
IEEE TRANS. ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Generative Kernels for Tree-Structured Data
Davide Bacciu, Member, IEEE, Alessio Micheli, Member, IEEE, and Alessandro Sperduti, Senior Fellow, IEEE

Abstract—The paper presents a family of methods for the
design of adaptive kernels for tree-structured data that exploits
the summarization properties of hidden states of hidden Markov
models for trees. We introduce a compact and discriminative
feature space based on the concept of hidden states multisets
and we discuss different approaches to estimate such hidden

state encoding. We show how it can be used to build an efficient
and general tree kernel based on Jaccard similarity. Further, we
derive an unsupervised convolutional generative kernel using a
topology induced on the Markov states by a tree topographic
mapping. The paper provides an extensive empirical assessment
on a variety of structured data learning tasks, comparing the
predictive accuracy and computational efficiency of state-of-the-
art generative, adaptive and syntactical tree kernels. The results
show that the proposed generative approach has a good tradeoff
between computational complexity and predictive performance,
in particular when considering the soft matching introduced by
the topographic mapping.

Index Terms—generative kernels, hidden tree Markov models,
learning for structured domain, structured data processing

I. INTRODUCTION

S
TRUCTURED data appear in many real-world applica-

tion domains. For example, parse trees arise in natural

language processing tasks where a parse tree or a semantic

related tree structure is generated starting from a sentence

[1], [2]; moreover, tree-like representations/patterns can be

naturally derived, for example, from documents (e.g. [3]) and

HTML/XML documents in information retrieval [4], [5], [6],

structured network data in computer security [7], molecule

structures in computational chemistry [8], [9], and image

analysis. In all these application domains, learning plays a

crucial role since very often the user is interested in automatic

classification/regression tasks where, starting from a set of la-

beled instances, a classifier/regressor is pursued. Since data is

naturally organized in tree-like structures, learning approaches

able to directly deal with this kind of representation should be

preferred. Among all possible approaches, a prominent one

is the use of kernel methods [10] where kernel for trees are

used (e.g., [11]). The learning performance and quality of such

methods depends on the appropriateness of the underlying

kernel with respect to the nature of data and learning task.

This is especially true in the context of structured data, where

the lack of a natural metric on the structured domain makes

it difficult to select an appropriate kernel. For this reason,

when dealing with a tree structured domain where a-priori

information that can lead to an ad-hoc selection of a suitable

tree kernel is missing, it is better to try to devise a tree kernel

D. Bacciu and A. Micheli are with Dipartimento di Informatica, Università
di Pisa, Pisa, Italy, e-mail: bacciu,micheli@di.unipi.it
A Sperduti is with the Dipartimento di Matematica, Università di Padova,

Padova, Italy, e-mail: sperduti@math.unipd.it
Manuscript received ; revised .

directly from available data, taking care to avoid overfitting.

Possible approaches along this line consist in using data

mining techniques to select relevant structural features [12],

self-organizing neural networks for structured data [13], or

a posteriori feature space pruning strategies [14]. All these

approaches are mainly based on heuristics and/or are prone to

overfitting.

We think that a valuable and principled approach, in this

context, is to learn the metric on the structured domain

directly from available data. Our goal, in particular, is the

definition of a general family of adaptive kernels for tree-

structured data which can be straightforwardly applied to

different application domains, without the need of costly

kernel and feature engineering phases based on heuristics and

prior knowledge. To this end, we put forward the use of

generative probabilistic models for trees to learn to capture

the structural information needed to build the tree similarity

metric in the kernel. Previous works have suggested the use

of generative models to define both adaptive and non-adaptive

kernels for structured data. The Fisher kernel approach, for

instance, allows defining an adaptive kernel on the top of a

trained generative model by extracting Fisher scores from its

parameters: the Fisher kernel has been originally proposed in

the context of sequences by [15] and subsequently extended

to trees by [16], [17]. On the other side, generative models

are typically exploited in the context of graphs to define non-

adaptive kernels, such as in the marginalized kernel approaches

[18],[19]. Here, the generative model is used only to generate

random visits (walks or tree patterns, respectively) on which

a non-adaptive substructure match is computed.

This paper contributes by providing a very general way

to define adaptive tree kernels on the top of generative

probabilistic models for tree-structured data by efficiently

exploiting the structural information summarized by the latent

variables defining the hidden generative process of the struc-

tures. We provide an extensive account of the applicability

of the proposed kernels to a variety of generative tree models,

characterized by different underlying probabilistic assumptions

and generative processes. Specifically, we focus on strategies

based on generative probabilistic models involving hidden

Markov states, such as top-down [3], bottom-up [20] and

input-driven [21] Hidden Tree Markov Models (HTMMs),

as well as generative topographic mapping approaches for

structured data (GTM-SD) [22]. We explore different infer-

ence strategies to exploit the information encoded in the

hidden states of these models for the definition of adaptive

kernels, assessing them both in terms of kernel expressivity

and computational complexity. In particular, we study two

strategies for determining and weighting the contribution of

the single hidden states to structural similarity: point-wisely,

using Viterbi (or alike) algorithms to identify the most likely

This is a post-peer-review, pre-copyedit version of an article published in IEEE Transactions on Neural Networks and
Learning Systems. The final authenticated version is available online at:
http://dx.doi.org/10.1109/TNNLS.2017.2785292

IEEE TRANS. ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

state assignments, or cumulatively, using the hidden state

posterior assignment. In combination to this, we study how

different feature space encodings can be defined by varying

the amount of structural information allowed in the feature

space representation. Specifically, we show how to allow

the encoding of parent-to-child relationships appearing in the

trees, by representing them in the form of couples of hidden

states, like bigrams in text documents. Considering this type of

information enriches the expressivity of the kernel introducing

a relatively small computational overhead. The same approach

can be, of course, generalized to representing more articulated

structural patterns, at the cost of an increase in the kernel

complexity, as discussed later in the paper.

A second contribution of the paper is the introduction of

an alternative approach to compute structural similarities by

allowing soft-matching among the hidden states. The approach

described above allows increasing the expressivity of the

kernel by increasing the size of the hidden state multisets,

e.g. by a larger number of hidden states or by allowing

more complex structural matches (trigram, quadrigram, etc).

However, depending on the nature of the tree dataset, the

introduction of a larger feature space reduces the probability

that the intersection between the multisets-encodings of two

trees is not empty. The introduction of soft matching avoids

such problems and allows positive matches between different

hidden states encoding similar structural information, which

would otherwise be discarded in the hard-matching approach.

We use a GTM-SD [22] model as it allows a principled

approach to decide which hidden states should be considered

similar, based on a neighborhood function between projections

of the hidden state assignments on the generative map.

The last key contribution of this paper is of reference nature,

providing a unified view over the experimental performance

of the state-of-the-art syntactic and adaptive tree kernels in

literature confronted with the proposed generative kernels.

We propose a thorough experimental assessment comprising

7 publicly available benchmarks on tree-data classification,

spanning a variety of application areas, including parse trees,

structured documents, and biochemical data, with different

structural characteristics. The analysis focuses on assessing

both the predictive classification performance of the kernels as

well as their computational requirements, providing an useful

tree kernels cookbook.

The paper is organized as follows: Section II provides an

overview of the background on syntactic and adaptive tree

kernels in literature. Section III introduces a novel family of

generative tree kernels exploiting the structural information

captured by the Markov hidden states of the probabilistic tree

models. Section IV presents the experimental assessment and

Section V concludes the paper with a final discussion.

This article founds on two works [20], [22] concerning

generative models for structured data published recently in

this journal. Part of the content of this paper has appeared

in two conference papers [23], [24]. We therein collect those

independent contributions into a unified framework to system-

atically exploit them for the construction of adaptive kernels

with discriminative aims. The content of the conference papers

has been widely and significatively extended by considering a

more general formulation of the kernel family (which previ-

ously included only point-wise hidden state multisets), a larger

selection of generative models (previously considering only a

single bottom-up model), a novel computational complexity

analysis, and a stronger and wider experimental assessment

considering a larger pool of datasets and tree kernels (over

85% of the experimental analysis is novel).

II. BACKGROUND

Kernel functions define similarity measures upon which

learners, e.g. support vector machines, are built to solve clas-

sification/regression problems. Several kernel functions have

been proposed in the past-years to deal with structured data

(see [25] for an early survey of the main approaches within a

clearly defined taxonomy). Convolutional kernels are among

the most popular tree kernels as they efficiently exploit the

hierarchical nature of tree-structured data. The key idea is to

construct a kernel for compound objects by measuring the

matching between their composing substructures. Measuring

such match ultimately entails defining a similarity/dissimilarity

metrics for two structured pieces of information, which is not

a straightforward task.

A popular approach for the definition of such tree sim-

ilarity is by means of syntactic kernels, that are a class

of convolutional tree kernels where the degree of matching

between two trees is determined by counting the number of

common substructures among the trees [11]. This amounts to

seeking a match between edges, nodes and labels in all the

composing substructures generated by following syntactical

rules on the structure of the tree. The various approaches in

literature differentiate by the way they identify the composing

substructures and by how they weigh the structural matches,

that is a key factor in determining the computational complex-

ity of the kernel. The Subset Tree kernel (SST) by [11], for

instance, counts the number of matching proper subtrees by a

recursive procedure that is O(N2
T), where NT is the maximum

number of nodes among the two trees. The Subtree kernel (ST)

[26] restricts to matching only complete subtrees, making it

computationally more efficient than SST, i.e. O(NT logNT),
but results also in a reduced expressivity. The elastic tree

kernel [27] instead extends SST by allowing matching nodes

with different labels and matching between substructures built

by combining subtrees with their descendants, but at the cost

of an O(N3
T) complexity [28]. The Partial Tree kernel (PT)

[29] relaxes SST to allow partial productions of the parse-

tree grammar, basically allowing to perform partial matching

between subtrees at the cost of an increased computational

complexity, that is O(N2
T · L3

T), where LT is the maximum

outdegree among the trees. The Route kernel [30] computes

the matching between two trees in terms of number of common

routes, that is the shortest path linking two nodes in a tree rep-

resented by the sequence of edge indices. A similar approach

is taken by [31] where the kernel function is defined in terms

of subpath sets, that are routes capturing vertical structures in

rooted unordered trees. The subpath kernel has also an efficient

version [5] that is O(N2
T) in worst case, but can run in linear

time on average. Other proposed tree kernels are reviewed by

[28], [32].

IEEE TRANS. ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

Syntactic kernels are defined based on the syntax of the

structured data representation, which often formally describes

the semantics of the data. As such, they require some form of

advanced knowledge about the relevance, or the weight, that

can be assigned to the various forms of substructure match.

For instance, some tasks might require to weight more a label

match between two nodes u and u′ over an exact match of their

corresponding subtrees xu and xu′ . Such knowledge is not

always available and is, often, application and data dependent.

Within this context, adaptive kernels have gained interest as

they provide a means for inferring suitable similarity measures

directly from data. Adaptive kernels can be seen as a form of

distance metric learning, whose objective is the acquisition of a

similarity metric (with the properties of a kernel) from a given

collection of training instances. Generative kernels are a pop-

ular approach to construct adaptive kernels by obtaining such

similarity information from a probabilistic model describing

the generative process of some sample data.

The Fisher kernel [15] denotes a general class of generative

kernels that can be derived out of any parametric generative

model. The underlying idea of the approach is to represent an

input sample x in a feature space defined by the derivative

of the log-likelihood logP (x|θ) of the generative model, with
respect to its parameters θ. The Fisher kernel has been intro-

duced by [15] with application to sequential data classification,

using the Hidden Markov Model (HMM) as generative model

for sequences. In [16] it has been extended to deal with tree-

structured data using the standard HTMM [3] as a generative

model for the structured samples. Note that the Fisher tree ker-

nel is not convolutional, since the matching between two trees

is performed based on the similarity between the respective

Fisher scores, which does not allow direct matching between

substructures. The computational complexity of the Fisher

kernel depends on the parameterization of the underlying

generative model. In [33] it has been discussed an alternative

feature space obtained by concatenating the sufficient HTMM

statistics, as well as a tree kernel based on the probability

product approach by [34]. A comparative analysis by [33]

shows that the Fisher Kernel has the best performance among

the three in tree classification tasks and is therefore used as a

baseline in the experimental assessment in Section IV.

Marginalized Kernels [35] put forward a different approach

to designing kernel for structured data which can exploit

the information captured in latent variables of a generative

model. The role of the generative model in the definition

of the marginalized kernel depends on the specific kernel

instantiation. The marginalized kernel for sequences [35], in

particular, exploits HMMs to define a joint kernel that counts

the co-occurrences of hidden states and observed labels in

the sequences and weights them by the posterior probabilities

of the HMM hidden states computed through the forward-

backward algorithm. The marginalized kernel has been later

extended to graphs [18], [36], [37], using a joint kernel that

counts the number of matching pairs of random walks in

two graphs, where the latent variable h is a sequence of

graph vertices generated by a first-order Markov random walk

(as in HMM for sequences). A number of graph kernels

have been proposed using a similar intuition of measuring

graph similarity in terms of matching common subpaths [38]

and subtrees [19], [39]. However, these do not exploit the

statistical features of a generative model trained on the struc-

tured samples, whereas they resort to (partial) graph visits

to generate the substructure features and then perform hard

syntactical matching between the substructures to measure

graph similarity. The kernel family introduced in this paper,

on the other hand, puts forward a soft matching approach,

where the structure similarity metric is data-induced thanks to

the exploitation of the information captured by the underlying

generative model. This approach partially resembles the early

works on marginalized kernels for sequences and random

walks which, nevertheless, have never been defined to handle

specifically tree-structured data.

The key difference between the two approaches lies in the

role and exploitation of the generative model. In particular, the

proposed kernel family uses a probabilistic model that provides

a distribution for the specific class of structured samples. We

relax the strict syntactical sequence matching that is used to

compute the marginalized kernels, introducing a measure of

structural similarity based on the information summarized by

the Markov hidden states, possibly complemented by some

local structural properties such as parent-child relationships.

Section III-D shows how such relaxation of the structure

matching principle yields to kernels that are linear in the

size of the structures. Note that in the marginalized approach

the probabilistic model depends solely on the topology of the

single sample graph for which it generates the sub-graph visits

and is thus independent from the graph population it belongs

to (i.e. the structured training set). In the proposed approach,

on the other hand, the generative model acquires a distribution

that consider the full population of training structures. In other

words, the marginalized kernel is not defining an adaptive

approach and, anyway, the application of the marginalized

graph kernel to the specific case of tree-structured graphs

would lead to a different approach (and to different results)

with respect to that proposed in this paper.

The Activation Mask (AM) kernel [13] constructs an adap-

tive convolutional kernel from a trained unsupervised recursive

neural network for structured data, that is the Self Organizing

Map for Structured Data (SOM-SD) [40]. The SOM-SD

extends the Self Organizing Map (SOM) approach by allowing

to process structured input by learning a topological map such

that similar trees tend to activate the same neurons on the map.

The key intuition underlying the AM kernel is to define a

feature space having one dimension associated to each neuron

of the map. Then a vectorial representation for a tree can be

obtained by considering which neurons are activated by the

nodes of the tree. Once the above representation has been

computed for any pair of trees, a kernel can be promptly

defined as the dot product of these representations.

III. GENERATIVE KERNELS ON HIDDEN MARKOV STATES

We introduce scalable generative tree kernels exploiting

the information captured by the hidden Markov states of the

underlying probabilistic tree model. Section III-A discusses

a family of generative tree kernels based on the concept of

IEEE TRANS. ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

hidden state multiset and on the use of the Jaccard multiset

similarity. Section III-B discusses two alternative approaches

to compute the multiset encoding of a tree from a trained

generative model, while Section III-C shows how a topology

induced on the Markov states can be exploited to derive a

convolutional generative kernel capable of computing direct

matches between tree substructures.

A. A Generative Kernel Family on Hidden States Multisets

Generative approaches for trees allow modeling probabil-

ity distributions over spaces of trees. This is achieved by

generalizing the HMM approach for the sequential domain,

through learning of an hidden generative process for labeled

trees, that is regulated by hidden state variables modeling the

structural context of a node and determining the emission of

its label. By borrowing the nomenclature from HMM, these

models are typically referred to as Hidden Tree Markov Models

(HTMMs). Earlier on this journal [20], we have shown how

different directions of the generative process result in models

with different probabilistic assumptions and representational

capabilities. In this context, it has been proposed the bottom-

up HTMM (BHTMM) [20] that defines a generative process

that composes the child subtrees of each node in the tree in

a recursive fashion, from the leaves to the root of the tree.

It has been shown [20] how this allows to capture more dis-

criminative structural information with respect to the top-down

HTMM [3] (i.e. the standard HTMM in Section I), which

implements a generative process for all paths from the root to

leaves of the trees. Both THTMM and BHTMM implement a

homogenous generative process by learning an unconditional

model P (xn|θ), where the input trees xn are the outcome

of a generative process that depends solely on the model

parameters θ. Alternatively, the Input-Output BHTMM (IO-

BHTMM) [21] defines a non-homogenous approach that al-

lows learning the input-conditional model P (yn|xn, θ), where
the input tree xn conditions the generative process of an output

structure yn that, in a supervised-learning interpretation, might

be understood as the target.

Notwithstanding the differences in the generative processes,

such probabilistic tree models share the common intuition

of introducing multinomial latent variables Qu, associated

to each node u and referred to as hidden states, to allow

simplifying the conditional probabilities underlying the model.

This is realized by introducing a set of hidden state variables

associated with a state transition dynamics that follows the

direction of the generative process, e.g from a node u towards

its children chl(u) for the top-down case. Specifically, an

observed tree xn is modeled by a set of hidden state vari-

ables {Q1, . . . , Qu, . . . } following the same indexing as the

observed nodes u ∈ Un, where Un is the set of nodes in

xn, and assuming values on the discrete set of hidden states

{1, . . . , C}.
The hidden states variables essentially serve to summarize

structural information concerning tree components, providing

an adequate context, e.g., for the emission of a node label. For

instance, in the bottom-up BHTMM, an hidden state Qu can be

thought of as encoding information on the substructure rooted

on the u-th node. By exploiting such rich and, yet, compact

representation of the structured information, we introduce an

efficient generative kernel for trees founding on the concept

of hidden states multisets. Roughly, each tree is represented in

terms of its associated hidden states and structure similarity

is computed on the basis of overlap in the hidden states’

configurations. More specifically, given a trained HTMM, we

transform a tree x into a bag-of-states, that is a vector of

hidden state counts, similarly to how textual documents are

represented as vectors of word counts.

The computation of the multiset encoding of a tree entails

the estimation of its most likely hidden state assignment. Such

an estimate can be obtained through various approaches that

differ for the interpretation of what an optimal hidden state

assignment is and that yield to different multiset encodings

of the tree. We focus on two widely accepted formulations

which are backed up by two robust and efficient inference

algorithms for HTMM, that are the Viterbi algorithm and the

Upwards-Downwards algorithm. The Viterbi Algorithm [41]

is a dynamic programming approach that serves to estimate

the hidden states that maximize the joint probability with the

observed tree x, i.e.

max
q

P (X = x,Q = q), (1)

where q is a (generic) hidden state assignment for the observed

tree x. The Upwards-Downwards algorithm, on the other hand,

is an extension to trees of the Forward-Backward inference

algorithm for HMMs on sequences [41] which allows to

compute the posterior of the hidden states variables given the

observed tree x, i.e.

P (Qu = j|x), for j ∈ 1, . . . , C. (2)

Rather than associating a single hidden state to each node

of the observed tree, the posterior allows to weight the

contribution of each hidden state j to the node, yielding to

a denser, yet potentially more informative multiset encoding

of the tree.

Different bag-of-states encodings can be defined depending

on the amount of syntactical (structural) information that we

want to introduce in the kernel feature-space representation.

In this work, we consider two forms of bag-of-states, shown

in Fig. 1, corresponding to unigram and bigram hidden states

multisets. The unigram is the simplest form of multiset that

is based on measuring the occurrence of each hidden state

independently for each node of the structure. In other words,

the unigram encoding defines a mapping Φ : T → R
C from

the space of tree structures T to a C-dimensional feature

space, such that the i-th component of the feature vector,

i.e. Φi(xn), measures the occurrence of the i-th hidden state

in structure xn (see left of Fig. 1). How such occurrence is

measured, depends on the type of inference algorithm used

and on the weight associated to the hidden state of the specific

node u (e.g. Wu(i) terms in Fig. 1). Section III-B provides

details on two encodings associated with Viterbi and Upwards-

Downwards state inference.

The unigram feature-space captures information on the

prevalent topics in the tree, but does not convey any structural

IEEE TRANS. ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

BIGRAM

UNIGRAM

i, ji

k

k j

i

i, k
W4(k)

W5(j)

W2(i)

W2(i, k)

W2(i, j)

j

x6

x3

x5

x1

x4

x2

Fig. 1. Examples of unigram and bigram hidden states multisets for an
example BHTMM generative model. In the unigram representation (left), the
i-th vector component measures the occurrence of the i-th hidden state in the
tree; the occurrence is weighted by a term (i.e. W2(i),W5(j) and W4(k) for
hidden states associated to nodes 2, 5 and 4, respectively) that depends on the
inference algorithm used to estimate hidden-state assignment. In the bigram
(right), there is a vector component for each pair of hidden states (e.g. i, j):
the corresponding entry stores co-occurrence information concerning the first
hidden state (e.g. i) being associated to a node whose child is assigned to
the second hidden state (e.g. j). Occurrence is weighted by a term Wu(i, j)
similarly to the unigram case.

information, besides that captured by the generative model

and conveyed by the hidden state assignment. To introduce

some form of syntactical knowledge, we might be interested

in modeling the co-occurrence of hidden-states in a parent-

children relationship (see right of Fig. 1). This is similar to

when, in document analysis, we model the co-occurrence of

two adjacent words in a text by means of a word bigram. In

analogy to this, we define an hidden state bigram, where an

input tree xn is transformed in a (C2)-dimensional feature-
vector Φ(xn), such that its ij-th element Φij (x

n) measures
how often a node u is associated to the i-th hidden state,

when its child ch(u) is associated to the j-th hidden state.

The bigram encoding allows to represent the co-occurrence

of hidden states patterns between a parent node and each

of its children taken independently, thus providing the kernel

with some form of (partial) structural information. Note that

such a multiset encoding approach can be taken further by

introducing increasing amounts of syntax in the feature space

(e.g. by considering the (L + 1)-gram of a node with its L

children), at the cost of an increase in feature number.

Once obtained a multiset representation for the trees, we

need to define an appropriate kernel for such a feature space.

We propose the Jaccard similarity [42], that is a well known

metric for comparing multisets and that, in its most general

form, writes as

J(Z1, Z2) =
f(Z1 ∩ Z2)

f(Z1 ∪ Z2)
(3)

where f is a suitable function (e.g. cardinality). For the

purpose of this paper, we define the Jaccard kernel for trees

as the multiset Jaccard similarity

kjac(x
1,x2) =

∑D

i=1 min(Φi(x
1),Φi(x

2))
∑D

i=1 max(Φi(x1),Φi(x2))
(4)

where Φ(·) is one of the multiset encodings discussed above

(and the associated weighting schema) and D is the cor-

responding feature space size (e.g. D = C2 for a bigram

encoding). Our choice is motivated by the fact that Jaccard

favours matching items over non-matching ones, e.g. with

respect to linear/cosine product, which we expect to result in

a structural similarity that favours common substructures over

non-shared ones.

The proposed approach defines a broad family of generative

tree kernels whose actual instantiation depends on

1) the underlying generative model: as discussed early in

the section, probabilistic tree models can differ for the

direction of the generative process (e.g. bottom-up, top-

down) as well as for its homogeneity (e.g. input-driven

vs homogenous models);

2) how hidden state occurrence is weighted: this is mostly

influenced by the inference algorithms used to estimate

the hidden state assignment, the most commonly used

being the Viterbi and Upwards-Downwards algorithms;

3) the amount of syntactical information introduced in

the feature space depending on the multiset type (e.g.

unigram, bigram, etc.).

In the following, we discuss and evaluate different kernel

instantiations resulting from different design choices at the

level of generative tree models, inference algorithms and

multiset types. We discuss how the Viterbi and Upwards-

Downwards algorithms can be used to obtain multiset encod-

ings that differ in the way they measure and weight hidden-

state occurrence. In particular, we focus our analysis on the

unigram and the bigram representation, and on a combination

of the two, obtained by concatenating the unigram with the

bigram into a (C+C2)-dimensional feature space (unibigram
in the following).

Note that the proposed generative kernel approach is not

limited to dealing with tree-structured data, being enough gen-

eral to be seamlessly applied to generative models and data-

types other than those presented in this paper. For instance,

classical HMMs for time series can be used to obtain a bag-of-

states encoding for sequential data and to define a generative

Jaccard kernel for sequences. The same approach can be used

for any probabilistic model within the family of HMMs with

discrete state-space. More generally, the proposed multiset

encoding can be applied to the wide family of latent variable

models with multinomial latent space, e.g. Probabilistic Latent

Semantic Analysis [43].

B. Computing Multiset Encodings

The Viterbi and Upwards-Downwards algorithms address

two fundamental inference problems in HTMM, providing

two different forms of hidden state information associated

to an observed tree. These two algorithms can be exploited

to define two alternative approaches to measure hidden state

occurrence, ultimately yielding to different multiset encodings

for the tree. On the one hand, the Viterbi algorithm provides

information on the single most likely hidden state that can

be associated to each node in a tree by maximizing the joint

probability in (1). In this context, it is natural to assume that

a constant weight (e.g. 1) can be associated to each hidden

state occurrence determined by the Viterbi algorithm. On the

other hand, the Upwards-Downwards algorithm provides a

node-dependent weight (i.e. the posterior in (2)) measuring

IEEE TRANS. ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

the contribution of each hidden state to the single nodes of

the tree. In the following, we discuss the multiset encodings

associated to the two inference algorithms and we show how

their computation can be embedded in the steps the respective

inferential procedures.

The solution determined by the Viterbi Algorithm for the

optimization problem in (1) provides the most likely hidden

state assignment Q∗
n,u for each node u in an input tree xn.

By means of such Viterbi states, it is possible to compute

a Viterbi-unigram encoding by counting the occurrences of

the single hidden states in Q∗
n,u. Given a tree xn and its

associated hidden state assignments Q∗
n,u, it is transformed

into a C-dimensional feature-vector ΦV (xn) such that its i-th
component is

ΦV
i (x

n) =
∑

u∈Un

δ(Q∗
n,u, i) and i = 1, . . . , C (5)

where Un is the set of nodes in the n-th tree and δ(·, ·) is the
Kronecker function. Similarly, we can define a Viterbi-bigram,

where an input tree xn is transformed in a (C2)-dimensional
feature-vector ΦV (xn), such that its ij-th element is

ΦV
ij
(xn) =

∑

u∈Un

∑

l∈ch(u)

δ(Q∗
n,u, i)δ(Q

∗
n,l, j)

and i, j = 1, . . . , C.

(6)

where ch(u) is the set of children of node u. In practice,

the encodings in (5) and (6) use the Kronecker function as

a weight Wu(i) for hidden state occurrence, such that the

counts of a multiset component are increased by one each time

the corresponding hidden state configuration is found in the

Viterbi states for the tree. Both feature-space encodings can

be computed by a single visit of the tree which, for efficiency,

can be embedded in the Viterbi recursion with only a minor

modification in the (constants of the) Viterbi computational

complexity. The Supplemental Material provides a procedural

view of the computation of the bigram multiset for a BHTMM

that exploits its Viterbi algorithm.

The Upwards-Downwards algorithm computes the posterior

probability of the hidden states of the nodes of an observed

tree by exploiting a decomposition of the posterior into two

terms that can be computed recursively through and upwards

visit of the tree followed by a downward visit. The details of

the Upwards-Downwards algorithm depend on the underlying

generative model and are omitted here: the reader is referred

to the original papers of the various HTMM models for the

details. Posteriors provide a measure of how much hidden

states contribute to the generation of the observed tree: there-

fore, they can be exploited as weighting factors Wu(i) in the

multiset encoding. The posterior-unigram, for instance, can be

computed from the posterior in (2): given a tree xn and its

associated single state posterior ǫn,u(i) = P (Qu = i|xn), it is
transformed into a C-dimensional feature-vector ΦP (xn) such
that its i-th component is

ΦP
i (x

n) =
∑

u∈Un

ǫn,u(i) and i = 1, . . . , C. (7)

The Posterior-bigram can be computed using an higher-order

posterior

ǫln,u,chl(u)
(i, j) = P (Qu = i, Qchl(u) = j|xn),

that is the posterior probability of a node u being in the i-th

state while its l-th child is in state j. By this means, an input

tree xn is transformed in a (C2)-dimensional feature-vector
such that its ij-th element is

ΦP
ij
(xn) =

∑

u∈Un

∑

l∈ch(u)

ǫln,u,chl(u)
(i, j)

and i, j = 1, . . . , C.

(8)

Similarly to the Viterbi case, the posterior encodings can

be computed as part of the Upwards-Downwards procedure:

the Supplemental Material exemplifies the steps needed to

compute the posterior-bigram multiset using a BHTMM.

C. Inducing Topology on Markov States

The Jaccard kernel is based on an hard-matching between

the hidden state labels in the two trees being considered.

In fact, the encoding of a tree into an hidden state multiset

essentially accounts to a relabeling of the tree, where node

labels represent the hidden states assignments for the node

and its neighbors. The kernel then considers two nodes having

exactly the same state-label as a positive match, i.e. they are

similar, while different hidden state labels mean no similarity.

One drawback of this hard-matching approach is that it does

not account for the possibility that two different hidden states

might actually encode very similar structures, and thus assigns

null similarity to their match. Another drawback is associated

to the sparsity problem that may result from increasing the size

of the hidden state space. Both problems can be circumvented

by introducing a soft matching for the hidden states which,

however, cannot be allowed between any couple of hidden

states due to computational feasibility reasons.

A principled approach to determine which hidden states

should be considered for the soft matching is to induce

a topographical organization in the hidden states of the

Markov model. By this means, distinct Markov states that are

neighbors with respect to the topographical principle can be

considered to be encoding similar structural knowledge. The

Generative Topographic Mapping for Structured Data (GTM-

SD) [22] implements such a constrained Markov model. By

exploiting the information captured by the BHTMM hidden

states, it provides a projection of a tree on the topographic

map, such that similar structures are projected to nearby points

on the map. The GTM-SD constrains the hidden states of a

BHTMM to follow a topographical organization, by assuming

that the hidden states Qu are indexed by C latent centers of

a bi-dimensional GTM map [44] (see Fig. 2). In other words,

the assignment Qu = i indicates that the u-th node is assigned

to the i-th hidden state which, in turn, is associated to the

bi-dimensional latent point ci in the GTM map, as in Fig.

2. Following the ideas in [44], the topologically constrained

hidden states are obtained by generating the parameters of

the node emission probabilities through a continuous smooth

mapping Γ(·) from the GTM-SD lattice to the data space.

IEEE TRANS. ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

x1

Φ(x2)

Φ(x1)

x2

Fig. 2. Example projection of two trees (on the right-side), x1 and x
2, on

the bi-dimensional GTM-SD map (the square on the left-side). The smooth-
mapping Φ(·) projects each node to a point in the topological map. The
exact projection point depends on the hidden state assignment of the node.
Topographic organization ensures that similar structures are projected closely
on the map. See for instance the two substructures in the dotted squares: since
they have a similar structure, their roots are projected close on the map (i.e.
the two nodes enclosed by the rounded square on the map).

The bottom-up generative process in GTM-SD allows to

project each substructure composing a tree to a bi-dimensional

latent point resulting from the hidden state assignment of

the node acting as root of the substructure. This provides

a distinctive fingerprint of the tree on the topographic map,

corresponding to the projection of all its substructures on the

map, as shown in the example in 2. Such a fingerprint can

be exploited to define the soft-matching kernel by borrowing

on the ideas of the Activation Mask (AM) kernel by [13]. In

particular, we allow only hidden states that have a topographic

distance below a user defined value to be considered for the

soft-matching and we formulate a similarity measure between

structures based on the distance between the points on the map

resulting from their projection.

In order to compute the kernel, we need first to clarify

how the tree-projection process in Fig. 2 works. To this end,

consider a trained GTM-SD model: the projection of a tree

xn on the topological map is obtained by mapping its root

onto the lattice by using its hidden state assignment Q1.

Several approaches exist to obtain such projection [22], again

depending on the type of weighting given to the hidden states,

as for the multisets encodings in Section III-B. The mode

projection maps the tree to the latent point ci corresponding

to the most likely hidden state assignment Q1 = i for the

tree root, resembling the Viterbi encoding approach. Clearly

this projection does not exploit the continuity and smoothness

properties of the map, as it collapses all projections solely

on the (finite and discrete) latent centers ci of the map. By

following the posterior encoding approach, on the other hand,

we are allowed to map a tree xn to its posterior mean, i.e.

the average of the latent point centers ci, weighted by the

respective posterior probabilities P (Q1 = i|xn) , that is

X(xn) =

C
∑

i=1

P (Q1 = i|xn) · ci. (9)

The projections provided by (9) span the whole topographic

map, with an intrinsically superior discrimination power with

respect to mode projection. The posterior mean projection for

each subtree xn
u (rooted on node u of xn) can be computed

as part of the upwards recursion in the Upward-Downwards

algorithm in Section III-B, whose outcome is the posterior

probability P (Qu = i|xn
u) (see [22] for details). By this

means, we take a compositional approach where the hidden

state assignment for node u is determined using only infor-

mation propagated from the subtree xn
u , and discarding the

contextual information from the rest of the xn structure. This

can be done very efficiently by considering u as the root node

of an isolated tree xn
u . In other words, this is equivalent to

projecting the subtree xn
u on the map using (9), where the

upwards parameter P (Qu = i|xn
u) is used in place of the

contextual posterior P (Qu = i|xn).
The posterior mean mechanism provides a way to compress

structural information to points on a bi-dimensional map. To

define the feature space representation for our soft matching

kernel, given a tree xn, we first obtain the hidden state activa-

tions for each composing subtree xn
u using the compositional

posterior P (Qu = i|xn
u). Then, we project all subtrees on the

map coordinates returned by (9), by incorporating projection

computation in the steps of the upwards recursion: see the

Supplemental Material for an algorithmic description of this

process. Figure 2 shows that this results in a feature-space

where a tree is encoded by the posterior mean projection of

all its nodes onto the GTM-SD map. Evaluating the similarity

between two structures, in this context, becomes a matter of

computing distances between points on the GTM-SD map. To

this end, we define the following weight function between two

generic points p and p′ on the map, i.e.

Tǫ(p, p
′) =

{

ǫ− d(p, p′), if d(p, p′) ≤ ǫ

0, otherwise
(10)

where d(p, p′) is the standard Euclidean distance. The term ǫ

determines a neighborhood for the points on the map which

regulates the influence of distant substructures in defining

the kernel-induced similarity measure. In other words, it is

the parameter regulating the soft-matching among the states,

determining which hidden states configurations have to be

considered sufficiently similar.

The resulting GTM-SD Activation Mask kernel (AM-GTM,

in short) between trees x1 and x2 is defined as follows

kam−gtm(x1,x2) =
∑

u∈U1

∑

u′∈U2

Tǫ(pu, pu′) (11)

where pu = X(x1
u) and pu′ = X(x2

u′) are the posterior

mean projections of subtrees x1
u and x2

u′ from tree x1 and x2,

respectively. To demonstrate that the weight function Tǫ(p, p
′)

in (10) is a kernel (and so is kam−gtm), we can exploit

the definition of Wedland functions [45], that are a family

of piecewise polynomial covariance functions with compact

support. A simple family of Wendland functions is that based

on univariate polynomials and it is characterized by positive

definiteness on R
d with support on the unitary compact.

Among the members of this family, we are interested in the

following Wendland function

φ1,0 =

{

(1 − r), if r ≤ 1

0, otherwise
(12)

IEEE TRANS. ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

that is ensured to be positive definite in R with support on

compact [0, 1] [46]. When r is the Euclidean distance, eq.

(12) is equivalent to the weight function Tǫ(p, p
′) apart from

the fact that (10) has support on the compact [0, ǫ]. Therefore,
Tǫ(p, p

′) defines a positive definite kernel on the ǫ-compact

[0, ǫ], yielding to Gram matrices of increasing sparseness as

the radius of the hyperball ǫ approaches zero.

AM-GTM is an adaptive unsupervised kernel since it de-

pends on a topological grouping of the tree structures that

is learned by the GTM-SD directly from the data in an

unsupervised fashion. Since it is completely oblivious of the

task target, kernel fitting can be performed only once for

different computational learning tasks, with a positive impact

on computational effort. Compared to the AM kernel for

the SOM-SD model [13], AM-GTM allows a finer grained

exploitation of the map, where the GTM-SD smooth map-

ping yields to densely populated yet discriminative map by

exploiting the continuous latent space. SOM-SD, on the other

hand, is based on a discrete lattice and it is thus constrained

to represent nodes (subtrees) through a finite set of discrete

coordinates. Hence, the discriminative quality of AM-SOM

kernel is strongly dependent both upon the size of the SOM-

SD lattice, which directly determines the resolution of the

kernel, as well as on the choice of the neighborhood parameter

ǫ. Too small ǫ values can in fact induce excessive sparsity in

the kernel matrix, while too large values may allow too much

noise into the kernel. AM-GTM, on the other hand, naturally

defines a dense kernel with a limited sensitivity to the choice

of the neighborhood parameter.

D. Generative Kernels Computational Complexity

The computational complexity of the generative kernels, and

of adaptive kernels in general, is the result of two operations.

The former is associated with the inferential process comput-

ing the parameters/scores used to transform the input tree in

its feature space representation (e.g. map projections for AM-

GTM, hidden states assignments for Jaccard, etc). The latter

refers to the actual kernel computation based on the feature

space representation (e.g. the entries of the Gram matrix that

is used by a Support Vector Classifier). The computational

complexity of the syntactic kernels in Section II only depends

on the second operation, since encoding is implicit in kernel

computation. The presence of an encoding phase in generative

kernels, on the other hand, typically makes kernel computation

not directly dependent on the size of the input tree, as this is

transformed into a representation that usually depends on the

parametrization of the underlying generative model.

Table I summarizes the worst case complexity for the

generative kernels tree kernel introduced earlier in this section

as well as for the Fisher tree kernel, considering a multiclass

classification task with V classes. The term C denotes the

number of hidden Markov states, L is the maximum number of

non-empty children in the tree dataset and NT is the maximum

tree size. The complexity of the unibigram Jaccard kernel

depends on whether the squared number of hidden states C2

is smaller than the node number NT , i.e. E = min{NT , C
2}.

The Jaccard kernel seems more efficient than the Fisher kernel

TABLE I
COMPUTATIONAL COMPLEXITY OF THE GENERATIVE KERNELS FOR

FEATURE SPACE ENCODING (INFERENCE) AND GRAM MATRIX

CALCULATION. FOR THE JACCARD KERNEL, WE REPORT RESULTS FOR

THE MOST COMPLEX ENCODING, I.E. UNIBIGRAM (UBI), WHILE VARYING

THE GENERATIVE MODEL USED, I.E. IO-BHTMM (IO) OR BHTMM
(BU), AND THE TYPE OF INFERENCE ALGORITHM, I.E. VITERBI (V) OR

UPWARD-DOWNWARDS (P).

Kernel Inference Gram

UBI-BU-V O(NT · C2 · V) O ((E + C) · V)
UBI-IO-V O(NT · C2) O (E + C)
UBI-BU-P O(NT · C2 · L · V) O ((E + C) · V)
UBI-IO-P O(NT · C2 · L) O (E + C)
AM-GTM O(NT · C2) O

(

N2

T

)

Fisher O(NT · C2 · L · V) O
(

(C2 · L+ C +M · C) · V
)

when dealing with tasks with a non-trivial number of classes

V and a large input vocabulary M . The posterior-weighted

encodings have an the same inferential cost with respect to

the Fisher kernel but have a considerably lower complexity

for Gram matrix computation, due to the reduced feature

space size. The Viterbi encoding can be computed with an

inferential cost that is lower of a factor L with respect

to the posterior-weighted encoding: as such, it might prove

more adequate for dealing with trees characterized by a large

outdegree. The convolutional AM-GTM kernel is the only one

whose kernel computation step depends NT as it computes

matchings between substructures. Despite its worst case cost

being O(N2
T), this will occur with negligible probability as it

entails all the nodes from the two trees being projected in an

hyperball of radius ≤ ǫ. The average expected computational

cost is, instead, O(cǫNT) with cǫ being a constant depending

on the choice of the neighborhood parameters ǫ.

IV. EXPERIMENTAL EVALUATION

This section provides an experimental assessment of the

generative tree kernels discussed in the paper, on 7 publicly

available benchmarks on tree-data classification. The bench-

marks span a variety of application areas, including parse trees,

structured documents, and biochemical data, with different

data characteristics (e.g. tree outdegree, number of classes,

sample size, size of label vocabulary, etc.).

A. Experimental Setup

Section III has discussed how different Markov state kernels

can be obtained by combining alternative choices regarding

the underlying generative models, the inference algorithms,

the way in which hidden state information is coupled and

encoded, as well as the actual kernel function. Table II shows

a summarized view of the kernel configurations tested in

this experimental assessment, described in terms such mod-

eling choices. In particular, we consider both homogeneous

bottom-up (BU) and top-down (TD) HTMM, as well as

input driven IO-BHTMM (IO) generative models. For all

the generative models under consideration, we explore the

impact of a multiset encoding based on both Viterbi (V) and

Upwards-Downwards (P) inference. Hidden states information

is exploited considering both single state information (UNI,

in Table II), as in the unigram representation, as well as

IEEE TRANS. ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

TABLE II
GENERATIVE KERNEL CONFIGURATIONS UNDER TEST AS A FUNCTION OF

THE MODELING CHOICES, I.E. GENERATIVE MODELS, HIDDEN STATES

FEATURES, , INFERENCE ALGORITHMS AND KERNEL TYPE.

Model States Inference Kernel
Configuration BU TD IO UNI BI V P J AM F

Jaccard-BU-V X X X X X

Jaccard-TD-V X X X X X

Jaccard-IO-V X X X X X

Jaccard-BU-P X X X X X

Jaccard-TD-P X X X X X

Jaccard-IO-P X X X X X

AM-GTM X X X X

Fisher X X X X X

information from states coupled in a parent-child relationship

(BI, in Table II), as in the bigram representation. Hidden state

multisets encoding are assessed using the Jaccard kernel (J),

while the impact of introducing topological information in

the hidden states is assessed by the AM kernel. Note that in

Table II this latter kernel is characterized by a BU generative

model, as the GTM-SD approach in [22] is fundamentally a

constrained BU model, as well as by a UNI state encoding,

as no parent-child information is used neither in the map

projection nor in kernel computation. Table II also reports a

configuration for a Fisher kernel based on the THTMM model

as this is a state-of-the-art baseline for generative tree kernels.

Clearly, the combinations of the modeling choices in Table

II allow for far more kernel configurations. For the sake of

compactness, we focus only on those configurations which

yield to more discriminant and expressive kernels.

Table III reports the main characteristics of the datasets used

for this experimental assessment. The first set of benchmarks

concerns the classification of XML formatted documents from

two large corpora used in the 2005 and 2006 INEX Compe-

tition [6]. These datasets are characterized by a large sample

size and by a large number of unbalanced classes; trees are

generally shallow, with a large outdegree. Standard splits into

training and test sets are available for both datasets [6], where

roughly half of the total samples are used for training. The

second set of benchmarks concerns the classification of the

molecular structure of glycans, that can be represented by

rooted trees where nodes stand for mono-saccharides and

edges stand for sugar bonds. We consider two datasets from

the KEGG/Glycan database [47], referred to as the Leukemia

and Cystic data [48]. These benchmarks differs considerably

from INEX: the task is binary and a small number of samples

is available; trees are small and have a small outdegree. The

third set of experiments deals with parse trees representing

English propositions from a set of Dow-Jones news articles

and associated semantic information. We employ a version of

the Propbank dataset [49] introduced by [50], that includes

a sample from section 24 of Propbank comprising 7, 000
training trees and 2, 000 validation examples, as well as 6, 000
test samples extracted from section 23 [50]. This benchmark

defines a binary classification problem with a very unbalanced

class distribution, where the percentage of positive examples

in each set is roughly 7%. The latter two benchmarks in

Table III pertain to the classification of chemical compounds

TABLE III
CHARACTERISTICS OF THE DATASETS USED IN THE EXPERIMENTAL

ANALYSIS

Name # Trees Classes Outdegree # Labels

INEX 2005 [6] 9361 11 32 366
INEX 2006 [6] 12107 18 66 65
Leukemia [48] 442 2 3 57
Cystic [48] 160 2 3 29
Propbank [50] 15000 2 15 6654
CPDB [51] 9672 2 10 23
AIDS [51] 53771 2 22 29

originally represented as more general classes of graphs and

transformed into tree structures by means of the approach

described by [51]. In practice, each graph is transformed into

a tree, such that each direct subtree of the root represents the

visit that can be performed from a vertex of the graph up to

a certain depth D (set to 6 for the purpose of this analysis).

These benchmarks allow to test kernel performance on trees

characterized by very rich structural contexts originating from

the original graph information. For the purposes of generative

model training and inference, we have split each transformed

tree into a forest comprising all direct subtrees of the root.

The final tree encodings are computed on the aggregated trees

by putting together the information from the single subtrees

of the root node, yielding to a classification for the full graph.

The generative tree kernels are assessed in terms of the

tradeoff between efficacy, measured in terms of classification

accuracy and related metrics, and computational efficiency, i.e.

time required to complete inference and kernel computation

steps. Their predictive performance is compared with that of

syntactic tree kernels in literature (reviewed in Section II),

such as ST [26], SST [11], PT [29], subpath [31] and the

Elastic Tree (ET) kernels [27], [28]. These have been chosen

as a relevant sample of the available tree kernels due to their

popularity, state of the art performances and availability as

code: see [32] for an experimental comparison of several

syntactic tree kernels (though limited to low dimensionality

datasets and binary classification).

Different configurations of the generative models have been

assessed by varying the number of hidden states C as follows:

C ∈ {6, 8, 10} for the homogenous models, C ∈ {8, 10, 16}
for the input-driven IO and C ∈ {81, 100, 225, 400} for

GTM-SD. In addition, for the Glycans tasks, we have also

tested smaller state spaces, such as C = 2 and C = 4 for

the homogenous and IO models, respectively, and C = 49
for GTM-SD. The number of tested hidden states has been

determined following the guidelines in the original paper for

the various generative models, i.e. [21], [22]. The AM-GTM

kernel is also evaluated with respect to the choice of the

neighborhood metaparameter ǫ, whose values are allowed to

vary in {0.05, 0.1, 0.2}. These values ensure that the AM-

GTM neighborhood covers a map area that is comparable with

the coverage suggested by [30] for the original AM kernel over

a SOM-SD map (i.e. about 1− 2% of the lattice).

Trials have been repeated multiple times for each configura-

tion of the generative models, each time using different random

initializations for the models distributions, i.e. 5 repetitions

for INEX and Propbank data. For the Glycans, CPDB and

IEEE TRANS. ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

TABLE IV
TEST CLASSIFICATION ACCURACY (%) ON THE INEX 2005, INEX 2006, CPDB, AIDS AND PROPBANK BENCHMARKS. FOR PROPBANK, THE

F1-SCORE IS THE REFERENCE METRIC TO BE USED DUE TO THE UNBALANCED NATURE OF THE DATA AS WELL AS FOR ALLOWING COMPARABILITY

WITH LITERATURE RESULTS (ACCURACY IS ALSO REPORTED). THE MODEL PARAMETERS SELECTED IN CV ARE REPORTED IN SQUARED BRACKETS FOR

THE GENERATIVE KERNELS. THE BEST TEST PERFORMANCE IS HIGHLIGHTED IN BOLD.
† VALUES OBTAINED ON APPROXIMATED SETTING AS DESCRIBED IN THE TEXT.

Kernel Dataset
INEX 2005 INEX 2006 Propbank CPDB AIDS
Acc (%) Acc (%) Acc (%) F1 Acc (%) Acc (%)

Jaccard-TD-V 93.40 (1.5) 44.38 (0.2) 91.00 0.577 61.72 (4.26) 78.30 (3.67)
Configuration [C = 6] [C = 8] [C = 10] [C = 10] [C = 10]

Jaccard-BU-V 94.22 (0.9) 44.53 (0.3) 89.52 0.567 63.94 (4.88) 80.76 (4.42)
Configuration [C = 8] [C = 6] [C = 10] [C = 10] [C = 10]

Jaccard-IO-V 95.66 (0.2) 41.51 (1.0) 91.04 0.617 68.91 (5.13) 78.84 (3.73)
Configuration [C = 8] [C = 8] [C = 16] [C = 8] [C = 10]

Jaccard-TD-P 96.53 (0.1) 44.49 (0.3) 92.96 0.677 66.67 (4.53) 78.30 (3.04)
Configuration [C = 8] [C = 10] [C = 10] [C = 10] [C = 6]

Jaccard-BU-P 96.12 (0.4) 45.06 (0.2) 93.06 0.697 66.82 (7.03) 78.44 (3.40)
Configuration [C = 8] [C = 10] [C = 6] [C = 10] [C = 10]

Jaccard-IO-P 96.36 (0.1) 42.03 (1.3) 93.03 0.645 69.03 (3.35) 79.17 (3.46)
Configuration [C = 10] [C = 10] [C = 16] [C = 16] [C = 16]

AM-GTM 96.71 (0.1) 43.71 (0.6) 91.16 0.712 75.44 (3.74) 81.33 (3.89)
Configuration [C = 225, ǫ = 0.05] [C = 400, ǫ = 0.2] [C = 100, ǫ = 0.2] [C = 225, ǫ = 0.05] [C = 225, ǫ = 0.05]

Fisher 96.82 (0.1) 39.47 (0.8) 90.85 0.542 68.87 (3.41) 76.65 (3.45)
Configuration [C = 8] [C = 6] [C = 6] [C = 8] [C = 8]

ST 88.73 32.02 93.40 0.517 75.29 (1.64) 82.00 (2.00)

SST 88.79 40.41 94.28 0.542 76.59 (2.16) 80.17 (1.53)
PT 97.04 41.13 93.00 0.516 71.64 (5.88) † 76.51 (3.35) †
Subpath 82.68 39.88 92.52 0.518 75.86 71.9216

AIDS tasks, on the other hand, results have been obtained by

a stratified 10-fold CV using the available standard partitions

[9], [51]. Node emission has been modeled by a multinomial

distribution and its initialization is kept fixed, by using the

prior distribution of labels estimated solely on the training

trees. The tree classifiers have been realized through support

vector classification, using the publicly available LIBSVM

[52] software. A cross-validation (CV) procedure using val-

idation data external to the test set has been applied to select

the number of hidden states C, the AM-GTM metaparameter

ǫ as well as the value of the SVM cost parameter Csvm from

the following set of values: 0.001, 0.01, 0.1, 1, 10, 100, 1000.
We have used a 3-fold-CV applied to the training set for all

datasets with the exception of Propbank, as it comes with a

standard validation set.

B. Experimental Results

Table IV and Table V confront the predictive performance of

the generative and syntactic tree kernels under consideration

on the seven benchmarks. The first table reports the results

for those datasets that are assessed in literature in terms of

classification accuracy. The only exception is Propbank whose

performance is to be assessed in terms of F1-score due to class

unbalance in the problem (accuracy is also reported although

not used for model selection). Table V reports results for

Leukemia and Cystic which, in literature, are assessed in terms

of the area under the ROC curve (AUC) (due to size and class

balancing): nevertheless we also report accuracy to provide a

uniform metric across all datasets.

The first thing to note is that the ET kernel has been tested

on all the datasets in Table IV but it could not complete

kernel computation due to exceeding the maximum allowed

computing time (i.e. 7 days for computing at least the kernel

on the training set), which happened for INEX2005, CPDB

and AIDS, or due to exceeding the memory resources, which

happened for INEX2006 and Propbank. Note that we have

used a parallel Scala implementation of ET1 associated to the

work by [28] and that the code was run on a server comprising

48 cores and 128Gb. Therefore, the lack of results for this

kernel is not due to tight resource constraints but rather to

its high computational requirements (its complexity is cubic

in tree size) which makes it less scalable to medium-large

tree datasets, such as those in Table IV. On the other hand,

ET seamlessly worked for the smaller dimensional datasets in

Table V.

Table IV shows that on INEX 2005, the PT kernel achieves

the best classification accuracy overall, but the Fisher and

AM-GTM kernels achieve a comparable performance. The

PT kernel is expressive but has computational complexity

that scales quadratically with respect to the tree size and

cubically with the outdegree L which, for the INEX 2005

trees, is L = 32. On INEX 2006, on the other hand, the

best kernel results in literature (including PT) were limited to

less than 42% accuracy, whereas the Jaccard and AM-GTM

kernels yield to notably higher accuracies. In particular, the

Jaccard-BU-P has the state of the art result with an accuracy

of 45.06% (previously, was 42.62% in [9]). Interestingly, on

INEX 2006, the IO model performs worse than BU and TD,

while the opposite happens on the INEX 2005 data. This might

be due to the fact that input labels convey little discriminative

information in the former dataset, thus depleting the advantage

of having an input-driven dynamics. Also, on the INEX 2006

benchmark there seems to be little difference between Viterbi

and Upwards-Downwards encodings, suggesting the the hid-

den state space of the generative model is organized in a few

1http://marcocuturi.net/MT.html

IEEE TRANS. ON NEURAL NETWORKS AND LEARNING SYSTEMS 11

specialized hidden states capturing information on a number

of discriminative substructures, while the remainder of the

states does not encode discriminative structural information.

On Propbank, the AM-GTM kernel outperforms all the other

kernels with a considerable increase in the F1 score, especially

with respect to the syntactic kernels. Note that classification

accuracy, on this task, leads to misleading results as a dumb

model returning always the majority class prediction would

achieve 93% accuracy, hence the need of using F1 score for

model selection and assessment. The Jaccard kernels using

the Upwards-Downwards encoding obtain the second best

performance, well ahead of the syntactic kernels, in particular

when using an homogenous generative model.

As regards CPDB and AIDS, Table IV reports the results

for the best model in the external 10-fold CV as these are

not significantly different from that of the model selected the

nested 3-fold CV. Differently from results on previous bench-

marks, syntactic kernels seem to be have a better performance

with respect to the majority of the adaptive kernels on these

data. This can be the result of the very specific nature of these

two datasets. We recall that the generative models underlying

the adaptive kernels are not trained on the population of

visit-trees for the original graphs, but rather on the forests

originating from the direct child subtrees of their roots. The

same approach had been applied to the PT kernel since the

large outdegree of the original visit-trees induced out-of-

memory errors on the implementation available by the authors

of [29]2. Despite such an approximation, the AM-GTM kernel

achieves competitive results also with respect to the syntactic

kernels, yielding to accuracies that are not statistically inferior

to that of the best syntactic kernels (i.e. SST for CPDB and

ST for AIDS). With the same approximation, the PT kernel

achieves consistently lower performances, in particular on the

AIDS data.

Focusing on the results of the adaptive kernels, AM-GTM

achieves, by far, the best performance on the CPDB data

followed by the Jaccard-IO models. For the latter models, there

seems to be a minor performance difference between Upwards-

Downwards and Viterbi encoding, whereas the homogenous

TD and BU models achieve consistently higher performances

when posterior-unibigrams are used. This suggest that, on the

one hand, there is a considerable amount of structural informa-

tion that can be captured only by including the contribution of

all the hidden states (note that the best performing kernel, AM-

GTM, is also based on an Upwards-Downwards encoding).

On the other hand, the Jaccard-IO performance suggests

that the input labels are providing significant discriminative

information that can be well exploited by the input-driven

models. Performance on the AIDS data appears significantly

more homogeneous across the different generative models and

encoding schemes. The AM-GTM and Jaccard-BU kernels

based on Viterbi obtain the best results, although all the

Jaccard-based kernels yield to competitive accuracies.

At last, we consider the predictive performance on the

Glycans datasets in Table V. For generative kernels we report

both the test set performance of the model showing the best

2http://disi.unitn.it/moschitti/Tree-Kernel.htm

TABLE V
TEST PERFORMANCE, AS ACCURACY (%) AND AUC-ROC (AUC), ON

GLYCANS AVERAGED OVER THE 10-FOLDS (DEVIATION IS IN BRACKETS).
RESULTS ARE REPORTED FOR BOTH THE BEST MODEL IN 10-FOLD CV
(10-CV) AND FOR A NESTED 3-FOLD CV FOR MODEL SELECTION

(NESTED). SELECTED CONFIGURATIONS ARE REPORTED IN PARENTHESIS

FOR THE GENERATIVE KERNELS.

Kernel Leukemia Cystic
% AUC % AUC

Jaccard-TD-V
10-CV 91.85 (3.75) .968 (.021) 66.88 (12.52) .759 (.171)

[C = 6] [C = 4]
Nested 92.53 (3.56) .966 (.028) 64.38 (14.75) .740 (.165)

[C = 8] [C = 6]
Jaccard-BU-V
10-CV 92.3 (3.6) .966 (.035) 69.38 (8.56) .796 (.086)

[C = 8] [C = 10]
Nested 92.3 (3.6) .966 (.035) 70.0 (1.54) .751 (.139)

[C = 8] [C = 4]
Jaccard-IO-V
10-CV 91.85 (4.32) .953 (.047) 71.25 (11.49) .751 (.201)

[C = 16] [C = 4]
Nested 91.85 (4.32) .953 (.047) 56.25 (16.4) .690 (.193)

[C = 16] [C = 16]
Jaccard-TD-P
10-CV 92.75 (3.99) .972 (.025) 70.0 (13.42) .781 (.150)

[C = 6] [C = 10]
Nested 91.62 (3.42) .962 (.037) 67.50 (7.1) .725 (.143)

[C = 10] [C = 8]
Jaccard-BU-P
10-CV 92.29 (4.05) .967 (.023) 73.13 (12.16) .826 (.104)

[C = 8] [C = 8]
Nested 92.74 (3.99) .966 (.027) 73.13 (12.16) .826 (.104)

[C = 10] [C = 8]
Jaccard-IO-P
10-CV 94.33 (3.6) .971 (.028) 75.6250 (1.81) .826 (.118)

[C = 16] [C = 8]
Nested 94.33 (3.6) .971 (.028) 75.6250 (1.81) .826 (.118)

[C = 16] [C = 8]
AM-GTM
10-CV 92.98 (4.09) .954 (.04) 73.75 (8.74) .843 (.141)

[C = 49, ǫ = .1] [C = 225, ǫ = .1]
Nested 92.53 (3.04) .952 (.042) 72.50 (11.49) .806 (.095)

[C = 225, ǫ = .05] [C = 81, ǫ = .2]
Fisher
10-CV 92.98 (3.31) .957 (.028) 73.13 (13.84) .850 (.125)

[C = 10] [C = 6]
Nested 91.39 (3.37) .930 (.062) 74.38 (11.20) .819 (.118)

[C = 8] [C = 8]
ST 92.07 .961 76.25 .798
SST 90.71 .933 58.13 .696
PT 93.44 .967 78.13 .823
Subpath 94.11 .971 80.63 .850
Elastic 92.89 .925 76.25 .763

results on the 10-fold CV as well for the model selected on the

nested 3-fold CV (on the training set) [9] used to determine

the values of the hyperparameters. For the Leukemia dataset

these two results are almost overlapping, while for the Cystic

data there is a neat difference. This might be due to the small

sample size of the Cystic dataset, which makes the inner 3-

fold CV more noisy as it leaves the generative kernels with

very few training samples. Overall, the results of the proposed

generative kernels appear competitive with the performances

in literature both in terms of AUC-ROC and accuracy. On

Leukemia, generative kernels generally outperform syntactic

kernels on the AUC-ROC, with the exception of the subpath

and PT kernels. In particular, all Jaccard kernels obtain an

AUC that is comparable (and in some cases higher) to that

achieved by the PT kernel. On the Cystic data, the Fisher

IEEE TRANS. ON NEURAL NETWORKS AND LEARNING SYSTEMS 12

kernel obtains the best AUC together with the subpath kernel,

but the AM-GTM again yields to a comparable score. On the

accuracy side, instead, the syntactic PT and subpath kernels

have consistently higher performances. Note that on Cystic the

Upwards-Downwards encoding seems more effective that the

Viterbi encoding both in AUC and accuracy.

Overall, the indication provided by the experimental as-

sessment is that no syntactic kernel seems effective on all

datasets; rather each syntactic kernel can perform well on

a specific dataset and badly on the others, depending on

how well its predefined structure similarity function matches

the characteristics of the dataset. This is the case for the

subpath kernel, which is very effective on the vertical, almost

sequence-like structures of the Glycans datasets, but fails on

richer structures such as in INEX, Propbank and AIDS. Simi-

larly, none of the adaptive kernels taken singularly exceed the

performance of all the syntactic kernels but they show a good

performance on the majority of the datasets, with significantly

lower performances on CPDB and Cystic data for the Jaccard-

based kernels. In the AM-GTM case, on the other hand, one

can note a generally very high predictive performance, in line

with the state-of-the-art. As we will discuss more in detail in

the next section, the adaptive kernels are also characterized by

a competitive tradeoff between computational complexity and

predictive performance, whereas the most expressive syntactic

kernels (in their state-of-the-art implementations), such as PT

and elastic kernels, show problems in providing results due to

exceeding memory limits or reasonable execution time caps.

C. Computational cost

We conclude by evaluating the tradeoff between kernel pre-

dictive accuracy and its computational efficiency, by providing

an empirical assessment of the average computational effort

required by inference and kernel computation on a test tree of

the INEX, Propbank and CPDB datasets. Results have been

obtained by Matlab implementations running on a Intel I5

Quad-core at 2.7 GHz CPU equipped with 4GBytes of RAM
and they are reported in Fig. 3. It shows accuracy-efficiency

plots for the CV-selected configurations where top-most areas

denote models with an higher computational cost, while right-

most areas denote higher predictive accuracy. As expected,

the Fisher kernel yields to the worse computational effort

on almost all the datasets, with as much as 2.242 seconds

required, on average, to encode and compute the kernel on

an INEX 2005 test tree. At the same time, the Fisher kernel

attains the lowest accuracy among the generative kernels on

the INEX 2006 and Propbank datasets. The AM-GTM is

characterized by the best tradeoff between effort and accuracy

on the first three datasets, requiring as little as 0.395 seconds
on an INEX 2005 tree while yielding to accuracy results

comparable, when not superior to the other kernel methods.

On the other hand, AM-GTM has the worse time-efficiency on

the graph benchmarks due to its computation being dominated

by the square of the tree size, while the graph-induced trees

are composed by a large number of nodes.

The lowest computational cost is attained, in general, by

the Jaccard-IO thanks to the compactness of its kernel feature

93 94 95 96 97
0

0.5

1

1.5

2

2.5

Test Accuracy (%)

T
im

e
 (

s
e
c
)

AM−GTM

Fisher

J−IO−V

J−BU−V

J−TD−V

J−IO−P

J−BU−P

J−TD−P

(a) INEX 2005

39 40 41 42 43 44 45 46
0

0.5

1

1.5

2

2.5

3

Test Accuracy (%)

T
im

e
 (

s
e
c
)

AM−GTM

Fisher

J−IO−V

J−BU−V

J−TD−V

J−IO−P

J−BU−P

J−TD−P

(b) INEX 2006

0.5 0.55 0.6 0.65 0.7 0.75
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Test Accuracy (F1 score)

T
im

e
 (

s
e
c
)

AM−GTM

Fisher

J−IO−V

J−BU−V

J−TD−V

J−IO−P

J−BU−P

J−TD−P

(c) Propbank

60 65 70 75 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Test Accuracy (%)

T
im

e
 (

s
e
c
)

AM−GTM

Fisher

J−IO−V

J−BU−V

J−TD−V

J−IO−P

J−BU−P

J−TD−P

(d) CPDB

Fig. 3. Accuracy-efficiency plot for the INEX 2005, INEX 2006, Propbank
and CPDB datasets: on the x-axis is the test accuracy or F1 score on the
CV-selected results, while the y-axis shows the corresponding average time
needed to perform inference and kernel computation on a single test tree.

TABLE VI
COMPUTATIONAL COMPLEXITY OF TREE KERNEL COMPUTATION WITH

RESPECT TO TREE SIZENT , OUTDEGREE L AND HIDDEN STATE NUMBER

C (FOR GENERATIVE KERNEL ONLY).

Kernel Complexity Kernel Complexity

Jaccard-UBI-V O(NT · C
2) SST O(N2

T)
Jaccard-UBI-P O(NT · C

2
· L) PT O(N2

T · L
3

T)
AM-GTM O(NT · C

2) Subpath O(N2

T)
Fisher O(NT · C

2
· L) Elastic O(N3

T)
ST O(NT logNT)

space, e.g.requiring only 0.104 seconds on an INEX 2005

tree, and even less on the INEX 2006 and Propbank data.

The computational cost of Jaccard-BU and Jaccard-TD is in

general higher, but comparable to that of Jaccard-IO. The only

exception is on INEX 2006 where the large class number and

the high outdegree result in a neat increase of its feature space

size, as compared to Jaccard-IO. Note that on Propbank the

Jaccard-IO-V and Jaccard-BU-V outperform the syntactic ker-

nels while maintaining the cost for kernel prediction to 0.224
and 0.196 seconds per test tree, respectively. The difference

between the computational efficiency of posterior and Viterbi

encodings is minor: nevertheless, it the computational cost of

Viterbi kernels can be reduced by an efficient implementation

exploiting the sparsity of its encoding.

Generative and syntactic kernel can be confronted on their

computational complexity. Table VI summarizes the complex-

ities discussed in Section II and III-D by focusing on the

cost of computing the kernel between 2 trees, considering

as relevant complexity terms the maximum tree size NT , the

maximum outdegree L and the number of hidden states C

(i.e. we have simplified all the irrelevant terms in Table I for

clarity). Note how syntactic kernels have always superlinear

complexity with respect to tree size NT , where the most

effective and expressive kernels in previous experiments are at

IEEE TRANS. ON NEURAL NETWORKS AND LEARNING SYSTEMS 13

least quadratic. In particular PT and elastic kernels are cubic

with respect to outdegree and tree size, respectively, which, in

some cases, can result in exceedingly long kernel computation

times. The proposed generative kernels have, in general, linear

complexity in NT and the quadratic dependance on C does

not seem impacting for the C values in the experimentation.

V. DISCUSSION AND CONCLUSIONS

Kernel methods offer a modular approach to build learn-

ing and pattern recognition systems for structured data. The

ability to learn the kernel function from data becomes critical

when dealing with such complex, non-standard information,

as sufficient background knowledge might not be available

to hand-code the kernel or we might simply lack a proper

formalization of what a good structural similarity is. In this

paper, we have proposed a solid methodology for the design of

adaptive generative tree kernels that exploit the summarization

properties of hidden states in hidden Markov models for trees.

We have introduced a compact, and yet discriminative,

feature space encoding for trees, based on the concept of

hidden state multisets. Such multiset representation allows

to intuitively control the amount of syntactical information

that is injected into the kernel, e.g. by measuring the co-

occurrence of hidden states in parent-child relationships, while

controlling the tradeoff with computational complexity. A

generative Jaccard kernel has been defined on the top of the

multiset encoding and it has been applied in combination

to different hidden tree Markov models and tree encoding

schemes to show its generality. Nevertheless, the proposed

approach is much more general, as it can be employed to

define generative kernels on the top of any probabilistic model

using categorical latent variables, which easily extends the

classes of data processable with the kernel.

The Jaccard kernel takes an hard-matching approach where

structural similarity is measured based on the overlap in the

hidden states distributions, thus implicitly discarding the fact

that two different states might encode very similar information.

We have shown how a topology induced on the Markov

states by a GTM-SD [22] can be exploited to circumvent

such limitations, by deriving a convolutional generative kernel

capable of computing direct matches between substructures.

This kernel defines a feature space encoding where trees

are represented by their activation fingerprints on continuous

topographic maps, which allow a form of computationally

effective soft-matching between hidden states.

We have carried out an in-depth empirical assessment of

the proposed generative kernels with a comparative analysis

covering state-of-the-art generative, adaptive and syntactical

tree kernels, focusing in particular on the tradeoff between

predictive performance and computational efficiency. Several

application domains and associated data types have also been

taken into consideration, including the classification of doc-

uments, propositions and bio-molecular data. These results

are intended to provide a guideline for selecting the most

adequate kernel configuration for a large variety of application

areas. Overall, the generative kernels taken into considera-

tion have shown a competitive predictive performance with

respect to syntactic kernels in literature coupled with contained

computational requirements. The predictive performance of

the generative kernels seems to generalize very well across

radically different applications, whereas syntactic kernels tend

to be very specific, with task-dependent performances. This

is not surprising, given the adaptive nature of the generative

kernels, that can learn the task-specific similarity metrics

directly from the data.

The results show that the AM-GTM kernel has by far the

best performance among the proposed generative kernels, also

achieving the best results in literature on the INEX 2006 and

Propbank [50] datasets, considerably increasing the classifi-

cation performance with respect to the previous top-scoring

methods. Interestingly, AM-GTM learns a truly unsupervised

metric which is completely oblivious of the computational

learning task, hence allowing its application to different tasks

without the need of retraining the metric. As concerns the

Jaccard kernels, the Upwards-Downwards approach yields to

more discriminative encodings with respect to Viterbi infer-

ence, although a smart exploitation of the sparsity of the latter

encoding is expected to yield to faster kernel computation

routines. When compared to the Fisher kernel, Jaccard-BU

and Jaccard-IO yield to a superior predictive performance that

pairs with a considerable contraction of the induced feature

space.

Concluding, the paper proposes a novel family of methods

for building effective and computationally efficient adaptive

kernels by mining the state space of latent variable generative

models. With respect to the marginalized kernel solutions in

literature, the proposed methodology allows to exploit the

statistical features of a generative model trained on structured

samples to yield to a completely data-driven structure sim-

ilarity metric, rather than using a generative model only to

generate the substructure features on which hard syntactical

matching is then performed to measure structure similarity. In

particular, the proposed approach yields to a truly adaptive

kernel where the structural similarity metric is induced from

the distribution over the full population of training structures

acquired by the underlying generative model. The collection

of adaptive kernels that can be derived from our proposal

provides a rich set of tools for tree learning, reducing the

burden of a syntactical definition for structure similarity, and

allowing to chose the most suitable solution according to the

sought tradeoff between efficacy and efficiency for each task.

ACKNOWLEDGMENT

The authors would like to thank Giovanni da San Martino

for having provided the Glycans and Propbank experimental

data and Nicoló Navarin for the CPDB and AIDS datasets.

This work is partially supported by the Italian Ministry of

Education, University, and Research (MIUR) under project

SIR 2014 LIST-IT (grant n. RBSI14STDE).

REFERENCES

[1] A. Severyn and A. Moschitti, “Structural relationships for large-scale
learning of answer re-ranking,” in SIGIR, 2012, pp. 741–750.

IEEE TRANS. ON NEURAL NETWORKS AND LEARNING SYSTEMS 14

[2] S. Menchetti, F. Costa, P. Frasconi, and M. Pontil, “Wide coverage
natural language processing using kernel methods and neural networks
for structured data,” Pattern Recognition Letters, vol. 26, no. 12, pp.
1896–1906, 2005.

[3] M. Diligenti, P. Frasconi, and M. Gori, “Hidden tree markov models
for document image classification,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 25, no. 4, pp. 519–523, 2003.

[4] K. Rieck, T. Krueger, U. Brefeld, and K.-R. Müller, “Approximate tree
kernels,” Journal of Machine Learning Research, vol. 11, pp. 555–580,
2010.

[5] D. Kimura and H. Kashima, “Fast computation of subpath kernel
for trees,” in Proc. of the 29th International Conference on Machine
Learning (ICML ’12). New York, NY, USA: Omnipress, 2012, pp.
393–400.

[6] L. Denoyer and P. Gallinari, “Report on the XML mining track at
INEX 2005 and INEX 2006: categorization and clustering of XML
documents,” SIGIR Forum, vol. 41, no. 1, pp. 79–90, 2007.

[7] C. Bockermann, M. Apel, and M. Meier, “Learning SQL for database
intrusion detection using context-sensitive modelling,” in Proc. of the
6th International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, ser. DIMVA ’09. Springer, 2009, pp.
196–205.

[8] A. Micheli, A. Sperduti, and A. Starita, “An introduction to recursive
neural networks and kernel methods for cheminformatics,” Current
pharmaceutical design, vol. 13, no. 14, pp. 1469–1495, 2007.

[9] C. Gallicchio and A. Micheli, “Tree echo state networks,” Neurocom-
puting, vol. 101, pp. 319–337, 2013.

[10] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

[11] M. Collins and N. Duffy, “New ranking algorithms for parsing and
tagging: Kernels over discrete structures, and the voted perceptron,” in
Proc. of the 40th Annual Meeting on Assoc. for Comput. Ling., 2002,
pp. 263–270.

[12] J. Suzuki and H. Isozaki, “Sequence and tree kernels with statistical
feature mining,” in Advances in Neural Information Processing Systems
18. MIT Press, 2006, pp. 1321–1328.

[13] F. Aiolli, G. D. S. Martino, M. Hagenbuchner, and A. Sperduti, “Learn-
ing nonsparse kernels by self-organizing maps for structured data,” IEEE
Transactions on Neural Networks, vol. 20, no. 12, pp. 1938–1949, 2009.

[14] D. Pighin and A. Moschitti, “Reverse engineering of tree kernel feature
spaces,” in Proceedings of the 2009 Conference on Empirical Methods
in Natural Language Processing, 2009, pp. 111–120.

[15] T. Jaakkola and D. Haussler, “Exploiting generative models in discrim-
inative classifiers,” Advances in neural information processing systems,
pp. 487–493, 1999.

[16] L. Nicotra, A. Micheli, and A. Starita, “Fisher kernel for tree structured
data,” in Proc. of the 2004 Int. Joint Conf. on Neural Netw., vol. 3, july
2004, pp. 1917 – 1922.

[17] L. Denoyer and P. Gallinari, “Bayesian network model for semi-
structured document classification,” Inf. Process. Manage., vol. 40, no. 5,
pp. 807–827, 2004.

[18] H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized kernels between
labeled graphs,” in Proceedings of the Twentieth International Confer-
ence on Machine Learning. AAAI Press, 2003, pp. 321–328.

[19] P. Mahé and J.-P. Vert, “Graph kernels based on tree patterns for
molecules,” Machine Learning, vol. 75, no. 1, pp. 3–35, 2009.

[20] D. Bacciu, A. Micheli, and A. Sperduti, “Compositional generative map-
ping for tree-structured data - part I: Bottom-up probabilistic modeling
of trees,” IEEE Trans. Neural Netw. Learning Syst., vol. 23, no. 12, pp.
1987–2002, 2012.

[21] ——, “An input-output hidden Markov model for tree transductions,”
Neurocomputing, vol. 112, pp. 34–46, 2013.

[22] ——, “Compositional generative mapping for tree-structured data - part
II: Topographic projection model,” IEEE Trans. Neural Netw. Learning
Syst., vol. 24, no. 2, pp. 231–247, 2013.

[23] D. Bacciu, A. Micheli, and S. Alessandro, “Adaptive tree kernel by
multinomial generative topographic mapping,” in Proc. of the 2011 IEEE
International Joint Conference on Neural Networks (IJCNN’11). IEEE,
2011, pp. 1651–1658.

[24] ——, “A generative multiset kernel for structured data,” in Proc.
of the 2012 International Conference on Artificial Neural Networks
(ICANN’12), ser. LNCS, vol. 7552. Springer, 2012, pp. 57–64.

[25] T. Gärtner, “A survey of kernels for structured data,” SIGKDD Explo-
rations, vol. 5, no. 1, pp. 49–58, 2003.

[26] S. V. N. Vishwanathan and A. J. Smola, “Fast kernels for string and tree
matching,” in Advances in Neural Information Processing Systems 15.
MIT Press, 2003, Article, pp. 569–576.

[27] H. Kashima and T. Koyanagi, “Kernels for semi-structured data,” in
Proceedings of the Nineteenth International Conference on Machine
Learning, ser. ICML ’02. Morgan Kaufmann, 2002, pp. 291–298.

[28] K. Shin, M. Cuturi, and T. Kuboyama, “Mapping kernels for trees,” in
Proc. of the 28th International Conference on Machine Learning (ICML-
11). New York, NY, USA: ACM, June 2011, pp. 961–968.

[29] A. Moschitti, “Efficient convolution kernels for dependency and con-
stituent syntactic trees,” in Proc. of the 17th European conference on
Machine Learning, ser. ECML’06. Springer, 2006, pp. 318–329.

[30] F. Aiolli, G. Da San Martino, and A. Sperduti, “Route kernels for
trees,” in Proc. of the 26th Annual International Conference on Machine
Learning (ICML ’09). ACM, 2009, pp. 17–24.

[31] D. Kimura, T. Kuboyama, T. Shibuya, and H. Kashima, “A subpath
kernel for rooted unordered trees,” in Advances in Knowledge Discovery
and Data Mining. Springer, 2011, pp. 62–74.

[32] K. Shin and T. Kuboyama, A Comprehensive Study of Tree Kernels.
Springer International Publishing, 2014, pp. 337–351.

[33] L. Nicotra and A. Micheli, “Modeling adaptive kernels from probabilis-
tic phylogenetic trees,” Artificial Intelligence in Medicine, vol. 45, no.
2-3, pp. 125–134, 2009.

[34] T. Jebara, R. Kondor, and A. Howard, “Probability product kernels,” The
Journal of Machine Learning Research, vol. 5, pp. 819–844, 2004.

[35] K. Tsuda, T. Kin, and K. Asai, “Marginalized kernels for biological
sequences,” Bioinformatics, vol. 18, no. suppl 1, pp. S268–S275, 2002.

[36] P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert, “Extensions
of marginalized graph kernels,” in Proceedings of the Twenty-first
International Conference on Machine Learning, ser. ICML ’04. New
York, NY, USA: ACM, 2004, pp. 70–77.

[37] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borg-
wardt, “Graph kernels,” The Journal of Machine Learning Research,
vol. 11, pp. 1201–1242, 2010.

[38] K. M. Borgwardt and H.-P. Kriegel, “Shortest-path kernels on graphs,” in
Proceedings of the Fifth IEEE International Conference on Data Mining.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 74–81.

[39] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and
K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” The Journal of
Machine Learning Research, vol. 12, pp. 2539–2561, 2011.

[40] M. Hagenbuchner, A. Sperduti, A. Tsoi et al., “A self-organizing map for
adaptive processing of structured data,” IEEE Trans. Neural Networks,
vol. 14, no. 3, pp. 491–505, 2003.

[41] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Readings in Speech Recognition,
pp. 267–296, 1990.

[42] P. Jaccard, “The distribution of the flora in the alpine zone.1,” New
Phytologist, vol. 11, no. 2, pp. 37–50, 1912.

[43] T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings of
the 22nd annual international ACM SIGIR conference on Research and
development in information retrieval. ACM, 1999, pp. 50–57.

[44] C. Bishop, M. Svensén, and C. Williams, “GTM: The generative
topographic mapping,” Neural Comput., vol. 10, no. 1, pp. 215–234,
1998.

[45] H. Wendland, “Piecewise polynomial, positive definite and compactly
supported radial functions of minimal degree,” Advances in computa-
tional Mathematics, vol. 4, no. 1, pp. 389–396, 1995.

[46] M. S. Floater and A. Iske, “Multistep scattered data interpolation using
compactly supported radial basis functions,” J. Comput. Appl. Math.,
vol. 73, no. 1-2, pp. 65–78, Oct. 1996.

[47] M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori, “The
kegg resource for deciphering the genome,” Nucleic Acids Research,
vol. 32, no. suppl 1, pp. D277–D280, 2004.

[48] L. Li, W.-K. Ching, T. Yamaguchi, and K. Aoki-Kinoshita, “A weighted
q-gram method for glycan structure classification,” BMC Bioinformatics,
vol. 11, no. Suppl 1, p. S33, 2010.

[49] P. Kingsbury and M. Palmer, “From Treebank to PropBank,” in LREC,
2002, pp. 1989–1993.

[50] F. Aiolli, G. Da San Martino, and A. Sperduti, “Extending tree kernels
with topological information,” in Proc. of the 21th international con-
ference on Artificial neural networks, ser. LNCS. Springer, 2011, pp.
142–149.

[51] G. Da San Martino, N. Navarin, and A. Sperduti, “A tree-based kernel
for graphs,” in Proc. of the 12th SIAM Int. Conf. on Data Mining, 2012,
pp. 975–986.

[52] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector
machines, 2001, http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

