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Abstract—
Background and objectives: Feedback plays a crucial role for
using Brain Computer Interface (BCI) systems. This study proposes
the use of vibration-evoked kinaesthetic illusions as part of a novel
multisensory feedback for a Motor Imagery (MI) based BCI and
investigates its contributions in terms of BCI performance and elec-
troencephalographi (EEG) correlates.
Methods: Sixteen subjects performed two different right arm MI-BCI
sessions: with the visual feedback only and with both visual and
vibration-evoked kinaesthetic feedback, conveyed by the stimulation
of the biceps brachi tendon. In both conditions the sensory feedback
was driven by the MI-BCI. The rich and more natural multisensory
feedback was expected to facilitate the execution of MI, and thus
to improve the performance of the BCI. The EEG correlates of
the proposed feedback were also investigated with and without the
performing of MI.
Results and Conclusion: The contribution of vibration-evoked
kinaesthetic feedback led to statistically higher BCI performance
(Anova, F(1,14) = 18.1, p < .01) and more stable EEG event-
related-desynchronization (ERD). Obtained results suggest promis-
ing application of the proposed method in neuro-rehabilitation sce-
narios: the advantage of an improved usability could make the
MI-BCIs more applicable for those patients having difficulties in
performing kinaesthetic imagery.

1 INTRODUCTION

Brain Computer Interface (BCI) is a growing technol-
ogy that provides control over computer applications
directly from the brain activity. BCI has found many
applications ranging from basic communication and
control for individuals with severe paralysis [1], to
neuro-rehabilitation purposes [2]–[4].

In stroke rehabilitation, there are now sufficient evi-
dences that non-invasive BCI may provide an advan-
tage compared to traditional rehabilitation methods
in patients with severe motor impairment [4]–[12]. In
stroke patients motor recovery depends on the pos-
sibility to positively affect the neuroplastic changes
associated with the brain lesion, and to perform
motor training that maximize functional outcomes
[13]. Hence, MI-BCI provides a valid substitute for
active motor training as a mean to activate the motor

network [14], [15], thus influencing motor recovery in
a positive way [16].

Motor Imagery (MI), that is the mental rehearsal of
a given action, is a challenging technique that often re-
quires high concentration and long training phases to
be reliably detected by an EEG based MI-BCI [17]. MI
is based on the dynamics of brain oscillation described
as event-related (de)synchronization (ERD,ERS) [18].
Unfortunately, there is a substantial percentage of
subjects who are not able to achieve a good accuracy
even after extended training sessions. Those subjects
having difficulties performing MI, so called “BCI illit-
erate”, could be patients that can potentially benefit
most from this technology [19], [20]. In this context,
the combination of MI with a congruent bio-feedback
can provide a two-folded advantage: it generates a
normal afferent-efferent feedback loop [13], useful for
neuro-rehabilitation purposes, and improves consis-
tency of MI features detected by BCI [21].

In [21] a hand exoskeleton was adopted to pro-
vide proprioceptive feedback by assisting opening
and closing of the hand, showing how proprioceptive
feedback (feeling and seeing hand movements) im-
proved BCI performance significantly. Several works
demonstrated that the use of vibrotactile and propri-
oceptive feedback in BCI enhanced the usability of
the BCI systems [21]–[23]. As regards the vibrotactile
feedback, both mechanical stimuli at the hand [22]
and at the wrist [24] were proven to lead to an increase
in classification accuracy when MI was performed in
presence of stimulation.

Furthermore, the only selective sensation of vibro-
tactile stimulation, inducing a neural activity of the
primary somatosensory cortex (S1), has been found
to elicit an EEG desynchronization pattern similar to
the one generated by the MI of the same portion of
body. This fact could be explained both considering
that the organization of the somatosensory map in
S1 is similar to the somatotopic map of the motor
homunculus in the precentral gyrus [25] and thus
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considering the important relationship between touch
and movement. In fact, in an early study Goodwin
and colleagues [26], discovered that specific vibration
stimuli applied externally in proximity of muscle ten-
dons (tendon vibration) evoke an illusory perception
of movement. As a confirmation of this finding, it has
been proven through Positron Emission Tomography
(PET) technique [27], [28], that those specific vibrating
stimuli, which are able to evoke a kinaesthetic illusion,
induce the activation of motor cortex areas.

Since the tendon vibration is able to elicit sensations
of limb movement without dependence on the users
motor abilities [29], [30], it has shown interesting ap-
plications ranging from kinaesthetic illusion in virtual
environment [31] to treatment of those affected by
neuromuscular disorders [32], [33].

Yao and colleagues [34] proposed the use of kines-
thesia illusion, evoked through tendon vibration, for
calibrating an EEG based MI-BCI solely using the EEG
sensation data acquired during the repeated presenta-
tion of the illusory stimulus. The subjects task was to
perform left or right illusory sensation according to a
given cue. Then, the subject was required to perform
the correspondent MI task, integrating the sensory
experience from the motor memory of the previous
trial. At the end of each MI trial, subjects received
a short vibration feedback (500 ms) according to the
decoded brain activity.

1.1 Objectives

In this paper we propose that using the vibration-
evoked illusory movement as a congruent continuous
feedback during MI, can improve the MI-BCI classifi-
cation accuracy. This substantially differs and extends
the approach previously presented in [34], where ten-
don vibration, applied at the level of wrist, was used
only for calibration of the BCI classification algorithm
and for user’s task guidance during the induced
sensation task. We expect that providing a continuous
tendon vibration feedback during the MI task, based
on the decoded mental state of the subject, could
significantly strengthen the observed event-related
(de)synchronization (ERD,ERS), confirming our pre-
liminary observations reported in [35].

The experiments conducted in the present study
were designed to evaluate the incremental contribu-
tion of the visual plus vibration-evoked kinaesthetic
feedback with respect to visual feedback alone in
terms of BCI performance. We hypothesize an en-
hanced performance of MI resulting from the addition
of the kinaesthetic feedback, attributable both to the
improved congruency between MI and sensory feed-
back and to the involvement of more natural sensory
afferents with respect to the only imagined motor task.
The rest of the paper is structured as follows. The
proposed system is described in Section 2, followed
by the experimental description. Then, results are

reported in Section 3 in terms of BCI performance and
EEG analysis. Finally, discussion and conclusions are
presented in Sections 4 and 5 respectively.

2 MATERIALS AND METHODS

2.1 Objectives

The main goal of this study was to compare the
MI-BCI performance under two different feedback
conditions: the visual only feedback (V session) and
the visual plus the kinaesthetic feedback (VK session).

2.2 Materials

The experimental setup consisted of an apparatus for
generating illusory movement by tendon vibration, a
virtual representation of the subject’s arm, and an EEG
based MI-BCI.

Subjects seated on a comfortable chair in front of an
LCD monitor. They wore the cap for EEG acquisition
and their right arm was accurately positioned onto
the device providing illusory kinaesthetic feedback.
The elbow and the wrist were placed on comfortable
supports, with the elbow angle at approximately 120
degrees as shown in Figure 1. Subjects were asked
to keep the arm relaxed during each experimental
session.

Fig. 1: Overview of the experimental setup

2.2.1 The Tendon Vibration Stimulation Device
The device used in this work, depicted in Figure 2,
was designed and developed at the PERCRO Labora-
tory for eliciting illusory movements [35], and the illu-
sory effect has been extensively investigated with the
same device in both right- and left-handed individu-
als in [36]. The device was composed of an adjustable
upper-limb support, and one actuator with adjustable
position and orientation that can be finely positioned
in proximity of muscle tendons. The tendon vibration
was induced by means of an electromagnetic vibrator
equipped with a skin tactor, applied externally to the
biceps brachii tendon. Actuation was obtained by a
linear voice-coil, allowing to accurately modulate the
frequency patterns required for eliciting the motor
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illusion. The hemispherical plastic skin tactor, approx-
imately 15 mm in diameter, was mounted at the tip of
the moving shaft. Through the implemented device, it
was possible to modulate independently the vibration
frequency, the amplitude of the applied force and the
pre-loading force generated by the tactor onto the
skin. Figure 2 shows a general overview of the device
with a representation of the operating phase (Figure
2(a)) and an inside view of the actuator (Figure 2(b)).

(a) Representation of the actuator position and the
movement illusion

(b) Sketch of the inside view of the actuator

Fig. 2: Overview of the device used for illusory ki-
naesthetic stimulation.

2.2.2 Visual Feedback
Visual feedback of the performed mental task was
provided to the subjects by means of a computer
graphic avatar body. The scene, displayed onto an
LCD monitor, was rendered from the point of view of
the virtual avatar and the monitor was positioned in
order to match subject’s perspective. The movement
executed by the virtual body was an extension of the
right elbow, with a total displacement of 30 degrees
from the resting position, congruent with the illusory
movement that was expected by biceps brachii tendon
vibration.

The monitor was also used for providing visual
cues to the subject during the experimental session. In
order to minimize eye movements, visual cues were
displayed as wire-frame symbols (an arrow, a square
or a cross) superimposed over the virtual scene, with
just a minimal occlusion of the avatar body as can be
seen in Figure 1.

2.2.3 EEG recording
The EEG based MI-BCI was based on the Event
Related Desynchronization (ERD) phenomena in the µ
(8-13Hz) and β (13-25 Hz) bands. It is well known that

these rhythmic components are involved in move-
ment imagination tasks: in particular, an ERD is typi-
cally observed in the primary motor cortex, contra-
lateral to the limb involved in the imaginary mo-
tor task [18]. The BCI was composed of an EEG
acquisition system (active electrodes with gUSBamp
amplifier from gtec R©) and a custom-made processing
algorithm which executed in real-time the extraction
and classification of EEG features, as shown in Figure
3 and explained in detail in the next section.

Fig. 3: Operation diagram of the experimental setup
involving visual and kinaesthetic feedback driven by
the BCI

A pattern of thirteen active electrodes was placed
over the sensorimotor cortex (Fc3, Fcz, Fc4, C5, C3,
C1, Cz, C2, C4, C6, Cp3, Cpz, Cp4) and two ad-
ditional electrodes were placed in Fp1 and Fp2 for
the eye-blink artifact removal in the post processing
analysis. The ground electrode was placed in Afz
and all channels were referenced to the right earlobe.
Signals were pre-filtered in the 2-30 Hz frequency
band (bank filter embedded in the g.USBamp) and
then digitally converted with sample frequency of 256
Hz and resolution of 24 bits.

2.3 Methods
2.3.1 Participants and Inclusion criteria
Sixteen healthy right-handed subjects (6 f. 10 m. , aged
23-32) participated to the study. The experiments were
conducted in accordance with the WMA Declaration
of Helsinki and all subjects provided written consent
to participate. All but two subjects had no previous
experience with MI-BCI. Subjects’ capability of per-
ceiving the motor illusion was assessed by applying a
vibro-mechanical stimulus (frequency 80 Hz, duration
8 s) in proximity of the insertion of the biceps brachii
tendon at the elbow joint. Then subjects were asked
to qualitatively report the vividness of the perceived
illusion of movement and the position of the skin
tactor was adjusted up to elicit a vivid illusion of
movement. The procedure lasted up to a maximum
of 15 minutes and Subjects who did not feel any
movement illusion, or were not able to relax muscles
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were not included in the study (1 subject out of 17
participants). No subjects were discarded depending
on their ability of performing MI.

2.3.2 Experimental Design and Statistical Analysis

A 2x2 mixed factorial design was adopted with factors
the type of bio-feedback received during MI-BCI (V
vs. VK feedback, within-subjects factor), and the type
of received training (V- vs. VK-training, between-
subjects factor). A 2-way mixed Anova was conducted
for evaluating the BCI performance homogeneity of
variances was assessed with the Levene’s Test. The
scheme of the experimental design is shown in Figure
4.

For disambiguating the effect of the type of feed-
back received during the training session on BCI
performance, participants were divided in two groups
of 8 subjects each: one group performed the training
session receiving the Visual only feedback (V-training
group) and the other group both the Visual and
Kinaesthetic feedback (VK-training group).

Each subject was then randomly assigned to V/VK
or VK/V sequence of validation sessions, for avoiding
the effect of fatigue and practice.

Fig. 4: Scheme of the experimental design.

2.3.3 Experimental procedure

The experimental procedure consisted of four sessions
sharing the same trial structure depicted in Figure 5.

Fig. 5: Graphic representation of the trial structure

Each trial lasted for 7 seconds and was spaced from
the next by a random duration interval lasting from 2
to 4 seconds allowing subject to relax concentration.

Each task was triggered by means of visual cues su-
perimposed to the virtual arm in the LCD screen. Cues
were in the form of an arrow pointing downwards for
the “move” class, and a square for the “rest” class.

The four session are separately described below in
details, and summarized in Table 1.

In the monitoring session (M), kinaesthetic and
visual stimulation of the right arm movement was
provided to the subjects for 20 trials. In this session,
which was presented to each subject at the beginning
of the experimental procedure, subjects were asked to
passively perceive the stimuli without performing any
mental task. The M session was conducted for collect-
ing EEG data related to sensation of the multisensory
feedback without the MI activity.

In the following experimental sessions subjects
were repeatedly asked either to perform an imaginary
movement of the right arm (“move”) or to hold a rest-
ing mental state (“rest”). Each session was composed
of a randomly sorted sequence of 40 trials, 20 for each
mental task.

Session Mental 
Task

Feedback # 
Subjects

BCI 
driven

# 
Trials

Monitoring M Rest
Visual and 

Kinaesthe�c
16 No 20

Training T Rest + MI

Visual 
(V-training)

8

No 20+20Visual and 
Kinaesthe�c 
(VK-training)

8

Test
V Rest + MI Visual 16 Yes 20+20

VK Rest + MI
Visual and 

Kinaesthe�c
16 Yes 20+20

Name

TABLE 1: Sessions description. BCI-driven feedback
were provided according to the BCI output, whereas
in the M and T sessions feedback were provided
according to each trial. The presentation order of test
sessions (V and VK) was randomized over subjects.

In the BCI training session (T), the only one which
differs among the two groups, subjects were asked to
actively perform motor imagery of the right arm while
receiving visual only feedback (V-training group) or
both kinaesthetic and visual feedback (VK-training
group) congruently with the task. More in detail, the
vibrational stimulus and the avatar movement were
presented to the subjects only in the “move” trials,
whereas during “rest” trials no kinaesthetic feedback
and visualization of a still virtual arm were provided.

At the end of the T session, the recorded EEG data
were processed for determining the BCI parameters
for driving online the multisensory feedback in the
next two sessions (see following Sections for further
details on the BCI algorithm).

The visual-kinaesthetic condition (VK) was per-
formed with both visual and vibration-evoked kinaes-
thetic feedback active, whereas in the visual condition
(V) the visual feedback only was active. In order to
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minimize learning effects, the presentation order of
the V and VK sessions was randomized over subjects.

While in the M and T sessions feedback was pre-
sented to the subjects accordingly to the current trials,
in the subsequent V and VK sessions feedback stimuli
were driven by the real-time BCI output with CSP and
SVM parameters calculated in T session. In particular,
when the feedback was BCI-driven, the BCI detection
of the “move” class caused the virtual arm to move
and the kinaesthetic stimulation to activate. On the
other hand, during the detection of the “rest” class,
the virtual arm was stopped and the kinaesthetic
stimulation deactivated. In all conditions, the virtual
arm was smoothly recovered to the starting position
during the interval period between two subsequent
tasks.

2.3.4 The BCI algorithm

Two mental states were intended to be classified, as-
sociated respectively to the right arm motor imagery
(“move”) and to the resting state (“rest”). The first
stage of the BCI processing algorithm was a linear
spatial filter based on the well-known Common Spa-
tial Pattern (CSP) algorithm [37]. The CSP algorithm
implements a supervised spatial filtering method for
two-class discrimination problems, finding the direc-
tions that maximize variance for one condition and
at the same time minimize variance for the other
condition. Since variance of band-pass filtered signals
is equal to band-power, CSP filters are well suited
for discriminating mental states characterized by spec-
tral perturbations effects and they have been widely
applied to ERD detection in motor imagery based
BCIs [12], [38]–[40]. Moreover, since the CSP is a data
driven approach, it increases adaptability to subject-
specific features.

Mathematically, CSP is realized by simultaneous
diagonalization of the covariance matrices of data
acquired in the two conditions to be classified. Given
X a N × M data matrix with N the number of
channels and M the number of time points, the CSP
algorithm determines a spatial filter matrix W such
that Z = WX are the projected data, and the row of
W , called here wi, are the spatial filters. The weights
of W are determined by finding the solution of the
following minimization problem:

min
wi

(
m∑
i=1

wiC2w
T
i +

2m∑
i=m+1

wiC1w
T
i

)
(1)

subject to:

wi (C1 + C2)w
T
i =1 i = 1, 2, . . . , 2m

wi (C1 + C2)w
T
j =0 i, j = 1, 2, . . . , 2m i 6= j

where C1 and C2 are the covariance matrices of data
belonging to the two classes. The projection obtained

using the first row of W allows achieving the high-
est, normalized variance for class 1, while projection
using the last row of W allows obtaining the lowest,
normalized variance for class 2.

In the online signal processing, EEG signals were
projected using the first and last CSP components.
Then, the 8-24 Hz band-power was computed for the
two projected channels, using a 1 second moving time
window, shifted by one sample at each execution step
(256 Hz frequency of execution). The two band-power
values were log-scaled and used as a two-dimensional
feature for classification of the brain activity.

A Support Vector Machine (SVM) linear classifier
was used to compute the distance of the extracted
features from the classification threshold between the
“move” and “rest” classes. The output of the linear
classifier was low pass filtered (0.5 s time constant)
and it represented the continuous BCI output (positive
and negative values are related to the “move” or
“rest” class, respectively). The weights of the spa-
tial filter (CSP) and of the linear classifier (SVM)
were trained offline using data acquired during the
T session, which differed between V-training group
and VK-training group, and used for the V and VK
sessions.

Considering the whole signal processing, the BCI
output was approximately delayed of about 1 second
with respect to the current mental activity of the
subjects and the feedback was modulated in real-time
by the output of the BCI.

2.3.5 Data analysis
The BCI performance during the V and VK condi-
tions have been compared both online (actual BCI
performance) and offline (post-processed EEG data
and simulated BCI output). In particular, the online
BCI performance consisted in the real-time BCI output
obtained with BCI parameters tuned on the T session.
For the off-line BCI performance, the EEG data were
cleaned from eye-blink and muscular artifacts, then,
the BCI output was simulated using BCI parameters
trained with EEG data recorded in the same session.
In order to compute the correct classification rate
the BCI output was transformed accordingly to each
trial class in a binary signal assuming values equal
to zero and one for wrong and correct classification
respectively. The correct classification rate was then
calculated in the time range between 1.5 and 3.5
seconds of each trial and it was used in the following
statistical analysis. All the offline EEG data process-
ing, such as epoching, denoising and time-frequency
transformation, have been conducted using EEGLAB
software [41]. Time-frequency analysis, such as event-
related spectral perturbation (ERSP) and its variants
event-related de/synchronization (ERD/ERS), were
computed using the full-epoch length single-trial cor-
rection method, in conjunction with the baseline per-
mutation statistical method for inference testing [42].
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We used a total of 500 permutations at each frequency
for assessing significance with a p-value of 0.05. Since
the baseline normalization is performed assuming the
additive ERSP model, the results are shown as z-
scores. The time interval of 1.5 seconds before the
onset of the visual cue was chosen as the time baseline
for normalization.

The time-frequency decomposition was performed
using a Morlet wavelet with a moving window of 1
second. The number of cycles in each Morlet wavelet
increased linearly with frequency using 3 cycles at
lowest frequency to 30 at highest estimating 27 linear-
spaced frequencies from 3.0 Hz to 30.0 Hz.

3 RESULTS

The following section shows a comparative analysis
between V and VK sessions in terms of BCI perfor-
mance and the EEG data analysis related to the four
experimental sessions.

3.1 BCI performance
The time-continuous correct classification rate of the
BCI output, averaged over trials and subjects is shown
in Figure 6. As expected, the classification rate at the
beginning of each trial is about the chance (50± 15%
for a 2-class discrimination paradigm with 20 trials
per class [43]), then it increases with a delay of about
1 second. Correct rate obtained by each subject in the
two feedback conditions are reported in Figure 7.
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Fig. 6: Comparison of the classification performance
over time averaged over subjects and trials.

Marginal means for the two feedback conditions
and for the two training conditions are reported in
Figure 8 and in Table 2.

The Anova results highlighted the same significant
effects both for the online and offline performance. A
significant higher performance was found in the VK
sessions, (effect of Feedback, online: F(1,14) = 18.1,
p < .01, η2p = 0.56; offline: F(1,14) = 21.5, p < .01,
η2p = 0.61) while no interaction effect was found
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Fig. 7: BCI-Performance for each subject (see Sec 2.3.5
for details about the correct rate computation).

between Feedback and Training (online: F(1,14) = 1.79,
p = 0.20; offline: F(1,14) = 0.12, p = 0.74). The effect
of Training was also non-significant (online: F(1,14) =
3.35, p = 0.09; offline: F(1,14) = 2.21, p = 0.16). This
means that the higher performance achieved in the
VK session did not depend on the type of training
performed.
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Fig. 8: BCI correct rate obtained with the Visual feed-
back (V session) and with the Visual and Kinaesthetic
feedback (VK session) averaged over subjects.

Bar graphs in Figure 9 show the averaged correct
classification rate obtained in the V and VK sessions
for the two groups. The significant differences are
reported considering the Anova results with and mul-
tivariate tests.

3.2 EEG data analysis
In this section the analysis of EEG data in terms
of sensory-motor rhythms modulation is reported.
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Fig. 10: Comparison of the EEG correlates of the VK-training group in the four experimental conditions. First
row: power spectra of the 8-13 Hz band, C3 electrode representing right hand area in the primary motor cortex;
Second Row: Time-frequency plot averaged over “move” trials, subjects and electrodes (only significant values
are colored); Third Row: scalp maps related to the maximum desynchronization of the corresponding time-
frequency plots. In order to improve spatial resolutio of the scalp maps the colormap in the third row assume
only negative values (ERD).

Online V session VK session Mean

V-training group 56.08±7.32 61.88±5.56 58.97 ±6.44

VK-training group 59.82±8.06 71.80 ±10.75 65.45 ±9.41

Mean 57.94±7.69 66.48 ±8.16 62.21 ±7.92

Off-line V session VK session Mean

V-training group 81.24±9.09 88.24±5.37 84.74±7.23

VK-training group 85.33±8.17 93.44±4.55 89.39±6.36

Mean 83.29± 8.63 90.84±4.96 87.06±6.79

TABLE 2: Averaged correct rate performance.
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Fig. 9: BCI performance averaged over subjects. (* p <
0.05, ** p < 0.01)

Results for subjects belonging to the two experimental
groups were similar and, for the sake of space, only
the analysis of the VK training group is reported. Data
belonging to “move” trials, in which the mental task
was to perform MI, have been compared between all
the experimental sessions and results are reported in

Figure 10 (see Section 2.3.3 for a detailed description
of each session). The vertical dotted lines at the time
zero of graphs in the first and second rows, mark
the beginning of “move” trials, corresponding to the
presentation of the visual cue. The first row shows the
µ-band (8 − 13 Hz) ERD at the electrode position C3
(overlying the cerebral motor cortex area representing
the right hand according to the somatotopic map). The
dotted gray lines indicate the time courses of the µ
bandpower averaged for each subject, while the black
solid line represents the average over the subjects.
Significant regions (permutation statistic, p < 0.05) are
highlighted with a gray background area. No signifi-
cant ERD was found in the M condition. Conversely,
a significant ERD starting after about 1 second from
the stimulus presentation appears in all the other
experimental conditions. While in the V condition
there are two significant regions lasting together about
1 second, in the VK condition appears a wider signifi-
cant region starting about 1 second after the stimulus
presentation and lasting about 3 s. Also in the T
session, in which the same multisensory feedback of
the VK session was provided (VK-training group), it
emerges a cumulative significant region lasting about
two seconds. Time-frequency plots in the second row
of Figure 10 show only the significant ERD (blue) and
ERS (red) averaged over electrodes, “move” trials and
subjects. Values are considered significant whereas
there is at least one electrode with a significant value
in all subjects. The scalp maps in the third row show
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the spatial distribution of the maximum negative peak
(maximum ERD), corresponding to a point in the
relative time-frequency plot (coordinates in the time
and frequency domain are reported over each scalp
plot). All topographic maps resulted centered on the
contra-lateral sensory motor cortex (left hemisphere).
In particular, the deepest ERD, focused on the C3
electrode position, can be noticed for the VK condition
whithin the µ band (11 Hz) after 1.22 s from the
presentation of the stimulus.

4 DISCUSSION
In this work we proposed the use of the kinaesthetic
illusion based on the biceps brachii tendon vibration
as a continuous feedback for a MI-BCI, and we inves-
tigated its contribution in terms of BCI performance
and EEG correlates. In order to obtain a multisen-
sory afferent signal congruent with the MI task, the
kinaesthetic illusion was provided to the subjects
coupled with the visual feedback of a virtual arm. The
substantial novelty introduced by this work relies on
the use of continuous kinaesthetic illusory feedback
provided accordingly to the subjects’ decoded mental
state, and thus simultaneously to the performing of
MI.

In order to improve training of the BCI parameters,
we designed a training session in which subjects re-
ceived sensory stimuli congruently with the perform-
ing of MI. This training paradigm led to the twofold
advantage of assuring a consistent ERD pattern de-
tectable by the BCI system (as can be observed by
the time-frequency graph in Figure 10) and facilitating
subjects in performing MI. In this way, we were able
to enroll BCI naive subjects without evaluating their
capability of performing MI, and to avoid a prolonged
training phase. In order to overcome the issue of a
bias introduced by the feedback similarity between
the training session and the test session, subjects were
divided in two groups which differed by the type of
feedback received during the training sessions: visual
only (V-training group) and visual plus kinaesthetic
(VK-training group). In the test sessions (V and VK
sessions), all subjects were able to use the MI-BCI
system with a reasonable classification accuracy as
reported in Figures 9 and 6. The relatively low correct
rate achieved in the online session (about 65%), and
the 20% discrepancy between the online and off-line
analysis, could be explained by the fact that the online
feedback was evaluated without any post-processing.
This choice has been done for reporting data as closest
as possible to the actual use of the BCI system.

BCI performance have been evaluated through a 2-
way mixed anova with respect to the type of feedback
received in test and training sessions. Performance
achieved by the subjects in the VK-session was signif-
icanlty better than V-session and no interaction effect
was found between training and feedback, demon-
strating that the better performance achieved in the

VK-session did not depend on the type of feed-
back received. Furthermore, although not statistically
significant, as suggested by [34], the slightly better
performance achieved by the VK-training group can
be addressed to the more detectable EEG features the
BCI system was trained on.

From the EEG data analysis conducted on the VK-
training group, it emerged that the proposed multi-
sensory stimulation in absence of MI (M condition)
was sufficient to elicit alone a noticeable µ-band ERD
(Figure 10, first row). This result is in line with the
recent work of Yao and colleagues [34] in which
they demonstrated that a MI-BCI could be trained
using a model calibrated solely through kinesthesia
stimulation of wrist extensor tendon. In terms of EEG
correlates, the vibration-evoked kinaesthetic feedback
contributed to a longer and deeper EEG desynchro-
nization during motor imagery than in presence of the
visual feedback only, and thus it could be claimed
that the effect of the proposed afferent stimulation
increases the reliability of the MI ERD features (Figure
10). In fact, as shown in the time-frequency graphs
and the correspondent topographic maps in Figure
10, the analysis conducted with data acquired during
the performing of MI (T, V and VK sessions), resulted
in a more pronounced ERD focused on the contra-
lateral area of the motor cortex. The most focused
and contrasted contra-lateral pattern, localized on the
scalp site proximal to the representation of the right
hand in the primary sensory motor cortex, was found
for the VK session where the multisensory feedback
was provided congruently to the decoded MI. This
fact could be linked to the activation of the sensory-
motor network due to both the performing of MI and
the illusory sensation [44]–[46].

Since the MI-BCI is based on the detection of
ERD occurring during motor imagery, it could be
expected that the addition of vibration-evoked ki-
naesthetic feedback might have influenced the BCI
performance by simply biasing depth and stability
of ERD. However, two elements have to be con-
sidered: firstly, the correct ratio of the BCI is the
balanced outcome of correct detection of both rest and
movement classes. Secondly, feedback in V and VK
condition was driven by the BCI output classification
independently of the presented mental task (hence
in case of wrong classification, feedback could have
been active also during “rest” trials). Therefore, the
higher correct ratio for the VK condition suggests
that multisensory feedback facilitated the use of the
MI-BCI, and did not simply introduce a bias due to
EEG correlates of the kinaesthetic stimulation. Yet,
due to the relatively short duration of trials (8 sec-
onds), the present study does not investigate the
possible difficulty in mentally switching from MI to
resting state once the feedback has been activated.
This experimental structure reflects the common BCI
application in neuro-rehabilitation studies, in which
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a sequence of motor tasks is presented to the pa-
tients. Facilitation in the use of the MI-BCI might be
generated by the improved coherence of the afferent
pathways with the mental task while performing
motor imagery in presence of multisensory feedback.
Obtained results showed this approach as promising
for being introduced in neuro-rehabilitation scenarios,
where the connection between the mental action and
the perceived feedback constitutes a critical factor
[2], [11], [13]. Moreover, due to the purely “virtual”
nature of the proposed multisensory feedback, the
presented method could also be applied with those
patients who are severely impaired and present highly
impeded motor capabilities (in particular at the early
stage of the rehabilitation). Finally, since the proposed
method fits particularly well with virtual application,
it offers a high flexibility and easy parametrization
of the scenario to the specific needs of individual
patients.

5 CONCLUSIONS

The study investigated the contribution of kinaes-
thetic illusions evoked by tendon vibration as part of
a multisensory feedback for MI-BCI. When driven by
MI, the proposed afferent multisensory signal aimed
to be a congruent and more natural bio-feedback
the brain receives as a consequence of the efferent
motor intention. Thus, improvements in performing
motor imagery and consequently in BCI performance
were expected. From experiments conducted in this
work, it resulted that the congruent multisensory
feedback (visual, through a virtual representation of
the body, and kinaesthetic, through vibration-evoked
motor illusions), significantly increased the MI-BCI
performance with respect to the use of the visual
feedback alone. Regarding the EEG correlates, it has
been found that the measured ERD was deeper and
more stable in presence of the multisensory feedback
than in presence of visual feedback alone. Interesting
applications are envisaged in the neuro-rehabilitation
scenario. The improved voluntary control of MI due to
the congruent multisensory feedback can be exploited
both for a more effective motor network training,
and for increasing MI-BCI usability for those subjects
having difficulties performing kinaesthetic imagery.
An aspect emerged from the study that require further
investigation is whether the activation of the multi-
sensory feedback may hinder the recovery of the rest
mental state. In the present work this aspect did not
emerged since, as in the most of rehabilitative BCI
systems, BCI was operated in a structured sequence
of short lasting trials. Instead, in an assistive BCI
system, in which the BCI is fully self-paced without
any trial structure, this could become a crucial point.
Regarding neuro-rehabilitation applications, the pro-
posed method allows to exercise MI with congru-
ent multisensory feedback by generating movement

perception in a completely virtual form – through
the virtual body representation and vibration-evoked
kinaesthetic illusions. Since no overt movements are
required, this approach offers the possibility to in-
clude patients with limited motor capabilities, and
provides the flexibility of a purely virtual rehabilita-
tion scenario, parametrized to the specific needs of the
patient.
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