
Improving Network Formation in IEEE 802.15.4e
DSME

Carlo Vallati, Simone Brienza, Maurizio Palmieri, Giuseppe Anastasi

Dip. Ingegneria dellInformazione, University of Pisa, L.go L.Lazzarino 1, I-56122 Pisa,
Italy

Abstract

Wireless Sensor and Actuator Networks are becoming attractive also for indus-

trial applications, since recent standardization efforts have introduced significant

improvement to reliability and deterministic communication delays. In this con-

text, IEEE 802.15.4e is widely considered the major improvement, introducing

many enhancements to the original IEEE 802.15.4 standard aimed at support-

ing critical applications. Among the new defined MAC protocols, Deterministic

and Synchronous Multi-channel Extension (DSME) represents the most suit-

able option for applications with time-varying requirements. In this paper, an

analysis of the IEEE 802.15.4 DSME MAC protocol during network formation is

presented. The goal is to study the protocol performance and propose solutions

to reduce the network formation time, improving energy and resource efficiency.

To carry out the performance evaluation, DSME has been fully implemented

in Contiki OS, an actual operating system for sensor nodes. The study has

highlighted issues and inefficiencies in the network formation process, allowing

to consequently propose effective solutions. In particular, it is proposed a set

of guidelines for DSME configuration to the original MAC protocol that are

proved to increase significantly the network formation efficiency.
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1. Introduction

Wireless Sensor and Actuators Networks (WSANs) will be a major enabling

technology for the future Internet of Things (IoT) [1], as they allow rapid and

low-cost deployment of devices for remote control and monitoring. However, a

large number of future applications will be characterized by requirements that5

go beyond the simple best-effort data forwarding [2]. Applications for smart

healthcare, home and building automation and smart cities will demand for

transmission reliability and timeliness [3].

Recent standardization efforts within IEEE and IETF have focused on the

definition of solutions to guarantee reliable and timed information delivery in10

WSANs, still providing flexibility and rapid installation. In this context, the

IEEE 802.15.4e standard [4] has been published in 2012 as revision of the original

IEEE 802.15.4 [5] to introduce enhancements that can guarantee deterministic

latency and reliability in message delivery. In particular, in replacement to the

802.15.4 CSMA-CA MAC protocol – which is unsuitable for applications with15

strict timing requirements [6][7] – several new MAC behavior modes are defined

[8]. Among them, the Deterministic and Synchronous Multi-Channel Exten-

sion (DSME) has been conceived to guarantee deterministic delay and high

reliability, still preserving the main advantages of CSMA-CA, i.e. flexibility

and adaptability to time-varying traffic and operating conditions. Determinis-20

tic communication latency, resilience to external interference and rapid adapt-

ability to traffic conditions make DSME the best choice in a large number of

scenarios, characterized by delay-sensitive traffic with varying load. DSME ex-

ploits time-slotted channel access to guarantee timely data delivery, and adopts

multi-channel communication and frequency hopping to mitigate the effects of25

external interferences. DSME alternates Contention Access Periods (CAPs)

and Guaranteed Time Slots (GTSs), to enable both best effort communica-

tion and guaranteed transmission opportunities, respectively. GTSs are allo-

cated/deallocated dynamically on-demand by nodes in a point-to-point fashion

whenever it is necessary, through a distributed coordination procedure. This two-30
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fold MAC structure makes DSME a very versatile protocol, particularly suitable

for those applications in which traffic changes over time. DSME can react to

new conditions allowing nodes to reserve additional GTSs during peak of traffic

or free unused GTSs.

In this paper, an analysis of the IEEE 802.15.4e DSME performance focusing35

on the initial phase of the network formation is presented. The goal is to assess

DSME performance and derive a set of guidelines on how parameters should

be set to avoid long network startup times. In particular, the analysis focuses

on how to maximize the efficiency of CAP operations to guarantee low DSME-

GTS allocation delays and minimize, at the same time, the CAP size to reduce40

energy consumption and waste of unused resources. It is important to highlight

that, although optimizing CAP operations has the major impact on the net-

work initialization phase, it can improve the performance for the whole network

lifetime, since GTS allocation/deallocation procedures are executed also after

network setup, as traffic demand varies over time.45

Our results highlight that, besides tuning CSMA-CA parameters, a minor

modification to the behavior of nodes can improve CAP efficiency. To this aim,

an improvement to the original MAC protocol called Active Backoff is proposed

to further reduce DSME-GTS allocation delays, without additional energy cost.

Performance evaluation shows that proper tuning of CSMA-CA parameters with50

Active Backoff can dramatically reduce DSME-GTS allocation delays by 60%.

The analysis is performed exploiting a real DSME implementation realized for

the Contiki operating system, an operating system for sensor motes, and run

on Cooja, a WSAN emulator for the Contiki OS. To the best of our knowledge,

this is the first work exploiting a real DSME implementation running on an55

actual operating system, rather than a simplified model for simulation [9][10],

or mathematical analysis [11].

The rest of the paper is structured as follow. Section 2 provides a description

of the 802.15.4e DSME MAC behavior mode. Section 3 analyzes the state of

the art. Section 4 overviews the reference scenario and its settings. In Section 560

the effects of CAP size are assessed with respect to the opportunity of enabling
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the CAP Reduction strategy. In Section 6 the DSME-GTS allocation proce-

dure is analyzed, while in Section 7 a tuning strategy along with the Active

Backoff mechanism are proposed to increase its efficiency. In Section 8 the pro-

posed solutions are evaluated considering a lossy channel. Finally, in Section 965

conclusions are drawn.

2. Deterministic and Synchronous Multi-channel Extension (DSME)

In a DSME network, some nodes – referred as coordinators – periodically

transmit an Enhanced Beacon (EB) frame, used to keep all the nodes syn-

chronized and allow new nodes to join the network. The time between two70

subsequent EBs sent by the same coordinator is called Beacon Interval (BI).

The latter is composed of several superframes that follow one another seam-

lessly. Within a Beacon Interval, it is possible to define cycles of repeated

superframes, called multi-superframes, as shown in Fig. 1. Each superframe is

divided in 16 equally spaced slots and consists of three parts, namely an En-75

hanced Beacon slot, a Contention Access Period (CAP) and a Collision Free

Period (CFP). Slot 0 is used to transmit EBs. The CAP, which starts after the

EB slot and ends before slot 9, is typically used to transmit control messages

and aperiodic data. During the CAP, nodes use the slotted CSMA-CA (Carrier

Sense Multiple Access with Collision Avoidance) algorithm for medium access80

(see Sec. II.A). Both the EB and all the frames sent during the CAP are trans-

mitted using a single channel. During the CAP, a transmission can be received

from any other node in its transmission range. Hence, a node must remain ac-

tive for all its duration. The remaining slots compose the CFP. Here each slot

represents a DSME Guaranteed Time Slot (DSME-GTS) and it is exclusively85

dedicated to communication between two nodes. Since DSME-GTSs are sched-

uled to be collision free, they are used to transmit periodic traffic and delay

sensitive data. Multiple transmissions can be accommodated during the same

DSME-GTS by using different channels, thus significantly increasing the net-

work capacity. Since during the CAP all nodes are in reception mode, DSME90
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(a) (b)

Figure 1: DSME multi-superframe structure with CAP Reduction disabled (a) and enabled

(b)

provides a CAP Reduction mechanism to save energy. By enabling this option,

only the first CAP inside the multi-superframe is maintained, while the others

are replaced with wider CFPs of 15 DSME-GTSs, as shown in Fig. 1b.

The multi-superframe structure described above is regulated by some param-

eters – namely macSuperframeOrder (SO), macMulti-superframeOrder (MO)95

and macBeaconOrder (BO) – with 0≤SO≤MO≤BO≤14 – that determine su-

perframe duration, multi-superframe duration and beacon interval, respectively,

as follows:

TSD = aBaseSuperframeDuration × 2SOsymbols

TMD = aBaseSuperframeDuration × 2MOsymbols

TBI = aBaseSuperframeDuration × 2BOsymbols

where aBaseSuperframeDuration is a constant equal to 960. Such values are

expressed in symbols, i.e., the minimal transmission unit defined in the IEEE100

805.15.4 standard. The values of SO, MO and BO are set according to the

application requirements and are included in all the EBs.

2.1. CSMA-CA Algorithm

In the slotted CSMA-CA algorithm, used during the CAP, all nodes use a

single channel, time is divided into slots of equal duration (backoff slots) and all105

the operations are aligned with them. Upon receiving a data packet to trans-

mit, each node executes a backoff stage, i.e., it waits for a random number of

backoff slots (backoff time) and, then, performs two consecutive Clear Channel

Assessments (CCAs) to check the channel state. Specifically, the number of
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Table 1: IEEE 802.15.4E CSMA-CA PARAMETERS AND VALUES [5]

Parameter Min-Max values Default value

macMinBE 0-7 3

macMaxBE 3-8 5

macMaxCSMABackoffs 0-5 4

macMaxFrameRetries 0-7 3

backoff slots to wait is randomly chosen in the interval [0; 2BE − 1], where BE110

represents the backoff exponent. It is initialized to macMinBE and incremented

each time the channel is found busy during the CCAs, until the maximum value

macMaxBE is reached. If the channel is found idle on both CCAs, the node

transmits the packet; otherwise, it performs a new backoff stage. If the num-

ber of stages exceeds the maximum value macMaxCSMABackoffs, the packet115

is dropped. After transmission, the sender waits for an Acknowledgment. If it

is not received within a timeout, a retransmission is issued, until the maximum

number of retransmissions, specified by macMaxFrameRetries, is reached. When

this occurs the packet is dropped. The CSMA/CA parameters are summarized

in Table 1 with their default and min-max values. With this respect, in a previ-120

ous work Anastasi et al. [12] shown that CSMA/CA performance is significantly

influenced by them, i.e. delivery ratio, latency and energy consumption increase

with the values of these parameters.

2.2. DSME-GTS management

The DSME-GTS functionality allows a pair of neighboring nodes to reserve125

a portion of the CFP in the superframe to issue communications, being sure

that no other node of the network will interfere. In case of a multi-hop flow,

DSME-GTSs should be allocated sequentially hop-by-hop. Each DSME-GTS

can be deallocated at any time by one of the two communicating endpoints,

when (i) it is no longer used for packet transmission; or (ii) no data are received130

in several consecutive multi-superframes. In order to manage DSME-GTSs, each

node stores two data structures, namely DSME Allocation Counter Table (ACT)
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and DSME Slot Allocation Bitmap (SAB). The former is a table containing

information on the DSME-GTSs assigned to the node. The latter, instead, is

a bitmap indicating, for all the possible pairs (channel, timeslot) which are135

allocated to the node or to its neighbors. The scheduling of DSME-GTSs is

performed in a fully distributed way. Specifically, the allocation of a DSME-

GTS consists in a three-step message exchange, performed during the CAP. As

example, consider the situation illustrated in Fig. 2, where node A needs to

allocate a DSME-GTS to communicate with node B. The following steps are140

executed:

1. Request. Initially, node A transmits a DSME-GTS Request command

frame to node B. Node A specifies the number of requested DSME-GTSs

and the preferred slots and channels for allocation. In addition, a subset

of the Slot Allocation Bitmap is sent to inform node B about the slots145

that can be used. After transmission, node A waits for a reply command

frame from node B. If the reply frame is not received within a predefined

time interval, the allocation is assumed to be failed.

2. Reply. Upon receiving a request, node B selects the GTSs to allocate,

considering the preferences expressed by node A. If the preferred slots are150

not available, the next ones are considered. Specifically, node B compares

the received bitmap with its own, in order to find a number of common

free slots equal to the requested number of DSME-GTSs. If they are

found, node B updates its two data structures. Then, it creates a Reply

command frame including the indication of the newly allocated slots. The155

Reply frame is broadcast and its payload contains the address of node A.

3. Notify. When node A receives the Reply command frame, it adds the

newly allocated DSME-GTSs to its data structures. Then it broadcasts a

Notify command frame, containing the address of node B and indicating

the slots that have been allocated.160

Reply or Notify frames are broadcast to allow neighboring nodes to check po-

tential conflicts. To this aim, a node not involved in the allocation (e.g., C and
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D in Fig. 2) must check if the newly allocated slots – specified in the received

command frame – conflict with slots allocated to itself. If a conflict is found,

the node sends a Duplicated Allocation Notification frame to the source of the165

received command to inform that the performed allocation is not valid and must

be canceled. If no conflicts are detected, the node updates its bitmap to take

note of the allocated DSME-GTSs.

Figure 2: Example of a handshake for DSME-GTS allocation

3. Related work

The majority of the related work on DSME focuses on analyzing its perfor-170

mance [25] [26] or proposing modifications to improve its efficiency (e.g. energy

efficiency) at the steady state [27]. Only a few works study its performance dur-

ing network formation. Specifically, they analyze the initial association phase

in which nodes discover the DSME network through the reception of a beacon

message and perform the association handshake. In this work, instead, we fo-175

cus on the allocation of DSME-GTS, which is performed after the association.

Liu et al. [21] study the association procedure defined in the IEEE 802.15.4e

standard, showing that it might require many beacon intervals to complete. In

order to overcome the issue they propose an Enhanced Fast Association mech-

anism to reduce the contention among nodes due to the association handshake.180

Lee et al. [23], instead, study the distributed beaconing scheduling mechanism
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that regulates the emission of beacon messages. They show that beacon col-

lisions might occur frequently, thus causing long waiting time for the network

construction. To overcome this problem, the authors present a new beacon

scheduling algorithm, the Distributed Fast Beacon Algorithm. The problem of185

beacon scheduling is addressed also by Hwang et al. [22]. In order to introduce

a set of improvements to avoid beacon collision, the authors propose a modi-

fied version of the protocol, named DSME-E. A modified version of the DSME

protocol is also proposed by Sahoo et al. [24]. Specifically they present a set

of modifications to DSME that aims at reducing the association time and the190

overall energy consumption, i.e. a new contention channel access scheme and a

new beacon scheduling algorithm.

The only work that studies the GTS allocation procedure in beacon-enabled

IEEE 802.15.4 networks is Abdeddaim et al. [20]. The work proposes a method-

ology to adapt the CSMA-CA parameters dynamically. The approach, however,195

is specifically tailored for single-hop topologies, e.g. star networks. In this pa-

per, instead, we consider multi-hop topologies.

4. Experimental Scenario

In order to assess the DSME performance in a realistic environment, a DSME

implementation for the Contiki OS has been realized.200

The performance evaluation is carried out exploiting Cooja, an emulator for

WSANs. Using an emulator instead of real hardware is a common practice

when evaluating a network protocol for WSANs (e.g., Ancillotti et al. [13]).

Cooja, in fact, allows to evaluate DSME in a realistic environment, that can be

easily controlled and replicated. In particular, it can reproduce the behavior of205

real hardware, running the same binaries compiled for real devices, while wire-

less communications are simulated through well-known channel models. This

methodology has been adopted in order to run an exhaustive range of experi-

ments covering a wide range of scenarios and settings. Experiments based on

real devices are left for future work.210
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Table 2: Emulation Parameters

Parameter Value

Bit Rate 250 Kbps

Symbol duration 4 bits

Data Packet (Payload) Size 140 (127) bytes

ACK Size 11 bytes

Beacon Order (BO) 9

Multisuperframe Order (MO) 9

Superframe Order (SO) 5

Power consumption in RX state PRX 56.4 mW

Power consumption in TX state PTX 52.2 mW

Power consumption in Idle state Pidle 1.28 mW

The considered network topology is a regular grid, as shown in Fig. 3, with a

number of nodes that varies from 4 to 49. In the presented experiments, a mesh

communication scenario is considered. At the beginning of the experiment, all

the nodes are activated simultaneously, and each node generates a data flow to-

wards a random receiver, chosen among all the other nodes in the network. Such215

scenario is characterized by a high traffic demand. It has been considered in our

experiments to study the performance of the system in a worst-case scenario.

At every multi-superframe, each node sends a data packet, with the maximum

payload size allowed by the standard (127 byte), addressed to the chosen des-

tination. In order to enable multi-hop routing of traffic, a static routing based220

on shortest path evaluation is configured. By using a static routing, nodes have

immediate knowledge on the network topology and can immediately derive the

next hop for each data packet. Even though the contribution of the routing

protocol in the network formation process is well-known to be significant, in

this work a static routing is considered to focus on evaluating the dynamics of225

DSME, hence avoiding biases introduced by the routing protocol. The assess-

ment of routing protocols, such as RPL, on top of DSME is left for future work.
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DSME-GTSs for end-to-end traffic delivery of each flow are activated on demand

node-by-node. When a data packet is received from a neighbor, or generated

locally, the next hop is determined according to the static routing table. If a230

DSME-GTS towards the next hop exists, the packet is transmitted in the next

opportunity; otherwise, the allocation procedure is triggered first. Considering

that DSME-GTSs are allocated per next hop, multiple flows passing through

the same nodes can share the same DSME-GTS for data forwarding.

The allocation of DSME-GTS for data transmission is driven by the schedul-235

ing policy, which is not specified in the IEEE 802.15.4e standard. Considering

that the definition of a scheduling policy is out of the scope of this work, we

adopted a static allocation that guarantees the transmission of data avoiding

delays due to data buffering. To this aim, the Superframe Order (SO) has been

set to a value that allows the transmission of more than one packet in a single240

DSME-GTS, specifically four packets of maximum size, as four flows passing

through the same node is the worst case in our scenario. This configuration

eliminates potential delays due to buffered data, allowing the evaluation of the

pure network setup time.

The Multisuperframe Order (MO), instead, has been chosen to allocate a245

proper number of DSME-GTSs (about 100) with respect to a medium size net-

work, as the one studied in this analysis. Based on the chosen values of SO

and MO, a multi-superframe consists of 16 superframes. CSMA-CA parame-

ters are set following the default values defined in the standard (see Table 1).

Power consumption refers to the Chipcon CC2420 radio transceiver, commonly250

used in sensor nodes. They have been derived from the CC2420 datasheet[14],

considering a voltage equal to 3 V and a transmission power of 0 dBm. The

transmission range for all nodes is set to 25m, unless specified otherwise. Specif-

ically, nodes are deployed in the network so that they can communicate only

towards their one-hop neighbors, as shown in Fig. 3. Initially, an ideal channel255

and, thus, the disk model is considered, i.e. transmissions inside the disk are

not subjected to loss due to the channel. This allows to better assess the impact

of CAP reduction on the performance. Then, to make the analysis more real-
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istic, experiments with the Gilbert-Elliot channel model considering different

values of Packet Error Rate (PER) have been conducted and are presented in260

Section 8. The settings of the Contiki OS and the Cooja emulator are summa-

rized in Table 2, which also shows the values of the multisuperframe parameters.

CSMA-CA parameters are set to the default values (see Table 1).

For each experiment, ten independent replications have been run, according

to the method of independent replications. The following metrics are estimated265

along with 95% confidence intervals.

1. Network setup time, defined as the time interval between the beginning

of the experiment and the completion of the last DSME-GTS allocation.

Expressed in number of multi-superframes, this metric measures the time

required to allocate all the DSME-GTSs necessary to deliver all the data270

flows to destination. It provides the time required before the network

becomes fully operational.

2. Energy per node, defined as the amount of energy consumed, on average,

by a node during the network setup time. The energy, expressed in micro

Joule, is measured using the powertrace tool available for the Contiki OS275

[15].

Figure 3: Mesh topology considered in emulations
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5. Impact of CAP Reduction

CAP operations are very energy consuming, as nodes must set their radio in

reception mode for all the CAP duration. The CAP Reduction option has been

defined in order to significantly reduce energy overhead, suppressing the CAPs280

after the first one in the multi-superframe structure. For instance, given the

chosen configuration parameter values (see Table 2), in the considered scenario

the ratio between the number of CAPs with the option enabled and disabled is

equal to 1:16. CAP Reduction allows not only to reduce energy consumption,

but also to increase the number of available DSME-GTSs, as suppressed CAPs285

are replaced with 8 additional DSME-GTSs that can be allocated to nodes

for data communication. CAP suppression, however, has significant repercus-

sions on protocol’s operations and performance. Management packets, such

as control packets for DSME-GTS allocation/deallocation, can be exchanged

only during CAPs. Hence, by enabling CAP Reduction, the opportunities to290

transmit control packets are drastically reduced, thus increasing the latency in

allocating/deallocating DSME-GTSs.

In this section, the opportunity to enable this option is investigated by as-

sessing its effects, during and after the network formation phase, in terms of

network setup time and energy consumption.295

5.1. Network Formation

Fig. 4 shows the results obtained comparing the performance of the network

with CAP Reduction enabled (CR E ) and disabled (CR D), when networks of

different size are considered. As expected, enabling CAP Reduction increases

the network setup time (Fig. 4a) as the number of CAPs where control packets300

can be exchanged is reduced, thus delaying all the DSME-GTS allocation oper-

ations. The difference in performance between the two options increases as the

number of nodes grows up, because a larger network requires the allocation of

more DSME-GTSs, hence increasing the competition during the CAP. On the

other hand, the situation is different when energy consumption during network305
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Figure 4: Setup time (a) and Energy consumption (b) with CAP Reduction disabled and

enabled, ideal channel conditions

startup is considered. Fig. 4b shows that CAP Reduction helps in reducing

the energy consumed by each node, even though it requires a longer network

formation time. This can be explained considering that during the CAP nodes

must remain active in reception, while during a DSME-GTS a node can switch

its radio on the idle (or sleep) state (if the GTS is not allocated to the node310

itself), thus reducing dramatically its energy consumption.

5.2. Long-term Energy consumption

Once all the DSME-GTS allocations have been performed, CAPs still re-

main allocated, although they are not used, or they are used less frequently

since DSME-GTS allocation/deallocation are performed less frequently than315

during formation. For this reason, it is important to assess the impact of CAP

Reduction also during the operational phase, i.e., after the network formation

phase. The energy consumption during the operational phase, with and without

CAP Reduction, can be derived analytically. The energy consumption spent in

a multi-superframe by a single node can be calculated as follows:320

E = PidleTidle + PTXTTX + PRXTRX (1)

where PRX , PTX , Pidle are the radio power consumption while receiving,

transmitting or being idle, respectively, whereas TRX , TTX , Tidle represent the

amount of time that the radio spends in each state.

Following (1), and assuming that α packets of maximum size are always
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exchanged in each allocated DSME-GTS, the worst-case energy consumption of

a node can be derived. EE and ED denote the energy consumption with CAP

reduction enabled and disabled, respectively. Also, indicate by TCAP the CAP

size, TMD the multi-superframe duration (both expressed in seconds) and nTX /

nRX the number of DSME-GTSs allocated for transmission/reception. EE and

ED can be expressed as follows:

EE = PidleTMD

+ TCAP (PRX − Pidle)

+ nRX (TGTS (PRX − Pidle) − αTACK (PRX − PTX ))

+ αnTX (Tdata (PTX − Pidle) + TACK (PRX − Pidle))

ED = PidleTMD

+ 2MO−SOTCAP (PRX − Pidle)

+ nRX (TGTS (PRX − Pidle) − αTACK (PRX − PTX ))

+ αnTX (Tdata (PTX − Pidle) + TACK (PRX − Pidle))

where Tdata(TACK ) is the time for the transmission of a packet of maximum325

size (ACK). Obviously, nTX + nRX must be less than, or equal to, the overall

number of DSME-GTSs inside the multi-superframe.

For ease of comparison, the CAP Reduction energy ratio during the oper-

ational phase is considered, defined as the ratio EE

ED
. Fig. 5 shows the CAP

Reduction Energy Ratio versus nTX and nRX , where α is assumed equal to 4330

according to the experimental settings presented in Section 4 and the other pa-

rameter values that are shown in Table2. As can be seen, during the operational

phase, i.e. after network setup, CAP Reduction can help in reducing the energy

consumption of at least 56%. However, considering realistic values for nTX and

nRX (e.g., between 1 and 20, as in the considered experiments) it is possible335

to observe a higher reduction, up to 90%. In conclusion, CAP Reduction is a

key aspect in DSME configuration, considering that in a typical scenario nodes

are battery powered. The results presented so far show that CAP Reduction is

highly desirable as it can help in reducing the energy consumed by each node,
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both in the network formation and during the operational phase. Its activation,340

however, results in a longer network setup time, which may be unbearable for

some application scenarios. In the following section, the reason why high setup

times are experienced will be investigated. This will allow to better understand

how to reduce it.

Figure 5: Steady state CAP Reduction energy ratio

6. DSME-GTS Allocation Analysis345

In this section, the network setup phase is analyzed in detail to identify the

reason of high setup times when CAP reduction is enabled. Since the time

required to have the whole network operational depends on the time needed to

establish each DSME-GTS, the allocation procedure is analyzed to gather an

insight on the factors that influence its latency. Then, some possible solutions350

for reducing the latency introduced by DSME-GTS allocation are presented, so

as to shorten the overall setup time and make CAP reduction acceptable also

in scenarios where a fast network setup is desirable.

As explained in Section 2.2, DSME-GTSs are allocated through a three-way

handshake during CAP. Nodes compete to gain access to the wireless medium355

through the CSMA-CA protocol (Sec. II.A), which, however, does not guarantee

timed or collision-free transmission. Therefore, DSME control messages can

be delayed, or even dropped, if the channel is found busy or collisions occur,

delaying the completion of the allocation procedure or causing its failure.
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To evaluate the performance of the DSME-GTS allocation mechanism and360

highlight the causes of high setup times, the outcomes that can occur when a

node starts a DSME-GTS allocation request have been investigated. Four dif-

ferent outcomes are possible, depending on the result of the packet transmission

through CSMA-CA:

• Successful. The procedure terminates successfully. All the allocation365

messages are successfully delivered. It is worth to highlight that a suc-

cessful message exchange might result in a conflicting allocation, i.e. an

allocation that conflicts with another existing GTS. In this case, a dupli-

cated allocation frame is sent and another procedure is issued to negotiate

a different GTS.370

• Channel Busy. The allocation procedure fails as the Request message

is dropped for exceeding the maximum number of backoff stages. This

happens when the node finds the wireless medium busy for a number of

consecutive attempts (equal to the value of the macMaxCSMABackoffs

CSMA-CA parameter).375

• No Ack. The allocation procedure fails as the Request message is dropped

for exceeding the maximum number of retransmissions, set to macMaxFrameRe-

tries. This can be due to collisions with concurrent transmissions from

other nodes, or to a external interference.

• Timeout. The allocation procedure fails after the successful transmission380

of a Request message as the Response message is not received within a

maximum waiting time. The Response message might be dropped for

exceeding the maximum number of transmissions or backoff stages, or it

may have collided or been corrupted.

It is important to highlight that in the considered DSME implementation, when-385

ever a DSME-GTS allocation procedure fails or a conflict allocation is detected,

a new allocation procedure is triggered in the successive CAP, until a DSME-

GTS is finally established.
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Fig. 6 shows the fraction of the four outcomes in the experiments performed

in Section 5.1 in terms of the percentage with respect to the total number of390

allocation requests. As can be observed, only a small fraction of allocation re-

quests end successfully, which justifies the long time required for allocating all

the DSME-GTSs. The high number of unsuccessful allocation requests shows

that the wireless channel is often found busy and collisions can occur very fre-

quently. This can be explained considering that, in the considered setup, each395

node has one packet to transmit at network startup. Hence, all the nodes try to

access the channel during the same initial CAP. This results in a large number

of allocation requests that fail and are re-issued subsequently, requiring more

CAPs to be completed.

These results allow to draw some conclusions on the factors that cause longer400

delays in DSME-GTS allocations.

1. CSMA-CA default parameter values. The default parameter values are

very low. Therefore, backoff windows are short and few attempts are

performed in sending a packet. A proper tuning of these parameters would

be advisable to reduce the number of collisions and to give packets more405

chances to be transmitted.

2. Radio state during backoff. According to the CSMA-CA algorithm, before

sending a packet, a node waits for a random backoff time. During this time,

most CSMA-CA implementations set the radio to the idle (or sleep) state,

to minimize energy consumption. However, since in this state, incoming410

transmissions are ignored, control packets sent from neighbors are not

received, thus delaying DSME-GTS allocation.

3. Loss of Reply packets. Since Reply messages are sent in broadcast, they

are not acknowledged. When a Reply message is lost (e.g. due to a

collision), inconsistency between nodes occurs. The node that sent the415

Reply assumes a successful allocation, while the other node assumes a

failed procedure. As consequence, after a timeout, the initiator starts a

new allocation procedure, thus increasing latency and wasting resources.
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Figure 6: Outcomes for DSME-GTS Allocation Requests

7. DSME-GTS Allocation Improvements

In order to improve the efficiency of the allocation procedure, possible im-420

provements to mitigate the effects of the highlighted issues are analyzed, focus-

ing on the first two, as they do not require modifications to the DSME standard.

In particular, the tuning of CSMA-CA parameters is investigated, and a minor

modification of the node behavior, called Active Backoff, is proposed to increase

the probability in successfully receiving control messages during the allocation425

process.

7.1. CSMA-CA Parameter Tuning

Tuning the CSMA-CA parameters to satisfy communication requirements –

in terms of reliability, latency, energy efficiency, etc. – is a well-known practice in

the literature [16][17]. In the considered scenario, the goal is minimize the num-430

ber of CAPs necessary to complete the allocation procedure. However, tuning

the CSMA-CA parameter values is not a trivial task and results in a trade-

off. On one side, large backoff windows and numerous backoff/transmission

attempts would be desirable to efficiently manage contention. On the other, too

long backoff periods or too many backoff/transmission attempts may cause the435

transmission of allocation packets to extend over successive CAPs, thus further

increasing the overall allocation time.
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The latency of a DSME-GTS allocation/deallocation procedure is strictly

dependent on the time needed for exchanging Request and Reply messages. In

fact, nodes can start using the allocated DSME-GTS for data transmission right440

after the transmission/reception of the Reply message. Although the handshake

is concluded by the Notify message, this last message is only a notification mes-

sage that confirms the successful allocation of the DSME-GTS to the requesting

node. Based on this premise, the goal of CSMA-CA parameter tuning is to fit

the exchange of Request and Reply messages within a single CAP. To this end,445

it is worth noting that, according to the standard, a Reply message must be re-

ceived within a timeout period equal to macMaxFrameTotalWaitTime symbols

from the Request transmission. In particular, macMaxFrame-TotalWaitTime

can be expressed as follows [5]:

macMaxFrameTotalWaitTime =[(
m−1∑
k=0

2macMinBE

)
+
(
2macMinBE

)
× (macMaxCSMABackoffs −m)

]

× aUnitBackoffPeriod + phyMaxFrameDuration

where aUnitBackoffPeriod is the number of symbols forming a backoff slot,450

and m = min (macMaxBE − macMinBE ,macMaxCSMABackoffs). Starting

from this consideration, it is reasonable to assume that also Request packets

should be sent within macMaxFrameTotalWaitTime symbols from the instant

of their generation. Hence, to complete the allocation in just one CAP, the CAP

size must be455

CAP = 2 × macMaxFrameTotalWaitTime (2)

By solving equation (2), the CSMA-CA parameter values that allow to complete

the allocation within one single CAP can be obtained. Such set of parameters

is referred hereafter as Analytical Parameter Set (APS ). A possible approach to

determine the APS, fixed the Superframe Order (SO), is presented in Algorithm

1. Specifically, the macMaxFrameTotalWaitTime is calculated for each possible460
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Table 3: Derived Analytical Parameter Set (APS)

Parameter Value

macMinBE 6

macMaxBE 8

macMaxCSMABackoffs 4

macMaxFrameRetries 3

combination of parameter values (lines 2-5 ). The APS is chosen as the set of

values closer to fulfilling equation (2) (lines 6-10 ). To avoid a combinatory

search, the mechanism can be easily implemented through a lookup table. The

minimum and maximum values for the CSMA-CA parameters are indicated

in Table 1. The APS for the considered emulation scenario is summarized in465

Table 3.

In order to evaluate the allocation performance with this set of parameter

values, the same experiments presented in Section 5.1 have been carried out,

considering the CAP Reduction option enabled. As terms of comparison, the

Default Parameter Set (DPS, see Table 1) and the Shortest Setup Parameter470

Set (SSPS ) are used. The latter is the set of parameter values that provides

the best performance for the considered scenario, in terms of setup time. It

has been determined through experiments, by exhaustively testing all the pos-

sible combinations of values. Obviously, it has been used only for comparison

purpose, since it cannot be determined by nodes at runtime.475
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Figure 7: Network setup time (a) and Energy consumption (b) with different Parameter Sets

The results of comparison are reported in Fig. 7. As can be observed, the

APS setting succeeds in reducing significantly the network formation time, mit-

igating CAP congestion. In addition, APS performance is very close to the

one of the optimal setting, SSPS, which shows only a negligible improvement.

Furthermore, the parameter set that minimizes the setup time does not neces-480

sarily minimize also the energy consumption. In fact, APS exhibits an energy

consumption similar to SSPS, or even lower (e.g., 49 nodes). It is important

to highlight that the gain in performance obtained with parameter tuning in-

creases with the network size. This is because more nodes require the allocation

of a larger number of DSME-GTSs, resulting in a higher degree of contention.485

Hence, a proper tuning of CSMA-CA parameters is more beneficial.

In order to evaluate the performance of the APS setting when the num-

ber of nodes in contention varies, an additional set of experiments has been

performed. To this aim, different network densities are considered varying the

transmission/reception range of the nodes. Specifically we considered the 7x7490

grid scenario in which three different transmission ranges are considered, i.e.

25m (the value considered in the previous experiments), 32m and 38m. As shown

in Fig. 8, increasing the transmission range results in larger neighborhoods in

which an increasing number of nodes compete for channel access, i.e. 8, 12

and 20 nodes in the worst case. Although an increasing transmission/reception495

range would allow to configure a static routing with shorter routes, the same

static routes from the previous experiments are configured in the network. This
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guarantees a fair comparison as the same number of DSME-GTS are allocated

in all the scenarios.

Figure 8: Simulation scenarios with variable transmission ranges.

Fig. 9 reports the setup time and the energy consumption. As can be ob-500

served, the APS setting is confirmed to succeed in reducing dramatically the

network formation time and the energy consumption in comparison with DPS.

Compared with the optimal setting SSPS, APS performance is still close both in

terms of energy consumption and network formation time. The only noticeable

difference is displayed in the scenario with 20 nodes as neighborhood size, in505

which a limited increase in the gap between APS and SSPS network formation

time is shown. Such difference, however, is limited considering the high network

density and the very high degree of contention, which exacerbates the advantage

in adopting the optimal set of parameters.

7.2. Active Backoff mechanism510

In order to reduce the number of packets dropped during CAP, a modification

to the behavior of nodes during backoff is proposed. In particular, an Active

Backoff approach is introduced to allow nodes receiving packets also during a

backoff time. In other words, when a node starts the backoff procedure to send

a packet, it sets its radio to the reception mode, rather than idle or sleep. If the515

node starts receiving a packet during the backoff time, it interrupts the backoff

count and waits until the packet is completely received and, then, stores the
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(a) (b)

Figure 9: Network setup time (a) and Energy consumption (b) with different neighborhood

sizes

packet in a temporary buffer. Afterwards, the node resumes the backoff time,

subtracting the time spent for receiving the packet. As soon as the node has

performed its transmission, it processes the packet stored in the buffer.520

Figure 10: Example of DSME-GTS allocation with Active Backoff

Consider the example in Fig. 10 where node A requires a DSME-GTS to node

B and vice-versa. Since both nodes need to transmit a Request packet, they

start a backoff stage. In this example, node B chooses a shorter backoff time

and starts transmitting while node A is still waiting. In this case, the Active

Backoff mechanism allows node A to receive the packet. Once the backoff time525

ends, node A sends its own Request and processes the received packet. At this

point, since both node A and node B have received a Request frame, they start

another backoff procedure to transmit the Reply packet. Hence, the Active

Backoff mechanism allows to complete the Request-Reply exchange in just one

attempt. Conversely, without Active Backoff, the two nodes would have to530

start over the allocation procedure, as Request messages are not received by
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node A and node B. Although the Active Backoff does not require significant

modifications to the regular behavior of a node, the allocation of an additional

buffer is required. Since sensors are typically constrained devices with limited

memory, the allocation of an additional buffer might represent an issue. In the535

considered implementation, an additional buffer has been introduced to store

only one packet. Specifically, only the latest received packet is stored, which

overwrites any previous packet. It is important to point out that implementing

the Active Backoff mechanism does not imply any modification of the standard.

Nodes implementing Active Backoff can interoperate with other nodes that do540

not use it.

Figure 11: Network setup time with Active Backoff

The gain that can be obtained with Active Backoff is evaluated in Fig. 11,

which shows network setup time, with and without Active Backoff, when the

APS parameter set is used and CAP Reduction is enabled. As can be seen, the

Active Backoff helps in further improving the performance reducing the network545

setup time up to about 15%. For the sake of brevity, energy consumption is omit-

ted. However, the same trend as the network formation time has been observed

for all the considered configurations, with a reduction of about 15%. A com-

parison of the network setup time obtained with the two proposed mechanisms

against the default parameter values (DPS) is presented in Fig. 12. Compared550

to the original (default) configuration, the two proposed enhancements exhibit

a significantly better performance, allowing to reduce the network setup time
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of about 40-60%. In particular, the gain increases when the network becomes

larger and longer, as parameter tuning and Active Backoff help in mitigating

the contention. For the sake of brevity, energy consumption is not reported as it555

shows a trend alike the network setup time. A reduction of about 40-60% com-

pared with the default settings is reported in all the considered configurations

(e.g., with 49 nodes it drops from 1.05 J to 0.45 J). Although such performance

is not comparable with the setup time obtained without CAP Reduction, the

proposed improvements can make the network formation acceptable in numer-560

ous scenarios also with CAP Reduction enabled, allowing to significantly reduce

the energy consumption.

Figure 12: Network setup time: APS with Active Backoff vs. DPS

8. Evaluation with Lossy Channel

In order to assess the performance of the DSME-GTS allocation procedure

in a more realistic environment, experiments with lossy channel have been car-565

ried out. To this aim, the Gilbert-Elliot (GE) model has been used to simulate

packet errors/losses, as it provides a good approximation of fading in industrial

environments [18]. In addition, this model has been used in a number of previ-

ous performance analysis of industrial wireless systems, e.g. Brienza et al. [16]

and De Pellegrini et al. [19]. A continuous-time Markov Chain, consisting of570

two states, namely bad and good, models the channel for each receiver. When
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in good state, all packets are decoded correctly, whereas in bad state packets are

dropped, modeling high interference or drop in signal quality. Sojourn times in

the two states follow an exponential distribution and their average value deter-

mines the Packet Error Rate (PER) experienced during the entire simulation.575

Model parameters are derived using the same approach adopted by De Pellegrini

et al. [19] and Anastasi et al. [12], in which values are inspired from the real

measurements [18]. For instance, if PER is set to 10%, the resulting average

sojourn time in the bad and good state is 5.7 and 46.2 ms, respectively. Larger

values of PER are obtained by tuning the average sojourn time in the bad state580

accordingly, while leaving all the other parameters unchanged.

Fig. 13 shows the impact of the lossy channel over the network setup time.

With reference to the grid-network of 49 nodes, four different levels of PER

have been considered, i.e., 0%, 10%, 20% and 30%. As it can be observed,

the network setup time significantly increases as the PER increases, with DPS,585

APS and the proposed configuration with both APS and Active Backoff. This

is due to the fact that the loss of packets is compensated with retransmissions

to correctly deliver the messages of the DSME-GTS allocation procedure. This

increases the channel congestion and slows down the overall allocation process.

Moreover, when a Reply message is dropped, the whole DSME-GTS allocation590

fails after timeout and is repeated, as Reply packets are sent in broadcast. These

results, however, show that the proposed solution helps in significantly reduce

the overall setup time in all the considered scenarios. Most of the reduction

in the setup time is achieved when using APS instead of default parameters.

Active Backoff also helps in further decreasing the setup time.595

9. Conclusions

In this paper, the IEEE 802.15.4e DSME MAC behavior mode is analyzed.

Initially, the effects of the CAP Reduction option are evaluated, showing how

this option can significantly reduce nodes’ energy consumption. However, it in-

creases the network setup time. Experimental results highlight that this problem600
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Figure 13: Network Setup time with different PER levels

is caused by the DSME-GTS allocation procedure that requires a three-packet

exchange through a CSMA-CA protocol. When nodes compete to allocate

DSME-GTSs, a large fraction of these control packets are dropped, since the

maximum number of backoff stages and/or the maximum number of retransmis-

sions is exceeded. In order to reduce the network setup time, two solutions are605

proposed. The first one consists in a simple methodology for proper selection of

CSMA-CA parameter values. The second one consists in a minor modification

of the behavior of nodes, called Active Backoff, that allows reception of packets

even during backoff periods. Both the solutions reduce the collision probabil-

ity and increase nodes’ reception. Experimental results show that the network610

setup time can be drastically reduced up to 60%.
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