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Abstract   Genome skimming was performed, using Illumina sequence reads, in order to obtain a 

detailed comparative picture of the repetitive component of the genome of Populus species. Read 

sets of seven Populus and two Salix species (as outgroups) were subjected to clustering using 

RepeatExplorer (Novak et al. 2010). The repetitive portion of the genome ranged from 33.8 in P. 

nigra to 46.5% in P. tremuloides. The large majority of repetitive sequences were long terminal 

repeat-retrotransposons. Gypsy elements were over-represented compared to Copia ones, with a 

mean ratio Gypsy to Copia of 6.7 : 1. Satellite DNAs showed a mean genome proportion of 2.2%. 

DNA transposons and ribosomal DNA showed genome proportions of 1.8 and 1.9%, respectively. 

The other repeats types accounted for less of 1% each. Long terminal repeat-retrotransposons 

were further characterized, identifying the lineage to which they belong and studying the 

proliferation times of each lineage in the different species. The most abundant lineage was Athila, 

which showed large differences among species. Concerning Copia lineages, similar transpositional 

profiles were observed among all the analyzed species; by contrast, differences in transpositional 

peaks of Gypsy lineages were found. The genome proportions of repeats were compared in the 

seven species and a phylogenetic tree was built, showing species separation according to the 

botanical section to which the species belongs, although significant differences could be found 

within sections, possibly related to the different geographical origin of the species. Overall, the 

data indicate that the repetitive component of the genome in the poplar genus is still rapidly 

evolving. 

 

Keywords   Populus; LTR-retrotransposons; Repetitive DNA; Comparative retrotransposon 

dynamics 
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Introduction 

 

A large portion of eukaryotic genomes is made of repetitive DNA, which includes several types of 

sequences that can be transcribed (like transposable elements, TEs) or not (like tandem repeats). 

TEs are DNA sequences that are present in the nuclear genomes of all eukaryotes (Wicker et al. 

2007) with the potential to move across the genome. Depending on the transposition mechanisms 

used, TEs can be collected into two different classes: class I (retrotransposons or retroelements, 

REs) and class II elements (DNA transposons). In eukaryotes, the main fraction of repeats is 

composed by class I elements that move through an RNA intermediate using a so-called “copy and 

paste” transposition mode which can lead to an increase in genome size. 

These elements are variable in size: they can range from a few hundred base pairs to over 10 kb, 

and are composed of a coding portion flanked by two direct long terminal repeats (LTRs). 

Downstream of the 5′-LTR one primer-binding site is present, while one polypurine tract is located 

upstream of the 3′ LTR. The coding region includes ORFs necessary for the replication and the 

integration of the elements in the host chromosomes (Kumar and Bennetzen 1999) like Gag, a 

structural protein of the virus-like particles, and Pol. Pol encodes a polyprotein with protease, 

reverse transcriptase (RT), RNaseH, and integrase enzyme domains; in some LTR-REs an additional 

region, the chromodomain, is found upstream the 3'LTR. Although encoded enzymes are 

necessary for the transposition, non-autonomous LTR-REs can hijack enzymes produced by other 

LTR-REs to replicate and/or move (Wicker et al. 2007). 

Plant LTR-REs can be grouped into two prominent superfamilies, Copia and Gypsy (Wicker et al. 

2007), which differ for the integrase domain position in the polyprotein (Kumar and Bennetzen 

1999). Superfamilies can be also divided into a number of major evolutionary lineages (Wicker and 

Keller 2007, Llorens et al. 2011). 

 The main Gypsy lineages are: Athila (Wright and Voytas 2002), Chromovirus (Gorinsek et al. 

2004; Llorens et al. 2011) and Ogre/TAT (Neumann et al. 2003). On the other hand, for Copia 

superfamily the most represented lineages are AleI/Retrofit/Hopscotch, AleII, Angela, Bianca, 

Ivana/Oryco, Maximus/SIRE and TAR/Tork (Wicker and Keller 2007). 

 Class I also encompasses non-LTR-REs (Wicker et al. 2007), which can have protein domains 

similar to those of LTR-REs (Long-INterspersed-Elements, LINEs) or not (Short-INterspersed-
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Elements, SINEs) but are not flanked by LTRs. In plants, they are quite rare (see for example 

Barghini et al. 2017).  

Class II is made by DNA transposons, which use a DNA based enzymatic mode of 

transposition (“cut and paste”) that can be encoded by the same element (in the case of 

autonomous elements) or by other elements (in the case of non-autonomous TEs) (Wicker et al. 

2007). Generally, this method of transposition does not imply an increase in genome size.  

 The other large group of repetitive sequences are tandem repeats, commonly named 

satellite DNAs (Schmidt and Heslop-Harrison 1998). These sequences are arranged in tandem 

repeated units, where single copies are placed next to each other. Preferentially, they are located 

in specific positions of the chromosomes, like the telomeric, subtelomeric, pericentromeric, or 

intercalary regions (Kubis et al. 1998). Families of tandem repeats can be grouped according to the 

length of the individual unit and size of the array, and can have different redundancy, homology, 

and distribution pattern between related species of a plant genus (Wang et al. 1995). For example, 

in Secale cereale, satellites represent more than 6% of the genome (Bedbrook et al. 1980), in Olea 

europaea they account for around 30% of the genome (Barghini et al. 2014).  

 Although repetitive DNA has long been considered “selfish”, seemingly not to provide 

adaptive benefit to the host genome, nowadays the considerable contribution of TEs dynamics to 

the evolution of genomes is ascertained. For instance, LTR-REs amplification and/or deletion are 

key mechanisms underlying the remarkable size variation of plant genomes (Hawkins et al. 2006; 

Piegu et al. 2006).  

Furthermore, in recent years, DNA repeats has been shown to have a primary role in 

different genome functions. For instance, TEs are involved in genome restructuration (Kazazian 

2000), in the modification of hosts regulatory network and gene expression, and they can 

generate novel genes through gene fragment rearrangement (Morgante et al. 2005). Moreover, 

repetitive DNAs contributes to pericentromeric and intercalary heterochromatin, supplying 

chromatin boundary signals for heterochromatin domains, and playing a central role in higher-

order physical structuring within the nucleus (Von-Sternberg and Shapiro 2005). 

 Gene activity appears to be strongly affected by TEs, since TEs transposition can alter the 

regulatory patterns of conserved coding regions resulting in the emergence of novel traits using 

the same repertoire of proteins and RNAs. Genetic studies conducted on different organisms (e.g. 

mouse and Arabidopsis) have proved the REs effect at the epigenetic level, in that they can 
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regulate chromatin organisation and gene expression, possibly leading to phenotypic variations 

(Slotkin and Martienssen 2007). 

 Therefore, to identify and characterize the repetitive DNA is a fundamental step toward the 

biological and evolutionary characterization of a species. However, up to now, the study of 

repetitive DNA effects to genome structure and function has been restricted to organisms with a 

completely sequenced genome. Studies on comparative genomics of repetitive sequences within a 

family or a genus are still limited, especially in dicotyledons. 

 Although the most reliable analysis of repeated sequences can be performed when the 

genome (Natali et al. 2015), or at least Mbp-long sequences are available (Buti et al. 2011; 

Barghini et al. 2015a), next-generation sequencing (NGS) technology can be conveniently applied 

to identify repeats. In fact, even in species in which the genome has not been fully sequenced yet, 

if a repetitive sequence is present in many copies, its identification is possible thanks to the 

production of large numbers of random short sequences and to their assembly. In fact, the 

sequencing of genomic DNA at low-coverage (named “genome skimming”; Straub et al. 2012), and 

the subsequent clustering of sequence reads, can characterize thousands of well-represented 

repeats (Macas et al. 2007; Novak et al. 2010; Staton et al. 2012; Natali et al. 2013; Barghini et al. 

2014, 2015b). This approach yields also detailed insights into genome evolution schemes (Leitch 

and Leitch 2012; Renny-Byfield et al. 2013). Poplars (i.e. species of the genus Populus) are among 

the most economically important groups of forest trees, widely exploited for the woods, besides 

being model organisms for biological study on trees (Stettler et al. 1996). This genus, in fact, show 

several peculiar quality: easy vegetative propagation, fast growth rates, and adaptability to 

different ecological sites (Stettler et al. 1996). These trees are largely distributed in the northern 

hemisphere from boreal to subtropical forests and have an important ecological role as pioneer 

species in riparian and boreal forests (Braatne et al. 1992).  

 Poplars are diploid species (2n = 38) whose genome has been estimated around 550 million 

pairs of bases (Tuskan et al. 2006). The exact number of species afferent to the Populus genus is 

unclear (between 22 and 85), due to some authors declaring several hybrids as their own species 

(Eckenwalder 1996). For instance, 29 species were grouped in six sections (Populus, Tacamahaca, 

Turanga, Abaso, Aigeiros, Leucoides) by Eckenwalder (1996). Currently, breeding programmes 

strongly rely on plant materials from the sections Populus, Aigeiros and Tacamahaca. 

 The afference of some taxa within such sections remains debated. For example, P. nigra, 

assigned to the Aigeiros section, shows genetic affinity to representatives of Tacamahaca. 
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Moreover, while the RFLP analysis of cpDNA highlighted similarity with the Populus section, RFLP 

patterns of nuclear rDNA suggested a possible hybrid origin of P. nigra (Smith and Sytsma 1990). 

 Phylogenies of the Salicaceae family basing on nuclear rDNA (Leskinen and Alstrom-

Rapaport 1999) and chloroplast DNA sequences (Azuma et al. 2000) suggest that Populus is a 

monophyletic sister clade with Salix.  

 An outstanding feature of poplars is the occurrence of interspecific hybrids (Eckenwalder 

1982; 1996). For instance, hybrids are frequently present in the contact zones of P. angustifolia, P. 

trichocarpa, and P. balsamifera, that is where species belonging to Aigeiros and Tacamahaca 

sections are sympatric (Brayshaw 1965). Likewise, hybridization between species of the Populus 

section can naturally occur (Stettler et al. 1996). A phylogeny of the Populus genus was 

reconstructed basing on nucleotide sequences of three noncoding regions of cpDNA (intergenic 

regions of trnT-trnL and trnL-trnF and intron of trnL) and ITS1 and ITS2 of the nuclear rDNA 

(Hamzeh and Dayanandan 2004). Incongruences between phylogenetic trees based on 

chloroplast- and  nuclear-DNA sequence suggest a complex evolutionary history of this genus, and 

it is possible that sympatric species, even belonging to different sections, could have frequent 

opportunities to exchange genes (Stettler et al. 1996). 

 The purpose of this work was a comparative characterization of the repetitive component 

of the genomes of seven poplar species, belonging to the three most common and cultivated 

sections, Populus, Tacamahaca, and Aigeiros, to have new insights on their evolutionary 

relationships. The phylogenetic method we used is based on a bioinformatics estimation of 

different DNA repeats abundance through the analysis of reads sequenced from a small 

proportion of the genome. In fact, abundances of repetitive elements represents informative 

features for phylogenetic inference. 

 

Materials and methods 

 

Sequence data collection 

 

The study was conducted on seven poplar species, belonging to three sections: Populus deltoides 

and P. nigra (section Aigeiros), P. tremula and P. tremuloides (section Populus) and P. balsamifera, 

P. simonii and P. trichocarpa (section Tacamahaca). Two willow species were used as outgroups, 

Salix purpurea and S. suchowensis. Illumina DNA sequences of the nine species were retrieved 
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from the NCBI Sequence Read Archive (NCBI, Washington, USA, 

https://www.ncbi.nlm.nih.gov/sra). The ID codes for each sequence read set are reported in Table 

1. 

 To analyze reads of comparable quality, all sets were checked for read quality using FastQC 

(Andrews 2010): then Illumina adapters and low-quality regions were removed using 

Trimmomatic-0.33 (Bolger et al. 2014) using the reported parameters: ILLUMINACLIP:2:30:10; 

LEADING:3; TRAILING:3; SLIDINGWINDOW:4:15; CROP:85; and MINLEN:85.  

 Organellar sequences were removed from the sequence sets by mapping against a 

database of chloroplast genomes of P. balsamifera (NCBI 675155133), P. tremula (768801510), P. 

trichocarpa (133712039), S. purpurea (772657659), and S. suchowensis (751371584) and 

mitochondrial genomes of P. tremula (936227452), S. purpurea (1011056159), and S. suchowensis 

(1002167010) using CLC-BIO GenomicWorkbench (version 7.0.4 CLC-BIO, Aahrus, Denmark),  with 

the following parameters: Mismatch cost 1; Insertion cost 1; Deletion cost 1; Length fraction 0.7; 

Similarity fraction 0.7. All matching reads were considered putatively belonging to organellar 

genomes and removed.  

 

Identification of repetitive DNA 

 

In order to perform a comparative analysis of the repetitive component of 7 species of the genus 

Populus and two species of genus Salix, a hybrid graph-based clustering method (RepeatExplorer, 

Novak et al. 2010; 2013) was applied allowing de novo identification of repeats and their 

proportion in each genome.  

 RepeatExplorer requires small sets of reads and produce distinct clusters of frequently 

connected reads, which are automatically annotated accordingly to their similarity to an internal 

database of repeats. A random set of 500,000 paired-end sequence reads for each species was 

used, to ensure that the clusters obtained were comparable. 

 RepeatExplorer output was further annotated performing similarity searches of the 

unknown clusters by RepeatMasker (developed by A.F.A. Smit, R. Hubley, and P. Green; 

http://www.repeatmasker.org/) against a library of P. trichocarpa full-length retrotransposons 

(Natali et al. 2015), with the following parameters: -s; -no_is; and -nolow. 

 

Phylogenetic trees 
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Contigs assembled by RepeatExplorer were also subjected to the RepeatExplorer protein domain 

search tool, which performed searches against its own custom-made database of protein domains 

(i.e., chromodomain, GAG, protease, RT, RNAse H and integrase) derived from plant mobile 

elements, using default parameters. The RT domains were translated and aligned to RT domains of 

different species using Clustal Omega (McWilliam et al. 2013). Then, phylogenetic trees were built 

using a neighbour joining (NJ) clustering method and multi-scale bootstrap resampling with 1,000 

bootstrap replications. 

 Another phylogenetic analysis was based on the abundance of repeats. Pairwise 

comparisons between species were made for each cluster by plotting the respective genome 

proportion estimated using RepeatExplorer. Then, a dendrogram based on the genome 

proportions data of each cluster was built by using R package pvclust version 1.3-2 (Suzuki et al. 

2006), which allowed the assignment of the uncertainty in hierarchical cluster analysis (10,000 

bootstrap replications). 

 

LTR-retrotransposons temporal dynamics estimation 

 

The time course of different LTR-retrotransposon lineages in poplar species was inferred by 

examining distributions of pairwise divergence values for Illumina reads aligned to the RT domain 

encoding sequences of the different lineages, according to Piegu et al. (2006) and Ammiraju et al. 

(2007).  

 First, Illumina reads of the 7 poplar species were separately clustered using RepeatExplorer 

(2,000,000 paired-end reads per species). Then, assembled nucleotide sequences encoding the RT 

domains (at least 150 nt in length) were selected from Gypsy and Copia-related clusters of 

different lineages, using the protein domain search tool of RepeatExplorer. Illumina 85 nt-long 

reads of each species were aligned to the respective homologous RT sequences using CLC 

Genomics Workbench 7.0.4 with the following parameters: Mismatch cost 1; Insertion cost 1; 

Deletion cost 1; Length fraction 0.9; Similarity fraction 0.9. For each species, up to 100 aligned 

reads were collected randomly. Then, pairwise divergence values between reads were determined 

using MEGA version 7.0.18 (Kumar et al. 2016) under the Kimura two parameter model of 

sequence evolution (Kimura 1980). Peaks in the frequency distribution were interpreted as events 
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of transposition burst, with peaks associated with lower values of divergence representing more 

recent proliferation events. 

 

Results 

 

Quantitative analysis of the repetitive component of Populus species. 

 

The repetitive component of the genome of seven Populus species (and two Salix species, as 

outgroups) was studied by hybrid clustering (using RepeatExplorer, Novák et al. 2010) of nine 

samples of 500,000 Illumina paired-end reads (one for each species). In the hybrid clustering 

analysis, reads sharing sequence similarity between species cluster together, allowing the 

identification of repeats shared among species, and measuring the respective genome proportion 

in each species. 

 Table 2 summarizes the partitioning of read sets after hybrid clustering. Since the relatively 

low number of reads used by RepeatExplorer, clustered reads should belong to repetitive 

sequences. The mean percentage of repeated sequences in poplar species ranges from 33.8 in P. 

nigra to 46.5% in P. tremuloides (Table 2). 

 Table 3 reports the composition of the repetitive portion of each genome in terms of 

repeat classes, LTR-REs (Gypsy and Copia), DNA transposons, non-LTR retrotransposons (LINEs and 

SINEs), Helitrons, satellite DNAs, and ribosomal DNA. The genome proportions of each repeat class 

or superfamily derive from the sum of genome proportions of the respective individual clusters 

belonging to that class or superfamily of repeated sequences, considering only clusters with a 

genome proportion greater than 0.01%. The automatic contig annotation provided by 

RepeatExplorer at the end of hybrid clustering was enriched. First, using paired-end read 

connections, we could identify and classify unannotated interconnected clusters. Then, all clusters 

were subjected to a similarity search against a complete and annotated full-length LTR-RE set of P. 

trichocarpa (Natali et al. 2015). Initially, clusters with a genome proportion higher than 0.01% 

were 142; after excluding non-annotated clusters, low complexity or simple repeat clusters, and 

residual organellar DNA clusters (escaped to the removal process), a final number of 120 clusters 

was achieved. 

 LTR-REs (Gypsy and Copia) constitute the largest fraction of the annotated repetitive 

component of each species. The mean ratio between genome proportions of Gypsy and Copia 
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elements was 6.7 : 1. Among minor repeat classes, the proportions of DNA transposons range 

from 1.5 to 2.3%, those of ribosomal DNA from 0.9 to 2.3%. Non-LTR elements and Helitrons are 

barely represented (less than 1%). Satellite DNAs are the most variable minor repeat class, ranging 

from 0.8 in P. simonii to 4.2% in P. deltoides. 

 It is to be noted that genome proportions of the different classes or superfamilies are quite 

similar among species, with the notable exception of satellite DNAs and LTR-Gypsy elements. P. 

deltoides and P. tremula show satellite DNA abundances more than 2-fold higher than those 

reported for all other species. On the other hand, the genome proportion of Gypsy elements in P. 

tremuloides is more than 2-fold higher than that of all other species.  

 

Characterization of LTR-REs and other repeats and phylogenetic analyses 

 

Poplar LTR-REs were annotated at lineage level. All Gypsy lineages (Athila, Chromovirus, and Ogre) 

were identified; on the contrary, only five Copia lineages were found, probably because of their 

low number in the samples of reads used for experiments. Table 4 reports the genome proportion 

of each identified lineage. 

 Apparently, the large abundance of Gypsy elements in P. tremuloides (Table 4) is related to 

a disproportionate percentage of Athila REs (14.3% of the genome in P. tremuloides vs. a mean of 

3.5% in all other species). Large differences in percentage of Copia lineages are also observed 

among species (Table 4), although the relatively low frequencies (all lower than 1%) of such 

elements do not allow speculations in our experimental conditions. 

 The previously reported comparative analysis (Tables 3-4) was extended at sublineage level 

and allowed us to infer both the evolutionary trend of each LTR-RE lineage and the relationships 

among poplar species. In fact, separated clusters belonging to the same lineage presumably 

represent different sublineages according to their sequence similarity. Through hierarchical 

clustering analysis of LTR-RE sublineages, that was based on the genomic proportion of each 

cluster in each species, we identified and quantified groups of homologous clusters sharing similar 

abundance levels between the species (Novak et al. 2014). 

 The genome proportion of 120 homologous clusters belonging to the different repeat 

classes, superfamilies or lineages in the 7 Populus and 2 Salix species are reported in Figure 1. Each 

cluster represents a repeat type identified by colour. Clusters were in turn grouped according to 
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their abundance among the 9 samples: each group represents clusters showing a similar pattern of 

abundance. 

 Nearly all repeats are shared among all the 7 poplar species (Figure 1); only some satellite 

DNA-related clusters resulted specific to some species. Differences in abundance evidenced 8 

groups of repeat clusters with different abundance patterns. For example, group c was mainly 

composed of Gypsy-Ogre and Copia-TAR/Tork-related clusters having comparable abundance 

patterns in the analyzed species; most ribosomal DNA clusters belong to group g. Gypsy-Athila 

elements, the most abundant in poplar species, belong to only two groups, d and f. Interestingly, 

Athila clusters of group f are largely represented only in P. tremuloides.  

 Figure 1 shows the obvious separation between Salix and Populus species. From this point 

of view it is apparent that only a few clusters show similar abundance between the two genera: 

most of the ribosomal DNA clusters and some clusters belonging to Athila, Ogre/TAT and AleI are 

shared among all the species under examination, including willows. A striking difference between 

the two genera is the presence, only in the two willows, of three clusters representing satellite 

DNA sequences, with a large genome proportion, completely absent in the poplars (see group h). 

Figure 1 also reflects the subdivision of poplar species into the three sections analysed in these 

experiments. From this point of view, it is interesting to note that large differences are observed in 

the abundance pattern of the clusters annotated as satellite DNA. Each satellite DNA cluster 

corresponds to a different tandem repeat sequence. Satellite-related clusters of group f are more 

abundant in the Populus section (P. tremula and P. tremuloides). By contrast, satellite DNAs of the 

group b are especially abundant in Aigeiros section (P. deltoides and P. nigra).  

 The genome proportion calculated by RepeatExplorer for each cluster depends on both 

sequence conservation and copy number of the sequences included in the cluster. Anyway, 

comparisons between genomic proportions of the same clusters in different species can be used 

to establish relationships between the analyzed poplars. 

 In Figure 2, a phylogenetic tree is reported, based on the genome proportion values of all 

clusters, according to the method proposed by Cavallini et al. (2010) in sunflower species. The 

dendrogram confirms the subdivision of the genus among the three sections. The dendrogram 

indicates also that Tacamahaca (consisting of P. trichocarpa, P. balsamifera and P. simonii) and 

Aigeiros (P. deltoides and P. nigra) sections are phylogenetically closer to each other than the 

Populus section (P. tremula and P. tremuloides). This result is in agreement with the nuclear rDNA-
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based consensus tree reported by Hamzeh and Dayanandan (2004), in which the section Populus 

can be found at the base of the tree, compared to sections Tacamahaca and Aigeiros. 

  

Temporal dynamics of poplar LTR-REs 

 

Predicted protein sequences of RT domains of 7 poplars and two willows were aligned, and 

similarity between sequences was used to build dendrograms. Figure 3 report the dendrogram 

obtained using Gypsy RTs. The dendrogram about Copia RT sequences is reported in Suppl. 

Material #1.  

 Figure 3 and Suppl. Material #1 show that, for both Gypsy and Copia superfamilies, the 

protein sequences of the analyzed RT domains are separated according to the lineage to which the 

elements belong rather than by plant species. This result suggests that most variation among LTR-

RE lineages occurred before the separation between the Populus species. 

 The timing of proliferation of the different LTR-RE lineages in poplar species was inferred 

from analyzing pairwise distances (Kimura 1980) between paralogous RT-encoding sequences 

belonging to elements of the same monophyletic lineages, according to the method of Piegu et al. 

(2006). Distances were translated into insertion dates as described by SanMiguel et al. (1996) and 

Piegu et al. (2006), but using a mutation rate of 4.72 x 10-9, i.e. specific to poplar and two-fold the 

rate calculated for synonymous substitutions in poplar gene sequences (Cossu et al. 2012), to keep 

into consideration that REs accumulate more mutations with time. In fact, at each insertion, the 

new RE copy is identical to its parental element except for mutations occurring during 

retrotranscription (which is error prone, Kumar and Bennetzen, 1999); then, further mutations can 

accumulate as time passes. 

 Analysis was carried out for 6 out of 8 LTR-RE lineages, i.e. those lineages for which a large 

number of sequences to be compared were available. This analysis enabled the identification of 

different retrotranspositional waves, mostly overlapping in terms of time (Fig. 4). Obviously, 

translation of genetic distances into insertion dates is subject to reservations, however, in our 

analyses we limited to compare retrotransposition waves of the same RE lineage in different 

species. On the other hand, a comparison between P. trichocarpa transpositional profiles reported 

in this work and transpositional profiles obtained aligning LTR pairs of full length elements 

(according to the method proposed by Ma and Bennetzen (2004)) showed very similar results 

(Cavallini, in preparation) confirming the reliability of our data. 
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 Concerning Copia elements, proliferation waves are generally similar in the analyzed 

species (Fig. 4), with a peak of proliferation putatively dated at 10 MYA, and the exceptions of the 

Ivana/Oryco lineage in P. balsamifera and the TAR/Tork lineage in P. simonii, whose transposition 

peak can be dated at 5 MYA.  

 Gypsy RE dynamics were more complex (Fig. 4). Athila elements, the most abundant in the 

genus, show differently dated proliferation peaks at 0 (P. tremuloides and P. nigra), 5 (P. 

balsamifera), 15 (P. deltoides), and 10 MYA (the other species). Chromoviruses show a recent 

transposition wave in P. balsamifera and two proliferation peaks in P. tremuloides and P. simonii.  

Ogre/TAT proliferation profiles were more uniform among species, except P. balsamifera, in which 

these elements show a recent transposition wave.  

 Combined together, these results suggest an intriguing picture of species-specific increases 

in the abundance of REs, especially of the Gypsy superfamily, which in some cases should have 

occurred in relatively recent times, subsequent to Populus speciation. For example, the recent 

proliferation wave of Athila REs observed in P. tremuloides might be related to the accumulation 

of these elements in this species, in which the genome proportion of Athila REs is more than 3-fold 

that of each of the other species. 

 

Discussion 

 

The repeated component of the genomes of various Populus species were analyzed with reference 

on their composition and on the existing variability among species. Actually, a detailed overall 

picture of the repetitive portion of the genome was obtained by using sets of low coverage 

Illumina sequences and applying different bioinformatics assembling, annotation and mapping 

methodologies. The approach of using relatively low sequencing coverage to study the repetitive 

component of the genome has been already used with success in other species (Natali et al. 2013; 

2015; Barghini et al. 2014; 2015b; Mascagni et al. 2015), confirming the usefulness of genome 

skimming for this kind of sequences (Dodsworth et al. 2015). 

 In our analyses LTR-REs resulted the most abundant repeats in the genome of Populus 

species, as observed in all higher plants, with a mean ratio between genome proportions of Gypsy 

and Copia elements of 6.7 : 1. In angiosperms, different ratios between Gypsy and Copia elements 

abundance were observed, from 5 : 1 in papaya to 1 : 2 in grapevine (Vitte et al. 2014). Higher 

abundance of Gypsy REs compared to Copia ones has already been reported also in P. trichocarpa 
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(Tuskan et al. 2006) and amounted to 4.74 : 1 (Natali et al. 2015). In the present work, this ratio is 

5.9 : 1, i.e. higher than that reported by Natali et al. (2015): such a discrepancy can be related to 

the necessarily lower number of reads used for hybrid clustering. In fact, the number of reads 

which can be used for hybrid clustering reduces increasing the number of species to be 

concurrently analysed. The use of a reduced number of reads favours the recovery of the most 

abundant repeats; being Copia families less repeated than Gypsy, it is possible they are under-

represented in the assembled clusters. 

 Besides producing an accurate description of the repetitive component of the genome, our 

results show that, if the overall genome structure is conserved among poplars, interspecific 

differences occur, especially in relation to LTR-REs. Actually, large differences in abundance among 

LTR-RE lineages have been reported for many plant species (Du et al. 2010; Guyot et al. 2016), 

even at intraspecific level (see for example Mascagni et al. 2015). DNA satellites are also variable 

in abundance among poplar species. 

 Differences in the abundance of LTR-REs and DNA satellites can lead to structural variations 

in poplar chromosomes, as those already identified in P. nigra, P. deltoides, and P. trichocarpa by 

Pinosio et al. (2016). These authors showed the occurrence of a large number of structural 

variations as insertions and deletions (also at nucleotide level) and reported that variations were 

preferentially associated with the activity of transposable elements. Our study provides further 

data, which will be useful to produce and annotate a genome-wide catalogue of structural 

variations and to define and extend the characteristics of the poplar pan-genome. 

 Regarding DNA satellites, it is well known that they have often a structural role in the 

centromere and telomere organization (Dvořáčková et al. 2015; Lermontova et al. 2015). The 

different tandem repeats observed in the species of the Populus section compared to those found 

in species of Tacamahaca and Aigeiros sections suggests deep differences in the evolutionary 

processes that led to establish the present chromosomal structure in these species and will 

deserve future research. 

 As a matter of fact, interspecific differences related to repetitive DNA are much greater 

than the differences found in the coding gene sequences (Cossu et al. 2012; Pinosio et al. 2016). It 

may be speculated that such chromosomal structural differences have contributed, during 

evolution, to the differentiation between species, favouring their reproductive isolation. In this 

sense, it is interesting to note that P. nigra and P. deltoides, two species easily crossable, and 
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which have been used to produce the most commonly cultivated interspecific hybrids (i.e. Populus 

x canadensis) are very similar in relation to the repetitive component of the genome. 

 Our data can also be useful in analyzing the evolution of the genus Populus. Poplar species 

are known to be widely distributed in the northern hemisphere. The species selected for analysis 

are typical of Northern America (P. deltoides, P. balsamifera, P. tremuloides, and P. trichocarpa), of 

Europe (P. nigra), of Eurasia (P. tremula) and Eastern Asia (P. simonii). Interestingly, no relation 

was found between the geographical area in which a species originated and its genome structure 

(i.e. the abundance and composition of the repetitive component of the genome); on the contrary, 

significant similarities were found between species of one and the same section, independently of 

the geographical area in which the species live. However, at least for some repeats, large 

differences in abundance were observed even within sections, suggesting that these repeats have 

undergone copy number variations after the separation of the species from the section 

progenitor, possibly related to the different environments colonized by each species. A striking 

example is offered by the Athila LTR-REs which, in P. tremuloides (an American Tacamahaca 

species) are more than three-fold than in P. tremula (an Eurasian species of the same section). 

 The overall data reported in this study evidence that Populus is a genus which is still rapidly 

evolving, especially in relation to the repetitive component of the genome, as shown also by the 

differences in proliferation dynamics of the various RE lineages. Actually, expression of LTR-REs 

has been recently reported in the interspecific hybrid P. deltoides x P. nigra (Giordani et al. 2016) 

and also in its parental species (Cavallini, unpublished). It may be assumed that the activity of 

repeated elements, besides determining genomic structural differences, also affects the coding 

portion of the genome, both by gene inactivation (by inserting within it) and by modifying the cis-

regulatory sequences of the genes, with consequences on the plant phenotype.  
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Table 1    List of the poplar and willow analyzed species. For poplars, the botanical section and the 

geographical origin are reported. The Sequence Reads Archive (SRA) code corresponding to the 

sequence reads used for the analysis is reported for each species 

Species Section Origin SRA 

P. deltoides Aigeiros Eastern North America SRS1328499 

P. nigra Aigeiros Europe SRS1218640 

P. tremula Populus Europe, Northern Asia SRS1124263 

P. tremuloides Populus North America SRS1124888 

P. balsamifera Tacamahaca Northern North America SRS1115969 

P. simonii Tacamahaca Northeast Asia SRS829341 

P. trichocarpa Tacamahaca Western North America SRS844395 

S. purpurea   SRS161420 

S. suchowensis   SRS1276361 

 

 

Table 2   Sequence reads used for hybrid clustering by RepeatExplorer. The Sequence Reads 

Archive (SRA) code is reported for each set of Illumina reads 

Species 
Total 

reads 

Analysed 

reads 

Clustered 

reads 
% 

Single 

reads 
% 

P. deltoides 500,000 166,524 63,786 38.3 102,738 61.7 

P. nigra 500,000 166,966 56,383 33.8 110,583 66.2 

P. tremula 500,000 167,570 67,133 40.1 100,437 59.9 

P. tremuloides 500,000 146,648 68,232 46.5 78,416 53.5 

P. balsamifera 500,000 167,650 60,153 35.9 107,497 64.1 

P. simonii 500,000 167,650 63,372 37.8 104,278 62.2 

P. trichocarpa 500,000 167,348 56,860 34.0 110,488 66.0 

S. purpurea 500,000 168,378 65,063 38.6 103,315 61.4 

S. suchowensis 500,000 167,230 69,914 41.8 97,316 58.2 

Mean 
 

165,107 63,433 38.5 101,674 61.4 
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Table 3   Genome percentages of different repeat classes and superfamilies in poplar species. 

Total repeats refer to the proportion of reads clustered by RepeatExplorer. Percentages of 

different repeat classes and superfamilies are calculated on annotated clusters with a genome 

proportion higher than 0.01% 

Species 
Total 

Repeats 

LTR-

Gypsy 

LTR-

Copia 

DNA 

Trans-

posons 

Non-

LTR 

Heli-

tron 

Satel-

lite 

DNA 

rDNA 

P. deltoides 38.3 8.3 1.2 1.9 0.8 0.2 4.2 2.3 

P. nigra 33.8 7.6 1.5 1.7 0.8 0.4 2.1 2.2 

P. tremula 40.1 9.0 1.2 1.5 0.4 0.2 4.1 1.4 

P. tremuloides 46.5 19.6 1.9 1.7 0.4 0.4 1.4 0.9 

P. balsamifera 35.9 9.6 1.6 1.9 0.5 0.3 1.7 1.9 

P. simonii 37.8 8.9 1.5 1.7 0.5 0.2 0.8 2.0 

P. trichocarpa 34 7.7 1.3 2.3 0.6 0.5 1.3 2.3 

Mean 38.1 10.1 1.5 1.8 0.6 0.3 2.2 1.9 

 

 

Table 4   Genome percentages of different LTR-RE lineages in poplar species. Percentages of 

lineages are calculated on annotated clusters with a genome proportion higher than 0.01% 

Species 

Gypsy  Copia 

Total Athila 
Chrom-

ovirus 

Ogre

/ Tat 

 

Total 
AleI/ 

Retrofit 
AleII 

Ivana

/ 

Oryco 

Maximus

/ SIRE 

TAR/ 

Tork 

P. deltoides 8.3 4.0 2.5 1.7  1.2 0.3 0.4 0.1 0.0006 0.6 

P. nigra 7.6 3.5 1.9 2.2  1.5 0.5 0.2 0.1 0.002 0.6 

P. tremula 9.0 3.4 2.6 3.0  1.2 0.5 0.2 0.2 0.002 0.4 

P. tremuloides 19.6 14.3 2.2 3.2  1.9 0.6 0.2 0.3 0.090 0.7 

P. balsamifera 9.6 3.3 2.6 3.8  1.6 0.3 0.2 0.2 0.002 0.8 

P. simonii 8.9 3.5 2.3 3.1  1.5 0.3 0.5 0.2 0.002 0.6 

P. trichocarpa 7.7 3.3 2.3 2.0  1.3 0.6 0.2 0.1 0.002 0.4 

Mean 
 

5.0 2.4 2.7  
 

0.4 0.3 0.2 0.014 0.6 
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Legends for figures 

 
Fig. 1   Representation of cluster abundances in the genome of 7 Populus and 2 Salix species. The 

size of the rectangle is proportional to the genome proportion of a cluster for each species. The 

colour of the rectangles corresponds to the repeat class, superfamily or lineage. Bar plot in the top 

row shows the size of the clusters as number of reads in the comparative analysis. Upper lines 

label groups of clusters as assessed by a hierarchical clustering of the results 

 

Fig. 2   Dendrogram obtained by a hierarchical clustering analysis based on genome proportion 

data of clusters, as obtained by hybrid clustering using RepeatExplorer, in different poplar and 

willow species. Asterisks indicate multiscale bootstrap resampling (only values > 50% are given). 

The bar represents the genetic distance 

 
Fig. 3   Distance tree of Gypsy RT domains of 7 poplar and two willow species subjected to NJ 

analysis. Bootstrap values higher than 0.6 are shown with asterisk. Stars indicate RT domains of 

species different from poplars and willows, i.e. outgroups. The lineage to which RTs belong is 

reported 

Fig. 4   Timing of retrotranspositional activity of 6 LTR-RE lineages in 7 poplar species, based on the 

pairwise comparisons of Illumina reads matching RT-encoding sequences. The y axis reports the 

product of the percentage of pairwise comparisons for the average coverage of the RT sequence in 

each species 
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from each species (column "Total reads"); I suppose the column "Analysed reads" 
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