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 
Abstract—Massive diffusion of constrained devices communi-

cating through low-power wireless technologies in the future In-
ternet of Things will require in many scenarios the deployment of 
IoT gateways to allow applications to discover and access IoT re-
sources. In this context, Fog/Edge Computing will represent an op-
portunity to deploy IoT gateways in proximity of IoT domains, 
meeting the requirements of applications needing low-latency in-
teractions with devices. In this work, we present an Edge-centric 
distributed architecture to provide resource discovery and access 
services to IoT applications. The proposed approach leverages the 
CoRE Resource Directory interface and the CoAP protocol to ex-
pose a standard interface for global discovery and access. Multiple 
IoT gateways are federated through a P2P overlay implemented 
by a Distributed Hash Table (DHT), which is exploited to share the 
information on IoT resources available across multiple domains. 
The proposed solution is validated by means of a small-scale pro-
totype, and extensively evaluated through emulation in large scale 
deployment in comparison to a centralized Cloud-based approach. 
Experimental results demonstrated that the proposed approach 
guarantees lower latencies than a centralized solution and can en-
sure scalability for small to medium sized deployments.  
 

Index Terms—IoT gateway, Fog Computing, CoAP, Resource 
Directory, Discovery, Access 

I. INTRODUCTION 
MERGING technologies, such as low-power wireless con-
nectivity and new hardware for sensors and actuators, will 

represent the fundamental building blocks of the future Internet 
of Things (IoT), since they will allow producing low-cost and 
easy deployable embedded devices [1]. Integrating such de-
vices into IoT applications, however, will represent a signifi-
cant challenge, considering their constrained capabilities in 
terms of computing, memory and energy. Although recent 
standardization efforts enabled the use of the IPv6 protocol to 
allow end-to-end direct communication between constrained 
IoT devices and applications [2], in many practical deployments 
this solution may not be efficient or even unfeasible [3], con-
sidering that the access network may be highly unreliable, or 
IoT devices may often be offline, e.g., during sleeping cycles. 

To handle this issue, an IoT gateway may be introduced as an 
intermediary logical entity between applications and con-
strained devices. An IoT gateway may support discovery of IoT 
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resources, and access to them, thus behaving both as a directory 
to lookup, collecting information about available resources, and 
as a broker, handling application requests on behalf of con-
strained devices whenever they are unavailable. This approach 
is also endorsed by many existing standard or open source plat-
forms such as ETSI oneM2M [4] or FIWARE [5]. 

A common approach in many existing IoT deployments is to 
place IoT gateways in a Cloud infrastructure to guarantee scala-
bility, ease of deployment and low-cost management. However, 
with this approach, IoT gateways actually run in data centers far 
from the IoT infrastructure comprising the physical devices, 
and communicate with the latter through long-distance high-la-
tency Internet core links.  

On the other hand, in certain IoT scenarios, applications may 
have low-latency, privacy, or geographic constraints that can’t 
be met by a Cloud-based solution. In order to support such ap-
plications, the Fog/Edge Computing paradigm has been re-
cently proposed [6]. Fog/Edge Computing is an extension of the 
traditional Cloud Computing architecture that distributes ad-
vanced computing, storage, networking and management ser-
vices closer to end users and things. This is accomplished by 
exploiting computing and storage capabilities deployed at the 
edge of the network, thus realizing a distributed run-time plat-
form that provides key advantages such as real-time processing, 
rapid scalability, context-awareness and resource pooling [7]. 
For these reasons, Fog/Edge Computing can be exploited in 
many IoT scenarios, ranging from smart agriculture to smart 
cities [8]. As a matter of facts, placing IoT gateways in Fog 
nodes located in proximity of IoT devices is already commonly 
recognized by both the research community [9] and standardi-
zation bodies [10] as a major application scenario for Fog/Edge 
Computing.  

Moreover, in future large-scale IoT systems, multiple IoT do-
mains are expected to interwork with each other. In a Smart City 
environment, for instance, different IoT systems may be de-
ployed in the same area, e.g., for intelligent transportation sys-
tems, environment monitoring, etc., each one operating for a 
different main goal [11]. To integrate different IoT infrastruc-
tures we will require the federation of such domains and, in par-
ticular, the cooperation of IoT gateways, in order to enable 
seamless discovery and access of IoT resources across multiple 
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domains. 
In this work, we propose an Edge-centric distributed solution 

to federate different IoT gateways deployed in Fog nodes close 
to IoT domains. The goal is to provide applications with a com-
mon service for global discovery and access of IoT resources in 
the federated domain, irrespectively of their location. In order 
to preserve the distributed nature of the federation and continue 
ensuring low-latency interactions, the service is realized by IoT 
gateways at the Fog Layer through a structured Peer-to-Peer 
(P2P) overlay, implemented by means of a Distributed Hash 
Table (DHT), where information about all available IoT re-
sources is stored for global lookup. P2P architectures have been 
successfully demonstrated to be both scalable and reliable (see, 
e.g., [12]), as well as resilient to flash-crowd effects and Denial-
of-Service (DoS) attacks due to their fully distributed nature. 
For this reason, P2P has been already proposed and demon-
strated to be effective also in industrial environments, e.g. in 
[13-14].  

The overall concept is instantiated leveraging state-of-art 
technologies for IoT discovery and access. Specifically, the 
CoRE RD [3] and the CoAP protocol [15] have been adopted 
to implement the standard interface exposed to applications. On 
the other hand, for the implementation of the DHT, the eXtend-
ible Metadata Hash Table (XMHT) has been adopted to exploit 
its extensible interface that resembles the CoRE Link Format 
commonly used to encode resource identities (URIs) along with 
metadata (link attributes).  

In order to evaluate the feasibility of the proposed solution 
the latter has been fully implemented and validated by means 
of a small-scale prototype realized using off-the-shelf hard-
ware. In addition, an extensive evaluation has been carried out 
by means of emulation to assess its performance in large-scale 
deployments as compared to a centralized Cloud-based ap-
proach. Results showed that a distributed Edge-centric solution 
successfully provides better performance in terms of latency, 
but may obviously suffer by the reduced available processing 
and storage capacity with respect to a Cloud infrastructure.  

The rest of the paper is organized as follows. In Section II an 
overview of the related work is provided. Section III provides a 
brief overview of the enabling technologies for the proposed 
solution, which is described in detail in Section IV. In Section 
V the solution is validated by means of a small scale prototype, 
while Section VI presents a large scale performance evaluation 
by emulation. Eventually, in Section VII conclusions are drawn.  

II. RELATED WORK 
Access and discovery are two basic functionalities essential 

to IoT applications. For this reason, Cloud-based IoT platforms, 
such as OpenIoT [16], or other commercial solutions [17], usu-
ally provide these basic services as part of their core function-
alities. In order to foster interoperability, several standardiza-
tion activities have been carried out to define a common inter-
face to such services. In this context, it is particularly relevant 
the work carried out within the IETF CoRE Working Group that 
defined the CoAP protocol for RESTful access, and the Re-
source Directory (RD) interface for discovery. RD, described in 

details in Section III.B, defines a standard CoAP-based inter-
face for a centralized lookup server.  

An alternative, also specified by IETF, is DNS Service Dis-
covery (DNS-SD) [18], a modified version of the well-known 
DNS protocol tailored for IoT applications. DNS-SD defines a 
communication protocol to interact with a centralized reposi-
tory to which clients register their resources/services. To this 
aim, the standard DNS interface and its messages are extended 
to allow the discovery of available IoT services in a network. A 
distributed extension of the protocol, Multicast DNS (mDNS), 
has been also defined [19]. In mDNS, applications discover ser-
vices available in the local network through multicast messages. 
Such solution, however, is tailored for small-scale systems, as 
multicast messages arise reliability issues on a large scale. 

Following the Fog/Edge Computing paradigm, other archi-
tectures are currently under standardization. The OMA organi-
zation, for instance, is currently defining the Lightweight M2M 
(LWM2M) standard [20], which is a client/server architecture 
built on top of CoAP. In the LWM2M architecture, the IoT de-
vices (LWM2M clients) interact with a LWM2M Server usu-
ally implemented on a local gateway. LWM2M servers are re-
sponsible to offer access and discovery to external applications. 
Even though LWM2M is based on a distributed architecture, 
the current specification does not consider the communication 
between LWM2M Servers to realize a federation of LWM2M 
Servers. Another architecture currently under development is 
the OneM2M standard [4]. The OneM2M standard is based on 
a distributed layered architecture composed of interconnected 
nodes. Each node can implement different functionalities, 
among them the Common Service Entity (CSE) can be imple-
mented by nodes to expose a common interface to applications 
to access the IoT devices connected to the OneM2M network. 
Different CSE nodes can be interconnected to implement inter-
domain access. However, this can be done only in a strictly hi-
erarchical fashion. 

Methodologies for node federation to implement distributed 
systems has been proposed in the past P2P interactions. The 
same popular approach based on DHT overlay networks has 
been adopted also in the IoT context. In [21], for instance, the 
authors propose a P2P architecture specifically designed for IoT 
applications. The work tackles only the discovery problem pro-
posing a two-tier DHT overlay implemented by the gateways 
for each IoT network.  

To the best of our knowledge, the only work that considers 
both access and discovery is [22]. The authors propose a P2P 
federation of gateways, relying on CoAP for communication. 
The architecture exploits a decentralized P2P rendez-vous ser-
vice among the nodes for discovery. The proposed approach, 
however, is cumbersome due to the intensive negotiation and 
synchronization procedures that are required between nodes.  

Although the approaches proposed in [21] and [22] have sim-
ilarities with the solution proposed in this paper, they do not 
offer a standard interface for applications. This limitation re-
quires application to implement a custom interface for discov-
ery and access, for example to interact directly with the inter-
face exposed by the DHT. 
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III. ENABLING TECHNOLOGIES 
The architecture proposed in this work leverages some basic

functional components in order to build a distributed overlay of 
gateways for global IoT resource discovery and access. Before 
delving into the details of our proposal, we provide a brief over-
view of the state-of-art technologies that we embraced to im-
plement such components. In particular, as far as resource dis-
covery and (mediated) access is concerned, we capitalize on 
standard protocols and services already and/or being specified 
by the IETF CoRE Working Group, i.e., Resource Directory 
(RD) [3] and the CoAP protocol [15], respectively. It is how-
ever worth highlighting that alternative technologies could be 
used as well, such as OMA LWM2M [20], the OMA NGSI 9/10 
Context Management interfaces (adopted by FIWARE IoT Dis-
covery and IoT Broker components) [5], or oneM2M [4], just to 
mention a few. In fact, the proposed approach is sufficiently 
general and independent of the discovery and access interfaces 
that are actually adopted. 

A. Constrained Application Protocol (CoAP) 
CoAP is a Web transfer protocol specified by the IETF CoRE 

Working Group optimized for resource-constrained devices 
[15]. CoAP implements a request/response model and provides 
a RESTful interface to access resources hosted by an origin 
server running on the constrained IoT device. A CoAP resource, 
whose state is usually related to some physical sensor/actuator, 
is made available under a Uniform Resource Identifier (URI); 
clients access the resource state using the four canonical REST 
methods: GET, PUT, POST and DELETE. 

In addition, a recently specified extension, namely, Observ-
ing Resources [23], allows a CoAP client to also register its in-
terest in the state of a resource, and then to start receiving asyn-
chronous notifications from the server whenever the observed 
resource state changes. This feature enables remote monitoring 
of IoT resources in a very efficient manner: it is therefore a de-
sign requirement to support observation in our proposed archi-
tecture. 

Finally, CoAP allows the deployment of one or more proxies 
as intermediaries between clients and servers. In particular, a 
reverse-proxy is by definition transparent to clients, and stands 
in for one or multiple origin servers, thus acting as a common 
broker to access dispersed IoT resources. A reverse-proxy im-
proves efficiency (e.g., by implementing caching to support in-
termittently available devices) and scalability: multiple observe 
relationships for the same resource, especially if hosted by a 
very constrained device, can be easily managed if they are ac-
tually established with a more powerful proxy on behalf of the 
server [24]. We exploit a reverse-proxy in IoT gateways for re-
source access brokering. 

B. CoRE Link Format 
The CoRE WG has also specified a standard format, namely, 

the Link Format [25], to describe an IoT resource by means of 

 
1 The RD specification also allows to register and lookup entities other than 
resources, i.e., endpoints, groups of endpoints (for the purpose of group com-
munication), and domains. These functionalities are not specifically relevant 
for the purpose of this work, and therefore are not considered hereafter. 

an identifier, i.e., a URI, plus additional metadata (link attrib-
utes), which are useful to characterize the functionalities pro-
vided by the resource. The Link Format is based on Web Link-
ing [26], which is extended to include a number of attributes 
specifically relevant for IoT resources. Among others, it is 
worth mentioning the Resource Type (rt) and the Interface De-
scription (if). The rt attribute is an opaque string which allows 
to specify some application-specific semantic information asso-
ciated to the resource, i.e., its type; and the if attribute is ex-
ploited to provide a name or URI indicating a specific interface 
definition used to interact with the target resource. 

C.  Resource Directory (RD)  
The main objective of a resource discovery mechanism is to 

return resource URIs as a result of a lookup operation, comple-
mented by additional metadata about those resources, and pos-
sible further link relations. The Resource Directory (RD) is a 
new entity under definition by the CoRE WG to allow discov-
ery of resources [3]. The RD is a centralized directory that hosts 
descriptions of resources hosted by other dispersed servers, and 
allows lookup to be performed for those resources. To this aim, 
the RD implements a set of REST interfaces (i) for servers to 
discover the RD and register their set of resources; and (ii) for 
clients to discover resources by performing constrained lookup 
operations1. 

The registration interface allows a CoAP server (endpoint, 
according to RD terminology) to register its resources by 
providing a corresponding description using the Link Format. 
On the other hand, the lookup interface allows a client to dis-
cover registered resources and retrieve their Link Format de-
scription. In the simplest case, lookup can be done by specify-
ing a given URI to discover if a specific resource is available 
and retrieve all the related metadata. More interestingly, one at-
tribute and a corresponding value of interest can be specified 
instead of an URI; the RD then returns the list of all resources 
with a matching attribute value. The latter feature allows dis-
covering resources by type or interface. It is therefore an im-
portant requirement to support this extended lookup operation 
also by the distributed directory implemented by the IoT gate-
way overlay proposed in this work. 

IV. EDGE-CENTRIC DISCOVERY AND ACCESS 
In this section, we describe the proposed solution for Edge-

centric distributed IoT resource discovery and access. 
We assume there are multiple independent IoT domains, each 

one being a logical grouping of devices that host IoT resources 
accessible through CoAP. How exactly the boundary extent of 
a domain is identified depends on the use case, but is not par-
ticularly relevant for the purpose of this work. As an example, 
it may be related to being part of the same vertical system, or it 
may be determined by some specific physical/geographic 
boundaries (e.g., a building or a neighborhood), or, more 
simply, it follows from the deployment of devices in the same 
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access network. As such, the size of an IoT domain may also 
span several scales, from a few devices in a smart home, to hun-
dreds of sensors in an environmental monitoring system. We 
nevertheless assume that all IoT devices in the same domain are 
managed by the same IoT gateway. The latter is a logical entity 
that represents the point of contact to which an IoT client appli-
cation is bound for discovering and accessing IoT resources in 
the managed domain. To this aim, the gateway implements the 
following functionalities accessible via dedicated interfaces: 
 registration, which allows devices in the IoT domain to push 

the information about their hosted resources (i.e., URI and 
related metadata) into the gateway resource database. We as-
sume that the gateway implements internally a CoRE RD, 
and resource registration is performed via the RD registra-
tion interface;  

 discovery, which allows IoT clients to lookup information 
about resources hosted by devices in the managed IoT do-
main. IoT clients can be located anywhere, including on de-
vices in the same IoT domain (e.g., for Machine-to-Machine 
applications). We assume that this is also implemented by the 
internal RD which enables discovery via its lookup interface;  

 access, finally, which makes the gateway act as an interme-
diary broker between clients and all CoAP endpoints in the 
IoT domain for the purpose of accessing IoT resources. As 
such, the gateway implements a CoAP reverse-proxy, as de-
fined in [15], coupled with the internal RD supporting dis-
covery: URIs returned to clients as a result of lookup opera-
tions are translated consistently from registered URIs so that 
all CoAP requests are sent by clients to the intermediary gate-
way rather than directly to IoT devices. 

The IoT gateway functional architecture is illustrated in Fig. 
1, where, in addition to the already mentioned RD and Proxy 
components, a third component, namely, the XMHTPeer, is 
also included and will be introduced later in this section. 

We further assume that IoT gateways are deployed in servers 
located close to IoT devices and away from the centralized 
Cloud, according to the Edge/Fog Computing paradigm. There 
are many advantages in deploying IoT gateways at the Edge. In 

particular, proximity makes communication more efficient as 
compared to using far-away centralized intermediaries; and 
low-latency autonomic control is enabled by exploiting co-lo-
cated applications and services in the same IoT domain. In ad-
dition, the deployment of IoT gateways at the Edge offers better 
support for security and privacy, as they allow to store and man-
age sensitive information locally to the domain, thus avoiding 
their transmission over unsecure networks, or their storage into 
third-party Cloud infrastructures [27]. This is in fact one of the 
service scenarios explicitly considered by ETSI for Mobile 
Edge Computing [28].  

In addition, gateway interfaces are bound to CoAP in order 
to enable the deployment also in constrained devices. There-
fore, depending on the IoT domain size and use case, the IoT 
gateway could also be running on networked devices deployed 
at the Edge other than servers in micro/nano Edge data centers. 
Examples are home routers, set-top boxes, or even IoT devices 
with constrained yet sufficient computational and storage capa-
bilities like, e.g., a smart device at home. Hereafter, we generi-
cally use the term Fog node to refer to the edge device where 
the IoT gateway is deployed [29]. 

Considering a scenario where multiple IoT domains operate 
independently of each other, we aim at providing a solution for 
federating the local services available in each domain, and build 
on top of them a global service for discovery and access, which 
allows client applications to discover and access any IoT re-
source, irrespectively of its actual location in a given domain. 
The objective is to keep the advantages of the original Edge-
centric deployment, and therefore to avoid resorting to any 
higher-level functional entity, e.g., a “super” resource directory, 
deployed in the centralized Cloud. We then follow a loosely 
coupled approach, according to which IoT gateways cooperate 
with each other in a fully distributed manner to implement 
global discovery and access across multiple IoT domains. 

The proposed architecture is illustrated in Fig. 2. As far as 
global discovery is concerned, P2P overlay networks are clearly 
the most suitable solution, since they naturally give a federated 
global perspective of different resources distributed across mul-
tiple domains, and provide many benefits in terms of efficiency, 
scalability, self-configuration, and robustness [30]. In the pro-
posed solution, IoT gateways participate in a structured P2P 
overlay, implemented by means of a DHT where information 
about IoT resources is stored for global lookup. In particular, 

  
Fig. 2. Architecture overview. 
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we adopted a specific DHT implementation called eXtensible 
Metadata Hash Table (XMHT) [31], since it has unique ex-
tended features that allow to implement global lookup opera-
tions aligned to the RD lookup interface. The gateway’s logical 
component, which is in charge of maintaining the P2P overlay, 
is the already mentioned XMHTPeer. The XMHTPeer is inter-
nally exploited by the RD in order to discover resources at the 
global level. 

On the other hand, for the purpose of IoT resource access, we 
assume that each gateway acts as a proxy also for remote re-
sources, i.e., resources managed by other gateways in foreign 
domains. In this manner, the distributed nature of the system is 
fully hidden to client applications, which access all IoT re-
sources across different domains through a single point of con-
tact, i.e., the gateway they are bound to. Such a communication 
approach provides many advantages. First, multiple caching 
points are enabled, both close to the client application and the 
CoAP server hosting the resource, therefore communication 
overhead and response times are likely to be reduced. Secondly, 
management of non-functional aspects, such as trustiness and 
QoS, is much more scalable, since it can be decoupled into pro-
visioning rules for establishing relationships, e.g., trust or QoS 
agreements, between a client application and its bound domain, 
or between peering domains, thus avoiding also managing com-
plex interactions between a domain and all foreign applications. 
Finally, extended logic can be implemented in the client’s gate-
way to exploit the availability of foreign resources, as it will be 
further discussed below. 

We detail in the following the proposed solution. 

A. Global discovery 
Global discovery across multiple domains is supported by a 

distributed global RD on top of the local RDs. To implement 
the latter, we make use of XMHT, a Pastry-like DHT imple-
mentation originally proposed for IoT discovery in [31]2. 
XMHT allows to store and retrieve <key,value> pairs which are 
distributed among IoT gateways. The key is a hash of an opaque 
string (as in many DHT implementations), while the value is a 
collection of XMHT specific data structures called enriched 
locators (e-locators for short). Each e-locator includes a target 
URI, as well as additional metadata information in the form of 
name/value pairs. As such, it perfectly matches a link descrip-
tion according to the CoRE Link Format. The latter is therefore 
used, instead of the original format in [31], to avoid the need 
for any transcoding in the proposed solution. 

XMHT allows to access the DHT through the following three 
methods: (1) append(key,e-locator), which adds the specified e-
locator to the collection associated to the provided key – if there 
is no such key, a new pair is created and the collection is initial-
ized with the provided e-locator; (2) get(key), which retrieves 
the collection of e-locators associated to the provided key; and, 
finally, (3) unpublish(key), and unpublish(key,e-locator), which 
are used to remove a key (and all associated e-locators), or an 
e-locator from the collection associated to the specified key, re-

 
2 Although the XMHT implementation we adopt is based on Pastry, the pro-
posed solution does not rely on any of Pastry specific features. 

spectively. Thanks to this design, XMHT allows to group mul-
tiple IoT resource information under one single key, and to dy-
namically add and remove resources to/from this group. This 
feature is essential to our solution, and mainly motivates our 
choice for the DHT implementation. In fact, as it will be illus-
trated more in detail in the following, the description of all re-
sources matching a given attribute-based lookup operation will 
be stored with XMHT in a collection associated to a key, whose 
value depends on the specific lookup parameters. In this man-
ner, lookup of resources by type or interface is extended 
straightforwardly to the global scope, an essential requirement 
as highlighted in Section III.C. 

We now illustrate how the registration and discovery func-
tions provided by the IoT gateway are extended to enable global 
discovery. 
1) Registration 

The registration operation is illustrated with the help of the 
example in Fig. 3. Following the RD specification [3], in order 
to register a new resource, an endpoint, say epX, in domain A 
sends a POST message to the RD in the corresponding IoT gate-
way, say gw.domainA.com, including the link description of the 
resource to be registered. In the example, the description in-
cludes a relative reference (URI-Reference [33]) to the resource 
(</temp>) and two link attributes with their respective values. 

The RD then performs the following actions for each of the 
registered resources: 

1. It generates a stable identifier with a global scope. This 

Fig. 3. Resource registration. 
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can be easily implemented, e.g., by calculating a hash 
function depending on the gateway name, the endpoint 
name, and the URI-Reference included in the description 
of the link. In the example, the resulting identifier is 
xyz=hash(gw.domainA.com:epX:/temp); 

2. It stores the description of the registered resource in its 
database for local discovery, linked to the corresponding 
generated global id. This allows the local reverse-proxy 
to resolve URIs at access time. In the example, the re-
ceived Link Format description of the link is stored, and 
the relative reference /xyz is locally associated to the 
URI coap://epX/temp; 

3. It creates a global link description of the resource by 
modifying the received one as follows: 1) the original 
URI-Reference is replaced with the newly created rela-
tive reference based on the global id; and 2) the anchor 
attribute is added, whose value is set to the URI identi-
fying the IoT gateway function set. According to the 
CoRE Link Format specification, this will be used as the 
base URI for the relative reference to determine the tar-
get URI conveyed by the link description. In the exam-
ple, the global link description is </xyz>;rt=“tempera-
ture”;if=“urn:oma:lwm2m:ext:3303”;an-
chor=“coap://gw.domainA.com”. The latter defines the 
e-locator that will be stored in the DHT. 

The RD completes the registration operation by pushing the 
registered resource information to XMHT for global lookup. 
Several append() operations may be performed. In particular, 
for each attribute on which a global lookup operation is al-
lowed, if the attribute is included in the e-locator, then the latter 
is added to the corresponding collection invoking the append() 
method. The provided key is determined by the combined at-
tribute name and value pair included in the e-locator. In the ex-
ample in Fig. 3, this is therefore done for both the rt and if at-
tributes, with key values rt=“temperature” and 
if=“urn:oma:lwm2m:ext:3303”, respectively. Finally, the ap-
pend() method is invoked also to store the e-locator alone asso-
ciated to its global id; in order to keep a key structure consistent 

 
3 Should this not be a requirement, i.e., client applications are allowed to access 
resources through foreign gateways, is suffices to skip the anchor substitution. 

with the cases above, the provided key in this case is 
href=“/xyz”. 
2) Discovery 

Once a resource is registered according to the procedure 
above, it can be discovered by any client application bound to 
an IoT gateway participating in the overlay. Global discovery
operation is illustrated with the example in Fig. 4.  

A client application discovers resources from any domain by 
using the lookup interface exposed by the RD in its point-of-
contact IoT gateway. The RD retrieves this information from 
XMHT by determining the appropriate key based on the client 
query parameters. In the example in Fig. 4, the client queries its 
gateway, say gw.domainB.com, for all resources of type “tem-
perature” registered in any of the federated IoT domains. By 
construction, this information is stored by XMHT as a collec-
tion of e-locators associated to the key rt=“temperature”, 
which is then obtained by issuing a get(rt=“temperature”) 
command. 

For each e-locator in the retrieved collection, i.e., a global 
link description of a resource, RD performs the following two 
actions before responding to the client: 

1. If the resource is not registered in the RD domain, i.e., it 
is a “foreign” resource, it temporary caches a copy of the 
link description in its local database. This is not needed 
to ensure correct operations but is rather done for opti-
mization purposes. In fact, assuming that the client ap-
plication will likely access one or more of the discovered 
resources through this gateway after lookup, the RD is 
then able to map the required resources to their target 
URIs (specified by the anchor attribute value) without 
the need to query XMHT again. In the example, the cli-
ent performs a GET operation on the resource /xyz, based 
on the cached information the RD can immediately in-
struct the local proxy to forward the request to the re-
mote proxy gw.domainA.com. Cache management of 
‘foreign’ resource information is however outside the 
scope of this work, and will not be discussed any further. 

2. It substitutes the anchor attribute value with the URI 
identifying its own function set, in order to enforce the 
client application to access any resource, including for-
eign ones, through the local proxy. This is done to hide 
the distributed location of resources to applications, 
which is a design choice of the proposed solution3. In the 
example, the anchor value in the link description re-
turned to the client application is then “coap://gw.do-
mainB.com”. 

The collection of modified e-locators is then returned to the 
client application as a result of the discovery operation. 

B. Global access 
Seamless access to resources is provided to a client applica-

tion by the Proxy component in its IoT gateway. As explained 
in previous sections, only URIs based on global identifiers are 
returned to applications as a result of a discovery operation.
Therefore, incoming CoAP requests from client applications 

 
Fig. 4. Resource discovery.  
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only target such global URIs. When the Proxy receives a re-
quest from a client, it therefore needs to resolve the global URI 
into an URI useful for concretely accessing the resource. This 
is done with the help of the local RD. Only one of the following 
cases is possible. If the resource is hosted by an endpoint in the 
local domain, the RD has internally stored the mapping between 
the global id and the registered resource description (including 
the target URI), therefore URI resolution is straightforward. 
Otherwise, the resource is hosted in a foreign domain. In this 
case, a copy of its link description could be cached locally as a 
result of a recent discovery operation. URI resolution is again 
straightforward: the target URI is obtained by combining the 
base URI specified by the anchor attribute and the relative ref-
erence based on the global id. Finally, if the link description is 
not locally available, XMHT is queried to get the link descrip-
tion of the requested resource. 

It is worth highlighting that communication through CoAP is 
adopted not only between (reverse) proxies and endpoints host-
ing IoT resources, but also between client and proxies, and be-
tween proxies in different gateways. While the former is a rea-
sonable solution to cope with IoT devices that might be con-
strained along many dimensions (e.g., memory, computation, 
communication through low power and lossy network, energy), 
communication between applications and proxies could be also 
implemented by HTTP. However, besides adding a complexity 
due to protocol translation, this would prevent the overlay to 
unleash the full potential of the Observing Resources extension 
of CoAP on an end-to-end basis [23]. In our solution, observe 
relationships are managed by proxies, which allow to establish 
multiple observe relationships with the same resource in a scal-
able manner [34]. 

We illustrate in more detail in the following the global access 
procedure (with observing) with the help of the example in Fig. 

5. A client application sends a GET request for the resource /xyz 
to the Proxy in the IoT gateway gw.domainB.com including the 
observe option. The Proxy asks the local RD to resolve the rel-
ative reference to a target URI to forward the request to. In this 
example, the actual resource with global id xyz is located in a 
foreign domain, and we assume its link descriptor is not locally 
cached. The RD therefore queries XMHT by executing a 
get(href=“/xyz”) method, which returns the stored e-locator in-
cluding the CoRE link format global description of the re-
source. This is passed in turn to the Proxy, which checks if the 
resource is observable, and then forwards the GET request to 
the URI coap://gw.domainA.com/xyz, which addresses the 
Proxy in the IoT gateway managing the domain where the re-
quested resource is hosted. Like the operation in domain B gate-
way, the proxy in domain A will query its local RD to resolve 
the reference. Since the resource is hosted in domain A, the
mapping to the origin URI coap://epX/temp is now stored inter-
nally in the RD, and resolution is immediate without the need 
to access the DHT. Finally, the request is forwarded to the 
origin CoAP server on endpoint epX, and, if successful, notifi-
cation messages start being delivered asynchronously to the re-
mote client application through the two intermediate proxies. 

C. Extensions 
The proposed architecture is easily extendible with the im-

plementation of new features that can be offered to applications. 
For example, the union of the different connected IoT domains, 
in a transparent way, may result in having multiple similar re-
sources. One opportunity raised by this abundance of resources, 
for instance, could be the exploitation of equivalent resources, 
resources that can provide the same information/service. Let us 
suppose that an application is interested in the temperature in a 
certain area that is covered by two different IoT domains and in 

 
Fig. 5. Global access with observing.  
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both a temperature sensor is available. As far as the context of 
a specific temperature request in the area is concerned, the two 
temperature sensors are equivalent, and any of them can be ex-
ploited interchangeably, e.g. to enforce load balancing or power 
saving policies. Another opportunity is to aggregate different 
resources to obtain composite data, i.e., data derived from the 
composition of information coming from different sensors. An 
example of such aggregated resources could be a resource that 
aggregates the temperature values of a certain area to produce 
the average value. The creation of such virtual resources can be 
easily implemented in the proposed solution. A gateway that 
receives a discovery invocation can exploit the XMHT overlay 
to retrieve the list of resources matching the query and before 
replying back to the client, in case equivalent or aggregated re-
sources are available, new virtual resources can be created. 
How this can be actually implemented, e.g., through semantic-
based descriptions, goes however beyond the scope of this 
work. 

V. VALIDATION 
In order to validate the proposed architecture and demon-

strate its feasibility, a small-scale prototype using commercial 
off-the-shelf hardware has been implemented. The testbed ar-
chitecture is illustrated in Fig. 6. Two IoT gateways are de-
ployed to connect two IoT domains, one hosting IoT resources 
and another one hosting client applications. Fog nodes hosting 
the IoT gateways are realized by two Soekris boards net5501-
604 (respectively S1 and S2), a popular embedded board that 
can run a fully featured Linux operating system. Each board 
connects to its local network - an IEEE 802.15.4 sensor network 
for S1 and a Wi-Fi network for S2 - and to an Ethernet network 
that emulates the backbone. The sensor network includes two 
Zolertia Z1 boards (respectively B1 and B2), a popular sensor 
platform that support the execution of the Contiki OS5, which 
natively supports 6LoWPAN [2], RPL [35], and CoAP. Given 
the lack of an IEEE 802.15.4 transceiver on the Soekris boards, 
a Zolertia Z1 board6 has been programmed to behave as a trans-
ceiver and attached to S1 to enable communication with the sen-
sor network by means of a tunslip7 interface. S2, instead, ex-
ploits its Wi-Fi transceiver to connect to the Wi-Fi network in 

 
4 http://soekris.com/products/net5501.html 
5 http://www.contiki-os.org/ 
6 http://zolertia.sourceforge.net/wiki/index.php/Z1 

which the CoAP client applications run.  
The proposed solution for discovery and access is imple-

mented in C++. The two boards are programmed as CoAP serv-
ers that provide measurements from physical sensors (a light 
sensor and a water consumption sensor) and access to an actu-
ator (a light switch) through CoAP resources (two on B1 and 
one on B2). The standard CoAP implementation has been mod-
ified to introduce the initial RD registration phase to register all 
the exposed resources to the local IoT gateway. 

To validate the proposed solution, two different client appli-
cations are deployed in the Wi-Fi network, Client A and Client 
B, respectively. In order to measure the overhead introduced by 
the discovery operations, Client A is configured to access CoAP 
resources through the proposed discovery and access solution. 
Client B, instead, is configured to avoid discovery and perform 
only access through the Reverse Proxy interface, i.e. the client 
does not exploit the discovery functionality offered by the IoT 
gateway through XMHT, but the required resource is assumed 
to be known a priori. Each application client issues 300 requests 
per resource during each experiment. Experimental results are 
reported in Table I, that shows the average response delay de-
fined as the time between the first CoAP request and the recep-
tion of the data. In order to ensure statistical soundness, 10 dif-
ferent runs for both the scenarios with Client A and Client B are 
executed and the average value reported with the 95% confi-
dence interval. As expected, Client A shows a negligible over-
head compared to Client B, in particular considering that the 
Sokeris boards are constrained embedded systems with limited
resources that can represent a bottleneck for the DHT opera-
tions involving multiple TCP connections among gateways. 

VI. PERFORMANCE EVALUATION 
Results obtained from the prototype implementation demon-

strated the feasibility of the proposed approach and the limited 
overhead introduced. In this section, we go further and analyze 
the proposed approach on a large scale. Carrying out such anal-
ysis using real devices is however not practical, as it requires 
the deployment of a large number of Fog nodes across different 
geographically distributed sites. For this reason, we decided to 
exploit an emulative approach to evaluate the performance of a 
large-scale network of Fog nodes in an easy-deployable and 
controllable manner with a high level of accuracy.  

In the following, we first introduce the scenarios considered 
in our experiments, then we illustrate how experiments have 
been conducted, and finally we present the evaluation results.  

7 TUN is a virtual network kernel device simulating a network layer device. The 
device is emulated at Layer 3 for routing purposes. 

 
Fig. 6: Testbed. 
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TABLE I  
DELAY FOR DIFFERENT COAP REQUESTS.  

Request Client A Client B 
GET /water 53.8 ms  2.50 us 40.4 ms  2.55 us 
GET /switch 53.5 ms  3.05 us 40.4 ms  2.55 us 
GET /light 53.3 ms  2.50 us 42.3ms  3.30 us 
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A. Evaluation Scenarios 
The goal of this evaluation is to compare the proposed Edge-

centric distributed solution for global discovery and access to a 
centralized Cloud-based approach, verifying also its scalability 
under real conditions. To this aim, in addition to the proposed 
solution described in Section IV (Edge case hereafter for short), 
we consider an alternative solution where global discovery is 
implemented by means of a central RD service which is com-
mon to all IoT domains and deployed in a Cloud data center. In 
this case, referred to as Cloud case hereafter, all IoT gateways 
register their IoT resources to the remote RD, and client appli-
cations look up the remote RD instead of the local IoT gateway 
to discover resources. Moreover, the application directly access 
the discovered IoT resource through its managing IoT gateway 
as the only CoAP intermediary. 

We design a set of experiments considering a variable num-
ber of IoT domains, each one comprising a set of IoT resources 
managed by one gateway deployed in a Fog node close to the 
IoT domain. All Fog nodes are connected to each other through 
a backhaul network that ensures low-latency communication. 
Two different network configuration scenarios are considered, 
as depicted in Fig. 7. The first network configuration (Fig. 7.a) 
represents a local backhaul network scenario (named local sce-
nario hereafter) in which all Fog nodes are attached to the same 
LAN. The second network configuration (Fig. 7.b) represents 
instead a metropolitan backhaul network scenario (named 
metro scenario hereafter) in which Fog nodes are grouped into 
different LANs (five nodes per LAN) that are connected to each 
other through a Metro LAN. In the Cloud case, the remote RD 
is assumed to be located in a far data center, which is reachable 
by all Fog nodes and client applications through a core Internet 
link characterized by a long-distance latency. 

All network latencies are random variables drawn from a 

 
8 http://www.verizonenterprise.com/about/network/latency/ 
9 The OpenStack framework, https://www.openstack.org/ 

Normal probability distribution. Table II reports the different 
mean and variance latency values (one-way) assumed for each 
type of network link. Two different values are used for the core 
Internet link in the Cloud case, corresponding to two typical 
scenarios for real long-distance latency values measured by a 
network operator8. We refer hereafter to the two corresponding 
cases as Cloud-A and Cloud-B, respectively. 

In both scenarios, requests for discovery and access are gen-
erated according to a global Poisson arrival process. Different 
arrival rates are considered. Each request is randomly associ-
ated to an IoT resource in a uniform manner, irrespectively of 
its corresponding IoT domain. Moreover, in the Edge case, the 
request is also bound randomly to a local IoT gateway for re-
quest dispatching. 

Two main performance metrics are collected. The lookup de-
lay is defined as the time between the reception of a request by 
either the IoT gateway or the central RD, depending on the case, 
and the completion of the discovery process. The access delay 
is defined instead as the time between the completion of the dis-
covery process and the completion of the access procedure. For 
each experiment, the mean value of each metric is estimated 
along with its 95% confidence interval. Every experiment has a 
variable duration and terminates when an overall number of 
100000 requests are issued. 

B. Experimental methodology 
In order to carry out the experiments for the scenarios de-

scribed in the previous section, we exploited the OpenStack9 
platform for emulation. OpenStack is a popular open-source 
virtualization framework that allows rapid deployment of Vir-
tual Machines (VMs) with custom architecture and available 
resources. A set of VMs are deployed to emulate a distributed 
architecture of Fog nodes, as illustrated in Fig. 8. To this aim, 
an ad-hoc template has been prepared to emulate a Fog node 

  
(a) Local scenario. (b) Metro scenario. 

Fig. 7: Network configurations.  
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running on an embedded device, i.e., a VM with a 32-bit com-
puting architecture with 433 MHz CPU and 256MB of RAM 
(the same resources of a Soekris board) running the same OS 
and software of the prototype presented in Section V. In order 
to set the CPU speed, the taskset10 Linux utility has been used 
to limit the VMs occupation of the host machine CPU. Without 
losing generality, CoAP servers are also running on the Fog 
node. Specifically, each Fog node hosts a CoAP server that ex-
poses a certain number of IoT resources belonging to the same 
IoT domain.  

The central RD is hosted on a separate VM with a 64-bit com-
puting architecture, 4GB of RAM and two CPUs at 3.4GHz, on 
which a fully featured Linux OS is running. The VM hosts the 
central RD service that is used to emulate the Cloud case. RD 
stores the information about all IoT resources in a MySQL da-
tabase. Network connections among VMs are emulated through 
the OpenStack Neutron module that allows the creation of vir-
tual LANs for VMs. The emulation of heterogeneous network 
links is performed through Netem11, a software that can intro-
duce network delays between interfaces according to a given 
statistical distribution. In order to allow the communication be-
tween Fog nodes and the central RD in the Cloud case, an em-
ulated Internet link between all the LANs and the VM hosting 
 
10 http://linuxcommand.org/man_pages/taskset1.html 

the RD is also configured.  
Finally, an additional powerful VM (4GB of RAM and two 

CPUs at 3.4GHz) is deployed for the generation of application 
requests. Specifically, an application running in this VM gener-
ates CoAP requests according to a Poisson process with a con-
figured rate, and sends them to the randomly selected gateway 
or the RD, depending on the case. To this aim, the VM is con-
nected to all the LANs deployed in the scenario. In order to 
avoid bottlenecks in the request generation process, the appli-
cation has been implemented exploiting multi-threaded pro-
gramming in C++ language. 

C. Evaluation Results 
We consider two set of experiments. In the first set, for a 

given number of resources and a given request arrival rate, we 
vary the number of IoT domains, i.e. gateways, in order to as-
sess the scalability of the proposed solution with respect to its 
distribution degree as compared to a fully centralized discovery 
service. On the other hand, in the second set, for a given number 
of resources and IoT domains, we vary the request arrival rate 
to evaluate the scalability with respect to offered load. We il-
lustrate the evaluation results of the two sets in the following 
sections. 
1) Distribution degree 

For this set of experiments, we consider a fixed number of 
1000 IoT resources, and we vary the number of IoT gateways 
between 20 and 110. IoT resources are uniformly distributed 
among the configured number of gateways in each experiment. 

Fig. 9 shows the average access and lookup delays obtained 
in the local scenario for all cases, for a fixed arrival rate of 60 
requests/s. As can be seen, the average access delay is in the 
order of few milliseconds, and values are pretty much the same 
in both the Edge and Cloud cases for any number of gateways. 
This means that, even though in the Edge case access is per-
formed through an additional intermediary gateway as com-
pared to Cloud, the corresponding processing overhead is neg-
ligible and does not affect the overall performance. On the other 
hand, we can observe that the access delay slightly decreases as 
the number of gateways increases. In fact, by increasing the 
number of gateways, the number of IoT resources per gateway 
decreases, and therefore the average load per gateway for prox-
ying CoAP requests to origin servers decreases as well, which 
results in a lower processing delay per request. 

Different conclusions can be drawn for the lookup delay, as 
it significantly differs in the Edge and Cloud cases. As ex-
pected, for both the Cloud-A and Cloud-B cases the lookup de-
lay is significantly higher than for the Edge case, though inde-
pendent of the number of gateways. This is mainly due to the 
high delay introduced by long-distance core network links that 
need to be traversed to reach the Cloud server, as compared to 
the much lower delays incurred by Fog nodes in the Edge case 
to communicate with each other over LANs only.  

On the other hand, in the Edge case the lookup delay slowly 
increases as the number of gateways increases up to 100, and 
then shows a steep increment when the number further in-

11 http://man7.org/linux/man-pages/man8/tc-netem.8.html 

 
Fig. 9. Local scenario – Rate 60 [req/s].  

 
Fig. 10. Local scenario – Rate 100 [req/s]. 
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creases to 110. The first behavior is typical of a DHT-based im-
plementation of a lookup service. In fact, multiple hops may be 
needed to lookup a resource in a DHT, and it is well known that 
the average number of such hops has a logarithmic increase 
with the number of nodes maintaining the DHT [32]. Although 
not directly devisable from Fig. 9, it can be numerically verified 
that the lookup delay actually increases logarithmically up to 
100 gateways in the Edge case.  

However, for 110 gateways the lookup delay deviates from 
the logarithmic increase and suddenly gets to about 60ms. After 
carefully analyzing this case, we discovered that, although the 
average load per gateway decreases as the number of gateways 
increases, nevertheless the amount of memory required by the 
XHMT implementation in use to manage an increasing number 
of connections actually increases as well. Therefore, consider-
ing that in these experiments Fog nodes run in constrained em-
bedded devices, the steep increase of the lookup delay reveals 
that the implementation under evaluation enters congestion due 
to lack of memory starting from 110 gateways. Although this 
effect can be mitigated by a carefully optimized software im-
plementation, this result shows a potential trade-off in adopting 
an Edge-centric distributed discovery solution between extend-
ing the distribution degree on one hand, and correctly provi-
sioning adequate computation and storage resources in Fog 

nodes on the other hand. It is worth noting however that feder-
ating up to a hundred of IoT domains can be considered a limit 
case in most of the reasonable scenarios. 

The same experiment has been carried out for different com-
binations of arrival rates (100 vs. 60 requests/s) and network 
configurations (local vs. metro), which all confirm the same 
conclusions drawn so far. In particular, Fig. 10 shows the results 
obtained for a request arrival rate of 100 requests/s in the local 
scenario, while Fig. 11 and Fig. 12 show the results in the case 
of the metro scenario, for a request arrival rate of 60 and 100 
requests/s, respectively. The latter results show in addition how 
the performance in the Edge case also depends on network la-
tencies at the access layer, i.e., between Fog nodes. In fact, in 
the metro scenario, the average one-way delay between two Fog 
nodes in different LANs is 9ms, as compared to 2ms in the local 
scenario. As can be seen, as the number of gateways increases 
up to 100, the average lookup delay becomes in the metro case 
very much comparable with that of the Cloud-A scenario, while 
still being clearly more efficient than the Cloud-B case. For 110 
gateways, the lookup delay becomes even much higher in the 
Edge case with respect to the Cloud-A case, though however 
this result, as highlighted before, is very much implementation 
dependent for this set of experiments. As expected, we can con-
clude that an Edge-centric solution is as much more convenient 
as it can leverage proximity in terms of low-latency one-hop 
communications.  

Finally, to get a better insight into this latter conclusion, we 
report in Fig. 13 and Fig. 14 the cumulative distribution func-
tion of the lookup and access delays for the local and metro 
scenarios, respectively, in the case of 60 IoT gateways and a 
request arrival rate of 100 requests/s. Specifically, the delays 
for the Edge and Cloud-A cases are compared. We can observe 
that, as far as access delay is concerned, also the delay distribu-
tions in both cases are practically overlapping. Moreover, in the 
metro scenario distributions are bimodal, since one-way delays 
are different depending on whether the accessed IoT resource is 
managed by a gateway attached to the same LAN as the client 
or not. 

By considering lookup delays, instead, Fig. 13 and Fig. 14 
confirm that the performance in the Edge and Cloud-A cases are 
very different. In the Cloud-A case, the delay has very little var-
iability in both scenarios and is basically equal to the round-trip 
time to the remote RD. On the other hand, in the Edge case the 
delay is variable and actually distributed over a range of values 
in both scenarios. This is because the lookup operation entails 
a randomly variable number of hops in the P2P overlay to be 
completed. In addition, in the metro scenario the distribution is 
multimodal due to one-way average delays concentrated around 
two different values, as observed above. It is interesting to note, 
however, that in the local scenario Edge-centric discovery al-
ways outperforms the Cloud-based solution for mostly all the 
requests, whereas in the metro scenario a non-negligible per-
centile, i.e., 20%, of the requests in the Edge case experience a 
lookup delay worse than in the Cloud-A case, though the mean 
delay is better, and the load is far from the congestion threshold. 
This further confirms that, in terms of pure performance, the 
advantages of Edge-centric solutions with respect to a Cloud-

 
Fig. 11: Metro scenario – Rate 60 [req/s] 

 
Fig. 12: Metro scenario – Rate 100 [req/s]. 



IEEE INTERNET OF THINGS JOURNAL 
 

12 

based one very much depend on low network latencies available 
at the Edge of the network. 
2) Offered Load  

For this set of experiments, we consider a fixed number of 
1000 IoT resources uniformly distributed among a given num-
ber of gateways, and we vary the request arrival rate between 
100 and 480 requests/s. Without losing generality, we only 
report the results for the metro scenario, in both the Edge and 
Cloud-A cases, with 10 and 20 IoT gateways, respectively. 
Experiments with other configurations have been extensively 
conducted and led to similar conclusions. 

Fig. 15 shows the average access and lookup delays as a 
function of the request arrival rate, i.e., the offered load. Since 
the latter spans in a range that is above the system capacity in 
all cases, it is worth to highlight that Fig. 15 reports results for 
successfully completed requests only, i.e., requests for which a 
CoAP response was successfully received from the IoT gate-
way managing the requested resource. In order to understand 
these results, it is then useful to also consider the fraction of the 
total number of requests that are successfully completed, which 
is reported as a percentage in Fig. 16. 

Let us consider the Cloud-A case first. As can be seen, the 
lookup delay increases very slowly, thanks to the large pro-
cessing and storage capabilities at the RD. Only at rates of about 

450 request/s the delay starts increasing slightly faster, corre-
sponding to some requests being dropped due to congestion at 
the RD. However, the bottleneck of the system is clearly the 
access to resource, whose delay steeply increases starting from 
400 request/s. In fact, also in the cloud case access is managed 
by IoT gateways, which in all these experiments are deployed 
on embedded devices with constrained capabilities.  

Interestingly, in the Edge case we observe the opposite be-
havior. In fact, since in this case discovery is also implemented 
by IoT gateways and is first used before access, it also first 
reaches congestion as the load increases. As can be seen, the 
lookup delay starts increasing sharply well before the access 
delay. The system becomes then congested at 280 requests/s 
and 380 requests/ rates for 10 and 20 gateways, respectively, 
when requests start being dropped immediately when received 
at IoT gateways. This also justifies why the delay decreases af-
ter reaching congestion: the more the requests dropped before 
entering the service, the less the number of requests that are ac-
tually successfully processed, and therefore the less the delay. 
On the other hand, it can be observed that, as expected, system 
capacity scales well with the number of gateways, i.e., the more 
the gateways, the more the available processing resources and 
then the system capacity. In fact, with 20 gateways congestion 
is reached at a higher rate than with 10 gateways. As already 

 
Fig. 13: Local scenario – 60 GWs - Rate 100 [req/s]. 

 
Fig. 14: Metro scenario – 60 GWs - Rate 100 [req/s].   

 
Fig. 15: Metro scenario –10 GWs and 20 GWs. 

 
Fig. 16: Metro scenario – 10 GWs and 20 GWs. 
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mentioned, access is not an issue in this case: the access delay 
is nearly constant at all rates below the congestion limit. 

Finally, by comparing the Edge and Cloud-A cases, it is con-
firmed that the proposed Edge-centric solution performs better 
than the Cloud-based one at all practical rates below the con-
gestion limit, but it has also more limited capacity. Therefore, a 
trade-off need be considered. It is definitely possible to get bet-
ter performance by exploiting computational capabilities at the 
Edge, but with a reduced overall capacity. Such limitations can 
be easily overcome by leveraging (unlimited) Cloud resources, 
but then there is a cost to pay in terms of performance since 
such resources are far from IoT domains. 

VII. CONCLUSION 
In this work, an Edge-centric distributed architecture to pro-

vide discovery and access services across multiple IoT domains 
has been proposed. The proposed solution is based on a DHT 
maintained by IoT gateways deployed in Fog nodes close to the 
IoT physical infrastructure, and leverages standard solutions in-
cluding the IETF CoRE RD and CoAP protocol. The feasibility 
of the proposed solution, and its limited overhead, has been 
demonstrated through a concrete implementation tested in a 
small-scale prototype made of off-the-shelf hardware. Moreo-
ver, a virtual large-scale deployment of the proposed solution 
has been implemented through OpenStack, and different exper-
iments have been carried out to evaluate the scalability of the 
proposed solution, and compare it to a Cloud-based one. Per-
formance evaluation demonstrated the effectiveness of the pro-
posed solution in providing lower latencies than a Cloud-based 
approach, and its scalability for small to medium-sized deploy-
ments.  
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