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2. Introduction

Treating smooth problems the notion of gradient are used to deduce necessary op-
timality conditions as stationarity conditions. The theory was extended to convex
nonsmooth problems via directional derivatives and subdifferentials. In the non-
convex nonsmooth case, several trends can be distinguished as, for example, all
those which generalize the concept of directional derivative.
In [10–12, 18] an axiomatic approach was given for generating generalized direc-

tional derivatives. The key tool is to observe that the epigraph of a generalized
directional derivative is a conic approximation of the function’s epigraph.
This concept and its properties have been used in optimization context in order

to obtain general first order necessary [6, 15] and sufficient optimality conditions
[3], general format of mean value theorems [5] and estimates of the error bounds
[8], abstract approach to constraint qualification [4].
In another paper [7] this approach has been extended to construct second order

approximations of the function’s epigraph and second order generalized directional
derivatives. Second order optimality conditions have been deduced.
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More recently, extensions to vector functions for treating multiobjective prob-
lems, have been studied in [1, 16, 17]. In this paper we want to describe all this
path.
We start Section 3 describing local cone approximations and their main proper-

ties; in particular, those which are more relevant in optimization context. In Section
4 we describe first and second-order optimality conditions for scalar and Pareto op-
timization problems which can be obtained through directional K-epiderivatives.
The last section is devoted to furnish an abstract scheme for deriving an approxi-
mate mean value result (Section 5.1) and an error bound for an inequality system
(Section 5.2).
In the sequel the open ball with center x and radius r is denoted by B(x, r).

Given a set A, we indicate by Ac, clA, intA and convA the complementary, the
closure, the interior and the convex hull of A respectively. The domain of f :
R
n → (−∞,+∞] is dom f = {x ∈ R

n : f(x) < +∞} 6= ∅ and its epigraph is
epi f = {(x, y) ∈ R

n+1 : y ≥ f(x)}. If A ⊆ R
n is a closed subset, the support

function associated to A is

σ(x,A) = sup{〈x∗, x〉 : x∗ ∈ A};

and its domain, denoted barrA, is called barrier cone of A. The recession cone of
A is 0+A = {x ∈ R

n : A + x ⊆ A} and if p : Rn → (−∞,+∞] is a positively
homogeneous function, the associated recession function is

p∞(x) = sup{p(x+ y)− p(y) : y ∈ dom p}.

In general we assume the usual convention inf ∅ = +∞.

3. Local approximations and generalized epiderivatives

It is well known that a close relationship exists between local cone approximations
which generalize the classical tangent cone and different generalized differentiability
concepts. In fact the epigraph of a generalized directional derivative of a function
f can be viewed as a conical approximation of the epigraph of f . Using the ap-
proach developed by Dubovitskij and Miljutin [9], in the papers [10–12, 18] Elster
and Thierfelder proposed a general definition of local cone approximation and in-
troduced the corresponding directional K-epiderivative. Using these notions it is
possible to derive general necessary optimality conditions which turn out be true
generalizations of the Kuhn-Tucker theory for nonsmooth optimization problems.

Definition 1 The map K : 2R
n

× R
n
⇉ R

n is a local cone approximation if

tK(A, x) = K(A, x), ∀(A, x) ∈ 2R
n

× R
n, ∀t ≥ 0

and the following properties hold:

(i) K(A, x) = K(A− x, 0),
(ii) K(A ∩B(x, r), x) = K(A, x) for each r > 0,
(iii) K(A, x) = ∅ for each x 6∈ clA,
(iv) K(A, x) = R

n for each x ∈ intA,
(v) K(ϕ(A), ϕ(x)) = ϕ(K(A, x)) with ϕ linear homeomorphism,
(vi) 0+A ⊆ 0+K(A, x) for each x ∈ clA.
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It is possible to prove that all the six axioms are independent that means one of
the axioms can’t be expressed by the others. The most known tangent cones are
local cone approximations. For instance the cone of feasible directions

Z(A, x) = {v ∈ R
n : ∃r > 0 s.t. ∀t ∈ (0, r) x+ tv ∈ A},

the radial tangent cone

F (A, x) = {v ∈ R
n : ∀r > 0 ∃t ∈ (0, r) x+ tv ∈ A},

the cone of interior displacements

D(A, x) = {v ∈ R
n : ∃r > 0 s.t. ∀t ∈ (0, r) ∀v′ ∈ B(v, r) x+ tv′ ∈ A},

and the contingent cone

T (A, x) = {v ∈ R
n : ∀r > 0 ∃t ∈ (0, r) ∃v′ ∈ B(v, r) s.t. x+ tv′ ∈ A}

are local cone approximations. Other particular local cone approximations are listed
in [12]. It is possible to construct further local cone approximations by common
set operations assuming that cone approximations K and Ki, with i ∈ I arbitrary
index set, are given. For instance

intK, clK, convK,
⋃

i∈I

Ki,
⋂

i∈I

Ki,
∑

i∈I

Ki

are local cone approximations. We pay more attention to another particular oper-
ation which is fundamental in order to derive optimality conditions for extremum
problems. Starting from a local cone approximation K, the map Kc defined by

Kc(A, x) = (K(Ac, x))c, ∀(A, x) ∈ 2R
n

× R
n

is a local cone approximation. For instance Z = Fc and D = Tc.
The notion of local cone approximation allows us to introduce a generalized

directional derivatives of a proper extended-value function f .

Definition 2 Let K be a local cone approximation and x ∈ dom f ; the directional
K-epiderivative of f at x is the positively homogeneous function fK(x, ·) : Rn →
[−∞,+∞] defined by

fK(x, v) = inf{y ∈ R : (v, y) ∈ K(epi f, (x, f(x)))}.

In this way, we obtain a large family of generalized derivatives. For instance
fZ(x, v) is the upper Dini derivative of f at x ∈ dom f in the direction v and

fZ(x, v) = lim sup
t→0+

f(x+ tv)− f(x)

t
.

Analogously fF (x, v) is the lower Dini derivative and

fF (x, v) = lim inf
t→0+

f(x+ tv)− f(x)

t
;
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fD(x, v) is the upper Dini-Hadamard derivative and

fD(x, v) = lim inf
(v′,t)→(v,0+)

f(x+ tv′)− f(x)

t
;

fT (x, v) is the lower Dini-Hadamard derivative and

fT (x, v) = lim inf
(v′,t)→(v,0+)

f(x+ tv′)− f(x)

t
.

As a direct consequence of the definition, from property (vi), we have (0, 1) ∈
0+K(epi f, (x, f(x))) and so the epigraph of fK(x, ·) is the vertical closure of the
cone K(epi f, (x, f(x))), i.e.

epi fK(x, ·) = {(y, β) ∈ R
n+1 : ∀ε > 0, (y, β + ε) ∈ K(epi f, (x, f(x)))}.

In particular if K is closed epi fK(x, ·) = K(epi f, (x, f(x))) and therefore fK(x, ·)
is lower semicontinuous. This happens, for instance, for the lower Dini-Hadamard
derivative.
When the cone approximation of the epigraph of f coincides with the cone ap-

proximation of the strict epigraph then

−fK(x, v) = (−f)Kc(x, v), ∀(x, v) ∈ dom f ×R
n.

In particular −fF (x, v) = (−f)Z(x, v) and −fT (x, v) = (−f)D(x, v).
In optimization, the calculation of the generalized directional derivative of the

pointwise maximum of a family of functions is quite common. Let {fi}i∈I be a
finite family of upper semicontinuous functions and fmax(x) = maxi∈I{fi(x)}. If
K is a local cone approximation such that K(A ∩ B,x) ⊆ K(A, x) ∩ K(B,x) for
all pairs of sets A and B (and this is, for example, verified by all above mentioned
four tangent cones) then

fK
max(x, v) ≥ max{fK

i (x, v) : i ∈ Imax(x)}, ∀(x, v) ∈
⋂

i∈I

dom fi × R
n

where Imax(x) = {i ∈ I : fmax(x) = fi(x)}. Analogous result holds for the pointwise
minimum of lower semicontinuous functions changing ∩ with ∪,⊆ with ⊇, max with
min and ≥ with ≤. Other interesting properties of the local cone approximations
and the related directional K-epiderivatives are collected in [11, 12, 15].
In [2], it has been shown that there exists a dual characterization of a very large

class of positively homogeneous functions and, by means of this dual representation,
it is possible to deduce theorems of the alternative. A positively homogeneous
function p : R → (−∞,+∞] is said to be the pointwise minimum of sublinear
functions (in short MSL function) if there exists a family M(p) of nonempty closed
and convex sets such that

p(x) = min{σ(x,C) : C ∈ M(p)}, ∀x ∈ R
n.

Using this class of functions, it is possible to furnish a dual representation of a
directional K-epiderivative.
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Definition 3 Let K be a local cone approximation and x ∈ dom f ; the function
f is said K-MSL-differentiable at x if there exist an index set T and a family
{∂K

t f(x)}t∈T of nonempty closed and convex sets such that

fK(x, v) = min{σ(v, ∂K
t f(x)) : t ∈ T}, ∀v ∈ R

n.

In particular, when T is a singleton the function f is said K-subdifferentiable at x
and the unique closed and convex set ∂Kf(x) is called K-subdifferential.

The class of K-MSL-differentiable functions is quite wide. Indeed, adapting the
results in [2] to the directional K-epiderivatives, it is possible to show that given a
local cone approximation K and x ∈ dom f then f is K-MSL-differentiable if and
only if fK(x, ·) is proper and fK(x, 0) = 0. Moreover if fK(x, ·) is Lipschitzian
then all the sets ∂K

t f(x) may be chosen compact.
In [7] the concept of local cone approximation has been extended in a natural

way to the second-order approximation.

Definition 4 The map K2 : 2R
n

× R
n × R

n
⇉ R

n is a local second-order approxi-
mation if

t2K2(A, x, v) = K2(A, x, tv), ∀(A, x, v) ∈ 2R
n

× R
n × R

n, ∀t ≥ 0

and the following properties hold:

(i) K2(A, x, v) = K2(A− x, 0, v);
(ii) K2(A ∩B(x, r), x, v) = K2(A, x, v), for each r > 0;
(iii) K2(A, x, v) = ∅, for each x 6∈ clA;
(iv) K2(A, x, v) = R

n, for each x ∈ intA;
(v) K2(ϕ(A), ϕ(x), ϕ(v)) = ϕ(K2(A, x, v)), with ϕ linear homeomorphism;
(vi) 0+A ⊆ 0+K2(A, x, v), for each x ∈ clA and v ∈ clK2(A, x, 0).

It is immediate to observe that if K is a local cone approximation then the map
K2(A, x, v) = K(A, x) is a local second-order approximation. Moreover, if K2 is a
local second-order approximation, the map K(A, x) = K2(A, x, 0) is a local cone
approximation which will be called local cone approximation associated to K2.
Therefore axiom (vi) might be written as

0+A ⊆ 0+K2(A, x, v), ∀x ∈ clA, ∀v ∈ clK(A, x).

The following maps are local second-order approximations which are not local cone
approximations. The set of second-order feasible directions is

Z2(A, x, v) = {u ∈ R
n : ∃r > 0 s.t. ∀t ∈ (0, r) x+ tv + t2u ∈ A},

the set of the second-order radial directions is

F 2(A, x, v) = {u ∈ R
n : ∀r > 0 ∃t ∈ (0, r) x+ tv + t2u ∈ A},

the set of the second-order interior displacements is

D2(A, x, v) = {u ∈ R
n : ∃r > 0 s.t. ∀t ∈ (0, r) ∀u′ ∈ B(u, r) x+ tv + t2u′ ∈ A},
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the set of the second-order contingent directions is

T 2(A, x, v) = {u ∈ R
n : ∀r > 0 ∃t ∈ (0, r) ∃u′ ∈ B(u, r) s.t. x+ tv + t2u′ ∈ A}.

As stated for local cone approximations, the formula

K2
c (A, x, v) = (K2(Ac, x, v))c, ∀(A, x, v) ∈ 2R

n

×R
n × R

n

produces new local second-order approximations. For instance Z2 = F 2
c and D2 =

T 2
c .
Following the same scheme used for the first-order approximations, we define

second-order directional K2-epiderivatives.

Definition 5 Let K2 be a local second-order approximation, x ∈ dom f and
v ∈ dom fK(x, ·); the second-order directional K2-epiderivative of f at x in the
directions v and y is

fK2

(x, v, y) = inf{β ∈ R : (y, β) ∈ K2(epi f, (x, f(x)), (v, fK(x, v)))}.

Notice that if fK(x, 0) = 0 then fK2

(x, 0, y) = fK(x, y). Moreover, if
fK2

(x, v, y) ∈ R, for each t > 0, we get fK2

(x, tv, t2y) = t2fK2

(x, v, y).
The following second-order directional epiderivatives arise from the definition

fZ2

(x, v, y) = lim sup
t→0+

f(x+ tv + t2y)− f(x)− tfZ(x, v)

t2

fF 2

(x, v, y) = lim inf
t→0+

f(x+ tv + t2y)− f(x)− tfF (x, v)

t2

fD2

(x, v, y) = lim sup
(y′,t)→(y,0+)

f(x+ tv + t2y′)− f(x)− tfD(x, v)

t2

fT 2

(x, v, y) = lim inf
(y′,t)→(y,0+)

f(x+ tv + t2y′)− f(x)− tfT (x, v)

t2

Properties of the second-order directional epiderivatives can be found in [7]. Here
we want only to draw attention to a discrepancy between first and second-order
directional K-epiderivatives. The chain of inclusions

D(A, x) ⊆ F (A, x) ⊆ Z(A, x) ⊆ T (A, x)

implies that the chain of inequalities

fD(x, v) ≥ fF (x, v) ≥ fZ(x, v) ≥ fT (x, v).

The same chain of inclusions holds for the second-order local approximations
but the presence of (v, fK(x, v)) in the definition of second-order directional K2-
epiderivative implies that no relationship exists, in general, between fD2

, fF 2

, fZ2

and fT 2

.
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4. Optimality conditions in mathematical programming

Now we focus our attention on the optimization problem

min{f(x) : x ∈ S}, (1)

where f : Rn → (−∞,+∞] is a proper function and S ⊆ R
n is the feasible region.

It is immediate to observe that x ∈ S is a local solution for (1) if and only if there
exists r > 0 such that

epi f ∩ [S × (−∞, f(x))] ∩B((x, f(x)), r) = ∅. (2)

Even if this expression is easy and quite elegant from the formal viewpoint, in
general it is an arduous task to verify them. For this reason it is suitable to replace
the sets in (2) with approximations having a simpler structure: local cone or second-
order approximations. The pair of local second-order approximations (K2,H2) will
be called admissible if for all A,B ⊆ R

n such that A ∩B = ∅ we have

K2(A, x, v) ∩H2(B,x, v) = ∅, ∀(x, v) ∈ R
n × R

n.

An easy way to obtain admissible pairs is the following. Let K2 be an isotone local
second-order approximation, that means, for every A,B ⊆ R

n with A ⊆ B

K2(A, x, v) ⊆ K2(B,x, v), ∀(x, v) ∈ R
n × R

n;

then the pair (K2,K2
c ) is admissible. For instance F 2 and T 2 are isotone and

therefore the pairs (F 2, Z2) and (T 2,D2) are admissible. Therefore, if (K2,H2) is
an admissible pair, a necessary condition for (2) is

K2(epi f, (x, f(x)), (v, α)) ∩H2(S × (−∞, f(x)), (x, f(x)), (v, α)) = ∅ (3)

for all (v, α) ∈ R
n+1. When S = R

n, choosing an isotone local second-order ap-
proximation K2, from (3), we deduce the following first [6] and second-order [7]
optimality condition:

fK(x, v) ≥ 0, ∀v ∈ R
n (4)

and, for each v,w ∈ R
n such that fK(x, v) = 0 we get

fK2

(x, v, w) ≥ 0.

If f is K-MSL-differentiable the first order necessary condition (4) can be equiva-
lently written in the dual space

0 ∈
⋂

t∈T

∂K
t f(x).

A general theorem which establishes a necessary optimality condition for problems
with abstract constraints is the following [7].
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Theorem 4.1 Let x be a local solution for (1), (K2,H2
0 ) be an admissible pair of

local second-order approximations and H2 be a local second-order approximation
such that for each point (x, a) ∈ R

n+1 and for each direction (v, β) ∈ R
n+1 we have

H2
0 (S × (−∞, a), (x, a), (v, β)) ⊇ H2(Ω, x, v)×







∅ if β > 0
(−∞, 0) if β = 0
R if β < 0

(5)

Then

fK(x, v) ≥ 0, ∀v ∈ H(S, x). (6)

Moreover for each v,w ∈ R
n such that fK(x, v) ≤ 0 and w ∈ H2(S, x, v) we get

fK2

(x, v, w) ≥ 0.

In particular, from the proof of Theorem 4.1, it is possible to deduce that if
fK(x, v) < 0 then fK2

(x, v, w) = +∞. Let us observe that condition (5) holds
choosing H and H0 as one of the four above mentioned local second-order approx-
imations. Moreover, if f is K-MSL-differentiable, if the cone H(S, x) is convex and
if the following condition holds

−H◦(S, x) ∩
(

barr∂K
t f(x)

)◦
= {0}, ∀t ∈ T,

then first order optimality condition (6) can be equivalently written in dual form

0 ∈
⋂

t∈T

(

∂K
t f(x) +H◦(S, x)

)

.

Now we assume that the feasible region S is expressed by inequality constraints

S = {x ∈ R
n : gi(x) ≤ 0, i ∈ I}, (7)

where gi : R
n → R and I is a finite index set. As usual we denote by I(x) = {i ∈

I : gi(x) = 0} the set of active constraints and by Si = {x ∈ R
n : gi(x) ≤ 0} the

region identified by a single constraint.

Theorem 4.2 Let x be a local solution for (1) with S expressed by (7), (K,H0)
be an admissible pair of local cone approximation, and gi be upper semicontinuous
for each i ∈ I \ I(x). Suppose there exist a family of local cone approximation
{Hi}i∈I(x) and a local cone approximation H satisfying assumption (5),

⋂

i∈I(x)

H(Si, x) ⊆ H(S, x). (8)

and {v ∈ R
n : gHi

i (x, v) < 0} ⊆ H(Si, x) for every i ∈ I(x). Then the system

{

fK(x, v) < 0,

gHi

i (x, v) < 0, i ∈ I(x).
(9)

is impossible.
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If all the directional K-epiderivatives are MSL functions, by means of a theorem
of alternative [4], the impossibility of the system (9) coincides with the following
generalized John necessary optimality condition:

0 ∈ cl conv



∂K
t f(x) ∪

⋃

i∈I(x)

∂Hi

ti
gi(x)



 (10)

for each t ∈ T and ti ∈ Ti with i ∈ I(x).
Moreover, if all the sets ∂K

t f(x) and ∂Ki

ti
gi(x) are compact, then (10) assumes

the following simpler form

0 ∈ θ∂K
t f(x) +

∑

i∈I(x)

λi∂
Ki

ti
gi(x). (11)

A crucial point in optimization theory is to establish conditions which guarantee
the multiplier θ 6= 0. Thanks to a generalized Farkas lemma for MSL systems
proved in [13], the KKT optimality condition

0 ∈ cl



∂K
t f(x) + cone conv

⋃

i∈I(x)

∂Hi

ti
gi(x)





for each t ∈ T and ti ∈ Ti with i ∈ I(x), coincides with the impossibility of the
system

{

fK(x, v) < 0,

gHi

i (x, v) ≤ 0, i ∈ I(x).
(12)

For this reason, a regularity condition can be viewed as a condition that guarantees
the impossibility of the system (12) starting from the impossibility of the system
(9). This point of view allows us to furnish various regularity conditions without
requiring any assumption of convexity or its generalizations [4].

Theorem 4.3 Assume that all the assumptions of Theorem 4.2 are satisfied and
fK(x, ·) and gHi

i (x, ·) are proper. Define

G(x, v) = max{gHi

i (x, v) : i ∈ I(x)}

and suppose that one of the following regularity condions holds:

(i) dom f0+K(x, ·) ∩ {v ∈ R
n : G∞(x, v) < 0} 6= ∅;

(ii) fK(x, ·) upper semicontinuous and

∀v ∈ R
n : G(x, v) = 0, ∃w ∈ R

n : lim inf
t↓0

G(x, v + tw)−G(x, v)

t
< 0;

(iii) fK(x, ·) upper semicontinuous and

cl {v ∈ R
n : G(x, v) < 0} = {v ∈ R

n : G(x, v) ≤ 0}.

9
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Then the system (12) is impossible.

The convexity and its generalizations play a fundamental role in order to derive
sufficient optimality conditions. A quite weak concept of generalized convexity
for differentiable functions was introduced in [14] with the name of invexity. By
exploiting the concept of directional K-epiderivative it is possible to give [3] a
unifying definition of invexity, quasiinvexity and pseudoinvexity for nonsmooth
functions for obtaining sufficient optimality conditions.

Definition 6 Let K be a local cone approximation; the function f is said

• K-invex if there exists a function η : Rn × R
n → R

n such that

f(x1)− f(x2) ≥ fK(x2, η(x1, x2)), ∀(x1, x2) ∈ R
n × dom f ;

• K-quasiinvex if there exists a function η such that f(x1) ≤ f(x2) implies
fK(x2, η(x1, x2)) ≤ 0 for all x1 ∈ R

n and x2 ∈ dom f ;
• strictly K-pseudoinvex if there exists a function η such that f(x1) ≤ f(x2)

implies fK(x2, η(x1, x2)) < 0 for all x1 ∈ R
n \ {x2} and x2 ∈ dom f .

Clearly

K-invexity ⇒ K-quasiinvexity ⇒ strict K-pseudoinvexity.

Moreover it is clear that f is K-invex if and only if every point x satisfying (4) is
a global minimum point. The concept of K-invexity and its generalizations allows
us to deduce sufficient optimality conditions directly from the impossibility either
of the system (9) or of the system (12) as reported by the following theorem [3].

Theorem 4.4 Let x ∈ S.

• If the system (9) is impossible, f is K-invex and gi are strictly Hi-pseudoinvex
with respect to the same kernel η, then x is a global solution.

• If the system (12) is impossible, f is K-invex and gi are Hi-quasiinvex with
respect to the same kernel η, then x is a global solution.

We have noted that the impossibility of (12) descends from the impossibility of
(9) in presence of a regularity condition. Nevertheless, even if we have not regu-
larity but we strengthen the hypothesis of invexity of the constraint functions, the
impossibility of the system (9) implies the optimality of x.
The described approach via local approximations can be extended in a natural

way to the multiobjective optimization with inequality constraints. Let us consider
the following problem

Min {(f1(x), . . . , fm(x)) : x ∈ S} (13)

where S is described as in (7) and fj : Rn → R for all j ∈ J = {1, . . . ,m}. Here
Min means the minimum with respect to the Pareto cone. Let us recall that a
feasible point x is an efficient solution of (13) if there exists no feasible solution x

such that fj0(x) < fj0(x) for some j0 ∈ J and fj(x) ≤ fj(x) for all j ∈ J \ {j0}.
Clearly every efficient solution of (13) solves the scalar optimization problem

min{fj0(x) : x ∈ S ∩ Sj0} (14)

where Sj0 = {x ∈ R
n : fj(x) ≤ fj(x), ∀j ∈ J \ {j0}}. Hence, choosing two suitable

10
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families of local cone approximations {Kj : j ∈ J} and {Hi : i ∈ I(x)}, it is possible
to apply Theorem 4.2 achieving the impossibility of the system

{

f
Kj

j (x, y) < 0, j ∈ J

gHi

i (x, y) < 0, i ∈ I(x).
(15)

In [16] a KKT condition has been achieved via a theorem of alternative (there is a
further extension in [17] in presence of equality constraints).
Again, using suitable assumptions of invexity, from the impossibility of system

(15) some sufficient conditions similar to the ones expressed in Theorem 4.4 are
deduced for the multiobjective problem. Other optimality conditions with local
cone approximations are presented also in [1].

5. Further applications of the local cone approximations

In this section we furnish two applications of the abstract concept of local cone ap-
proximation. The first part is devoted to establish a generalization of the Zagrodny
mean value theorem, the last part concerns a sufficient condition which guarantees
the existence of the error bound for a system of inequalities.

5.1. An approximate mean value theorem

Many authors have introduced different axiomatic approaches in order to derive
generalizations of the Zagrodny approximate mean value theorem [19]. Such an
effort has been devoted to avoid redoubling of different results which proofs follow
the same principles. The core of these approaches is based on the construction of an
axiomatic class of abstract subdifferentials containing as special case many well-
known subdifferentials. Nevertheless an abstract form of the approximate mean
value theorem can be achieved also by means of the concept of directional K-
epiderivative [5].
We recall that a local cone approximation K is said convex-regular if for each

lower semicontinuous function f and for each continuous convex function g we have

(f + g)K(x, v) ≤ fK(x, v) + g′(x, v), ∀(x, v) ∈ dom f × R
n.

where g′(x, v) denotes the classical directional derivative. For instance Z, F , D and
T are convex-regular local cone approximations.

Theorem 5.1 Let K be an isotone and convex-regular local cone approximation
and f be lower semicontinuous; then, for each a, b ∈ R

n with a ∈ dom f , and for
each r ≤ f(b) there exist x ∈ [a, b) and a sequence {xk} ⊆ dom f with xk → x and
f(xk) → f(x) such that

lim inf
k→+∞

fK(xk, b− a) ≥ r − f(a)

and

lim inf
k→+∞

fK(xk, b− xk) ≥
‖b− x‖

‖b− a‖
(r − f(a)).

11
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Some consequences can be deduced from Theorem 5.1. For instance if all the
assumptions of the theorem are satisfied and, in addiction, there exists L > 0 such
that

fK(x, v) ≤ L‖v‖, ∀(x, v) ∈ dom f × R
n

then f is Lipschitzian with constant L.
Another result is related to the monotonicity of a lower semicontinuous function.

Let C be a convex and pointed cone and K be an isotone and convex-regular local
cone approximation. If fK(x, v) ≤ 0 for all v ∈ C then f is C-decreasing in the
sense that f(x1) ≥ f(x2) for every x1, x2 ∈ R

n with x2 − x1 ∈ C.

5.2. An error bound result for inequality systems

Roughly speaking, the solution set of an inequality system is said to have an error
bound if the involved functions provide an upper estimate for the distance from
any point to the solution set. More precisely, given a function f and denoted the
solution set of the inequality by

S = {x ∈ R
n : f(x) ≤ 0},

we say that S has a local error bound if it is nonempty and there exist two constants
µ > 0 and a > 0 such that

d(x, S) ≤ µf+(x), ∀x ∈ f−1(−∞, a)

where d(x, S) = infx′∈S ‖x − x′‖ and f+(x) = max{0, f(x)}. In [8] a sufficient
condition for the error bound of a parametric system with lower semicontinuous
functions defined on a Banach space has been established using the class of the
directionalK-epiderivatives. A nonparametric version of that result is the following.

Theorem 5.2 Let K be an isotone and convex-regular local cone approximation
and f be lower semicontinuous. Suppose that

(i) there exists a > 0 such that f−1(−∞, a) 6= ∅,
(ii) there exists m > 0 such that, for each x ∈ f−1(0, a) there is v = v(x) ∈ R

n

such that

fK(x, v) < −m‖v‖;

then

d(x, S) ≤ m−1f+(x), ∀x ∈ f−1(−∞, a).

Since m‖v‖ = σ(v,mB), if the function f is K-MSL-differentiable, we have

fK(x, v) +m‖v‖ = min
t∈T

σ(v, ∂K
t f(x) +mB);

hence, we may write assumption (ii) in the following form

0 6∈
⋂

t∈T

(

∂K
t f(x) +mB

)

.

12
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