
IEEE INTERNET OF THINGS JOURNAL

1


Abstract—Massive diffusion of constrained devices communi-

cating through low-power wireless technologies in the future In-
ternet of Things will require in many scenarios the deployment of
IoT gateways to allow applications to discover and access IoT re-
sources. In this context, Fog/Edge Computing will represent an op-
portunity to deploy IoT gateways in proximity of IoT domains,
meeting the requirements of applications needing low-latency in-
teractions with devices. In this work, we present an Edge-centric
distributed architecture to provide resource discovery and access
services to IoT applications. The proposed approach leverages the
CoRE Resource Directory interface and the CoAP protocol to ex-
pose a standard interface for global discovery and access. Multiple
IoT gateways are federated through a P2P overlay implemented
by a Distributed Hash Table (DHT), which is exploited to share the
information on IoT resources available across multiple domains.
The proposed solution is validated by means of a small-scale pro-
totype, and extensively evaluated through emulation in large scale
deployment in comparison to a centralized Cloud-based approach.
Experimental results demonstrated that the proposed approach
guarantees lower latencies than a centralized solution and can en-
sure scalability for small to medium sized deployments.

Index Terms—IoT gateway, Fog Computing, CoAP, Resource
Directory, Discovery, Access

I. INTRODUCTION
MERGING technologies, such as low-power wireless con-
nectivity and new hardware for sensors and actuators, will

represent the fundamental building blocks of the future Internet
of Things (IoT), since they will allow producing low-cost and
easy deployable embedded devices [1]. Integrating such de-
vices into IoT applications, however, will represent a signifi-
cant challenge, considering their constrained capabilities in
terms of computing, memory and energy. Although recent
standardization efforts enabled the use of the IPv6 protocol to
allow end-to-end direct communication between constrained
IoT devices and applications [2], in many practical deployments
this solution may not be efficient or even unfeasible [3], con-
sidering that the access network may be highly unreliable, or
IoT devices may often be offline, e.g., during sleeping cycles.

To handle this issue, an IoT gateway may be introduced as an
intermediary logical entity between applications and con-
strained devices. An IoT gateway may support discovery of IoT

G. Tanganelli, C. Vallati and E. Mingozzi are with the Department of Infor-
mation Engineering, University of Pisa, Largo Lucio Lazzarino, 2, 56122, Pisa
Italy. (e-mail: g.tanganelli@iet.unipi.it, c.vallati@iet.unipi.it, enzo.min-
gozzi@unipi.it).

resources, and access to them, thus behaving both as a directory
to lookup, collecting information about available resources, and
as a broker, handling application requests on behalf of con-
strained devices whenever they are unavailable. This approach
is also endorsed by many existing standard or open source plat-
forms such as ETSI oneM2M [4] or FIWARE [5].

A common approach in many existing IoT deployments is to
place IoT gateways in a Cloud infrastructure to guarantee scala-
bility, ease of deployment and low-cost management. However,
with this approach, IoT gateways actually run in data centers far
from the IoT infrastructure comprising the physical devices,
and communicate with the latter through long-distance high-la-
tency Internet core links.

On the other hand, in certain IoT scenarios, applications may
have low-latency, privacy, or geographic constraints that can’t
be met by a Cloud-based solution. In order to support such ap-
plications, the Fog/Edge Computing paradigm has been re-
cently proposed [6]. Fog/Edge Computing is an extension of the
traditional Cloud Computing architecture that distributes ad-
vanced computing, storage, networking and management ser-
vices closer to end users and things. This is accomplished by
exploiting computing and storage capabilities deployed at the
edge of the network, thus realizing a distributed run-time plat-
form that provides key advantages such as real-time processing,
rapid scalability, context-awareness and resource pooling [7].
For these reasons, Fog/Edge Computing can be exploited in
many IoT scenarios, ranging from smart agriculture to smart
cities [8]. As a matter of facts, placing IoT gateways in Fog
nodes located in proximity of IoT devices is already commonly
recognized by both the research community [9] and standardi-
zation bodies [10] as a major application scenario for Fog/Edge
Computing.

Moreover, in future large-scale IoT systems, multiple IoT do-
mains are expected to interwork with each other. In a Smart City
environment, for instance, different IoT systems may be de-
ployed in the same area, e.g., for intelligent transportation sys-
tems, environment monitoring, etc., each one operating for a
different main goal [11]. To integrate different IoT infrastruc-
tures we will require the federation of such domains and, in par-
ticular, the cooperation of IoT gateways, in order to enable
seamless discovery and access of IoT resources across multiple

Copyright (c) 2012 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

Edge-centric Distributed Discovery and Access
in the Internet of Things

E

G. Tanganelli, C. Vallati and E. Mingozzi

G. Tanganelli, C. Vallati and E. Mingozzi, "Edge-Centric Distributed Discovery and Access in the
Internet of Things," in IEEE Internet of Things Journal, vol. 5, no. 1, pp. 425-438, Feb. 2018.
doi: 10.1109/JIOT.2017.2767381

IEEE INTERNET OF THINGS JOURNAL

2

domains.
In this work, we propose an Edge-centric distributed solution

to federate different IoT gateways deployed in Fog nodes close
to IoT domains. The goal is to provide applications with a com-
mon service for global discovery and access of IoT resources in
the federated domain, irrespectively of their location. In order
to preserve the distributed nature of the federation and continue
ensuring low-latency interactions, the service is realized by IoT
gateways at the Fog Layer through a structured Peer-to-Peer
(P2P) overlay, implemented by means of a Distributed Hash
Table (DHT), where information about all available IoT re-
sources is stored for global lookup. P2P architectures have been
successfully demonstrated to be both scalable and reliable (see,
e.g., [12]), as well as resilient to flash-crowd effects and Denial-
of-Service (DoS) attacks due to their fully distributed nature.
For this reason, P2P has been already proposed and demon-
strated to be effective also in industrial environments, e.g. in
[13-14].

The overall concept is instantiated leveraging state-of-art
technologies for IoT discovery and access. Specifically, the
CoRE RD [3] and the CoAP protocol [15] have been adopted
to implement the standard interface exposed to applications. On
the other hand, for the implementation of the DHT, the eXtend-
ible Metadata Hash Table (XMHT) has been adopted to exploit
its extensible interface that resembles the CoRE Link Format
commonly used to encode resource identities (URIs) along with
metadata (link attributes).

In order to evaluate the feasibility of the proposed solution
the latter has been fully implemented and validated by means
of a small-scale prototype realized using off-the-shelf hard-
ware. In addition, an extensive evaluation has been carried out
by means of emulation to assess its performance in large-scale
deployments as compared to a centralized Cloud-based ap-
proach. Results showed that a distributed Edge-centric solution
successfully provides better performance in terms of latency,
but may obviously suffer by the reduced available processing
and storage capacity with respect to a Cloud infrastructure.

The rest of the paper is organized as follows. In Section II an
overview of the related work is provided. Section III provides a
brief overview of the enabling technologies for the proposed
solution, which is described in detail in Section IV. In Section
V the solution is validated by means of a small scale prototype,
while Section VI presents a large scale performance evaluation
by emulation. Eventually, in Section VII conclusions are drawn.

II. RELATED WORK
Access and discovery are two basic functionalities essential

to IoT applications. For this reason, Cloud-based IoT platforms,
such as OpenIoT [16], or other commercial solutions [17], usu-
ally provide these basic services as part of their core function-
alities. In order to foster interoperability, several standardiza-
tion activities have been carried out to define a common inter-
face to such services. In this context, it is particularly relevant
the work carried out within the IETF CoRE Working Group that
defined the CoAP protocol for RESTful access, and the Re-
source Directory (RD) interface for discovery. RD, described in

details in Section III.B, defines a standard CoAP-based inter-
face for a centralized lookup server.

An alternative, also specified by IETF, is DNS Service Dis-
covery (DNS-SD) [18], a modified version of the well-known
DNS protocol tailored for IoT applications. DNS-SD defines a
communication protocol to interact with a centralized reposi-
tory to which clients register their resources/services. To this
aim, the standard DNS interface and its messages are extended
to allow the discovery of available IoT services in a network. A
distributed extension of the protocol, Multicast DNS (mDNS),
has been also defined [19]. In mDNS, applications discover ser-
vices available in the local network through multicast messages.
Such solution, however, is tailored for small-scale systems, as
multicast messages arise reliability issues on a large scale.

Following the Fog/Edge Computing paradigm, other archi-
tectures are currently under standardization. The OMA organi-
zation, for instance, is currently defining the Lightweight M2M
(LWM2M) standard [20], which is a client/server architecture
built on top of CoAP. In the LWM2M architecture, the IoT de-
vices (LWM2M clients) interact with a LWM2M Server usu-
ally implemented on a local gateway. LWM2M servers are re-
sponsible to offer access and discovery to external applications.
Even though LWM2M is based on a distributed architecture,
the current specification does not consider the communication
between LWM2M Servers to realize a federation of LWM2M
Servers. Another architecture currently under development is
the OneM2M standard [4]. The OneM2M standard is based on
a distributed layered architecture composed of interconnected
nodes. Each node can implement different functionalities,
among them the Common Service Entity (CSE) can be imple-
mented by nodes to expose a common interface to applications
to access the IoT devices connected to the OneM2M network.
Different CSE nodes can be interconnected to implement inter-
domain access. However, this can be done only in a strictly hi-
erarchical fashion.

Methodologies for node federation to implement distributed
systems has been proposed in the past P2P interactions. The
same popular approach based on DHT overlay networks has
been adopted also in the IoT context. In [21], for instance, the
authors propose a P2P architecture specifically designed for IoT
applications. The work tackles only the discovery problem pro-
posing a two-tier DHT overlay implemented by the gateways
for each IoT network.

To the best of our knowledge, the only work that considers
both access and discovery is [22]. The authors propose a P2P
federation of gateways, relying on CoAP for communication.
The architecture exploits a decentralized P2P rendez-vous ser-
vice among the nodes for discovery. The proposed approach,
however, is cumbersome due to the intensive negotiation and
synchronization procedures that are required between nodes.

Although the approaches proposed in [21] and [22] have sim-
ilarities with the solution proposed in this paper, they do not
offer a standard interface for applications. This limitation re-
quires application to implement a custom interface for discov-
ery and access, for example to interact directly with the inter-
face exposed by the DHT.

IEEE INTERNET OF THINGS JOURNAL

3

III. ENABLING TECHNOLOGIES
The architecture proposed in this work leverages some basic

functional components in order to build a distributed overlay of
gateways for global IoT resource discovery and access. Before
delving into the details of our proposal, we provide a brief over-
view of the state-of-art technologies that we embraced to im-
plement such components. In particular, as far as resource dis-
covery and (mediated) access is concerned, we capitalize on
standard protocols and services already and/or being specified
by the IETF CoRE Working Group, i.e., Resource Directory
(RD) [3] and the CoAP protocol [15], respectively. It is how-
ever worth highlighting that alternative technologies could be
used as well, such as OMA LWM2M [20], the OMA NGSI 9/10
Context Management interfaces (adopted by FIWARE IoT Dis-
covery and IoT Broker components) [5], or oneM2M [4], just to
mention a few. In fact, the proposed approach is sufficiently
general and independent of the discovery and access interfaces
that are actually adopted.

A. Constrained Application Protocol (CoAP)
CoAP is a Web transfer protocol specified by the IETF CoRE

Working Group optimized for resource-constrained devices
[15]. CoAP implements a request/response model and provides
a RESTful interface to access resources hosted by an origin
server running on the constrained IoT device. A CoAP resource,
whose state is usually related to some physical sensor/actuator,
is made available under a Uniform Resource Identifier (URI);
clients access the resource state using the four canonical REST
methods: GET, PUT, POST and DELETE.

In addition, a recently specified extension, namely, Observ-
ing Resources [23], allows a CoAP client to also register its in-
terest in the state of a resource, and then to start receiving asyn-
chronous notifications from the server whenever the observed
resource state changes. This feature enables remote monitoring
of IoT resources in a very efficient manner: it is therefore a de-
sign requirement to support observation in our proposed archi-
tecture.

Finally, CoAP allows the deployment of one or more proxies
as intermediaries between clients and servers. In particular, a
reverse-proxy is by definition transparent to clients, and stands
in for one or multiple origin servers, thus acting as a common
broker to access dispersed IoT resources. A reverse-proxy im-
proves efficiency (e.g., by implementing caching to support in-
termittently available devices) and scalability: multiple observe
relationships for the same resource, especially if hosted by a
very constrained device, can be easily managed if they are ac-
tually established with a more powerful proxy on behalf of the
server [24]. We exploit a reverse-proxy in IoT gateways for re-
source access brokering.

B. CoRE Link Format
The CoRE WG has also specified a standard format, namely,

the Link Format [25], to describe an IoT resource by means of

1 The RD specification also allows to register and lookup entities other than
resources, i.e., endpoints, groups of endpoints (for the purpose of group com-
munication), and domains. These functionalities are not specifically relevant
for the purpose of this work, and therefore are not considered hereafter.

an identifier, i.e., a URI, plus additional metadata (link attrib-
utes), which are useful to characterize the functionalities pro-
vided by the resource. The Link Format is based on Web Link-
ing [26], which is extended to include a number of attributes
specifically relevant for IoT resources. Among others, it is
worth mentioning the Resource Type (rt) and the Interface De-
scription (if). The rt attribute is an opaque string which allows
to specify some application-specific semantic information asso-
ciated to the resource, i.e., its type; and the if attribute is ex-
ploited to provide a name or URI indicating a specific interface
definition used to interact with the target resource.

C. Resource Directory (RD)
The main objective of a resource discovery mechanism is to

return resource URIs as a result of a lookup operation, comple-
mented by additional metadata about those resources, and pos-
sible further link relations. The Resource Directory (RD) is a
new entity under definition by the CoRE WG to allow discov-
ery of resources [3]. The RD is a centralized directory that hosts
descriptions of resources hosted by other dispersed servers, and
allows lookup to be performed for those resources. To this aim,
the RD implements a set of REST interfaces (i) for servers to
discover the RD and register their set of resources; and (ii) for
clients to discover resources by performing constrained lookup
operations1.

The registration interface allows a CoAP server (endpoint,
according to RD terminology) to register its resources by
providing a corresponding description using the Link Format.
On the other hand, the lookup interface allows a client to dis-
cover registered resources and retrieve their Link Format de-
scription. In the simplest case, lookup can be done by specify-
ing a given URI to discover if a specific resource is available
and retrieve all the related metadata. More interestingly, one at-
tribute and a corresponding value of interest can be specified
instead of an URI; the RD then returns the list of all resources
with a matching attribute value. The latter feature allows dis-
covering resources by type or interface. It is therefore an im-
portant requirement to support this extended lookup operation
also by the distributed directory implemented by the IoT gate-
way overlay proposed in this work.

IV. EDGE-CENTRIC DISCOVERY AND ACCESS
In this section, we describe the proposed solution for Edge-

centric distributed IoT resource discovery and access.
We assume there are multiple independent IoT domains, each

one being a logical grouping of devices that host IoT resources
accessible through CoAP. How exactly the boundary extent of
a domain is identified depends on the use case, but is not par-
ticularly relevant for the purpose of this work. As an example,
it may be related to being part of the same vertical system, or it
may be determined by some specific physical/geographic
boundaries (e.g., a building or a neighborhood), or, more
simply, it follows from the deployment of devices in the same

IEEE INTERNET OF THINGS JOURNAL

4

access network. As such, the size of an IoT domain may also
span several scales, from a few devices in a smart home, to hun-
dreds of sensors in an environmental monitoring system. We
nevertheless assume that all IoT devices in the same domain are
managed by the same IoT gateway. The latter is a logical entity
that represents the point of contact to which an IoT client appli-
cation is bound for discovering and accessing IoT resources in
the managed domain. To this aim, the gateway implements the
following functionalities accessible via dedicated interfaces:
 registration, which allows devices in the IoT domain to push

the information about their hosted resources (i.e., URI and
related metadata) into the gateway resource database. We as-
sume that the gateway implements internally a CoRE RD,
and resource registration is performed via the RD registra-
tion interface;

 discovery, which allows IoT clients to lookup information
about resources hosted by devices in the managed IoT do-
main. IoT clients can be located anywhere, including on de-
vices in the same IoT domain (e.g., for Machine-to-Machine
applications). We assume that this is also implemented by the
internal RD which enables discovery via its lookup interface;

 access, finally, which makes the gateway act as an interme-
diary broker between clients and all CoAP endpoints in the
IoT domain for the purpose of accessing IoT resources. As
such, the gateway implements a CoAP reverse-proxy, as de-
fined in [15], coupled with the internal RD supporting dis-
covery: URIs returned to clients as a result of lookup opera-
tions are translated consistently from registered URIs so that
all CoAP requests are sent by clients to the intermediary gate-
way rather than directly to IoT devices.

The IoT gateway functional architecture is illustrated in Fig.
1, where, in addition to the already mentioned RD and Proxy
components, a third component, namely, the XMHTPeer, is
also included and will be introduced later in this section.

We further assume that IoT gateways are deployed in servers
located close to IoT devices and away from the centralized
Cloud, according to the Edge/Fog Computing paradigm. There
are many advantages in deploying IoT gateways at the Edge. In

particular, proximity makes communication more efficient as
compared to using far-away centralized intermediaries; and
low-latency autonomic control is enabled by exploiting co-lo-
cated applications and services in the same IoT domain. In ad-
dition, the deployment of IoT gateways at the Edge offers better
support for security and privacy, as they allow to store and man-
age sensitive information locally to the domain, thus avoiding
their transmission over unsecure networks, or their storage into
third-party Cloud infrastructures [27]. This is in fact one of the
service scenarios explicitly considered by ETSI for Mobile
Edge Computing [28].

In addition, gateway interfaces are bound to CoAP in order
to enable the deployment also in constrained devices. There-
fore, depending on the IoT domain size and use case, the IoT
gateway could also be running on networked devices deployed
at the Edge other than servers in micro/nano Edge data centers.
Examples are home routers, set-top boxes, or even IoT devices
with constrained yet sufficient computational and storage capa-
bilities like, e.g., a smart device at home. Hereafter, we generi-
cally use the term Fog node to refer to the edge device where
the IoT gateway is deployed [29].

Considering a scenario where multiple IoT domains operate
independently of each other, we aim at providing a solution for
federating the local services available in each domain, and build
on top of them a global service for discovery and access, which
allows client applications to discover and access any IoT re-
source, irrespectively of its actual location in a given domain.
The objective is to keep the advantages of the original Edge-
centric deployment, and therefore to avoid resorting to any
higher-level functional entity, e.g., a “super” resource directory,
deployed in the centralized Cloud. We then follow a loosely
coupled approach, according to which IoT gateways cooperate
with each other in a fully distributed manner to implement
global discovery and access across multiple IoT domains.

The proposed architecture is illustrated in Fig. 2. As far as
global discovery is concerned, P2P overlay networks are clearly
the most suitable solution, since they naturally give a federated
global perspective of different resources distributed across mul-
tiple domains, and provide many benefits in terms of efficiency,
scalability, self-configuration, and robustness [30]. In the pro-
posed solution, IoT gateways participate in a structured P2P
overlay, implemented by means of a DHT where information
about IoT resources is stored for global lookup. In particular,

Fig. 2. Architecture overview.

XMHT

gw.domainA.com

gw.domainB.com

IoT domain A

IoT domain B

coap://epX/temp

Fig. 1. IoT gateway functional view.

A
pp

lic
at

io
n

C
oA

P
Se

rv
er

XMHTPeer

RD

Reverse
Proxy

lookup register

access access

IoT gateway

To other IoT gateways

Fog node IoT deviceClient

IEEE INTERNET OF THINGS JOURNAL

5

we adopted a specific DHT implementation called eXtensible
Metadata Hash Table (XMHT) [31], since it has unique ex-
tended features that allow to implement global lookup opera-
tions aligned to the RD lookup interface. The gateway’s logical
component, which is in charge of maintaining the P2P overlay,
is the already mentioned XMHTPeer. The XMHTPeer is inter-
nally exploited by the RD in order to discover resources at the
global level.

On the other hand, for the purpose of IoT resource access, we
assume that each gateway acts as a proxy also for remote re-
sources, i.e., resources managed by other gateways in foreign
domains. In this manner, the distributed nature of the system is
fully hidden to client applications, which access all IoT re-
sources across different domains through a single point of con-
tact, i.e., the gateway they are bound to. Such a communication
approach provides many advantages. First, multiple caching
points are enabled, both close to the client application and the
CoAP server hosting the resource, therefore communication
overhead and response times are likely to be reduced. Secondly,
management of non-functional aspects, such as trustiness and
QoS, is much more scalable, since it can be decoupled into pro-
visioning rules for establishing relationships, e.g., trust or QoS
agreements, between a client application and its bound domain,
or between peering domains, thus avoiding also managing com-
plex interactions between a domain and all foreign applications.
Finally, extended logic can be implemented in the client’s gate-
way to exploit the availability of foreign resources, as it will be
further discussed below.

We detail in the following the proposed solution.

A. Global discovery
Global discovery across multiple domains is supported by a

distributed global RD on top of the local RDs. To implement
the latter, we make use of XMHT, a Pastry-like DHT imple-
mentation originally proposed for IoT discovery in [31]2.
XMHT allows to store and retrieve <key,value> pairs which are
distributed among IoT gateways. The key is a hash of an opaque
string (as in many DHT implementations), while the value is a
collection of XMHT specific data structures called enriched
locators (e-locators for short). Each e-locator includes a target
URI, as well as additional metadata information in the form of
name/value pairs. As such, it perfectly matches a link descrip-
tion according to the CoRE Link Format. The latter is therefore
used, instead of the original format in [31], to avoid the need
for any transcoding in the proposed solution.

XMHT allows to access the DHT through the following three
methods: (1) append(key,e-locator), which adds the specified e-
locator to the collection associated to the provided key – if there
is no such key, a new pair is created and the collection is initial-
ized with the provided e-locator; (2) get(key), which retrieves
the collection of e-locators associated to the provided key; and,
finally, (3) unpublish(key), and unpublish(key,e-locator), which
are used to remove a key (and all associated e-locators), or an
e-locator from the collection associated to the specified key, re-

2 Although the XMHT implementation we adopt is based on Pastry, the pro-
posed solution does not rely on any of Pastry specific features.

spectively. Thanks to this design, XMHT allows to group mul-
tiple IoT resource information under one single key, and to dy-
namically add and remove resources to/from this group. This
feature is essential to our solution, and mainly motivates our
choice for the DHT implementation. In fact, as it will be illus-
trated more in detail in the following, the description of all re-
sources matching a given attribute-based lookup operation will
be stored with XMHT in a collection associated to a key, whose
value depends on the specific lookup parameters. In this man-
ner, lookup of resources by type or interface is extended
straightforwardly to the global scope, an essential requirement
as highlighted in Section III.C.

We now illustrate how the registration and discovery func-
tions provided by the IoT gateway are extended to enable global
discovery.
1) Registration

The registration operation is illustrated with the help of the
example in Fig. 3. Following the RD specification [3], in order
to register a new resource, an endpoint, say epX, in domain A
sends a POST message to the RD in the corresponding IoT gate-
way, say gw.domainA.com, including the link description of the
resource to be registered. In the example, the description in-
cludes a relative reference (URI-Reference [33]) to the resource
(</temp>) and two link attributes with their respective values.

The RD then performs the following actions for each of the
registered resources:

1. It generates a stable identifier with a global scope. This

Fig. 3. Resource registration.

IEEE INTERNET OF THINGS JOURNAL

6

can be easily implemented, e.g., by calculating a hash
function depending on the gateway name, the endpoint
name, and the URI-Reference included in the description
of the link. In the example, the resulting identifier is
xyz=hash(gw.domainA.com:epX:/temp);

2. It stores the description of the registered resource in its
database for local discovery, linked to the corresponding
generated global id. This allows the local reverse-proxy
to resolve URIs at access time. In the example, the re-
ceived Link Format description of the link is stored, and
the relative reference /xyz is locally associated to the
URI coap://epX/temp;

3. It creates a global link description of the resource by
modifying the received one as follows: 1) the original
URI-Reference is replaced with the newly created rela-
tive reference based on the global id; and 2) the anchor
attribute is added, whose value is set to the URI identi-
fying the IoT gateway function set. According to the
CoRE Link Format specification, this will be used as the
base URI for the relative reference to determine the tar-
get URI conveyed by the link description. In the exam-
ple, the global link description is </xyz>;rt=“tempera-
ture”;if=“urn:oma:lwm2m:ext:3303”;an-
chor=“coap://gw.domainA.com”. The latter defines the
e-locator that will be stored in the DHT.

The RD completes the registration operation by pushing the
registered resource information to XMHT for global lookup.
Several append() operations may be performed. In particular,
for each attribute on which a global lookup operation is al-
lowed, if the attribute is included in the e-locator, then the latter
is added to the corresponding collection invoking the append()
method. The provided key is determined by the combined at-
tribute name and value pair included in the e-locator. In the ex-
ample in Fig. 3, this is therefore done for both the rt and if at-
tributes, with key values rt=“temperature” and
if=“urn:oma:lwm2m:ext:3303”, respectively. Finally, the ap-
pend() method is invoked also to store the e-locator alone asso-
ciated to its global id; in order to keep a key structure consistent

3 Should this not be a requirement, i.e., client applications are allowed to access
resources through foreign gateways, is suffices to skip the anchor substitution.

with the cases above, the provided key in this case is
href=“/xyz”.
2) Discovery

Once a resource is registered according to the procedure
above, it can be discovered by any client application bound to
an IoT gateway participating in the overlay. Global discovery
operation is illustrated with the example in Fig. 4.

A client application discovers resources from any domain by
using the lookup interface exposed by the RD in its point-of-
contact IoT gateway. The RD retrieves this information from
XMHT by determining the appropriate key based on the client
query parameters. In the example in Fig. 4, the client queries its
gateway, say gw.domainB.com, for all resources of type “tem-
perature” registered in any of the federated IoT domains. By
construction, this information is stored by XMHT as a collec-
tion of e-locators associated to the key rt=“temperature”,
which is then obtained by issuing a get(rt=“temperature”)
command.

For each e-locator in the retrieved collection, i.e., a global
link description of a resource, RD performs the following two
actions before responding to the client:

1. If the resource is not registered in the RD domain, i.e., it
is a “foreign” resource, it temporary caches a copy of the
link description in its local database. This is not needed
to ensure correct operations but is rather done for opti-
mization purposes. In fact, assuming that the client ap-
plication will likely access one or more of the discovered
resources through this gateway after lookup, the RD is
then able to map the required resources to their target
URIs (specified by the anchor attribute value) without
the need to query XMHT again. In the example, the cli-
ent performs a GET operation on the resource /xyz, based
on the cached information the RD can immediately in-
struct the local proxy to forward the request to the re-
mote proxy gw.domainA.com. Cache management of
‘foreign’ resource information is however outside the
scope of this work, and will not be discussed any further.

2. It substitutes the anchor attribute value with the URI
identifying its own function set, in order to enforce the
client application to access any resource, including for-
eign ones, through the local proxy. This is done to hide
the distributed location of resources to applications,
which is a design choice of the proposed solution3. In the
example, the anchor value in the link description re-
turned to the client application is then “coap://gw.do-
mainB.com”.

The collection of modified e-locators is then returned to the
client application as a result of the discovery operation.

B. Global access
Seamless access to resources is provided to a client applica-

tion by the Proxy component in its IoT gateway. As explained
in previous sections, only URIs based on global identifiers are
returned to applications as a result of a discovery operation.
Therefore, incoming CoAP requests from client applications

Fig. 4. Resource discovery.

IEEE INTERNET OF THINGS JOURNAL

7

only target such global URIs. When the Proxy receives a re-
quest from a client, it therefore needs to resolve the global URI
into an URI useful for concretely accessing the resource. This
is done with the help of the local RD. Only one of the following
cases is possible. If the resource is hosted by an endpoint in the
local domain, the RD has internally stored the mapping between
the global id and the registered resource description (including
the target URI), therefore URI resolution is straightforward.
Otherwise, the resource is hosted in a foreign domain. In this
case, a copy of its link description could be cached locally as a
result of a recent discovery operation. URI resolution is again
straightforward: the target URI is obtained by combining the
base URI specified by the anchor attribute and the relative ref-
erence based on the global id. Finally, if the link description is
not locally available, XMHT is queried to get the link descrip-
tion of the requested resource.

It is worth highlighting that communication through CoAP is
adopted not only between (reverse) proxies and endpoints host-
ing IoT resources, but also between client and proxies, and be-
tween proxies in different gateways. While the former is a rea-
sonable solution to cope with IoT devices that might be con-
strained along many dimensions (e.g., memory, computation,
communication through low power and lossy network, energy),
communication between applications and proxies could be also
implemented by HTTP. However, besides adding a complexity
due to protocol translation, this would prevent the overlay to
unleash the full potential of the Observing Resources extension
of CoAP on an end-to-end basis [23]. In our solution, observe
relationships are managed by proxies, which allow to establish
multiple observe relationships with the same resource in a scal-
able manner [34].

We illustrate in more detail in the following the global access
procedure (with observing) with the help of the example in Fig.

5. A client application sends a GET request for the resource /xyz
to the Proxy in the IoT gateway gw.domainB.com including the
observe option. The Proxy asks the local RD to resolve the rel-
ative reference to a target URI to forward the request to. In this
example, the actual resource with global id xyz is located in a
foreign domain, and we assume its link descriptor is not locally
cached. The RD therefore queries XMHT by executing a
get(href=“/xyz”) method, which returns the stored e-locator in-
cluding the CoRE link format global description of the re-
source. This is passed in turn to the Proxy, which checks if the
resource is observable, and then forwards the GET request to
the URI coap://gw.domainA.com/xyz, which addresses the
Proxy in the IoT gateway managing the domain where the re-
quested resource is hosted. Like the operation in domain B gate-
way, the proxy in domain A will query its local RD to resolve
the reference. Since the resource is hosted in domain A, the
mapping to the origin URI coap://epX/temp is now stored inter-
nally in the RD, and resolution is immediate without the need
to access the DHT. Finally, the request is forwarded to the
origin CoAP server on endpoint epX, and, if successful, notifi-
cation messages start being delivered asynchronously to the re-
mote client application through the two intermediate proxies.

C. Extensions
The proposed architecture is easily extendible with the im-

plementation of new features that can be offered to applications.
For example, the union of the different connected IoT domains,
in a transparent way, may result in having multiple similar re-
sources. One opportunity raised by this abundance of resources,
for instance, could be the exploitation of equivalent resources,
resources that can provide the same information/service. Let us
suppose that an application is interested in the temperature in a
certain area that is covered by two different IoT domains and in

Fig. 5. Global access with observing.

IEEE INTERNET OF THINGS JOURNAL

8

both a temperature sensor is available. As far as the context of
a specific temperature request in the area is concerned, the two
temperature sensors are equivalent, and any of them can be ex-
ploited interchangeably, e.g. to enforce load balancing or power
saving policies. Another opportunity is to aggregate different
resources to obtain composite data, i.e., data derived from the
composition of information coming from different sensors. An
example of such aggregated resources could be a resource that
aggregates the temperature values of a certain area to produce
the average value. The creation of such virtual resources can be
easily implemented in the proposed solution. A gateway that
receives a discovery invocation can exploit the XMHT overlay
to retrieve the list of resources matching the query and before
replying back to the client, in case equivalent or aggregated re-
sources are available, new virtual resources can be created.
How this can be actually implemented, e.g., through semantic-
based descriptions, goes however beyond the scope of this
work.

V. VALIDATION
In order to validate the proposed architecture and demon-

strate its feasibility, a small-scale prototype using commercial
off-the-shelf hardware has been implemented. The testbed ar-
chitecture is illustrated in Fig. 6. Two IoT gateways are de-
ployed to connect two IoT domains, one hosting IoT resources
and another one hosting client applications. Fog nodes hosting
the IoT gateways are realized by two Soekris boards net5501-
604 (respectively S1 and S2), a popular embedded board that
can run a fully featured Linux operating system. Each board
connects to its local network - an IEEE 802.15.4 sensor network
for S1 and a Wi-Fi network for S2 - and to an Ethernet network
that emulates the backbone. The sensor network includes two
Zolertia Z1 boards (respectively B1 and B2), a popular sensor
platform that support the execution of the Contiki OS5, which
natively supports 6LoWPAN [2], RPL [35], and CoAP. Given
the lack of an IEEE 802.15.4 transceiver on the Soekris boards,
a Zolertia Z1 board6 has been programmed to behave as a trans-
ceiver and attached to S1 to enable communication with the sen-
sor network by means of a tunslip7 interface. S2, instead, ex-
ploits its Wi-Fi transceiver to connect to the Wi-Fi network in

4 http://soekris.com/products/net5501.html
5 http://www.contiki-os.org/
6 http://zolertia.sourceforge.net/wiki/index.php/Z1

which the CoAP client applications run.
The proposed solution for discovery and access is imple-

mented in C++. The two boards are programmed as CoAP serv-
ers that provide measurements from physical sensors (a light
sensor and a water consumption sensor) and access to an actu-
ator (a light switch) through CoAP resources (two on B1 and
one on B2). The standard CoAP implementation has been mod-
ified to introduce the initial RD registration phase to register all
the exposed resources to the local IoT gateway.

To validate the proposed solution, two different client appli-
cations are deployed in the Wi-Fi network, Client A and Client
B, respectively. In order to measure the overhead introduced by
the discovery operations, Client A is configured to access CoAP
resources through the proposed discovery and access solution.
Client B, instead, is configured to avoid discovery and perform
only access through the Reverse Proxy interface, i.e. the client
does not exploit the discovery functionality offered by the IoT
gateway through XMHT, but the required resource is assumed
to be known a priori. Each application client issues 300 requests
per resource during each experiment. Experimental results are
reported in Table I, that shows the average response delay de-
fined as the time between the first CoAP request and the recep-
tion of the data. In order to ensure statistical soundness, 10 dif-
ferent runs for both the scenarios with Client A and Client B are
executed and the average value reported with the 95% confi-
dence interval. As expected, Client A shows a negligible over-
head compared to Client B, in particular considering that the
Sokeris boards are constrained embedded systems with limited
resources that can represent a bottleneck for the DHT opera-
tions involving multiple TCP connections among gateways.

VI. PERFORMANCE EVALUATION
Results obtained from the prototype implementation demon-

strated the feasibility of the proposed approach and the limited
overhead introduced. In this section, we go further and analyze
the proposed approach on a large scale. Carrying out such anal-
ysis using real devices is however not practical, as it requires
the deployment of a large number of Fog nodes across different
geographically distributed sites. For this reason, we decided to
exploit an emulative approach to evaluate the performance of a
large-scale network of Fog nodes in an easy-deployable and
controllable manner with a high level of accuracy.

In the following, we first introduce the scenarios considered
in our experiments, then we illustrate how experiments have
been conducted, and finally we present the evaluation results.

7 TUN is a virtual network kernel device simulating a network layer device. The
device is emulated at Layer 3 for routing purposes.

Fig. 6: Testbed.

B1 B2
802.15.4

802.11
S1 S2 ClientA

ClientB

TABLE I
DELAY FOR DIFFERENT COAP REQUESTS.

Request Client A Client B
GET /water 53.8 ms  2.50 us 40.4 ms  2.55 us
GET /switch 53.5 ms  3.05 us 40.4 ms  2.55 us
GET /light 53.3 ms  2.50 us 42.3ms  3.30 us

IEEE INTERNET OF THINGS JOURNAL

9

A. Evaluation Scenarios
The goal of this evaluation is to compare the proposed Edge-

centric distributed solution for global discovery and access to a
centralized Cloud-based approach, verifying also its scalability
under real conditions. To this aim, in addition to the proposed
solution described in Section IV (Edge case hereafter for short),
we consider an alternative solution where global discovery is
implemented by means of a central RD service which is com-
mon to all IoT domains and deployed in a Cloud data center. In
this case, referred to as Cloud case hereafter, all IoT gateways
register their IoT resources to the remote RD, and client appli-
cations look up the remote RD instead of the local IoT gateway
to discover resources. Moreover, the application directly access
the discovered IoT resource through its managing IoT gateway
as the only CoAP intermediary.

We design a set of experiments considering a variable num-
ber of IoT domains, each one comprising a set of IoT resources
managed by one gateway deployed in a Fog node close to the
IoT domain. All Fog nodes are connected to each other through
a backhaul network that ensures low-latency communication.
Two different network configuration scenarios are considered,
as depicted in Fig. 7. The first network configuration (Fig. 7.a)
represents a local backhaul network scenario (named local sce-
nario hereafter) in which all Fog nodes are attached to the same
LAN. The second network configuration (Fig. 7.b) represents
instead a metropolitan backhaul network scenario (named
metro scenario hereafter) in which Fog nodes are grouped into
different LANs (five nodes per LAN) that are connected to each
other through a Metro LAN. In the Cloud case, the remote RD
is assumed to be located in a far data center, which is reachable
by all Fog nodes and client applications through a core Internet
link characterized by a long-distance latency.

All network latencies are random variables drawn from a

8 http://www.verizonenterprise.com/about/network/latency/
9 The OpenStack framework, https://www.openstack.org/

Normal probability distribution. Table II reports the different
mean and variance latency values (one-way) assumed for each
type of network link. Two different values are used for the core
Internet link in the Cloud case, corresponding to two typical
scenarios for real long-distance latency values measured by a
network operator8. We refer hereafter to the two corresponding
cases as Cloud-A and Cloud-B, respectively.

In both scenarios, requests for discovery and access are gen-
erated according to a global Poisson arrival process. Different
arrival rates are considered. Each request is randomly associ-
ated to an IoT resource in a uniform manner, irrespectively of
its corresponding IoT domain. Moreover, in the Edge case, the
request is also bound randomly to a local IoT gateway for re-
quest dispatching.

Two main performance metrics are collected. The lookup de-
lay is defined as the time between the reception of a request by
either the IoT gateway or the central RD, depending on the case,
and the completion of the discovery process. The access delay
is defined instead as the time between the completion of the dis-
covery process and the completion of the access procedure. For
each experiment, the mean value of each metric is estimated
along with its 95% confidence interval. Every experiment has a
variable duration and terminates when an overall number of
100000 requests are issued.

B. Experimental methodology
In order to carry out the experiments for the scenarios de-

scribed in the previous section, we exploited the OpenStack9
platform for emulation. OpenStack is a popular open-source
virtualization framework that allows rapid deployment of Vir-
tual Machines (VMs) with custom architecture and available
resources. A set of VMs are deployed to emulate a distributed
architecture of Fog nodes, as illustrated in Fig. 8. To this aim,
an ad-hoc template has been prepared to emulate a Fog node

(a) Local scenario. (b) Metro scenario.

Fig. 7: Network configurations.

LAN

Core
Network

remote RD

Metro
LAN

Core
Network

LAN

remote RD

LAN

TABLE II
LINK LATENCY PDF PARAMETERS

Link type Probability density function

LAN Normal; 𝜇 = 2𝑚𝑠,𝜎 = 1𝑚𝑠
Metro Normal; 𝜇 = 5𝑚𝑠,𝜎 = 1𝑚𝑠

Core Cloud-A Normal; 𝜇 = 40𝑚𝑠,𝜎 = 5𝑚𝑠
Core Cloud-B Normal; 𝜇 = 100𝑚𝑠,𝜎 = 5𝑚𝑠 Fig. 8. Openstack experimental deployment.

VM1

S1 Sk

VM5 VMn-5 VMn
…

Clients
Resource Directory

…
IoT
GW

IoT
GW

IoT
GW

IoT
GW

CoAP
Server

CoAP
Server

CoAP
Server

CoAP
Server… …

…

Linux OS Linux OS Linux OS Linux OS

Linux OS
Linux OS

CoAP RD Server
CoAP
Client1

CoAP
Client2

IEEE INTERNET OF THINGS JOURNAL

10

running on an embedded device, i.e., a VM with a 32-bit com-
puting architecture with 433 MHz CPU and 256MB of RAM
(the same resources of a Soekris board) running the same OS
and software of the prototype presented in Section V. In order
to set the CPU speed, the taskset10 Linux utility has been used
to limit the VMs occupation of the host machine CPU. Without
losing generality, CoAP servers are also running on the Fog
node. Specifically, each Fog node hosts a CoAP server that ex-
poses a certain number of IoT resources belonging to the same
IoT domain.

The central RD is hosted on a separate VM with a 64-bit com-
puting architecture, 4GB of RAM and two CPUs at 3.4GHz, on
which a fully featured Linux OS is running. The VM hosts the
central RD service that is used to emulate the Cloud case. RD
stores the information about all IoT resources in a MySQL da-
tabase. Network connections among VMs are emulated through
the OpenStack Neutron module that allows the creation of vir-
tual LANs for VMs. The emulation of heterogeneous network
links is performed through Netem11, a software that can intro-
duce network delays between interfaces according to a given
statistical distribution. In order to allow the communication be-
tween Fog nodes and the central RD in the Cloud case, an em-
ulated Internet link between all the LANs and the VM hosting

10 http://linuxcommand.org/man_pages/taskset1.html

the RD is also configured.
Finally, an additional powerful VM (4GB of RAM and two

CPUs at 3.4GHz) is deployed for the generation of application
requests. Specifically, an application running in this VM gener-
ates CoAP requests according to a Poisson process with a con-
figured rate, and sends them to the randomly selected gateway
or the RD, depending on the case. To this aim, the VM is con-
nected to all the LANs deployed in the scenario. In order to
avoid bottlenecks in the request generation process, the appli-
cation has been implemented exploiting multi-threaded pro-
gramming in C++ language.

C. Evaluation Results
We consider two set of experiments. In the first set, for a

given number of resources and a given request arrival rate, we
vary the number of IoT domains, i.e. gateways, in order to as-
sess the scalability of the proposed solution with respect to its
distribution degree as compared to a fully centralized discovery
service. On the other hand, in the second set, for a given number
of resources and IoT domains, we vary the request arrival rate
to evaluate the scalability with respect to offered load. We il-
lustrate the evaluation results of the two sets in the following
sections.
1) Distribution degree

For this set of experiments, we consider a fixed number of
1000 IoT resources, and we vary the number of IoT gateways
between 20 and 110. IoT resources are uniformly distributed
among the configured number of gateways in each experiment.

Fig. 9 shows the average access and lookup delays obtained
in the local scenario for all cases, for a fixed arrival rate of 60
requests/s. As can be seen, the average access delay is in the
order of few milliseconds, and values are pretty much the same
in both the Edge and Cloud cases for any number of gateways.
This means that, even though in the Edge case access is per-
formed through an additional intermediary gateway as com-
pared to Cloud, the corresponding processing overhead is neg-
ligible and does not affect the overall performance. On the other
hand, we can observe that the access delay slightly decreases as
the number of gateways increases. In fact, by increasing the
number of gateways, the number of IoT resources per gateway
decreases, and therefore the average load per gateway for prox-
ying CoAP requests to origin servers decreases as well, which
results in a lower processing delay per request.

Different conclusions can be drawn for the lookup delay, as
it significantly differs in the Edge and Cloud cases. As ex-
pected, for both the Cloud-A and Cloud-B cases the lookup de-
lay is significantly higher than for the Edge case, though inde-
pendent of the number of gateways. This is mainly due to the
high delay introduced by long-distance core network links that
need to be traversed to reach the Cloud server, as compared to
the much lower delays incurred by Fog nodes in the Edge case
to communicate with each other over LANs only.

On the other hand, in the Edge case the lookup delay slowly
increases as the number of gateways increases up to 100, and
then shows a steep increment when the number further in-

11 http://man7.org/linux/man-pages/man8/tc-netem.8.html

Fig. 9. Local scenario – Rate 60 [req/s].

Fig. 10. Local scenario – Rate 100 [req/s].

IEEE INTERNET OF THINGS JOURNAL

11

creases to 110. The first behavior is typical of a DHT-based im-
plementation of a lookup service. In fact, multiple hops may be
needed to lookup a resource in a DHT, and it is well known that
the average number of such hops has a logarithmic increase
with the number of nodes maintaining the DHT [32]. Although
not directly devisable from Fig. 9, it can be numerically verified
that the lookup delay actually increases logarithmically up to
100 gateways in the Edge case.

However, for 110 gateways the lookup delay deviates from
the logarithmic increase and suddenly gets to about 60ms. After
carefully analyzing this case, we discovered that, although the
average load per gateway decreases as the number of gateways
increases, nevertheless the amount of memory required by the
XHMT implementation in use to manage an increasing number
of connections actually increases as well. Therefore, consider-
ing that in these experiments Fog nodes run in constrained em-
bedded devices, the steep increase of the lookup delay reveals
that the implementation under evaluation enters congestion due
to lack of memory starting from 110 gateways. Although this
effect can be mitigated by a carefully optimized software im-
plementation, this result shows a potential trade-off in adopting
an Edge-centric distributed discovery solution between extend-
ing the distribution degree on one hand, and correctly provi-
sioning adequate computation and storage resources in Fog

nodes on the other hand. It is worth noting however that feder-
ating up to a hundred of IoT domains can be considered a limit
case in most of the reasonable scenarios.

The same experiment has been carried out for different com-
binations of arrival rates (100 vs. 60 requests/s) and network
configurations (local vs. metro), which all confirm the same
conclusions drawn so far. In particular, Fig. 10 shows the results
obtained for a request arrival rate of 100 requests/s in the local
scenario, while Fig. 11 and Fig. 12 show the results in the case
of the metro scenario, for a request arrival rate of 60 and 100
requests/s, respectively. The latter results show in addition how
the performance in the Edge case also depends on network la-
tencies at the access layer, i.e., between Fog nodes. In fact, in
the metro scenario, the average one-way delay between two Fog
nodes in different LANs is 9ms, as compared to 2ms in the local
scenario. As can be seen, as the number of gateways increases
up to 100, the average lookup delay becomes in the metro case
very much comparable with that of the Cloud-A scenario, while
still being clearly more efficient than the Cloud-B case. For 110
gateways, the lookup delay becomes even much higher in the
Edge case with respect to the Cloud-A case, though however
this result, as highlighted before, is very much implementation
dependent for this set of experiments. As expected, we can con-
clude that an Edge-centric solution is as much more convenient
as it can leverage proximity in terms of low-latency one-hop
communications.

Finally, to get a better insight into this latter conclusion, we
report in Fig. 13 and Fig. 14 the cumulative distribution func-
tion of the lookup and access delays for the local and metro
scenarios, respectively, in the case of 60 IoT gateways and a
request arrival rate of 100 requests/s. Specifically, the delays
for the Edge and Cloud-A cases are compared. We can observe
that, as far as access delay is concerned, also the delay distribu-
tions in both cases are practically overlapping. Moreover, in the
metro scenario distributions are bimodal, since one-way delays
are different depending on whether the accessed IoT resource is
managed by a gateway attached to the same LAN as the client
or not.

By considering lookup delays, instead, Fig. 13 and Fig. 14
confirm that the performance in the Edge and Cloud-A cases are
very different. In the Cloud-A case, the delay has very little var-
iability in both scenarios and is basically equal to the round-trip
time to the remote RD. On the other hand, in the Edge case the
delay is variable and actually distributed over a range of values
in both scenarios. This is because the lookup operation entails
a randomly variable number of hops in the P2P overlay to be
completed. In addition, in the metro scenario the distribution is
multimodal due to one-way average delays concentrated around
two different values, as observed above. It is interesting to note,
however, that in the local scenario Edge-centric discovery al-
ways outperforms the Cloud-based solution for mostly all the
requests, whereas in the metro scenario a non-negligible per-
centile, i.e., 20%, of the requests in the Edge case experience a
lookup delay worse than in the Cloud-A case, though the mean
delay is better, and the load is far from the congestion threshold.
This further confirms that, in terms of pure performance, the
advantages of Edge-centric solutions with respect to a Cloud-

Fig. 11: Metro scenario – Rate 60 [req/s]

Fig. 12: Metro scenario – Rate 100 [req/s].

IEEE INTERNET OF THINGS JOURNAL

12

based one very much depend on low network latencies available
at the Edge of the network.
2) Offered Load

For this set of experiments, we consider a fixed number of
1000 IoT resources uniformly distributed among a given num-
ber of gateways, and we vary the request arrival rate between
100 and 480 requests/s. Without losing generality, we only
report the results for the metro scenario, in both the Edge and
Cloud-A cases, with 10 and 20 IoT gateways, respectively.
Experiments with other configurations have been extensively
conducted and led to similar conclusions.

Fig. 15 shows the average access and lookup delays as a
function of the request arrival rate, i.e., the offered load. Since
the latter spans in a range that is above the system capacity in
all cases, it is worth to highlight that Fig. 15 reports results for
successfully completed requests only, i.e., requests for which a
CoAP response was successfully received from the IoT gate-
way managing the requested resource. In order to understand
these results, it is then useful to also consider the fraction of the
total number of requests that are successfully completed, which
is reported as a percentage in Fig. 16.

Let us consider the Cloud-A case first. As can be seen, the
lookup delay increases very slowly, thanks to the large pro-
cessing and storage capabilities at the RD. Only at rates of about

450 request/s the delay starts increasing slightly faster, corre-
sponding to some requests being dropped due to congestion at
the RD. However, the bottleneck of the system is clearly the
access to resource, whose delay steeply increases starting from
400 request/s. In fact, also in the cloud case access is managed
by IoT gateways, which in all these experiments are deployed
on embedded devices with constrained capabilities.

Interestingly, in the Edge case we observe the opposite be-
havior. In fact, since in this case discovery is also implemented
by IoT gateways and is first used before access, it also first
reaches congestion as the load increases. As can be seen, the
lookup delay starts increasing sharply well before the access
delay. The system becomes then congested at 280 requests/s
and 380 requests/ rates for 10 and 20 gateways, respectively,
when requests start being dropped immediately when received
at IoT gateways. This also justifies why the delay decreases af-
ter reaching congestion: the more the requests dropped before
entering the service, the less the number of requests that are ac-
tually successfully processed, and therefore the less the delay.
On the other hand, it can be observed that, as expected, system
capacity scales well with the number of gateways, i.e., the more
the gateways, the more the available processing resources and
then the system capacity. In fact, with 20 gateways congestion
is reached at a higher rate than with 10 gateways. As already

Fig. 13: Local scenario – 60 GWs - Rate 100 [req/s].

Fig. 14: Metro scenario – 60 GWs - Rate 100 [req/s].

Fig. 15: Metro scenario –10 GWs and 20 GWs.

Fig. 16: Metro scenario – 10 GWs and 20 GWs.

IEEE INTERNET OF THINGS JOURNAL

13

mentioned, access is not an issue in this case: the access delay
is nearly constant at all rates below the congestion limit.

Finally, by comparing the Edge and Cloud-A cases, it is con-
firmed that the proposed Edge-centric solution performs better
than the Cloud-based one at all practical rates below the con-
gestion limit, but it has also more limited capacity. Therefore, a
trade-off need be considered. It is definitely possible to get bet-
ter performance by exploiting computational capabilities at the
Edge, but with a reduced overall capacity. Such limitations can
be easily overcome by leveraging (unlimited) Cloud resources,
but then there is a cost to pay in terms of performance since
such resources are far from IoT domains.

VII. CONCLUSION
In this work, an Edge-centric distributed architecture to pro-

vide discovery and access services across multiple IoT domains
has been proposed. The proposed solution is based on a DHT
maintained by IoT gateways deployed in Fog nodes close to the
IoT physical infrastructure, and leverages standard solutions in-
cluding the IETF CoRE RD and CoAP protocol. The feasibility
of the proposed solution, and its limited overhead, has been
demonstrated through a concrete implementation tested in a
small-scale prototype made of off-the-shelf hardware. Moreo-
ver, a virtual large-scale deployment of the proposed solution
has been implemented through OpenStack, and different exper-
iments have been carried out to evaluate the scalability of the
proposed solution, and compare it to a Cloud-based one. Per-
formance evaluation demonstrated the effectiveness of the pro-
posed solution in providing lower latencies than a Cloud-based
approach, and its scalability for small to medium-sized deploy-
ments.

ACKNOWLEDGMENTS
The authors would like to thank Dr. Claudio Cicconetti for

the helpful suggestions that helped to improve the quality of the
paper.

REFERENCE
[1] G. Kortuem, F. Kawsar, V. Sundramoorthy and D. Fitton, “Smart Objects

as building blocks for the Internet of things,” in IEEE Internet Computing,
vol. 14, no. 1, pp. 44-51, Jan.-Feb. 2010.

[2] G. Montenegro, N. Kushalnagar, J. Hui and D. Culler, “Transmission of
IPv6 Packets over IEEE 802.15.4 Networks,” RFC 4944, Sept. 2007.

[3] Z. Shelby, M. Koster, C. Bormann, and P. van der Stok, “CoRE Resource
Directory, Internet draft (work in progress),” IETF, Oct. 2016, draft-ietf-
core-resource-directory-09.

[4] oneM2M Functional Architecture, TS-0001-V2.10, Aug. 2016.
[5] FIWARE IoT GE. [Online]. Available: https://catalogue.fiware.org/ena-

blers/iot-broker.
[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. “Fog computing and its

role in the internet of things,” In Proc. of the MCC workshop on Mobile
Cloud computing (MCC '12). ACM, New York, NY, USA.

[7] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li and Lanyu Xu, “Edge
Computing: Vision and Challenges”, IEEE Internet of Things Journal,
Vol. 3, No. 5, October 2016, pp. 637-646.

[8] C. Perera, Y. Qin, J. C. Estrella, S. Reiff-Marganiec, and A. V. Vasilakos,
“Fog Computing for Sustainable Smart Cities: A Survey,” ACM Comput.
Surv., vol. 50, n. 3, June 2017.

[9] S. Abdelwahab, B. Hamdaoui, M. Guizani and A. Rayes, “Enabling Smart
Cloud Services Through Remote Sensing: An Internet of Everything En-
abler,” in IEEE Internet of Things Journal, vol. 1, no. 3, pp. 276-288, June
2014.

[10] Y. Chao Hu, M. Patel, D. Sabella, N. Sprecher and V. Young, “Mobile
Edge Computing: A key technology towards 5G”. ETSI White Paper.
Sept. 2015.

[11] J. Jin, J. Gubbi, S. Marusic and M. Palaniswami, “An Information Frame-
work for Creating a Smart City Through Internet of Things,” in IEEE In-
ternet of Things Journal, vol. 1, no. 2, pp. 112-121, Apr. 2014.

[12] S. Ioannidis and P. Marbach, “Absence of Evidence as Evidence of Ab-
sence: A Simple Mechanism for Scalable P2P Search,” in Proc. IEEE
INFOCOM, Apr. 2009, pp. 576–584.

[13] B. Fabian, T. Ermakova, and C. Muller, “A Privacy-Enhanced Discovery
Service for RFID-Based Product Information,” IEEE Transactions on In-
dustrial Informatics, vol. 8, no. 3, pp. 707 –718, Aug. 2012.

[14] I. Delamer and J. Lastra, “Service-Oriented Architecture for Distributed
Publish/Subscribe Middleware in Electronics Production,” IEEE Trans-
actions on Industrial Informatics, vol. 2, no. 4, pp. 281 –294, Nov. 2006.

[15] Z. Shelby, K. Hartke, C. Bormann, “The Constrained Application Proto-
col (CoAP),” Internet RFC 7252, IETF, Jun. 2014.

[16] OpenIoT consortium. Open source solution for the internet of things into
the Cloud. [Online]. Available: http://www.openiot.eu

[17] Xively, public Cloud for the internet of things. [Online]. Available:
http://www.xively.com.

[18] S. Cheshire and M. Krochmal, “DNS-Based Service Discovery,” RFC
6763, 2013.

[19] S. Cheshire and M. Krochmal, “Multicast DNS,” RFC 6762, 2013.
[20] OMA LightweightM2M v1.0. [Online]. Available: http://tech-

nical.openmobilealliance.org/Technical/technical-information/release-
program/current-releases/oma-lightweightm2m-v1-0.

[21] S. Cirani et al., “A Scalable and Self-Configuring Architecture for Service
Discovery in the Internet of Things,” IEEE Internet of Things Journal, vol.
1, no. 5, pp. 508-521, 2014.

[22] J. Mäenpää; J. Bolonio, and S. Loreto, “Using RELOAD and CoAP for
wide area sensor and actuator networking,” EURASIP Wireless Commu-
nication Network. 2012.

[23] K. Hartke, “Observing Resources in the Constrained Application Protocol
(CoAP),” Internet RFC 7641, IETF, Sept. 2015.

[24] E. Mingozzi, G. Tanganelli and C. Vallati, “CoAP Proxy Virtualization
for the Web of Things,” 2014 IEEE 6th International Conference on Cloud
Computing Technology and Science, Singapore, 2014, pp. 577-582.

[25] Z. Shelby, “Constrained RESTful Environments (CoRE) Link Format,”
Internet RFC 6699, IETF, 2012.

[26] M. Nottingham, “Web Linking,” Internet RFC 4287, IETF, Oct. 2010.
[27] P. G. Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iam-

nitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric Computing:
Vision and Challenges.” ACM Comput. Commun. Rev., vol. 45, no. 5,
pp. 37–42, Sept. 2015.

[28] Mobile Edge Computing (MEC); Service Scenarios, ETSI GS MEC-IEG
004 V1.1.1, 2015.

[29] E. Marín-Tordera, X. Masip-Bruin, J. García-Almiñana, A. Jukan, G.-J.
Ren, J. Zhu, “Do we all really know what a fog node is? Current trends
towards an open definition, Computer Communications,” vol. 109, pp.
117-130, 2017.

[30] X. Shen, H. Yu, J. Buford, M. Akon (Eds.), “Handbook of Peer-to-Peer
Networking,” Springer US, 2010.

[31] F. Andreini, F. Crisciani, C. Cicconetti, and R. Mambrini, “Context-aware
location in the Internet of Things,” in Proc. IEEE GLOBECOM Work-
shops, Miami, FL, 2010.

[32] D. Rowstron, “Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems,” in Proc. IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware), 2001.

[33] T. Berners-Lee, R. Fielding, L. Masinter, “Uniform Resource Identifier
(URI): Generic Syntax,” Internet RFC 3986, IETF, Jan. 2005.

[34] G. Tanganelli, E. Mingozzi, C. Vallati, M. Kovatsch, “Efficient Proxying
of CoAP Observe with Quality of Service Support,” In Proc. IEEE 3rd
World Forum on Internet of Things (IEEE WF-IoT 2016), Reston (VA),
USA, December 12-14, 2016.

[35] T. Winter, A. B. P. Thubert, T. Clausen, J. Hui, R. Kelsey, P. Levis, K.
Pister, R. Struik, and J. Vasseur, “RPL: IPv6 routing protocol for low-
power and lossy Networks,” Internet RFC 6550. IETF, 2012.

