the chance to terminate
without providing one of the two bounds. If this fails to attain either (3.5) or (3.6),
then the oracles can be called again with a smaller εk, up until εk = βkε. The
exact sequence of the values εk for a given k, as well as the exact order in which the
different components are evaluated, is immaterial for the convergence (although it can,
of course, have a significant influence on the actual computational cost). It is also
appropriate to remark that calling the same oracle Ok more than once with the same
iterate x+ but decreasing εk also makes computational sense: in many cases the oracle
will reoptimize efficiently at little or no implementation cost. Typically, state-of-the-
art optimization solvers allow one to terminate the search for an optimal solution
early by specifying a coarse optimality tolerance, and then resume the computation
of a more accurate solution at little or no extra cost by keeping all their internal
data structures updated and just “jumping into the main loop.” This is, of course,
not the only possible way in which reoptimization can be done: more sophisticated
hot-starting approaches can also be designed if x�+1 was already processed several
iterations ago (e.g., the Lagrangian dual hot-starting procedure described in [36]).
However, doing reoptimization by calling the oracle multiple times on the same x+ is,
in many applications, basically “free.” Furthermore, while reoptimizing linear/convex
problems is well-understood, doing the same with, say, integer programs can be an
issue due to the large size of the internal state of the algorithm that has to be kept (the
whole Branch & Bound tree). So, for several applications this form of reoptimization
may be the only practical one.

It is also appropriate to remark about the role of the somewhat “artificial-looking”
combinators βk. In view of the standard analysis of bundle methods, it would have
been more natural to define tar

k
using vk∗ rather than βkv∗. Defining βk might have

been necessary anyway to split the aggregated quantity Δ∗ across the components
in order to define tark, but it would most definitely have been natural to assume
βkv∗ = vk∗ . This is, however, not possible because vk∗ > 0 may happen for some (but

not for all) k ∈ K: using vk∗ in place of βkv∗ might then lead to tar
k
< tark. In

the same vein, note that in (3.15) we have not indicated that tar
k
< f̂k

+, precisely
because this may fail to be true, in particular when vk∗ > 0. Indeed, this is the case of
a component that is actually increasing along d∗, but its increase is counterbalanced
by the others. For such a component it may even happen that f̂k

+ = f̌k
+, so that

tar
k
> f̂k

+. This is not an issue, though; on the contrary, it says that such a component
may be basically irrelevant in the choice between an SS and an NS, as the others
alone may be enough to dictate it. For instance, if (3.16)(i) would happen to hold
for all other components, then (3.5) would surely hold even without even calling Ok.
This is a nice illustration of the fact that the upper model can allow to perform
an SS without having called all oracles on x+, which is precisely the aim of the
development.

Finally, we remark that if δ2 > 0, then ε = −m2v∗ −m1Δ∗ ≥ (m2 −m1)α∗ ≥
(m2−m1)δ2. Hence, no oracle will ever be required to reply with an absolute accuracy
greater than (approximately, say, if m1 ≈ 1 and m2 ≈ 0) some factor βk of the total
absolute accuracy required for the solution of (1.1). By having βk somehow related
to fk

+/f+ (cf., e.g., section 3.6) we can have each oracle to never be required to
yield a solution with (approximately) more than the relative accuracy required for
the solution of (1.1), which is the best that one could expect [9, Observation 2.7].
Yet, during the course of the algorithm, when α∗ 
 δ2, the required accuracy will
automatically be (much) less than that; and even that accuracy will only be required
when it is strictly necessary to allow the algorithm to proceed.
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3.4. Extension: The (partly) aggregated case. Using a disaggregated ap-
proach—with model (2.4), and therefore master problems (2.12)/(2.14)—is natural
in our setting. This has been reported to be beneficial in terms of convergence speed
(e.g., [4, 19, 26]), but the increased size of the master problem can eventually dominate
overall running time (e.g., [19]). In some cases [38], it might therefore be beneficial to
rather use the aggregated approach, with the aggregated bundle B and master problems

min

{
v +

1

2t
‖d‖2 : v ≥ zid− αi i ∈ B

}
,(3.18)

min

{
1

2
t

∥∥∥∥∑
i∈B

ziθi

∥∥∥∥
2

+
∑
i∈B

αiθi : θ ∈ Θ

}
(3.19)

solved instead of (2.12)/(2.14). The fact that one has to sum over all k ∈ K seems
to fly squarely in the face of an incremental method, where at each iteration one is
trying to compute as few components as possible. Yet there are at least two possible
strategies to extend the approach to an aggregated setting.

Full aggregation. The main idea is to keep individual disaggregate bundle (both
lower and upper) information despite the use of (3.18)/(3.19). We thus do the follow-
ing:

• Keep the disaggregated representation of each zi and αi in terms of their
individual components zki and αk

i . This allows us to reconstruct the individual
vk∗ , zk∗ , and αk∗ by just using the unique solution θ∗ of (2.14) uniformly for all
k ∈ K.
• Keep the disaggregate upper bundle Pk, which for the “poorman’s” (3.7)
with x∗ = x̄� only amounts to keeping the separate values f̄k together with
the aggregated one f̄ .

Then, since the SS condition (3.5) only depends on the aggregated v∗, Theorem 3.1

still holds true. The individual f̂k and vk∗ are required to form the targets (3.15) and
therefore the accuracy εk of each k ∈ K, but as soon as (3.5) is obtained an SS can
be performed. Forming a unique (z+, α+) even if (3.6) is triggered with Z � K is
also easy: one just has to use (z̄Z , ᾱZ) of (3.13). Indeed, this is all that is needed
to form the “approximated” master problem (3.12), which is the crux of Lemma 3.2
providing the crucial estimate (3.11), and therefore Theorem 3.3 still works with the
obvious modification to Assumption 3(i).

Partial aggregation. Keeping the disaggregated representation (zki , α
k
i ) for all k ∈

K of each (zi, αi) may come at a considerable memory cost, and the computational cost
of forming the individual vk∗ , z

k
∗ and αk

∗ may be nonnegligible, too. This can actually
be avoided by an alternative approach: insert partly aggregated cuts/variables

(3.20)
∑
k∈Z

vk ≥ zZi d− αZ
i

in the primal/dual disaggregated master problems (2.12)/(2.14). It is easy to see that
using (3.20) does not impair the fundamental property of the master problem, i.e., that
vk∗ ≤ fk(x̄+ d∗): indeed, (3.20) is the surrogate constraint of the |Z| constraints vk ≥
zki d− αk

i , and therefore (2.12) with (3.20) is a relaxation of (2.12) with these. In the
dual, the variable θZi associated with (zZi , αZ

i ) participates to the simplex constraints
for all (and only) the k ∈ Z. Actually, nothing prevents arbitrarily partitioning
Z = Z1 ∪ Z2 ∪ . . . ∪ Zp, and inserting the corresponding p partly aggregated cuts in
(2.14): p = |Z| reproduces the disaggregated approach. Hence, the trade-off between
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master problem size/cost and convergence speed can be explored, ranging from fully
aggregated models, to fully disaggregated ones, to “anything in between.” Choosing
the best aggregation level can only be done computationally; alternatively, along the
lines of [30, 34] one may consider versions wherein the partition automatically adapts.
A static a priori regrouping has been shown to be beneficial in [23]. Dynamically
regrouping components is the subject of the recent work [22] and better left to future
study.

3.5. Extension: Constraints/easy components. We now discuss dealing
with constraints x ∈ X in (1.1). Actually, in the spirit of [19] we will treat a more
general case: that where f has components K = { 0 } ∪K′′, where f0 is “easy” in the
sense that it can be effectively written into the master problem. This covers different
situations, such as

1. f0 = 1IX with X represented by “few, simple” (say, conic) constraints;
2. f0(x) = bx with b the right-hand side of the relaxed constraints in (1.4);
3. f0 = ν(1.30x), where U0 can be represented with “few, simple” constraints

[19].
In all these cases (and the combinations thereof), the natural way to deal with f0 is
just to insert it unmodified in the master problem, which then becomes

(3.21) min

{
f0(x̄+ d) +

∑
k∈K

vk +
1

2t
‖d‖2 : vk ≥ zki d− αk

i i ∈ Bk , k ∈ K′′
}

.

For instance, when f0 = 1IX this amounts to adding the constraints “x̄ + d ∈ X”
to (2.12), which ensures that x+ = x̄ + d∗ is feasible; this may reasonably not make
(3.21) much more costly to solve, e.g., when X is polyhedral. The dual of (3.21) is
(see, e.g., [19])

(3.22)

{
min 1

2 t
∥∥z0 +∑

k∈K
∑

i∈Bk zki θ
k
i

∥∥2 +∑
k∈K

∑
i∈Bk αk

i θ
k
i − x̄z0 + (f0)∗(z0),

s.t. θk ∈ Θk, k ∈ K′′,

where (f0)∗(z0) = supx{ xz0 − f0(x) } is Fenchel’s conjugate of f0 (e.g., [29]). It is
not difficult to check that, by employing (3.21)/(3.22) in place of (2.12)/(2.14) in the
algorithm, together with some minor changes, everything can be made to work:
• Since function f0 in (3.21) is not translated in value, the global predicted
descent now is v∗ = f0(x̄+ d∗)− f0(x̄) +

∑
k∈K vk∗ , where f

0(x̄+ d∗) is exactly
known as a by-product of solving (3.21). There is a minor difficulty for � = 1 as
f0(x̄1) is not known, but this is not hard to circumvent: just assume f0(x̄1) =
∞, forcing an SS at the first iteration.
• In the inner loop there is no need to call any oracle for f0, nor is there any
need to ever compute (2.6) for k = 0, as the exact value of f0 is always known;
note that for f0 = 1IX the value is always 0. Analogously, there is no need to
compute any z0 for f0, as there is no B0 to be filled: the full description of f0

is already present in (3.21), although in a different form.
• The individual targets (3.15) need not be defined for f0, but f0 does contribute
to setting the oracle targets for k ∈ K′′, as f0(x+) (the exact value) is counted

in f̂−k
+ . This only applies to tar

k
, though: since f̂0

+ = f̌0
+, the 0th component

will never contribute to an NS (cf. (3.10)), whose only effect is to improve
the lower model f̌B, which cannot happen to an easy component. Note that
for f0 = 1IX one always has f̄0 = 0, and hence the 0th component will not
contribute to (3.5) either.
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• Solving the (3.21) means also solving its dual (3.22), which produces a z0∗ ,
albeit not as a convex combination of z0i (typically, as dual optimal solutions of
some constraints [19]). Similarly, it is possible to define a correct α0

∗. However,
there is no use for (z0∗, α0∗): it does not have to be added to B0, and v0∗ is not
computed through it. Yet, one has to be aware that the constant “+f0(x̄)” has
to be added to ν(3.22) in order for Δk = ν(3.22) + f0(x̄) to behave precisely
as ν(2.14) (Δk = 0 ⇐⇒ x̄ optimal).

Ultimately, it is easy to see that the convergence analysis of section 3.2 still applies.
This also extends, mutatis mutandis, to the case of section 3.4: the (partly) aggre-
gated master problems (3.18)/(3.19) can be modified similarly to (3.21)/(3.22) with
the explicit term for f0. That is, the k ∈ K′′ can be aggregated while f0 remains
disaggregated from them. This can have a surprisingly large effect on the convergence
speed [19].

3.6. Implementations details. We now comment on some details of the algo-
rithm.
• At Step 0, εk1 < ∞ is arbitrary: Ok have to provide finite but upper and

lower estimates, together with initial linearizations zk1 , so that f̂P < ∞ and
f̌B > −∞. Since estimates can be arbitrarily loose, this should be “cheap.”
It would actually be possible to call Ok at a different x̄k

1 for each k ∈ K and
arrange Bk

1/Pk
1 accordingly: (3.1) would still give finite estimates at x̄1.

• Setting m1 ≈ 0 and m2 ≈ 1 should clearly make the oracle cheaper. However, it
also means that the decrease of f̂ in an SS/of ν(2.14) in an NS can be “small,”
thereby increasing the iterations count. Thus, a nontrivial trade-off may have
to be explored here.
• In Step 3 of the inner loop, one may elect not to terminate even if one among
(3.5) and (3.6) holds, in order to attain better upper/lower estimates on f at
x+; these may improve convergence speed; cf. the previous point. Again, the
trade-off here may be nontrivial. Clearly, doing this cannot impair convergence,
provided that sooner or later the inner loop is terminated.
• The convex combinators βk in the inner loop serve to “subdivide” the “desired
amount of increase m1Δ∗,�/decrease (1 − m2)v∗,�” (cf. Figure 1), which are
defined for the whole of f , among the components. Since this is used to make
targets for the oracles, it has to be done a priori: hence, some sort of “guess”
about the individual values fk(x�+1) is unavoidable. The selection of the βk

may be significant computationally. Intuitively, it should take into account
factors such as “how hard is each component to evaluate” (“easier” ones might
get smaller βk, as computing them with high accuracy is less demanding) and
that some components may have significantly larger values than others, thereby
being more influential on the overall value of f . A simple formula taking into
account the latter factor (but not the former) is

γk
� = |vk∗,�|/

∣∣f̄k
�

∣∣+ 1 , βk
� = γk

� /
∑
h∈K

γh
� .

• One may add checks to speed-up the algorithm if Δf̂� > 0, i.e., f̂�+1(x̄�) <

f̂�(x̄�) due to new information inserted in P . For instance, since α∗,� decreases,
one may recheck the stopping condition. Also, one may check if f̂� has decreased
by at least (1 −m2)v∗,� (cf. Theorem 3.1), and in case perform an SS/NS: set
x̄�+1 = x̄� but declare this as an SS (which, in particular, means that B may
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be entirely cleared; cf. Assumption 3(i)). Similarly, one may check if Δf̂� ≥ δ
for some fixed δ > 0: this means that ν(2.14) has decreased by at least δ
(cf. Theorem 3.3), allowing one to declare an NS.

4. Uncooperative oracles and noise reduction. The treatment so far has
hinged on a “gentleman’s agreement” between the algorithm and the oracle: while
the former always tries to ask as little accuracy as possible, providing the oracle with
all possible clues about when it is possible to stop the computation without having
attained an exact solution, the latter obliges itself to find a solution as accurate
as required. Some oracles may find it very time consuming, or even impossible, to
do that. It is therefore important to consider the case of a uncooperative oracles
that may not be capable, or willing, to satisfy (2.2) with all possible values of tar

k
,

tark, and εk. We will analyze three types of uncooperative oracles, corresponding to
different assumptions on the solution approaches available for (1.3kx). The overarching
assumption will be that fk and zk at the very least satisfy (2.1), i.e., the oracle is
lower : using nonlower oracles is also possible, as thoroughly analyzed in [12], but
lower oracles are the natural approach for our target setting where subgradients are
associated to feasible solutions of (1.3kx). Common to all cases is the fact that oracles
will have to cooperate at least partly, which will mean that there will have to be
a bound on the maximal error; this is why we term them boundedly uncooperative.
While different assumptions on how the error may “reveal” itself lead to significantly
different algorithmic schemes, all schemes will exploit the fact that bundle methods
have a simple way to deal with uncooperative oracles: the fact that t is almost a
“free parameter.” Hence, if O is uncooperative at x+, one may just try to generate a
different iterate by changing t and hope that the oracle will, for whatever reason, be
cooperative there. Any such mechanism requires some safeguard to avoid sampling X
forever with the oracles stubbornly refusing to provide any valuable information. As
we shall see, the safeguard is that, eventually, the stability parameter grows, which
is called noise reduction. Although the theory is developed with the incremental case
in mind, there is no explicit reference to the inner loop workings. In other words, it
applies immediately to the nonincremental case (say, only one oracle) with informative
but uncooperative oracles.

4.1. Informative boundedly uncooperative oracles. The first kind of oracle
corresponds to solution methods for (1.3kx) that can provide upper and lower bounds,
but cannot (or are not willing to) guarantee that these will be arbitrarily close, just
“close up to a point.” However, these (boundedly) uncooperative oracles are at least
informative in the sense that they explicitly declare a priori the smallest accuracy value
0 < ε̄k < ∞ that they can achieve. The typical example is approximation methods
with worst-case a priori guarantees for (1.3kx). Hence, an informative uncooperative
oracle will be able to satisfy (2.2) only provided that εk ≥ ε̄k. When called with
εk < ε̄k it can only guarantee that

(4.1) 0 ≤ fk(x) − fk ≤ f̄k − fk ≤ ε̄k =⇒ zk ∈ ∂ε̄kf
k(x) .

Hence, in particular Ok may not be able to satisfy (2.2)(iii) if tar
k − tark < ε̄k.

Obviously, a collection of informative (boundedly) uncooperative oracles for all k ∈ K
is an informative (boundedly) uncooperative oracle for f with ε̄ = ε̄K <∞. The issue
with (4.1) is that Assumption 4 no longer yields the crucial Assumption 1: even after
that all Ok have been called with εk = βkε, it is not guaranteed that one among (3.5)
and (3.6) holds. To avoid this, one must avoid “asking too much” from each oracle.
This is actually easy to obtain by including NR step in the main loop:



400 WIM VAN ACKOOIJ AND ANTONIO FRANGIONI

Step 2.1 (Noise reduction) if ε� < ε̄, then if ‖z∗,�‖2 ≤ δ1, then stop else

select t�+1 appropriately; x̄�+1 ←↩ x̄�; B�+1 = B�; P�+1 = P�; �←↩ �+1; go to Step
1;

The aim of Step 2.1 is to obtain ε�+1 ≥ ε̄; since Δ∗,� ≤ −v∗,�,

(4.2) ε� = tar� − tar� = m2(−v∗,�)−m1Δ∗,� ≥ (m2 −m1)(−v∗,�) ,

i.e., this can be obtained by increasing t�, which (hopefully) increases v∗,� (cf. (2.15)).
An estimate on how much t� has to be increased can be obtained by means of sensitiv-
ity analysis techniques on (2.12)/(2.14) [16, section 7]. Step 2.1 implies that whenever
the oracles are called, it is possible for them to provide the expected answer; this also
relies on the inner loop to choose reasonable values for βk.

Assumption 5. Assumption 4 holds with βk chosen so that εk = βkε ≥ ε̄k for
all k ∈ K.

In the rest of this section we will assume that Step 2.1 is in effect, which means
that we can also impose Assumption 5, which in turn yields Assumption 1. Stopping
in Step 2.1 is justified by the fact that x̄� is then already “as optimal as it gets:”

Lemma 4.1. If the algorithm stops in Step 2.1, then x̄� is approximately ε̄/(m2−
m1)-optimal.

Proof. From ε̄ > ε�, (4.2) and α∗,� ≤ −v∗,� one has

(4.3) ε′ := ε̄/(m2 −m1) ≥ −v∗,� ≥ α∗,� ,

which, using (2.18) and the fact that ‖z∗,�‖2 ≤ δ1, shows that x̄� is approximately
ε′-optimal.

Hence, if the algorithm stops in Step 2.1, then x̄� has (about) the best error that
can be obtained given the oracle [9, Observation 2.7]: when m2 ≈ 1 and m1 ≈ 0,
ε′ ≈ ε̄. Ensuring that the stopping condition is eventually achieved basically only
requires that eventually t� grows. With LNR the set of indices of NR, a simple and
general way to state the necessary requirement is the following.

Assumption 6. If |LNR| =∞, then lim inf��LNR→∞ t� =∞.

Management of t� is therefore simple: if infinitely many NR are done, eventually
t� →∞ has to happen. This of course contrasts with Assumption 3(ii), but the latter
is only there for the case of an infinite sequence of consecutive NS; as we shall see,
this will not be an issue. An elementary scheme to attain Assumption 6 is based on
a global memory tmax; each time an NR is performed t�+1 ←↩ 2max{ t� , tmax } and
tmax ←↩ t�+1. Doing so guarantees that infinite sequences of (nonconsecutive) NR
attain the same result as infinite sequences of (consecutive) NS.

Lemma 4.2. Under Assumption 6, |LNR| =∞ =⇒ ‖z∗,�‖2 → 0.

Proof. From (4.2) and −v∗,� ≥ t� ‖z∗,�‖2 (cf. (2.15)) one has, using (4.3) for the

second inequality, ∞ > ε̄ > (m2 − m1)t� ‖z∗,�‖2; ‖z∗,�‖2 ≥ δ > 0 would contradict
t� →∞.

We remark that Lemma 4.1 together with Lemma 4.2 nicely illustrates the moniker
“noise reduction.” The oracle frames the “signal” fk(x�+1) between the two measures

f̄k
�+1 and fk

�+1
, affected by “noise” up to ε̄k. If ε� = tar

k
� − tark� < ε̄k, then the noise

is too large to ensure that at least one of the two targets is achieved. Increasing
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t� either increases −v∗,�, and therefore pulls further apart the targets, or decreases

‖z∗,�‖2. Hence, either the signal becomes significant w.r.t. the noise, or one detects
(approximate) optimality. Although the idea of increasing t� when the algorithm gets
stuck was originally proposed in [27], the mechanism to declare an NR there is sig-
nificantly different from that in Step 2.1. Having t� grow ensures that, if δ1 > 0, NR
cannot happen forever: eventually, either the algorithm stops in Step 2.1, or −v∗,�
grows large enough so that ε� < ε̄ no longer holds and a “regular” step is performed,
yielding at least one among (3.5) and (3.6) due to Assumption 5. Thus the algorithm
is well-defined, and the convergence theory of section 3.2 in principle applies again.
However, in this setting infinitely many SS are ruled out, unless ν(1.1) = −∞.

Lemma 4.3. Either f̂� → −∞ or |LSS| <∞.

Proof. Observe that Δ∗,� ≥ −v∗,�/2, and therefore ε� ≤ (m2 − m1/2)(−v∗,�).
Thus, ε� ≥ ε̄ > 0 implies that v∗,� is bounded away from 0, and (3.5) then gives that

f̂� → −∞ if |LSS| =∞.

As a consequence, it would be quite reasonable to reset tmax to arbitrary values
at each SS: as Lemma 4.3 shows, there cannot be infinitely many of them unless the
problem is being proved unbounded below. After the last SS, the problem has in fact
been solved (to the highest possible accuracy).

Theorem 4.4. Under Assumption 6, if |L| = ∞ and f̂∞ > −∞, then

lim inf�→∞ α∗,� = α∗,∞ ≤ ε′ and the stability center x̄ is α∗,∞-optimal. Here f̂∞
is defined as f̂∞ = limLSS��→∞ f̂�.

Proof. From Lemma 4.3, since f̂∞ > −∞ then only finitely many SS are done.
Hence, if also |LNR| < ∞, then a tail of infinitely many consecutive NS starts: as

in Theorem 3.3, ‖z∗,�‖2 → 0 and α∗,� → 0, and hence x̄ is optimal (and therefore

a fortiori ε′-optimal). If instead |LNR| = ∞, as in Lemma 4.2, ‖z∗,�‖2 → 0; hence,
0 ∈ ∂α∗,∞f(x̄) by (2.18). For the bound on α∗,∞ just note that α∗,� ≥ α∗,∞ for � is
large enough and use (4.3).

Hence, an infinite sequence of NR and NS proves that the last stability center
x̄—that none of the two kind of step changes—is “as optimal as it gets,” not only
approximately so. As the proof shows, the obtained accuracy can actually be higher
than ε′: by chance the last SS may have even found a bona fide optimal solution,
that a final sequence of NS/NR will then certify as such (α∗,� ↘ 0). To streamline
the final discussion, it is useful to remark that the algorithm “aims” at accuracy ε′,
which is arguably (approximately) the best one that can be achieved [9, Observation
2.7]; hence, setting δ2 < ε′ would not make sense. Reversing this logic, if δ2 > ε′ =
ε̄/(m2 −m1), one can use (m2 −m1)δ2 in place of ε̄ in Step 2.1. This corresponds
to the fact, that, intuitively, if a δ2-optimal solution is sought for, then it might not
make sense to accept a decrease in function value (much) smaller than δ2. With this
expedient the following holds.

Theorem 4.5. If all oracles are informative boundedly uncooperative, Step 2.1 is
in force, and Assumptions 2, 3, 5, and 6 hold, then either f̂∞ = −∞, or the algorithm
(finitely, if δ1 > 0) determines a(n approximately) δ2-optimal solution.

Proof. Step 2.1 and Assumption 5 ensure that the algorithm is well-defined: either
an NR is done, or Assumption 1 holds. If f̂∞ = −∞, there is nothing to prove;
otherwise by Lemma 4.3 the number of SS is finite. After the last one, if δ1 = 0, the
algorithm can still run forever, but Theorem 4.4 proves that x̄ is δ2-optimal. By the
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same arguments, if δ1 > 0, then the algorithm finitely stops, either in Step 2 or in Step
2.1, in both cases proving that x̄ is approximately δ2-optimal (cf. Lemma 4.1).

We remark that implementing Step 2.1 with δ2 > 0 in place of ε̄ is possible (and,
in principle, makes sense) even with a cooperative oracle. This kind of handling of t�
(termed, e.g., “long-term t-strategy” in [8]) has been shown to be actually useful to
improve the practical behavior in some applications.

4.2. Uninformative faithful boundedly uncooperative oracles. A second
kind of oracle closely mirrors the previous one, but with a significant difference: it
satisfies (4.1) with an unknown ε̄k < ∞. This is, e.g., the case of solution methods
for (1.3kx) that can provide upper and lower bounds but cannot (or are not willing
to) guarantee that these will be arbitrarily close, such as exact methods with a tight
bound on the computational resources. While most of the properties discussed in the
previous section are still true for this uninformative (but still faithful) oracle, Step
2.1 can no longer be used: whether or not εk ≥ ε̄k can only be verified ex-post from
the output of Ok. This is why an “escape clause” is now needed in the inner loop:

Step 3′ (Termination) if neither (3.5) nor (3.6) hold, then if some oracle
Ok still has to be called with εk = βkε, then go to Step 1;

Conversely, there is no way in which Assumption 5 could be guaranteed to hold a
priori, and hence no need for it. Correspondingly, the NR step in the main loop needs
to move after the oracle interaction:

Step 4.1 (Noise reduction) If neither (3.5) nor (3.6) hold, then if ‖z∗,�‖2 ≤
δ1, then stop else change t� appropriately; x̄�+1 ←↩ x̄�;

In the rest of this section we will assume that Step 3′ and Step 4.1 are in effect. As
in the previous case, stopping in the NR step is justified by the fact that x̄� is then
already “as optimal as it gets.”

Lemma 4.6. If the algorithm stops in Step 4.1, then x̄� is approximately ε̄/(m2−
m1)-optimal.

Proof. Just use the fact that for each � ∈ LNR, both (3.5) and (3.6) fail: subtracting

their opposites and using (4.1) yields ∞ > ε̄ ≥ f̄�+1 − f
�+1
≥ f̂�+1 − f̌�+1 ≥ tar� −

tar� = ε�, and then one can proceed exactly as in Lemma 4.1.

We remark that also this NR, like Step 2.1 in paragraph 4.1 is most definitely
different from that originally proposed in [27], which will be described in section 4.3.
Despite being triggered differently, the two NR work in the same way; for instance,
Lemma 4.2 is clearly still valid. The subtle difference is that working ex-post implies a
somewhat “more optimistic” stance: although the oracles may not bound themselves
to deliver any required accuracy, they may actually happen to be able to do so,
ultimately yielding an exact solution. In other words, as previously remarked, just
changing t� gives the oracles another chance, and this may in itself be enough to
“unstuck” the algorithm. In terms of convergence analysis, this corresponds to the
fact that, unlike with Lemma 4.3, there is now nothing preventing a priori v∗,� → 0,
and therefore |LSS| =∞ may happen. In this case Theorem 3.1 still applies, as indeed
it does not depend on what happens between two consecutive SS, be them NR or
NS. Hence, Assumption 6 can be relaxed to hold only when finitely many SS are
performed.

Assumption 7. If |LSS| <∞ and |LNR| =∞, then lim inf��LNR→∞ t� =∞.

Usefully, the simple implementation scheme of section 4.1, where tmax is reset
(potentially) at every SS, also provides the relaxed Assumption 7. This means that,
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provided that |LSS| < ∞, Lemma 4.2 and Theorem 4.4 still work. All in all, only
minor modifications are required to the global result.

Theorem 4.7. Assume that all oracles are uninformative faithful boundedly un-
cooperative, Step 4.1 is in force, and Assumptions 2, 3, and 7 hold. Barring the
obvious case f̂∞ = −∞, if δ1 > 0 and δ2 > 0, then the algorithm finitely terminates
with an approximately max{ε′, δ2}-optimal solution. If δ1 = 0, then { x̄� } converges
(possibly, finitely) to a δ2-optimal solution.

Proof. Clearly, whenever an SS or an NS is performed Assumption 1 is satisfied.
If δ1 > 0 and δ2 > 0, then from Theorem 3.1 |LSS| <∞. Similarly, Lemma 4.2 implies
that |LNR| < ∞. Finally, Theorem 3.3 implies that |L| < ∞ as well, for otherwise
there would be a sequence of infinite consecutive NS. Hence the algorithm finitely
terminates: if it stops in Step 2, then x̄� is (approximately) δ2-optimal; otherwise it
stops in Step 4.1 and therefore x̄� is (approximately) ε′-optimal by Lemma 4.6.

When δ1 = 0, the oracle may still happen to behave “cooperatively enough”:
if |LSS| = ∞ or an infinite sequence of consecutive NS is performed, then the proof
proceeds as in Theorem 3.4, with { x̄� } converging (possibly, finitely) to a solution that
is at least δ2-optimal. Otherwise, the algorithm running forever implies |LNR| = ∞,
and then Theorem 4.4 applies.

4.3. Uninformative cheating boundedly uncooperative oracles. The last
relevant case, in terms of solution methods for (1.3kx), is the one of heuristics without
any known bound, even a posteriori, on the accuracy. Hence, while the oracle actually
satisfies (4.1), it does so not only with an unknown ε̄k < ∞ (that is, the oracle is
still boundedly uncooperative), but also with an unknown f̄k. We remark that this
is the “minimalistic” stance typically taken in the literature, from [27] to [12]. In
our context, this has the difficulty that the only available correct upper estimate, ∞,
cannot ever satisfy (2.2)(i) whenever εk < ∞; in other words, no significant upper
model fk

P can be defined if f̄k = ∞. A possible resort is cheating, i.e., reporting

incorrect data. An obvious way of doing that is systematically reporting f̄k = fk,

which has the advantage that, at least purportedly, (2.2)(i) is satisfied for every εk.
As we shall see this is actually, in some sense, the best possible approach, and we
define uniformly cheating an oracle doing just that. The consequence of (4.1) is that
fk ≤ f̌k

B + ε̄k: via (2.8), this gives

fk(x̄)− [ fk

i
+ zki (x̄− xi) ] ≤ f̄k + ε̄k − [ fk

i
+ zki (x̄− xi) ] = αk

i + ε̄k,(4.4)

zki ∈ ∂(αk
i +ε̄k)f

k(x̄) , αk
i ≥ −ε̄k , z∗,� ∈ ∂(α∗,�+ε̄)f(x̄) , α∗,� ≥ −ε̄(4.5)

(with ε̄ = ε̄K). Since the ε̄k are not known, but are finite, the quality of the zki
cannot be directly assessed, but at least the error is bounded. Furthermore, the
advantage of uniformly cheating oracles f̄k = fk is that they never trigger an NR
Step 4.1: Whatever the returned value, one of the two targets is surely met, and
f̄k−fk = 0 ≤ εk. Of course, inexactness has to crop up some other way; in particular,

it may happen that f̌k
� (x̄�) > f̂k

� (x̄�), i.e., α∗,� < 0. This may ultimately lead to

v∗,� = −t� ‖z∗,�‖2−α∗,� > 0, basically destroying all previous convergence arguments.
The well documented remedy in the literature is to ensure that α∗,� is “not too
negative”:

(4.6) α∗,� ≥ −m3t� ‖z∗,�‖2
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with m3 ∈ (0, 1), which immediately implies

(4.7) v∗,� ≤ (1−m3)
(− t� ‖z∗,�‖2

)
(< 0) .

Remarkably, this is similar but different from the condition always used in the liter-
ature, from the original [27] and up until the recent [12, (5.1)] [37], which is stricter
in that it requires m3 ≤ 1/2, whereas we will argue that m3 ≈ 1 is preferable. It has
been observed in [37] that m3 influences the definition of predicted decrease; however,
our analysis makes it apparent—due to the fact that, in our setting, (3.5) and (3.6)
are not mutually exclusive—that the effect is actually on the NS condition. The fact
that α∗,� < 0 may happen implies that the NR now has to be performed at the end
of Step 1, i.e., before the standard stopping condition which, being based on (2.18),
is in principle no longer valid:

Step 1.1 (Noise reduction) if (4.6) fails, then if ‖z∗,�‖2 ≤ δ1, then stop

else { change t� according to Assumption 7; x̄�+1 ←↩ x̄�; B�+1 = B�; P�+1 = P�;
�←↩ �+ 1; go to Step 1 };

Hence, this is again an “ex ante” NR, similarly to Step 2.1 in section 4.1 and quite
unlike the “ex post” Step 4.1 in section 4.2. All three forms are, however, significantly
different from each other. Step 2.1 is “proactive”: it entirely avoids calling the oracles
with data which may trigger problems due to the lack of accuracy. Step 4.1 rather
reacts to the fact that the oracles, in the current iterate, have already produced
correct but not accurate enough information. Step 1.1 instead reacts to the fact
that the oracles, in some previous iterate, have produced incorrect information which
makes x�+1 not a significant point to even call the oracle upon. Yet, the convergence
arguments are similar to those of the previous sections, accounting for the technical
differences, starting from the fact that the stopping condition in the NR step is sound
(cf. Lemmas 4.1 and 4.6).

Lemma 4.8. If the algorithm stops in Step 1.1, then x̄� is approximately ε̄-optimal.

Proof. First note that (4.5) gives z∗,� ∈ ∂α∗,�+ε̄f(x̄�), which together with α∗,� +
ε̄ ≥ 0 and ‖z∗,�‖2 ≤ δ1 (as a result of stopping in Step 1.1) implies (α∗,�+ε̄)-optimality
of x̄�. Since � ∈ LNR implies α∗,� < 0, x̄� is therefore a fortiori ε̄-optimal.

However, the rest of the analysis requires specific development, since many argu-
ments in the previous sections use (2.18) and therefore require α∗,� ≥ 0. This is in
particular true for Theorem 3.1, which is based on the results of [7]. Its replacement
is the following.

Proposition 4.9. Under the assumptions of Theorem 3.1, with f̂∞ defined as in
Theorem 4.4, it holds that f̂∞ = lim supLSS��→∞ f̌�(x̄�) ≤ ν(1.1) + ε̄.

Proof. When f̄∞ > −∞, (3.4), (3.5) together with (4.7) give v∗,� → 0. Since � ∈
LSS one has that (4.7) holds, which gives (barring the case f̂∞ = −∞) that ‖z∗,�‖ → 0,
where we recall

∑
�∈LSS

t� =∞, by Assumption 2(ii) and the argumentation following
(3.8). Consequently, (4.6) gives α∗,� → 0, even if α∗,� < 0. This proves the statement
about the limits being equal. Hence, if the sequence { x̄� }�∈LSS

has a cluster point
x̄∞, (4.5) gives 0 ∈ ∂ε̄f(x̄∞), i.e., x̄∞ is ε̄-optimal. The proof can be generalized
without requiring { x̄� } → x̄∞ by using, e.g., [12, Proposition 6.1], albeit at the cost of
requiring t� to be bounded away from zero (cf. the discussion of [12, Theorem 6.2]).

The equivalent of Lemma 4.2/Theorem 4.4 also holds.

Proposition 4.10. If all oracles Ok are uniformly cheating, Assumption 7 holds,
|LSS| <∞ and |LNR| =∞, and then lim sup��LNR→∞ ‖z∗,�‖2 = 0.
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Proof. Use (4.5) and (2.15) to obtain v∗,� ≤ −t� ‖z∗,�‖2 + ε̄, and then since

(4.6) fails, the opposite of (4.7) holds and allows us to derive that ε̄ > m3t� ‖z∗,�‖2:
‖z∗,�‖2 ≥ δ > 0 contradicts t� →∞.

Proposition 4.11. Under the assumptions of Proposition 4.10, x̄ is ε̄-optimal.

Proof. Proposition 4.10 gives ‖z∗,�‖ → 0: hence 0 ∈ ∂(α∗,∞+ε̄)f(x̄). Therefore x̄
is (α∗,∞ + ε̄)-optimal, and since α∗,� < 0 for all � ∈ LNR, α∗,∞ ≤ 0.

Remark 4.12. The above proof relies on O to be uniformly cheating: α∗,� <
0 is true because only Step 1.1 triggers an NR. If O is not uniformly cheating,
Step 4.1 may happen, so α∗,� < 0 might not be true. Using (4.3), which holds
when t� → ∞, would give 0 ∈ ∂2ε̄f(x̄), i.e., the error would be twice that of the
oracle. This can actually happen, as illustrated by the following example. Let
f(x) = |x| and x̄1 = x1 = −2. A (uniformly) cheating oracle with ε̄ = 1 may
return f

1
= f̄1 = 1 < f(x1) = 2 and z1 = −1. If t = 1, x2 = −1, v∗,1 = −1,

and f̌1(x̄2) = 0. A nonuniform oracle may now work “in reverse” on x2, return-
ing f

2
= 0, z2 = 0, and f̄2 = 1 = f(x2). Neither an SS (f̄1 = f̄2) nor an

NS (f
2
= f̌B1(x̄2)) can be performed, so an NR Step 4.1 is triggered. However,

with any t� > 1, x2 = −1 is a minimum of f̌2, and hence x� = x2 for all �
may happen: the algorithm might never be able to improve x̄1, which has error
f(x̄1) − ν(1.1) = 2 − 0 = 2 = 2ε̄. Note that if the minimum of f had been < 0, the
oracle could have not reported z2 = 0 together with f

2
= 0 = f̌2(x̄2): z2 < 0 would

have been required, and therefore increasing t� would have ultimately triggered an
SS. Therefore, once again |LNR| =∞ asymptotically proves ε̄-optimality of x̄. The case
of the infinite tail of consecutive NS is slightly more complex, because a modification
to the algorithm is needed: one has to replace Δ∗,� with −v∗,� in the definition of the
lower targets tar�/tar

k, and therefore of the accuracy ε�:

tar� := f̌�(x�+1)−m1v∗,� ,(4.8)

ε� := tar� − tar� = (m2 −m1)(−v∗,�) ,(4.9)

tark := f̌k
+ −m1β

kv∗ .(4.10)

The reason is that while (4.6) ensures that −v∗,� > 0 (cf. (4.7)), Δ∗,� < 0 still can
happen. This would lead to tar� < f̌�(x�+1), and to (3.6) being always satisfied, which
would break all the development. Since −v∗,� ≥ Δ∗,�, (4.10) is harder to satisfy than
(3.6), which is why—in the tradition of the standard analysis of bundle methods—we
prefer to keep the weaker condition if possible. However, cheating oracles require
(4.10), at least with “large” m3; restricting to m3 < 1/2 as in [12, equation (5.1)]
would allow using (3.6) instead.

Proposition 4.13. Using (4.8)–(4.10), and under the Assumptions of Theorem
3.3 plus |LNR| <∞, ‖z∗,�‖ → 0 and α∗,� → 0: therefore, x̄ is ε̄-optimal.

Proof. The crucial point is showing that lim sup�→∞ v∗,� = 0, so assume that
v∗,� ≤ −ε < 0: then (4.10) would imply that ΔfZ ≥ −m1v∗ ≥ m1ε > 0, and hence,
by Lemma 3.2, ν(2.14�) → −∞ as � → ∞, contradicting ν(2.14) ≥ −ε̄ > −∞ (the
latter a consequence of (4.5)). As in the SS case, v∗,� → 0 gives ‖z∗,�‖ → 0 via (4.7),
and then (4.6) implies α∗,� → 0: hence, 0 ∈ ∂ε̄f(x̄), i.e., x̄ is ε̄-optimal.

The final result is then standard.
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Theorem 4.14. Assume that all oracles are uninformative uniformly cheating
boundedly uncooperative, Step 1.1 is in force, and Assumptions 2, 3, and 7 hold.
Barring the obvious case f̂∞ = −∞, if δ1 > 0 and δ2 > 0, then the algorithm finitely
terminates with an approximately max{ε̄, δ2}-optimal solution. If δ1 = 0, then { x̄� }
converges (possibly, finitely) to an δ2-optimal solution.

Proof. Because all oracles are uniformly cheating, Assumption 1 clearly is fulfilled.
Combine Theorem 4.9 and Propositions 4.11 and 4.13 as usual to cover the cases
|LSS| = ∞, |LNR| = ∞, and the final tail of infinitely many NS, respectively, for
δ1 = 0; finite convergence when δ1 > 0 is as usual an immediate corollary.

While the above derivation closely mirrors that of the previous sections, all the
results only involve the a priori (unknown) error ε̄: no a posteriori bounds are avail-
able. It could not be otherwise, since no valid explicit upper estimates for the f -values
are available. The final remark is that there is no need to analyze the concept of in-
formative cheating oracle: if one would know ε̄k, then f̄k = fk + ε̄k would be a valid
upper bound, which would bring us fully back to section 4.1. This is actually the
same as the controllable lower oracle of [12].

4.4. Arbitrary mixture of oracles. The previous sections may have conveyed
the idea that faithful and cheating oracles cannot be used together: fortunately, this
is not true. For simplicity we can disregard the difference between informative and
uninformative faithful oracles, which is very easy to do: just disregard the available
information about ε̄k. Also, note that cooperative oracles can also considered faithful
with (known) ε̄k = 0. Hence, we can assume K = F ∪ C (F ∩ C = ∅) with F the
components having faithful oracles, and C these having (uniformly) cheating ones.
From (4.4) we have z∗,� ∈ ∂(α∗,�+ε̄C)f(x̄) and ν(2.14) ≥ α∗,� ≥ −ε̄C , whereas from

the fact that all the cheating oracles are uniformly so we have f̄�+1 − f
�+1
≤ ε̄F .

We of course now need to have both NR steps 1.1 and 4.1 (while we ignore step
2.1 for the time being): hence, LNR = LFNR ∪ LCNR, indicating respectively the NR of
Step 4.1 (“for faithful oracles”) and of Step 1.1 (“for cheating ones”); also, “NR”
in Assumption 6 is now intended to mean “either kind of NR.” Hence we can copy
Lemma 4.2/Proposition 4.10.

Proposition 4.15. Under Assumption 7, if |LSS| < ∞ and |LNR| = ∞, then

lim sup��LNR→∞ ‖z∗,�‖2 = 0.

Proof. If � ∈ LFNR, one can use ε̄F ≥ f̄�+1 − f
�+1

to get ε̄C > (m2 −m1)t� ‖z∗,�‖2
as in Lemma 4.2, while if � ∈ LCNR, one can use α∗,� ≥ −ε̄C to get ε̄C > m3t� ‖z∗,�‖2 as

in Proposition 4.10. Hence, in both cases, ‖z∗,�‖2 ≥ δ > 0 contradicts t� →∞.

Taking for simplicity m3 = m2 −m1 and δ2 = ε̄(1 −m3)/m3, we can now prove
the following.

Theorem 4.16 (convergence for arbitrary mixture of oracles). Under Assump-
tions 2–7 and given any F and C, the algorithm with both Steps 1.1 and 4.1 and using
(4.8)–(4.10) (asymptotically) finds a(n approximated) (ε̄/m3)-optimal solution.

Proof. If the algorithm finitely stops, this happens either in Step 1.1, in Step 2,
or in Step 3. In all cases, x̄ is approximately (α∗,� + ε̄C)-optimal, in the sense that
‖z∗,�‖ ≤ δ1. In the first case α∗,� < 0 because � ∈ LCNR; in the second, α∗,� ≤ δ2; in
the third, α∗,� ≤ ε̄F because � ∈ LFNR (cf. (4.3)). Hence, x̄� is always approximately
(ε̄/m3)-optimal.
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If |LSS| =∞, reasoning as in Proposition 4.9 proves that f̄∞ ≤ ν(1.1)+ ε̄C. Hence,
we can assume the last SS to happen, after which only NR (of either type) or NS is
performed: as in Proposition 4.15 x̄ is (α∗,∞ + ε̄C)-optimal. Now, if

∣∣LCNR∣∣ =∞, then
α∗,∞ ≤ 0; otherwise α∗,∞ ≤ ε̄F/m3 as in Theorem 4.4; all in all, α∗,∞ + ε̄C ≤ ε̄/m3.
Finally, for the infinite tail of consecutive NS we can reason as in Proposition 4.13 to
obtain that x̄ is ε̄C-optimal.

If the cheating oracles are not uniformly so, we can no longer use the fact that
f̄�+1 − f

�+1
≤ ε̄F ; the bound is f̄�+1 − f

�+1
≤ ε̄. This bumps the worst-case error

to ε̄ + ε̄F = ε̄F + 2ε̄C : nonuniformly cheating oracles do “double damage.” This is
not entirely surprising, as they actually have “twice the range” of both faithful and
uniformly cheating ones: they can report f̄k = fk(x) + ε̄k (and, then, fk = fk(x)) as

well as fk = fk(x) − ε̄k (and, then, f̄k = fk(x)), and hence the range between the

worst-case upper and lower estimate is indeed 2ε̄k. An “adversarial” oracle can use
it, as in Remark 4.12, to enforce an error of that magnitude.

We end by remarking that an even more convoluted approach would entail using
Step 2.1 with lower estimates of ε̄. These could be easily obtained by taking the
maximum of −α∗,� when Step 1.1 is executed, together with the maximum of ε� when
Step 4.1 is executed. At each time this is a lower estimate of the true ε̄, which can be
used to try to avoid unduly “short” steps; of course with no guarantee of success, but
with Step 3′ in the inner loop and Step 4.1 readily available as fallbacks. The approach
would clearly work, as the analysis of this section shows, and it may also have merits
computationally. Whether or not this is the case can only be seen experimentally,
which is left for future research.

5. Conclusions. We have analyzed a novel class of bundle methods for mini-
mizing a sum-structured convex nondifferentiable objective. Our starting point is to
change the oracle definition so as to make apparent a feature that oracles often have
in applications, but that has so far not been exploited: the fact that, besides lower
estimates on the function value (and valid lower linearizations of the function epi-
graph), the oracles also provide upper estimates. The availability of this information
has several notable impacts on the method, not only in the incremental case but also
in the general inexact one (say, with only one oracle):
• It allows one to provide both upper and lower targets to the oracles which,
together with the required accuracy, can allow them to stop their computation
just as soon as information that is “accurate enough” to allow the algorithm
to proceed is obtained, possibly diminishing their cost.
• It provides explicit and reliable a posteriori estimates of the quality of the
obtained solutions.

Fully exploiting this in the incremental case requires a further Lipschitz continuity
assumption—even more, that the Lipschitz constant is actually known—which, how-
ever, is often satisfied in many important applications. This, in turn
• allows one to define upper models of the functions, which can be used to derive
upper estimates of function values even at points where some (or even all) of
the oracles have not been called;
• allows one to skip oracle calls entirely for some of the component functions, not
only at NS as in previous proposals in the literature, but also at SS.

The method works with oracles that cannot attain arbitrary precision, both if their
maximum error is known or unknown, as well as with those that do not provide
reliable upper estimates, clearly losing some of the properties in the process. We
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analyze basically all the (three) possible different forms of the (lower) oracle, as well
as their combinations. Although the results are similar, the three different oracles
require three significantly different forms of NR steps, as well as specific analysis. We
show that for all kinds of oracles with nonzero (but bounded) maximum accuracy, one
gets a solution with (about) the same error, which is the best that can be expected
[9, Observation 2.7] and consistent with other methods in the literature; however,
for oracles that do not provide reliable upper estimates, one loses the a-posteriori
estimates of the quality of the obtained solutions. It is worth remarking that, in
fact, reliable upper estimates provide something more: the fact that f̄� is always a
reliable upper estimate on ν(1.1), and therefore on ν(1.3). Computing tight upper
estimates on ν(1.3) is very often the reason for solving (1.1) in the first place. For
instance, in practical, large-scale industrial applications rarely problems are solved
to optimality, and the decision maker can benefit from knowing whether or not it
may be worthwhile to invest more to get better solutions. In general, if (1.1) is
solved as a step of a more complex (e.g., implicit enumerative) approach to (1.3),
valid upper estimates are often crucial. All this provides a compelling argument
against “erasing” the provided upper estimate and setting f̄k = fk, as (implicitly)
advocated in the literature so far, thus making oracles systematically (but, at least,
uniformly) cheat, although this ultimately yields the same bound. Whether or not
exploiting upper estimates works better computationally can only be determined by
an in-depth experimental study, which is therefore the logical next step for this line
of research.
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