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Abstract

We introduce EXAT: EXcitonic Analysis Tool, a program able to compute optical
spectra of large excitonic systems directly from the output of quantum mechanical
calculations performed with the popular Gaussian 16 package. The software is able
to combine in an excitonic scheme the single-chromophore properties and exciton cou-
plings to simulate energies, coefficients and excitonic spectra (UV-vis, CD and LD).
The effect of the environment can also be included using a Polarizable Continuum
Model. EXAT also presents a simple graphical user interface, which shows on-screen
both site and exciton properties. To show the potential of the method, we report
two applications on a a chiral perturbed BODIPY system and DNA G-quadruplexes,
respectively. The program is available online at http://molecolab.dcci.unipi.it/tools/.
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EXAT: EXcitonic Analysis Tool is a program able to compute optical spectra of large exci-
tonic systems directly from the output of quantum mechanical calculations performed with
the popular Gaussian 16 package. The software combines the excitonic properties of single
chromophores and their exciton couplings to simulate exciton-coupled optical spectra.
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INTRODUCTION

The optical spectra of multichromophoric systems are often determined by the interaction

between excitations localized on different chromophores, through the mechanism of exci-

ton coupling. As a result the spectra largely depend on the spatial arrangement of the

chromophores. In particular, circular dichroism (CD) spectra are extremely sensitive to

three-dimensional disposition of the interacting chromophoric units, both as it regards their

distances and the relative orientations. For this reason, CD spectroscopy is a powerful tech-

nique to study the structure of supramolecular systems,1–5 to determine condensed-phase

molecular conformation,6 and to assign absolute configurations.7–10

To relate the CD spectrum of chirally arranged chromophores with their structure, and

determine their absolute configurations, the so-called exciton chirality method (ECM) has

been widely and successfully used.11–15 The application of the ECM to dimeric systems results

in a simple chirality rule, which relates the sign of the CD Cotton effect to the sense of twist

between the transition dipole moments of the two chromophores.2,4,16,17 However, in more

complex cases, where many transitions are coupled, the interpretation of CD signatures is

less straightforward.18,19 In these situations, applying the ECM requires a detailed analysis

of the properties of the individual subunits, namely the excitation energies and the transition

dipoles, and the excited-state interaction between them, namely the exciton coupling.

The first formulation of the exciton method in a general matrix form has been proposed

by Schellman et al. and applied to the calculation of the rotatory strength of a dipeptide.20

Since then the exciton model has been applied to systems of increasing complexity and in

particular it has been successfully used to predict the CD spectra of proteins,21–24 pigment-

protein complexes25–27 and nucleic acids.28–31 In most applications, quantum mechanical

(QM) methods have been employed to determine the fundamental quantities of the exciton

model, with various approaches for the calculation of exciton couplings,21,23,32–40 and possibly

extending the model to charge transfer states.41 The QM version of the exciton model is

particularly interesting as, in principle, it is parameter-free; however, the quality of the

results strongly depends on the level of QM theory adopted to describe the subunits and

their interactions.
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A further aspect to consider when simulating CD spectra is the role of the environ-

ment surrounding the chromophores. Even if it does not interact excitonically with it, the

environment exerts a twofold effect on the excitonic system. First of all, it can polarize

the chromophores, thus changing their excitation energies and transition dipole moments.

Secondly, it acts as a dielectric in screening the electronic couplings.42 In this way, all the

“ingredients” of the exciton model, that is, site energies, couplings, and transition dipoles,

largely depend on the environment. Among the approaches to account for the environment

effects in electronic structure calculations, the Polarizable Continuum Model (PCM)43 is a

well established method that treats the environment as a dielectric continuum, characterized

by its bulk dielectric constant and refractive index. The QM system of interest is embedded

in a cavity that follows its (supra)molecular shape, and the response of the environment is

represented by a set of induced charges spreading on the cavity surface. Despite its simplic-

ity, PCM can describe both the polarization effects on the site properties and the screening

effects on the electronic couplings,33,44 thus giving a balanced description of the exciton

Hamiltonian.

Here, we present the EXAT (EXcitonic Analysis Tool) program which is based on such a

QM exciton model and allows one to compute optical spectra of excitonic systems directly

from the output of QM (/PCM) calculations performed with the popular Gaussian (R) 16

package.45 EXAT eases the analysis of exciton properties also allowing a straightforward

interpretation of exciton coupled spectra, especially in the case of large supramolecular

systems.

METHODOLOGY

Theory

Here we present the exciton model at the basis of EXAT. Let us consider a system composed

by N chromophoric units, each bearing a number ni of excited states. The units are assumed

to be independent, namely there is no electron exchange between different groups, but the

groups are electronically coupled in the excited state. Within this approximation, the excited
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states |K〉 of the entire system can be expressed as a linear combination of singly excited

states of the chromophores:

|K〉 =
N∑
i

ni∑
a

CK
ia |ia〉 (1)

where the first sum runs over the chromophores while the second sum runs over all the ni

excited states of the chromophore i. For the expansion in eq. 1, the Hamiltonian of the

system reads:

Ĥex =
N∑
i

ni∑
a

Eia |ia〉 〈ia|+
N∑
i

N∑
j

ni∑
a

nj∑
b

V ab
ij |ia〉 〈jb| (2)

where Eia is the a-th excitation energy of the isolated molecule i, namely 〈ia|Ĥ|ia〉, and V ab
ij

is the electronic coupling between two different units i and j in their relative excited states a

and b, namely 〈ia|Ĥ|jb〉. The excitation energies of the isolated chromophores, Eia, are also

known as site energies, and are easily accessible through an excited-state electronic structure

calculation.

The electronic couplings V ab
ij are often divided in Coulomb and short-range interactions,

the latter being often negligible because of the exponential decay with distance.46,47 The

Coulomb term is the electrostatic interaction between the transition densities corresponding

to the excitations 0 → a and 0 → b in chromophores i and j. In the literature, it is

often approximated with the interaction between the transition dipoles of i and j, but this

approximation is only valid when the distance between i and j is much larger than the

chromophores themselves. In our approach, the electronic couplings V ab
ij is calculated directly

from the transition densities33,46 through the integral:

V ab,Coul
ij =

∫
dr1dr2 ρ

tr∗
i,0a(r1)

1

r12
ρtrj,0b(r2) (3)

where, ρtri,0a and ρtrj,0b are the transition densities of excitations 0 → a and 0 → b in chro-

mophores i and j.

In condensed phase, the polarizable medium that surrounds the chromophores results in

an additional term, which can be regarded as the interaction between transition densities

mediated by the dielectric response of the environment Venv. This formalism has been im-

plemented in Gaussian 16,45 introducing the mediated term within the PCM description of
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the solvent, namely:33

V ab,env
ij =

∑
t

[∫
drρtr∗i,0a(r)

1

|r− rt|

]
qt(ε∞; ρtrj,0b) (4)

where index t runs over the set of surface charges, qt, induced by the density ρtrj,0b and

mediated by the optical dielectric permittivity ε∞.

The eigenvalues of the Hamiltonian of eq. 2 represent the excitation energies of the

entire system, and the corresponding eigenvectors represent expansion coefficients CK
ia of the

exciton wavefunction on the basis of the localized states |ia〉. Within the same formalism,

the transition probability of the UV-Vis absorption is expressed in terms of the squared

transition electric dipole moment of the excitonic state µ0K , which can be expanded over

the transition dipole moments of the localized excited states:

µ0K = 〈0|µ̂|K〉 =
N∑
i

ni∑
a

CK
ia 〈i0|µ̂|ia〉 =

N∑
i

ni∑
a

CK
iaµi0a (5)

As a result, the absorption spectrum due to M transitions can be obtained as a sum over

the exciton states:16

ε(ν̃) =
8π3NA

3000 ln(10)hc
ν̃

M∑
k

|µ0K |2S(ν̃ − ν̃K) = 1.089×1038 ν̃
M∑
k

|µ0K |2S(ν̃ − ν̃K) (6)

where ν̃ is the absorption wavenumber, NA is the Avogadro number, and the transition

dipole is expressed in c.g.s. units (i.e. esu·cm). S(ν̃) is a normalized lineshape function that

accounts for homogeneous and inhomogeneous broadening, and can be set ad-hoc for each

transition in order to reproduce experimental bandwidths. A common choice is a Gaussian

lineshape:

S(ν̃) =
1

σ
√

2π
e−

1
2( ν̃σ )

2

(7)

In eq. 7 σ is the standard deviation of the Gaussian function. Usually, the broadening of the

absorption bands is measured as half-width at half maximum (HWHM = σ
√

2ln2) of the

peak.

In CD spectroscopy, the measured quantity is the differential molar absorption ∆ε = εl−εr

between left and right circularly-polarized light. The rotatory strength R represents the sign

and the intensity of a CD signal. The rotatory strength for the generic electronic transition
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from the ground state 0 to the excited state K, is given by the Rosenfeld equation:

R0K = = 〈0 |µ̂|K〉 · 〈K |m̂| 0〉 (8)

where = denotes the imaginary part, and the µ̂ and m̂ are the operators of electric and

magnetic moment vectors respectively. The magnetic moment can be expanded in the same

way as in eq. (5); the magnetic moments mi0a of the site transitions depend on the position

Ri of chromophore i, as

mi0a = mint
i0a +

ie~
2mec

Ri ×∇i0a (9)

where mint
i0a is the intrinsic magnetic moment of the transition 0→ a in chromophore i.48 If

the intrinsic magnetic moments of the chromophores are negligible, eq. (8) reduces to:49

R0K = −πν̃0K
2c

N∑
i,j

ni,nj∑
a,b

CK
iaC

K
jbRij · (µi0a × µj0b) (10)

where ν̃0K is the excitation wavenumber of state K and Rij = Rj−Ri is the distance vector

between the chromophore i and j. Notably, this formulation is gauge-invariant in that the

result does not change if the system is translated. However, eq. (10) does not account for

the presence of the intrinsic transition magnetic moments mint
i0a.

A gauge-invariant expression that accounts for the magnetic transition moments can be

obtained by passing to the velocity formulation of the electric dipole:48

R0K = − e~
2πmeν̃0K

=

{
N∑
i,j

ni,nj∑
a,b

CK
iaC

K
jb [∇i0a ·mj0b]

}
(11)

where ∇i0a represents the electric dipole moment expressed in the velocity formulation.

Equation (11) does not change if the origin on the coordinate system is translated. Moreover,

by decomposing the magnetic transition dipole moment as in eq. (9), we can divide R0K

into two terms:

R0K = − e~
2πmeν̃0K

=

{
N∑
i,j

ni,nj∑
a,b

CK
iaC

K
jb

[
∇i0a ·mint

j0b

]
+

N∑
i,j

ni,nj∑
a,b

CK
iaC

K
jb

[
∇i0a ·

ie~
2mec

Rj ×∇j0b

]}

= Rint
0K +Rext

0K

(12)
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Here Rint
0K is the intrinsic rotatory strength due to the vectorial combination of the intrinsic

transition magnetic dipole moments, whereas Rext
0K is the rotatory strength coming from

displaced electric dipoles, similarly to eq. (10). In literature, Rext
0K and Rint

0K are sometimes

also denoted as “µµ” and “µm” terms respectively.20,22,48

The CD spectrum can be finally obtained by assuming a lineshape function, similarly to

what discussed in the case of the absorption:16

∆ε(ν̃) =
32π3NA

3000 ln(10)hc
ν̃

M∑
K

R0KS(ν̃ − ν̃K) = 4.355×1038 ν̃
M∑
K

R0KS(ν̃ − ν̃K) (13)

A widely used quantity in CD spectroscopy is the dissymmetry factor gabs, which describes

the ratio between the CD and absorption spectra:1,16

gabs,0K =
∆ε(ν̃)

ε(ν̃)
= 4

R0K

µ2
0K

(14)

This quantity is particularly useful for determining the chiral electronic response of a molecule

or an aggregate. Experimentally, gabs is determined at the CD peaks, and assumes the same

lineshape for absorption and CD.

Finally, oriented aggregates have a differential response to linearly polarized light. This

allows to use linear dichroism (LD) spectroscopy as a tool to measure the orientation of

chromophores in an aggregate. LD is defined as the differential absorption of linearly po-

larized light parallel and perpendicular to the orientation axis, i.e. LD = ε‖ − ε⊥.50 The

LD spectrum of a perfectly oriented excitonically coupled aggregate can be easily calculated

from the excitonic transition dipole moments obtained as in eq. (5):

LD(ν̃) =
8π3NA

3000 ln(10)hc
ν̃

M∑
k

3

2
|µ0K |2 (3 cos(α0K)− 1)S(ν̃ − ν̃K) (15)

where α0K is the angle that the transition dipole µ0K forms with the orientation axis. EXAT

allows to choose a general orientation axis to compute the LD. Note that this LD formula

assumes that the molecular system is perfectly oriented; a parameter should be used to take

into account possible fluctuations of the general orientation.50
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EXAT workflow

The full computational strategy used to obtain the excitonic spectra can be summarized in

the workflow illustrated in Fig. 1.49 The geometry of the entire system may be obtained

from different sources, such as crystallographic data, NMR solution structures, or modeled

geometries. Experimental structures may need further refinement or optimization in order

to be suitable for QM calculations.49

Figure 1: Workflow to simulate the excitonic spectra.

The whole interacting system needs to be split into chromophoric units. When the

different chromophores are covalently bonded, one needs to cut covalent bonds and saturate
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the free valence, commonly using a hydrogen atom. The definition of chromophoric units

and the calculation of local properties and exciton couplings can be done in Gaussian 1645

by adding the eet(fragment=N) keyword, where N is the number of fragments in which

the entire system is divided. Once all local properties and couplings are collected, one

can decide to select only some specific transitions of interest from each monomeric unit

to build up the excitonic Hamiltonian. This selection can be very useful to decompose

the excitonic spectra into different contributions coming from different interactions, or to

eliminate spurious excitations. The Hamiltonian composed of the selected excitations is

built from site energies and exciton couplings, and then diagonalized to yield the exciton

energies EK and the coefficients CK
i0a. The local dipole moments are combined through eq.

(5) to determine excitonic electric dipole moments, and through eq. (10) or (11) to determine

the rotatory strengths. Finally, the absorption, CD and LD spectra can be computed by

means of eqs. (6)-(15), respectively.

The workflow is implemented in a Python 2.6 package that requires the NUMPY and

SCIPY libraries, and the MATPLOTLIB library for the visualization of the spectra. The

program can be run from the command line, but a graphical user interface is also available

(see below). EXAT can read the output of a Gaussian 1645 EET calculation, and collect site

energies, electric and magnetic transition dipoles, and electronic couplings. It is possible to

modify these quantities and also to provide user-defined quantities. After the calculations,

EXAT produces several output files, among which results.out contains the list of excitonic

states, their energy, and the corresponding properties. This file can be used as an input to

calculate absorption and CD spectra.

The program also outputs a geometry file and an input file for VMD,51 that allows the

user to visually analyze the local electric and magnetic transition dipoles.

EXAT is available online at http://molecolab.dcci.unipi.it/tools/.

PCM and excitonic properties

As reported in the introduction, environment effects can be introduced in EXAT using the

PCM solvation model. One of the main ingredient of such a model is the cavity which
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embeds the QM system. As here, the system is divided into subunits, there are two possible

schemes to define the PCM cavity. In the “fragment cavity” scheme, the excitonic properties

of each chromophore (site energy, transition density and transition dipoles), are calculated

using the cavity of the chromophore itself. However, the couplings within each pair i, j

of chromophores, are calculated with a cavity that follows the shape of i and j together.

This cavity can be united or separated depending on the distance between i and j. On the

contrary, the “common cavity” scheme always use the cavity defined on the entire system:

this means that the calculation of both site properties and couplings is performed with the

same ”multichromophoric” cavity.

The specific approach used in defining the cavity influences both site energies and cou-

plings in the exciton Hamiltonian. In particular, the fragment cavity scheme treats the other

chromophores on the same basis as the rest of the environment, that is, with the same di-

electric properties. For quite small molecular systems, where chromophores are close and

directly bonded, the common cavity has to be preferred, while for larger systems a frag-

mented cavity helps one to recover for each chromophore the correct electrostatic effect of

the rest of the system.

EXAT-GUI

EXAT includes a graphical user interface (GUI) implemented in python using the GTK-

Glade libraries and the MATPLOTLIB library to display spectra and graphs. The GUI

allows the user to directly load the output file of a Gaussian 16 eet calculation, showing

on-screen the site and exciton properties. Different transitions can be selected, and it is

possible to switch between the approximate formulation of eq. (10) and the full formulation

of eq. (11). Finally, the excitonic absorption and CD spectra can be visualized in a secondary

window, along with the stick spectrum that represents the position and intensity of every

transition. An example of the GUI is reported in Figure 2.
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Energetic diagrams

Lineshape and broadeining settings

Figure 2: A representation of the EXAT graphical user interface.

RESULTS

In this section we report two applications of EXAT to highlight the potential of the program.

In the first example we simulate the absorption and CD spectra of a chiral perturbed BOD-

IPY system using the gauge-independent formulation, which includes the electric-magnetic

term in the rotatory strength calculation. In the second example the CD spectra of different

conformations of nucleic acid have been simulated showing the applicability of the EXAT in

the simulation of large multichromophoric systems.

Chiral perturbation of a BODIPY

Boron dipyrromethene (BODIPY) complexes represent an important family of organic dyes

with special absorption and emission properties that can be tuned by functionalization of

the BODIPY core.52 A dissymetrization of the BODIPY core achieved through geometrical

strain can turn it into a chiral chromophore; moreover peripheral chromophoric units that

present off-resonance transitions can chirally perturb the symmetric BODIPY chromophore.

The latter mechanism can be considered as an excitonic perturbation of the BODIPY transi-

tion. As a test case we considered the enantiomeric (R)-spiroBODIPY recently synthesized

and characterized by Sanchez-Carnerero et al. (see Figure 3a).53 Even though the spiro-
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BODIPY does not present a clear excitonic circular dichroism, it is possible to model the

chiral perturbation through the EXAT excitonic scheme: the higher-lying excited states of

the napthalene rings couple with the BODIPY-centered transition to create a chiral exciton

state.

The spiroBODIPY geometry was obtained from a QM optimization at the B3LYP/6-

311G(d) level of theory. The system was fragmented as shown in Figure 3a, saturating the

free valences with hydrogen atoms. Excitation energies and couplings were computed at the

PBE0/6-311+G(d,p) level of theory, including the solvent (Chloroform) through PCM. We

computed six excited states for every fragment, in order to include the effect of higher lying

states on the CD spectrum. The excitonic analysis was carried out using EXAT-GUI.

The optimized structure of the spiroBODIPY is shown in Figure 3b, where some of the

main transition dipoles are depicted. In particular, we highlight the presence of a non-

negligible magnetic transition dipole moment of the first BODIPY excited state (blue vector

in Figure 3b).

The calculated absorption (OD) and CD spectra are reported in Figure 3c. Apart from a

general ∼90 nm blue shift, the calculated spectra well reproduce the experiments.53 In par-

ticular we focus on the longest-wavelength negative CD peak at 430 nm, which corresponds

to a BODIPY-centered transition.53 This transition is highly localized on the BOPDIY frag-

ment (C2 > 0.998), and weakly perturbed by all the states of the naphthalene moieties. Its

rotatory strength, calculated with eq. (11), is −63 · 10−40 esu2cm2, which corresponds to a

dissymmetry factor gabs = 4 · 10−4, in qualitative agreement with the experimental value of

7 · 10−4–9 · 10−4 depending on the enantiomer.53 The approximate treatment of eq. (10),

which neglects the magnetic-electric contribution to the CD, yields a much lower rotatory

strength of -23·10−40 cgs units (gabs = 1.5 · 10−4). The CD signature in the BODIPY tran-

sition comes from the coupling of the magnetic transition dipole moment of the BOPDIY

moiety to the bright electric transition dipole moments of the naphthalene moieties (See

Figure 3b). Using EXAT, we can exclude selected naphthalene transitions to assess their

effect on the rotatory strength of the BODIPY-centered transition. The exclusion of states

2, 3, and 5 of the naphthalenes does not change R significantly, while states 4 and 6 account

for ∼ 41% and 33% of the total rotatory strength, respectively. In fact, states 4 and 6 are the
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Figure 3: a) Chemical structure and fragmentation scheme of the chiral (R)-spiroBODIPY.

b) Optimized structure of chiral (R)spiroBODIPY. The main electric (µ, in yellow, red and

orange) and magnetic (m, in blue) transition dipole moments of the fragments are also

shown. µ6 is omitted for clarity, but it lies on the same axis as µ1. c) Simulated excitonic

OD (blue) and CD (red) spectra with a Gaussian lineshape (HWHM = 1000 cm−1). Vertical

lines indicate the position and relative intensities of the transitions. d) Experimental OD

(blue) and CD (red) spectra of (R)-spiroBODIPY taken from Ref. 53. Note the same y-axis

scale in c) and d).
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brightest states of the naphthalene moiety, as their transition dipole magnitudes are 8.0 D

and 3.3 D respectively, while the first excitation has a transition dipole of 2.2 D only. The

values of these transition dipoles contribute not only to the increase of the coupling with the

BODIPY state, but also to the rotatory strength in both terms of eq. (12).

DNA G-quadruplexes

DNA and RNA guanine-rich sequences can fold into tetrahelical structures stabilized by hy-

drogen bonds between guanine tetrads and electrostatic interactions with monovalent cations.

Such structures, denoted as G-quadruplexes, adopt various folding topologies depending on

the specific sequence and folding conditions.54 The topologies are classified in parallel and

anti-parallel depending on the relative direction of the four guanine strands. Parallel and

anti-parallel topologies are easily distinguished by CD spectroscopy, and show particular fin-

gerprints: parallel G-quadruplexes are characterized by a positive band at 260 nm, whereas

antiparallel G-quadruplexes have a positive band at 290 nm and a negative band at 260

nm.55

In order to demonstrate the potential of the EXAT workflow for larger systems, we show

how the excitonic approach can be used to compute the CD spectra of two G-quadruplexes.

We selected one parallel (PDB code: 2MB2)56 and one anti-parallel (PDB code: 143D)57

G-quadruplex, determined by solution NMR studies. In both structures the G-quadruplex

core is formed by three guanine planes (see Figure 4).

We first refined the NMR structures by projecting the MP2/cc-pVDZ optimized geometry

of the guanine base to the NMR structure.29,31 Site properties and couplings were then

computed at the M062X/6-31G(d) level, including the solvent (water) with PCM, in the

fragment cavity approach, but scaling the atomic radii by 1.8 to account for the DNA

backbone and the less polarizable waters in the first solvation shell.58 Only the first four

bright π − π∗ states of the guanine forming the G-tetrads were included in the exciton

Hamiltonian. In order to correct the intrinsic error of the method here employed (i.e. the

particular combination of TD-DFT, the used functional, and the basis set), we compared the

obtained site energy of the first transition (5.23 eV) to the experimental average (∼4.45 eV)59
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Figure 4: Parallel (left panel) and anti-parallel (right panel) G-quadruplex structures de-

picted in side and top view. Only guanine core bases are shown in the top view. The central

panel shows CD spectra of the two structures. Both spectra were shifted by −0.78 eV and

divided by the number of bases, to compare ∆ε values with the experiment, where the mo-

lar concentration is expressed as concentration of nucleobases. Dashed lines represent the

corresponding experimental spectra.29,56

and we used this difference to shift the resulting spectrum.

The calculated spectra, reported in Figure 4, show the main fingerprints of the parallel

and antiparallel structures in the 200–320 nm range. Both spectra are in very good agreement

with experiments on large G-quadruplex structures55 as well as experiments on these two

particular structures.29,56

It should be noted that fully ab initio calculations showed a non-negligible charge-transfer

(CT) character for low-lying bright states of nucleic acids,60 which is a consequence of CT

states mixing with exciton states, as CT states themselves are optically forbidden. Such CT

mixing is neglected in the excitonic approach here presented. However, the inclusion of CT

states should not change qualitatively the result of the exciton model, as the main effect is

a shift in the positions of the exciton states.27,41
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SUMMARY AND FURTHER DEVELOPMENTS

The simulation of optical properties in large, multichromophoric systems can be greatly

simplified by using an excitonic model, while retaining the accuracy of fully ab initio meth-

ods, provided that the system can be divided into independent (but excitonically coupled)

units, and the mixing of CT states to exciton states can be neglected. We developed the

EXAT program to build up the excitonic Hamiltonian reading all the needed “ingredients”

directly from the output of calculations performed with Gaussian 16, and obtain the re-

sulting excitonic spectra. The program also allows users to analyze the exciton properties

of the system and understand the physical origin of characteristic signatures in its optical

spectra. In addition to absorption spectra, EXAT is particularly useful in simulating and

analyzing circular dichroism spectra, also including intrinsic magnetic moments in a gauge-

independent formulation.48 The graphical interface helps the user to interactively manage

several aspects of the model and visualize spectra in real time. These features make EXAT

suited for computational chemists as well as experimental spectroscopists.

Future developments of the EXAT framework will be directed to include an atomistic

description of the environment of the chromophores through a polarizable QM/MM embed-

ding,35 and to define a robust model for systems, such as proteins, containing hundreds of

chromophores. Another important improvement will be the inclusion of CT states in the

exciton Hamiltonian,41 to capture the effect of CT mixing especially in the case of closely

packed chromophores. Further developments include models to account for a more realistic

optical line shape and the coupling of vibronic transitions.5,61,62
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