Behavioral asymmetries in ticks – Lateralized questing of Ixodes ricinus to a mechatronic apparatus delivering host-borne cues

Giovanni Benelli,a,*, Donato Romanob, Guido Rocchigianic, Alice Casellia, Francesca Manciantic, Angelo Canalea, Cesare Stefaninib,d

a Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
b The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Ponsente, Pisa, Italy
c Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
d Department of Biomedical Engineering and Robotics Institute, Khalifa University PO Box, 127788, Abu Dhabi, United Arab Emirates

ABSTRACT
Ticks are considered among the most dangerous arthropod vectors of disease agents to both humans and animals worldwide. Lateralization contributes to biological fitness in many animals, conferring important functional advantages, therefore studying its role in tick perception would critically improve our knowledge about their host-seeking behavior. In this research, we evaluated if Ixodes ricinus (L.) (Ixodidae) ticks have a preference in using the right or the left foreleg to climb on a host. We developed a mechatronic device moving a tuft of fox skin with fur as host-mimicking combination of cues. This engineered approach allows to display a realistic combination of both visual and olfactory host-borne stimuli, which is prolonged over the time and standardized for each replicate. In the first experiment, the mechatronic apparatus delivered host-borne cues frontally, to evaluate the leg preference during questing as response to a symmetrical stimulus. In the second experiment, hostborne cues were provided laterally, in an equal proportion to the left and to the right of the tick, to investigate if the host direction affected the questing behavior. In both experiments, the large majority of the tested ticks showed individual-level left-biased questing acts, if compared to the ticks showing right-biased ones. Furthermore, population-level left-biased questing responses were observed post-exposure to host-mimicking cues provided frontally or laterally to the tick. Overall, this is the first report on behavioral asymmetries in ticks of medical and veterinary importance. Moreover, the mechatronic apparatus developed in this research can be exploited to evaluate the impact of repellents on tick questing in highly reproducible standardized conditions.

1. Introduction
Ticks are considered among the most dangerous arthropod vectors of disease agents to both humans and animals worldwide (Colwell et al., 2011; Jongejan and Uilenberg, 2004), holding a vector competence surpassed only by mosquitoes (Sonenshine et al., 2002; Bissinger and Roe, 2010; Benelli et al., 2017a). Good examples of diseases vectored by ticks include Lyme’s disease, caused by Borrelia spp. bacteria, Rocky Mountain spotted fever, anaplasmosis, ehrlichiosis, Powassan virus, and piroplasmosis (Estrada-Penã and Jongejan, 1999; Dantas-Torres et al., 2012; Ebani et al., 2017). Ticks include approximately 900 species, which are distributed in the two main families Argasidae and Ixodidae, and the Nutalliellidae family, including only a species (Nutalliella namaqua, Bredford) (Paffenlé et al., 2013; Guglielmone et al., 2014). Ixodidae, commonly known as hard ticks, are responsible for most of the cases of human parasitization, although also Argasidae, commonly known as soft ticks, sporadically bite humans (Dantas-Torre and Otranto, 2016). Human parasitization is caused by several tick species that are different from region to region and generally infest animals representing a reservoir host of several pathogen micro-organisms (Piesman and Eisen, 2008).

Both biotic (e.g., host density) and abiotic (e.g., weather) factors can play an important role in affecting the host-seeking activity in ticks, which is directly correlated with the host risk of contracting tick-borne diseases (Loye and Lane, 1988; Schulze et al., 2001; Hubálek et al., 2003). However, ticks cognitive endogenous factors are also worth to be investigated in the host seeking/contacting behavior. During host seeking, hard ticks (Ixodidae) exhibit a display called questing as a way of increasing the chances of coming in to contact with a suitable mammal host. The behavior involves the tick climbing up a blade of grass or other similar plant parts and then waiting with its forelegs outstretched. As a host passes by it brushes against the forelegs of the tick, which bear Haller’s organ and the tick grabs hold of the host (Lees, 1948; Randolph and Storey, 1999; Perret et al., 2000).

To our mind, tick questing is an ideal display to investigate behavioral asymmetries. Nowadays, it is widely recognized that lateralization has a key role for the development of several cognitive functions in vertebrates and invertebrates as well (Vallortigara et al., 1999, 2011; Bisazza et al., 2000; Vallortigara, 2000, 2006; Rogers, 1989, 2000, 2002, 2017; Vallortigara and Rogers, 2005a,b; Rogers et al., 2013a,b; Kelley et al., 2017). Regarding arthropods, studies on behavioral asymmetries mostly focused on insects and crustaceans (see Frasnelli et al., 2012a and Frasnelli, 2013 for dedicated reviews), while limited information is available on spiders (Heuts and Lambrechts, 1999; Ades and Ramires, 2002; Ruhlhand et al., 2017). However – to the best of our knowledge – no findings are available concerning lateralization and behavioral asymmetries in tick vectors of public health importance, and more generally in the subclass of Acarina.

Lateralization contributes significantly to biological fitness in many animals, conferring important functional advantages (Rogers and Andrew, 2002; Frasnelli, 2013; Versace and Vallortigara, 2015), therefore studying its role in tick perception would critically improve our knowledge about their host-seeking behavior. Since Ixodidae climb on top of the vegetation assuming a questing posture to intercept the host (Norval et al., 1987; Randolph and Storey, 1999; Perret et al., 2000), we investigated if ticks have any lateral bias in the use of the forelegs when a host was presented to a questing tick.

To evaluate if Ixodes ricinus (L.) (Ixodidae) ticks have a preference in using the right or the left foreleg to climb on a host, here a mechatronic device that moved a tuft of fox skin with fur as host-mimicking combination of cues was developed. This engineered approach allows to display a realistic combination of host-borne cues (i.e., both visual and olfactory stimuli) that is prolonged over the time and standardized for each replicate (Todd, 1993; Partan, 2004; Krause et al., 2011; Romano et al., 2017b,c). The mechatronic apparatus delivered hostborne cues frontally to the I. ricinus tick, to evaluate the leg preference during questing as response to a symmetrical stimulus. Furthermore, we provided the host-borne cues laterally, in an equal proportion to the left and to the right of the I. ricinus tick, to investigate if the host direction affects the tick perception, thus questing behavior.

2. Materials and methods
2.1. Ethical note
The lateralized questing behaviour in I. ricinus ticks exposed frontally to a mechatronic apparatus delivering a combination of host-mimicking cues was described in Table 1, showing individual-level lateralization with left-biased questing displays (16 on a total of 25 ticks, each tested 30 times) and right-biased questing displays (9 on a total of 25 ticks, each tested 30 times). Furthermore, left-biased LI (22 on a total of 25 ticks, each tested 30 times) were observed when the combination of host-mimicking stimuli was presented to the ticks from a lateral side (Table 2). In both experiments, it was observed that the large majority of the tested I. ricinus ticks exhibited left-biased questing acts, if compared to the ones showing right-biased LI values (Tables 1 and 2).
During our literature survey searching for behavioral asymmetries in ticks and other mites, we faced a severe lack of knowledge. No researches on the topics have been found for in whole subclass Acarina. More generally, only three studies are available for the Arachnida class (Heuts and Lambrechts, 1999; Ades and Ramires, 2002; Ruhland et al., 2017). Motor right-left asymmetries have been indirectly evidenced studying eighteen families of spiders, where a small but significant majority (55%) of field captured spiders mainly showed left-leg lesions (Heuts and Lambrechts, 1999), arguing that the left-side vulnerability can be linked to both anatomical (e.g., joint strength and leg length) and behavioral factors (e.g., propensity to move the legs on one side or side-biases present in spiders’ predators) as earlier documented in several vertebrate species (Vallortigara and Rogers, 2005a,b). Later, Ades and Ramires (2002) showed that splitting spiders Scytodes globula Nicoli (Araneae) use more frequently their left anterior legs over the right ones to handle their preys. Very recently, it has been highlighted that male tarantula spider (Brachypelma albopilosum Valerio) are rightbiased when choosing in a T-maze between two identical cues (e.g., light or female odors) (Ruhland et al., 2017).

On the other hand, concerning insects, many research evidences are available on lateralized traits in social and solitary bees (e.g., Anfora et al., 2010, 2011; Frasnelli et al., 2010a,b; 2011; Rogers and Frasnelli, 2016; Rogers et al., 2013a,b Rigosì et al., 2015; see Frasnelli et al., 2014 for a dedicated review) as well as on Drosophila flies (e.g., Purnell and Thompson, 1973; Gaudry et al., 2013; Buchanan et al., 2015). Furthermore, asymmetrical traits have been recently showed in several other insect species. Good examples are the courtship and mating traits of stored-product beetles (Benelli et al., 2016a, 2017b; Romano et al., 2016a, 2017a) and the olive fruit fly (Benelli et al., 2015a). Lateralization during aggressive interactions has been observed in tephritid flies (Benelli et al., 2015a,c), blowflies (Romano et al., 2015), and in the Asian tiger mosquito (Benelli et al., 2015b), while asymmetrical escape and predator surveillance responses have been reported very recently for locusts exposed to Guinea-fowl mimicking predators (Romano et al., 2017c).

A theoretical model on the evolution of asymmetries suggested that lateralization at the population-level is more likely to evolve in social species, while lateralization at an individual-level is more likely to evolve in solitary species (Ghirlanda and Vallortigara, 2004; Ghirlanda et al., 2009). However, as outlined by recent evidences on the insects and spiders mentioned above, population-level asymmetric traits have been reported also in several gregarious and solitary species. It has been hypothesized that the population-level behavioral asymmetries found in these species relate to mating and other social interactions (e.g., fighting and escape responses), therefore can be explained by “pre-social” interactions occurring between members of these solitary species and their conspecifics or predators (Frasnelli et al., 2012a,b; Benelli et al., 2015a,b; Romano et al., 2017c). In this scenario, the evidence of population-level lateralized questing in I. ricinus ticks represent a peculiar finding, since the intraspecific interactions among these ticks are limited to strict time frames during their life (i.e., mating or sharing of highly infested hosts), therefore it looks conceivable to argue that the arising of population-level lateralized questing can be linked with the repeated interactions of ticks with their hosts, where lateralized questing allows ticks to enhance cognitive capacity and efficiency of the brain, thus counteracting the ecological disadvantages of lateral biases in behavior (Vallortigara and Rogers, 2005a).

4. Conclusions

Overall, to the best of our knowledge, this is the first report showing evidence of behavioral asymmetries in ticks of medical and veterinary importance, with special reference to laterality in ixodid questing. The apparatus presented here allows a repeated and standardized presentation of the cues to the animal, thus creating repeated testing sessions in sequence, a relatively rare result in laterality literature (see Frasnelli et al., 2012a,b as well as Benelli et al., 2015a,b). Moreover, the mechatronic apparatus developed in this research can be exploited to evaluate the impact of repellent products on tick questing in highly reproducible standardized conditions, which is currently a major challenge in tick management science (Benelli et al., 2016b; Tabari et al., 2017). Further research is still needed on the proximate mechanisms leading to left-biased questing, shedding light on potential differences in muscular size, exoskeleton robustness and/or nervous innervations (see also Govind, 1989) between left and right tick anterior legs.

References

http://dx.doi.org/10.1007/s11151-014-1251-6.
Benelli, G., Maggi, F., Romano, D., Stefani, C., Vasheeharan, B., Kumar, S., Higuchi, A.,


Fig. 1. The mechanistic apparatus used to deliver host-recalling cues to Ixodes ricinus ticks, evoking questing behavior.
Fig. 2. Proportion-level questing response of匯 ticks while all female ticks were exposed to host-seeking cues provided manually or from the left or right side of the ticks, using a mechanical apparatus. Above each column, different letters indicate significant differences (χ² test with FDR correction, P < 0.05).
Table 1
Individual-level lateralized questing behavior in *brodes richus* ticks exposed frontally to a mechatronic apparatus delivering host-mimicking cues. To calculate the laterality index (LI), each tick was repeatedly tested thirty times.

<table>
<thead>
<tr>
<th>Tick ID</th>
<th>Right (n)</th>
<th>Left (n)</th>
<th>LI</th>
<th>Individual laterality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>18</td>
<td>-0.2</td>
<td>L</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>27</td>
<td>-0.8</td>
<td>L</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>23</td>
<td>-0.5</td>
<td>L</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>11</td>
<td>0.3</td>
<td>R</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>10</td>
<td>0.3</td>
<td>R</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>18</td>
<td>-0.2</td>
<td>L</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>7</td>
<td>0.5</td>
<td>R</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td>11</td>
<td>0.3</td>
<td>R</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td>8</td>
<td>0.5</td>
<td>R</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>25</td>
<td>-0.7</td>
<td>L</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>23</td>
<td>-0.5</td>
<td>L</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>22</td>
<td>-0.5</td>
<td>L</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>24</td>
<td>-0.6</td>
<td>L</td>
</tr>
<tr>
<td>15</td>
<td>21</td>
<td>9</td>
<td>0.4</td>
<td>R</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>20</td>
<td>-0.3</td>
<td>L</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>20</td>
<td>-0.3</td>
<td>L</td>
</tr>
<tr>
<td>18</td>
<td>28</td>
<td>2</td>
<td>0.9</td>
<td>R</td>
</tr>
<tr>
<td>19</td>
<td>10</td>
<td>20</td>
<td>-0.3</td>
<td>L</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>21</td>
<td>-0.4</td>
<td>L</td>
</tr>
<tr>
<td>21</td>
<td>17</td>
<td>13</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>7</td>
<td>23</td>
<td>-0.5</td>
<td>L</td>
</tr>
<tr>
<td>23</td>
<td>11</td>
<td>19</td>
<td>-0.3</td>
<td>L</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>22</td>
<td>-0.5</td>
<td>L</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>27</td>
<td>-0.8</td>
<td>L</td>
</tr>
</tbody>
</table>

LI = Laterality Index.
L = Left.
R = Right.
Table 2

Individual-level lateralized queuing behavior in Ixodes ricinus ticks exposed to left- or right-biased fruit-mimicking cues delivered by a mechatronic apparatus. To calculate the laterality index (LI), each step was repeatedly tested thirty times.

<table>
<thead>
<tr>
<th>Tick ID</th>
<th>R-biased cue (n)</th>
<th>L-biased cue (n)</th>
<th>LI cue</th>
<th>Lateralized cue</th>
<th>R leg (n)</th>
<th>L leg (n)</th>
<th>LI leg</th>
<th>Lateralized leg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>17</td>
<td>-0.1</td>
<td>0</td>
<td>8</td>
<td>22</td>
<td>-0.5</td>
<td>L</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>14</td>
<td>-0.1</td>
<td>0</td>
<td>3</td>
<td>27</td>
<td>-0.3</td>
<td>L</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>17</td>
<td>-0.1</td>
<td>0</td>
<td>6</td>
<td>22</td>
<td>-0.5</td>
<td>L</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>18</td>
<td>-0.2</td>
<td>L</td>
<td>6</td>
<td>22</td>
<td>-0.5</td>
<td>L</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>16</td>
<td>-0.1</td>
<td>0</td>
<td>9</td>
<td>21</td>
<td>-0.4</td>
<td>L</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>12</td>
<td>0.2</td>
<td>R</td>
<td>19</td>
<td>20</td>
<td>-0.3</td>
<td>L</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>15</td>
<td>-0.1</td>
<td>0</td>
<td>19</td>
<td>20</td>
<td>-0.3</td>
<td>L</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>22</td>
<td>-0.5</td>
<td>L</td>
<td>22</td>
<td>8</td>
<td>0.5</td>
<td>R</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>16</td>
<td>-0.1</td>
<td>0</td>
<td>2</td>
<td>28</td>
<td>-0.9</td>
<td>L</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>18</td>
<td>-0.2</td>
<td>L</td>
<td>11</td>
<td>19</td>
<td>-0.3</td>
<td>L</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>24</td>
<td>0.6</td>
<td>L</td>
</tr>
<tr>
<td>12</td>
<td>45</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>23</td>
<td>0.5</td>
<td>L</td>
</tr>
<tr>
<td>13</td>
<td>16</td>
<td>14</td>
<td>0.1</td>
<td>0</td>
<td>5</td>
<td>26</td>
<td>0.7</td>
<td>L</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>23</td>
<td>-0.5</td>
<td>L</td>
</tr>
<tr>
<td>15</td>
<td>22</td>
<td>6</td>
<td>0.5</td>
<td>R</td>
<td>23</td>
<td>7</td>
<td>0.5</td>
<td>R</td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>11</td>
<td>0.3</td>
<td>R</td>
<td>8</td>
<td>23</td>
<td>0.5</td>
<td>L</td>
</tr>
<tr>
<td>17</td>
<td>15</td>
<td>15</td>
<td>2</td>
<td>0</td>
<td>9</td>
<td>21</td>
<td>-0.4</td>
<td>L</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>12</td>
<td>0.5</td>
<td>R</td>
<td>8</td>
<td>22</td>
<td>-0.5</td>
<td>L</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>11</td>
<td>0.5</td>
<td>R</td>
<td>22</td>
<td>8</td>
<td>0.5</td>
<td>R</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>14</td>
<td>0.1</td>
<td>0</td>
<td>8</td>
<td>22</td>
<td>-0.3</td>
<td>L</td>
</tr>
<tr>
<td>21</td>
<td>18</td>
<td>12</td>
<td>0.1</td>
<td>R</td>
<td>19</td>
<td>20</td>
<td>0.3</td>
<td>L</td>
</tr>
<tr>
<td>22</td>
<td>14</td>
<td>16</td>
<td>-0.1</td>
<td>0</td>
<td>3</td>
<td>27</td>
<td>0.5</td>
<td>L</td>
</tr>
<tr>
<td>23</td>
<td>16</td>
<td>14</td>
<td>0.1</td>
<td>0</td>
<td>8</td>
<td>22</td>
<td>-0.5</td>
<td>L</td>
</tr>
<tr>
<td>24</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>23</td>
<td>-0.5</td>
<td>L</td>
</tr>
<tr>
<td>25</td>
<td>18</td>
<td>12</td>
<td>0.2</td>
<td>R</td>
<td>8</td>
<td>22</td>
<td>-0.5</td>
<td>L</td>
</tr>
</tbody>
</table>

LI = Laterality Index.
L = Left.
R = Right.