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Abstract: 

This paper concerns the relative sea-level changes associated with the 
Atlantic Patagonian coast derived from sea-level index points whose 
elevation was determined by a DGPS. Bioencrustations from outcrops 
located near Camarones, Chubut and Argentina consist of autochthonous 
deposits characterized by Austromegabalanus psittacus MOLINA, 1782, 
encrusting acervulinid foraminifera, coralline red algae, and bryozoans. The 
association of the different organisms is interpreted as being associated 
with an intertidal environment and they have been used as index points to 
establish the relative sea-level position. The main conclusion was that the 
relative sea-level between c. 7000 and 5300 cal. yr BP was in the range of 
c. 4 - 2 m asl, with a mean value of c. 3.5 m asl. Our data seem to support 
the existence of different rates of relative sea-level fall in different sectors 
of Atlantic Patagonia during the Holocene, and highlight the importance of 
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a more precise and accurate relative sea-level estimation by producing new 
data and revisiting the indicative meaning of most of the indicators so far 
used in the area.  
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 22 

Abstract 23 

 24 

This paper concerns the relative sea-level changes associated with the Atlantic Patagonian coast 25 

derived from sea-level index points whose elevation was determined by a DGPS. Bioencrustations 26 

from outcrops located near Camarones, Chubut and Argentina consist of autochthonous deposits 27 

characterized by Austromegabalanus psittacus MOLINA, 1782, encrusting acervulinid foraminifera, 28 

coralline red algae, and bryozoans. The association of the different organisms is interpreted as being 29 

associated with an intertidal environment and they have been used as index points to establish the 30 

relative sea-level position. The main conclusion was that the relative sea-level between c. 7000 and 31 
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 2 

5300 cal. yr BP was in the range of c. 4 - 2 m asl, with a mean value of c. 3.5 m asl. Our data seem 32 

to support the existence of different rates of relative sea-level fall in different sectors of Atlantic 33 

Patagonia during the Holocene, and highlight the importance of a more precise and accurate relative 34 

sea-level estimation by producing new data and revisiting the indicative meaning of most of the 35 

indicators so far used in the area.  36 

 37 

Keywords 38 

Relative sea-level, biological markers, Atlantic Patagonia, Holocene 39 

 40 

Introduction 41 

The impact of sea-level rise is one of the main concerns related to ongoing global warming, and our 42 

capacity to estimate the regional-to-local impact on the coast environment relies on the assumption 43 

that many local variables are known (e.g., eustatic sea-level component, tectonic uplift, 44 

subsidence, glacial isostatic adjustment; Alley et al., 2005; Blum and Roberts, 2009; Milne et al., 45 

2009; PALSEA, 2009; Lambeck et al., 2014). In this framework, the reconstruction of the relative 46 

sea-level changes at regional scale during the Holocene is particularly relevant and the accuracy of 47 

its estimation is crucial for testing geophysical models (Milne and Mitrovica, 2008). 48 

With its 2000 km of coast the Atlantic Patagonian passive margin represents a natural link for 49 

exploring the relative sea-level evolution between “near” and “far” field sites (Milne et al., 2005; 50 

Rostami et al., 2000). Therefore, this is a strategic area in which to focus paleo sea-level studies 51 

(Codignotto et al., 1992; Milne et al., 2005; Rutter et al.,1989, 1990; Rostami et al., 2000; 52 

Schellmann and Radke, 2000, 2003, 2010; Pedoja et al., 2011; Ribolini et al., 2011; Zanchetta et al., 53 

2014; Isla and Angulo, 2015). However, a precise and accurate estimation of the relative sea-level 54 

(RSL) in this area has been complicated by several factors, namely: i) precise and accurate sea-level 55 

indicators such as notches, inner terrace margins, coral reefs, and algal encrustations have been 56 

rarely used or not found (Pedoja et al., 2011; Ribolini et al., 2011; Bini et al., 2013, 2014); ii) sea-57 
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 3 

level indicators have generally been measured by using a barometric altimeter or graduate bars 58 

equipped with spirit level, starting from the local high-tide level implying a wide vertical error up to 59 

± 3 m (Zanchetta et al., 2012, 2014); iii) the coastal area is within the macrotidal regime (Isla and 60 

Bujalesky, 2008), and is characterised by high hydrodynamic regimes, so that most of the sea-level 61 

indicators are related to surf and storm extension rather than to mean sea-level. As a consequence, 62 

Schellmann and Radke (2010) and Zanchetta et al. (2014) reported a different altitudinal estimation 63 

for the Holocene RSL, using different indicators related to coastal sediments (i.e., beach ridges, 64 

littoral terraces). Some authors take a different approach in measuring reference sea level (e.g. top 65 

vs base of beach ridges; Pappalardo et al., 2015), complicating the use of reported data (Codignotto 66 

et al., 1992; Rutter et al., 1989, 1990; Pedoja et al., 2011; Ribolini et al., 2011), while others report 67 

data related to high-tide level (Schellmann and Radke, 2010 and references therein, Zanchetta et al., 68 

2012, 2014). The correlation between elevation values measured above high tide and values 69 

measured above mean sea-level is not so straightforward and regional correlations are complicated. 70 

Although the data from this vast region would be of paramount importance, recent geophysical 71 

modelling of sea-level change along the South American coast has not accounted for the Patagonian 72 

data (Milne et al., 2005), presumably because of their very high level of uncertainty.  73 

In this paper we report on a RSL reconstruction based on in situ fossil barnacles and foraminiferal-74 

bryozoan concretions. These sea-level indicators have never been described along the Patagonian 75 

coast so far. Here, we describe the indicators found in the territory of Camarones (Chubut, 76 

Argentina, Fig.1), one of the nodal areas for the reconstruction of the relative sea-level oscillations 77 

along the Patagonian coast owing to its abundance of raised beaches with datable materials 78 

(Schellmann and Radke, 2010; Zanchetta et al., 2012; Pappalardo et al., 2015). Moreover, the 79 

elevation of the indicators was for the first time measured by a Differential Global Position System 80 

(DGPS), which provided reliable sea-level values at an accuracy never previously reached along the 81 

Patagonian coast. Finally, we standardized our data in terms of sea-level index and limiting points 82 
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 4 

(e.g. Shennan et al., 2015; Vacchi et al., 2016; Rovere et al., 2016 ). This approach, totally new for 83 

the Patagonian coast, is mandatory for future regional and extra-regional correlations.  84 

 85 

The study area 86 

 87 

The study area is located in the southern part of the Bahía Camarones, Chubut (Argentina), a c. 40 88 

km wide gulf extending from c. 44°54ʹ S to 44°34ʹ S (Fig. 1). Structurally, the area is located on the 89 

southern edge of the so-called “North Patagonia Massif” (Ferruglio, 1950). Mostly Jurassic volcanic 90 

rocks formed the pre-Quaternary succession (Marifill Formation, Lema et al., 2001). Inland 91 

morphology is characterised by flat surfaces covered by Late Neogene-Early Quaternary fluvial 92 

gravelly deposits (“rodados Patagonicos” in Martinez and Coronato, 2008), while the landscape is 93 

dominated by Quaternary littoral and continental deposits raised at various elevations close to the 94 

coast (Lema et al., 2001; Pappalardo et al., 2015).  95 

Like most of coastal Patagonia, the area is dominated by high-energy, macro-tidal and stormy 96 

conditions (Isla and Bujaleski, 2008), resulting in a coastal morphology dominated by cliffs, shore 97 

platforms and coarse-clastic beach ridges (“swash built ridges” sensu Tanner, 1995).  98 

In Camarones the predictions of the astronomic tide elevations are calculated in relation to the 99 

harbour of Puerto Santa Elena (Fig. 1) according to the data released by the Servicio de Hidrografìa 100 

Naval (http://www.hidro.gov.ar). For the area of Camarones the maximum tidal range  is c. 5 m, 101 

while the mean is c. 3.5 m (Fig. 2).  102 

Most of the studies on Holocene coastal evolution are concentrated in the southern part of the Bahía 103 

Camarones area, and provide a robust chronological constraint for coastal aggradation during the 104 

Holocene (Codignotto et al., 1992; Schellmann 1998; Schellmann and Radtke 2000, 2003, 2010). 105 

Two evolutionary phases have been distinguished: 1) the first phase, the maximum Holocene 106 

ingression (c. 6.8-6.5 ky BP), is characterized by the formation of littoral and estuarine deposits 107 

(Schellmann and Radke, 2010) found at the sea embayment along local creeks (locally named 108 
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 5 

“cañadon”); 2) the successive phase, still active, is marked by discontinuous coastal aggradation, 109 

with the formation of prominent higher gravelly beach ridges parallel to the present-day coast (Fig. 110 

3). 111 

 112 

Methodology 113 

 114 

For stratigraphic and geomorphological investigations we followed the same approach already used 115 

in previous studies conducted in the area (Ribolini et al., 2011, Isola et al., 2011). A preliminary 116 

remote sensing analysis was performed by using LANDSAT7 images (acquisition dates, 1999-117 

2001), and Quick Bird images (acquisition date, 2004) supported by the digital elevation model 118 

SRTM (www.jpl.nasa.gov/srtm). After this preliminary phase, field surveys were carried out in 119 

February 2009, 2010, and 2011 (Zanchetta et al., 2012; Pappalardo et al., 2015). In the first phase, 120 

the elevation data were obtained by using graduate bars equipped with spirit level, starting the 121 

measurements from the nearest IGN point (Instituto Geográfico Nacional), with a precision in the 122 

order of ±0.3 m (Zanchetta et al., 2014). A field survey conducted in January 2016 was dedicated to 123 

the DGPS measurement of sea-level indicators. The data were acquired by the WGS84 Geographic 124 

Coordinate System (maximum error in elevation of acquired points was 10 cm) and post-processed 125 

and referred to the current global geoid model EGM2008 (Pavlis et al. 2012) (4 cm planimetric 126 

error and 9 cm elevation error). Elevation measurements indicated as “asl” in this paper are referred 127 

to the vertical datum EGM2008. These data integrate and basically confirm those previously 128 

obtained by graduated bar measurement. For the study area Schellmann and Radke (2010) reported 129 

the altitudinal measurement of different sea-level indicators, by using a barometric altimeter 130 

(reported precision ±1 m) daily calibrated with the tide level. In order to compare our data with 131 

those reported by Schellmann and Radke (2010) we used the DGPS to re-measure some of the 132 

sections described by Schellmann and Radke (2010). 133 
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 6 

In situ barnacles and encrusting foraminiferal deposits were collected in the field and measured with 134 

DGPS (Figs. 1 and 3), alongside additional samples with articulated valves of Mytilus edulis from 135 

littoral deposits. The samples for radiocarbon dating were cleaned in an ultrasonic bath with the 136 

addition of oxygen peroxide and then gently etched with diluted HCl to remove any recent 137 

carbonate encrustation. Radiocarbon measurement was carried out at the CIRCE laboratory of 138 

Caserta, Italy (Terrasi et al., 2007, 2008) and calibrated by using the Marine13 curve (Reimer et al., 139 

2015). However, the reservoir effect values for the Southern Atlantic Ocean and, in particular, 140 

Patagonia, are not well constrained (Schellmann and Radtke, 2010). Specific studies suggest that for 141 

different localities of the Patagonian coast between c. 42°S and 50°S the reservoir effect can vary 142 

between 180 and 530 years (Cordero et al., 2003; Butzin et al., 2005, Schellmann and Radtke, 143 

2010).  144 

Collected species, radiocarbon dates and sampling site elevation are reported in Table 1. The state 145 

of preservation of barnacles and encrustations, prior to dating were assessed by stereomicroscope 146 

analysis of thin sections and was investigated by X- Ray power Diffraction (XRD). 147 

 148 

Results 149 

 150 

The study area is located along a small river to the south of the Camarones village (Fig. 1). A 151 

succession of Holocene-Pleistocene gravelly beach ridges forms the coastal strandplain, up to a 152 

distance of more than 500 m inland from the present coastline. This arched beach ridge system is 153 

incised by a river valley where alluvial, marsh and coastal sediments were deposited (Figs. 3 and 154 

4a). Along the river valley, bedrock crops out forming steep cliffs in some places and relict shore 155 

platforms locally. Three rocky outcrops, composed by welded ignimbrites of Marifil Formation, 156 

yielded barnacles (Austromegabalanus psittacus Molina, 1782) and foraminiferal encrustations 157 

(mostly Acervulina inhaerens Schulthe, 1854) in life position (Figs. 3, 4b, 4c, 4d, 5 and 6). The first 158 

outcrop (Figs. 3 and 4b) is formed by a vertical cliff exposed for c. 3-4 m and a flat top surface, 159 
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 7 

located at c. 5 m asl, representing the remnant of a shore platform. Barnacles and foraminiferal 160 

encrustations are located on the cliff where barnacles are discontinuously spread for less than 1 m 161 

(between 3.4 m asl and 3.8 m asl) and encrustations for c. 1.5 m (between 3.3 m asl and 4.8 m asl; 162 

Figs. 4b and 5). The second outcrop (Figs. 3, 4c, and 5) is formed similarly by a vertical cliff with 163 

an on-top shore platform covered by gravelly deposits. On the vertical cliff barnacles span between 164 

3.1 m and 3.9 m asl and incrustations from 3.3 m and 4.6 m asl. The third sampled inland site is 165 

represented by boulders at the toe of a rocky cliff (Figs. 3, 4d and 5). Barnacles and incrustations, 166 

spanning in elevation between 3.2 and 4.2 m asl, developed on the blocks and at the base of  the 167 

cliff.  168 

In each sampled site barnacles (A. psittacus) occur as isolated or 2-3 jointed individuals (Fig. 6). 169 

Most of the encrustations consist of foraminifera identifiable as Acervulina inhaerens (Fig. 6d, e, f), 170 

which is the dominant component, while arborescent forms such as Homotrema and Miniacina are 171 

less frequent. All these encrusting foraminifera form repetitive or randomly-arranged inner 172 

superimposed growth stages. Superimposed growth stage bryozoans and rare coralline-red algal 173 

thalli occur within the A. inhaerens. The bryozoans are represented by encrusting cheilostomes 174 

(Anascina?), and the very low preservation does not allow their systematic identification. The 175 

corallines are almost micritized and/or recrystallized. A possible uniporate conceptacle was also 176 

identified. This reproductive character along with the vegetative characters (cell fusions, 177 

monomerous cell filaments) suggests a possible ascription to the Mastophoroideae subfamily (Fig. 178 

6d, e, f). 179 

The top surface of the first outcrops is carved in a previously modelled rocky terrace attributed by 180 

Schellmann and Radke (2010) to marine isotope stage 7 (MIS 7). A shell accumulation of M. edulis 181 

rests directly on the lateral margin of the lower shore platform, sealed by a few decimetre-thick 182 

slope deposits. No other deposits cover the shore platform. This shell accumulation, with a poor 183 

sandy matrix of some mm-size rounded-clasts, and some shells with valves still joined, is consistent 184 

with a storm deposit. One shell from the accumulation yielded a radiocarbon age of 5562±43 yr BP. 185 
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 8 

Concretion from the vertical cliff of this outcrop yielded a radiocarbon age of 4995±89 yr BP, 186 

whereas one barnacle yielded 5515±50 yr BP. 187 

The top surface of the second rocky outcrop is covered by gravelly deposits, which did not yield 188 

suitable material for dating (i.e., only fragmented shells and not entire shells with articulated 189 

valves). However, these deposits are reasonably related to the formation of the Holocene erosional 190 

platform. In the vertical cliff of this second outcrop a barnacle yielded a radiocarbon age of 191 

5132±67 yr BP. Here, the rocky cliff was crossed by some vertical fissures containing sediment and 192 

by some fossil remains, including M. edulis and barnacles (Fig. 6c). One sample with articulated 193 

valves of M. edulis collected from the infilling of the vertical fissures yielded a radiocarbon age of 194 

5567±44 yr BP.  195 

On the third site a sample of barnacles revealed a radiocarbon age of 5641±46 yr BP.  196 

All the rocky cliffs are partially sealed by gravelly estuarine terraced deposits, namely valley-mouth 197 

terraces, according to Schellman and Radke (2010, Fig. 3). These deposits contain shells 198 

(principally Prothotaca antiqua and M. edulis) accumulated in lenses for which Schellman and 199 

Radke (2010) reported a radiocarbon age of 5560±38 yr BP. A new radiocarbon measurement was 200 

undertaken on an M. edulis from the same deposits, directly sealing the second cliff, yielding a 201 

consistent age of 5370±60 yr BP.  202 

 203 

Discussion 204 

Sea-level indicators in Atlantic Patagonia have yielded controversial results in the estimation of past 205 

RSL, and their accuracy and precision have been poorly defined, both for the precision of the 206 

measurement of the method applied (barometric altimeter, local maps, graduate bars) and for the 207 

unclear meaning of the indicators, e.g. storm, maximum high tide (Codignotto et al., 1992). 208 

Therefore, it is mandatory to transform sea-level indicators into index or limiting points to improve 209 

RSL estimations (Shennan et al., 2015). So far, the most precise and accurate indicators described  210 

for Atlantic Patagonia, which can be easily transformed into sea-level index points, are the erosive 211 
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 9 

notches. Specifically, the retreat-point of notch defines the main high tide values (±0.3 m, Bini et 212 

al., 2014).  213 

The Camarones association of barnacles, bryozoans and encrusting foraminifera can be generically 214 

interpreted as intertidal-subtidal indicator (e.g. Pirazzoli et al., 1985; Laborel and Laberel-Deguen, 215 

1994; Baker et al., 2001; Ferranti et al., 2006; Rovere et al., 2015, 2016).  216 

Specifically, the collected samples of barnacle correspond to the “acorn barnacle” A. psittacus  (Fig. 217 

6a), a species inhabiting mainly rocky substrates of the subtidal zone, where it forms dense 218 

aggregates between 5 and 7 m in water depth (López et al., 2010). However, the functional faculties 219 

of the barnacle could account for the high capacity of A. psittacus to also colonize habitats exposed 220 

to prolonged emersion periods like those characterizing intertidal settings (López et al., 2003). The 221 

barnacles generally live in groups forming dense hummocks, but in less favorable locations like the 222 

intertidal zones where they are less frequent and distant from each other. The relatively sparse 223 

association of barnacles in our sampling sites indicates the upper limit of the living range. 224 

Present-day acervulinid foraminifera show a large bathymetric range from the intertidal zone down 225 

to 100 m in water depth (Perry and Hepburn, 2008; Bassi et al., 2012). Although acervulinids are 226 

more common in deeper water settings where interspecific competition for space may be reduced 227 

(Rasser and Piller, 1997), Acervulina inharens thrives in shallow water Bahamas shelf settings (< 228 

30 m; Walker et al., 2011). Homotrema is reported from high-energy shallow-water settings 229 

(Gischler and Möder, 2009). So far, Homotrema has seemed to be an excellent indicator of high-230 

energy water conditions for shallow near-shore and shelf/edge habitats, where water energy during 231 

tidal exchange is greater in tropical and subtropical environments (Walker et al., 2011) and, even in 232 

this case, it is consistent with the intertidal zone. Moreover, it is generally assumed that fossil 233 

barnacles and bio-encrustation in growth positions are easily eroded (Pirazzoli et al., 1985). 234 

Therefore, the survival of encrusted shell remains at higher-than-present levels suggests a sea-level 235 

fall sufficiently rapid for the shell to escape obliteration by wave erosion (Pirazzoli et al., 1985), a 236 

condition favoring the preservation of species that live in the upper limit of the high tide. In most 237 
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 10 

cases, the age of the outer shells on a thick vertical encrustation will correspond to the terminal 238 

period of the former sea-level stand (Baker et al., 2001). Therefore, the Camarones barnacles, 239 

bryozoans and encrusting foraminifera association can be considered substantially intertidal and its 240 

definition of index point could be possible on the basis of tide oscillations (Shennan et al., 2015; 241 

Vacchi et al., 2016). By  assuming that our association is strictly intertidal between c. 6100 cal yr 242 

BP and c. 5300 yr cal. BP RSL was around 3.7 and 3.9 m asl (Fig. 7).  243 

For the studied area, Schellmann and Radke (2010) reported several radiocarbon measurements for 244 

different sea-level indicators, which can complete and improve the interpretation of the data 245 

discussed in this paper. In our study, we selected only the valley-mouth terrace sea-level indicators, 246 

which are less affected by storm deposition, compared to beach-ridges, thus reducing the errors in 247 

elevation estimation (Schellmann and Radke, 2010; Tamura, 2012; Zanchetta et al., 2014). 248 

According to the observations of modern analogs by Schellmann and Radke (2010), valley-mouth 249 

terraces are estuarine deposits that contain lateral/vertical interfingering of mollusc-bearing littoral 250 

sediments and fluvial deposits forming at the mouth of small local rivers. The top of the valley-251 

mouth terraces correlates directly to the former elevation of the high-tide level representing a 252 

suitable indicator to be used as index point. As can be inferred from Fig. 7, RSL from mouth-253 

terraces is consistent within the indicative meaning of barnacles and encrustations supporting our 254 

interpretation. Indeed, at least three of our biological indicators, chronologically overlapping the 255 

data from valley mouth-terraces, lie within 1 m of the top of the mouth-terraces. Significantly, the 256 

presence of the storm deposit dated c. 5950 cal. yr BP, located directly on the erosive shore 257 

platform on top of the first cliff, represents an upper RSL limiting point (Fig. 7), constraining fairly 258 

well the values of fossil barnacles and mouth-terrace. The storm deposit can also be considered a 259 

termine ante quem for the formation of the rock platform on top of the first outcrop.  260 

Considering the elevation of the index points obtained from mouth-terraces in the area together with 261 

the biological indicators discussed in this paper, this evidence collectively (Fig. 7) agrees on 262 

indicating the RSL to be from c. 2 to c. 4 m asl between c. 5300 and 7000 cal. yr BP.  263 
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In Fig. 7, the altimetric and chronological data of the valley-mouth terraces show a highstand 264 

between c. 7000 and 6600 cal. yr BP at c. 4 m asl, followed by a progressive fall to c. 2-2.5 m 265 

between 6200 and 5300 cal. yr BP. The radiocarbon age of the storm deposit above the shore 266 

platform may indicate that this shore platform was related to the higher sea stand at c. 7000 cal. yr 267 

BP, and was no longer significantly active during the progressive fall after ca. 6200 cal. yr BP, only 268 

occasionally reached by storms. However, the RLS variation recorded by the valley mouth terraces 269 

is not shown by barnacles and encrustation, thus suggesting that most of this variation falls within 270 

the range of error of the two index points.  271 

Following Shennon and Horton (2002) the total vertical error (including vertical distribution of 272 

encrustation and barnacles, fig. 5; measurement errors and indicative meaning) for the biological 273 

sea-level indicators is c. 3.8 m. According to Schellman and Radke (2010), a minimum vertical 274 

error for valley mouth-terraces can be calculated at c. 2 m. However, a precise estimation of error 275 

should be associated with an accurate review of modern analogues on the valley mouth-terraces and 276 

of other findings from fixed biological indicators. 277 

Overall, the mean RSL between c. 7000 and 5300 cal. yr BP, which can be obtained considering all 278 

the index points, is 3.4±0.6 m asl. 279 

Initial glacio-hydro-isostatic models of the Patagonian coast suggested that the shoreline could be 280 

characterized by currently raised beaches, which started to form as soon as ice-sheet melting ceased 281 

(Clark et al., 1978). A more recent model (Milne and Mitrovica, 2008) predicted that relative sea-282 

levels might have exceeded present by c. 5 m at 6000 cal. yr BP. Field evidence indicates that the 283 

highstand is somewhat c. 1.5 m lower than model prediction. These ranges of measurement can 284 

agree with the model considering all the vertical errors associated with the index points discussed.  285 

A comparison of the different sectors of the Atlantic Patagonian coast is complicated by many 286 

factors. Codignotto et al. (1992) found a significant rate of relative sea-level changes during the 287 

Holocene in relation to different tectonic sectors. They indicated a maximum highstand at c. 12 m 288 

asl for the period c. 4-8 kyr BP for the area of Camarones-Bustamante, at c. 2 m asl for the period c. 289 
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4-6 kyr BP in the area of Bahia Solano (Fig. 8). These data are affected by poor quality radiocarbon 290 

dating together with low altimetric accuracy. Moreover, most data are obtained by measuring the  291 

altitudinal crest of beach ridges, which are largely affected by storm conditions (Schellmann and 292 

Radke, 2010; Tamura, 2012; Zanchetta et al., 2014). On the contrary, Schellmann and Radke (2010)  293 

observed no appreciable differences along the Patagonia coast. However, by using different sea-294 

level indicators the authors observed different values (reported above high tide –a.h.T) for the 295 

highstand, occurring between c. 6-7 cal. kyr BP, ranging from c. 9 to 5 m ahT. Bini et al. (2013, 296 

2014), and Zanchetta et al. (2014) reported a relative sea-level at c. 8 m asl at c. 3500 cal. yr BP by 297 

accurate measurements of erosive notches in the Puerto Deseado area (Fig. 1). Owing to the 298 

difficulty in dating erosive notches, Zanchetta et al. (2014) suggested that these notches were 299 

formed during a previous Holocene highstand. In any case, the relative sea-level marked by well-300 

preserved notches is higher than that observed in the Camarones area, indicating that a different 301 

relative sea-level may exist along the Patagonian coast during the same period (Fig. 8).  302 

In this respect, Pedoja et al. (2011) suggested that the presence of the Nazca and the Antarctic plates 303 

subducting under South America and southern Patagonian respectively (Ramos and Ghiglione, 304 

2008, and references therein) may have produced a long wavelength tectonic effect, onto which the 305 

glacio-hydro-isostatic signal is overprinted. This signal can vary according to the different sectors 306 

of the Atlantic Patagonian coast. More recently, Isla and Angulo (2015) in an accurate review of 307 

existing data from MIS5 terraces along Atlantic Patagonia have shown the importance of the effect 308 

of subduing plates in determining regional trends in the rate of uplift. The data discussed in our 309 

paper seem to support the possible existence of a different uplift rate over the Atlantic Patagonian 310 

coast. However, subtle differences can only be identified by appropriate markers and are probably 311 

difficult to identify by using the data so far available, which are affected by large measurement 312 

uncertainty and incomplete understanding of the indicator meaning. 313 

 314 

Conclusion 315 
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 316 

We have presented the first accurate Middle Holocene RSL determination for a well-dated period of 317 

time by using different sea-level indicators, for the Atlantic Patagonian coast, with altitudinal 318 

measurement obtained using DGPS. Once dated, and their meaning and vertical error discussed, the 319 

indicators were transformed into index points. In this paper, using the available evidences, we 320 

suggest that the in situ association of sparse barnacles, bryozoans and encrusting foraminifera can 321 

have the indicative meaning of intertidal indicators, in the absence of modern analogs for the area. 322 

The mean RSL was estimated at c. 3.50 m asl, lower than the c. 5 m predicted by the global model, 323 

using estuarine deposits (i.e. mouth terraces) together with barnacles, bryozoans and encrusting 324 

foraminifera, for the period comprised between c. 5300 and 7000 cal. yr BP (Milne and Mitrovica, 325 

2008). 326 

Regional considerations indicating that the existence of different rates of relative sea-level falls in 327 

different sectors of Atlantic Patagonia, as reported in the past by Codignotto et al. (1992) and 328 

refuted by recent works (Schellmann and Radke, 2010), need to be reconsidered. In this framework, 329 

the existence of general tectonic components of uplift due to the subduction of the Nazca and the 330 

Antarctic plates (Pedoja et al., 2011; Isla and Angulo, 2015) needs to be better clarified. Indeed, it is 331 

necessary to identify the sectors characterized by different rates of uplift, by using a multi-indicator 332 

approach and by searching further sea-level indicators, different from those traditionally used in this 333 

area (Zanchetta et al., 2014). In this regard, it is fundamental to transform these indicators to sea-334 

level index points and to clarify the indicative meaning also of the previous indicators studied for 335 

more correct regional correlations. This is particularly important for such a vast area, for which 336 

good quality data are still sparse. An improvement in the quality of the indicators is a priority for 337 

future research.  338 
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 1 

Figure 1 -Location map of the studied area. Green circles: sites mentioned along the text; orange 

circle: location of Puerto Santa Elena; red square: study area; red stars: location of sampled sites.   

 

Figure 2 – Tide level derived from the current tide tables of Puerto Santa Elena. Elevation data are  

referred to the reduction plane (theoretical plane located under the mean sea level in order to have 

only positive tidal values in the tables). MLLW: Mean Lower Low Water; MLHW: Mean Lower 

High Water; MHLW: Mean Higher Low Water; MHHW: Mean Higher High Water; MHW: Mean 

High Water; MTL: Mean Tide Level. 

 

Figure 3 - Simplified geomorphological map of the studied area: H=Holocene beach ridges 

subdivided into H1, H2, H3 from the oldest to the youngest Beach Ridge, according to the 

morphostratigraphic units identified by Schellmann and Radke 2010; P= Pleistocene beach ridge. 

 

Figure 4 - Geological sections (see map in Fig.2 for location): 2a) geological section AA’2b) 

geological section BB’; 2c) geological section CC’. 

 

Figure 5 -  Elevation range of barnacles and incrustations in the three outcrops described. The data 

were measured by DGPS Trimble with a maximum error of 10 cm in elevation. 

 

Figure 6 - Images of barnacles (Austromegabalanuspsittacus) (a); incrustation (b); storm deposit 

infilling fractures within bedrock (c). Thin-section microscope photographs of the studied 

bioencrustations. A-B, encrusting acervulind shells (ac) showing chamber arrangement (arrows) 

with successive layersin sub-axial sections; the chambers are open in lateral walls (arrows). C, 

encrusting coralline algal thallus (cor) showing the transversal section of a uniporate conceptacle (c) 

with a cylindrical porecanal (arrow). Scale bar represents 500 µm. 

 

Figure 7 –Total plot of the Camarones area index points: fixed biological indicatorsfrom this work; 

valley mouth terrace indicators from Schellmann and Radke (2010). Limiting point from this work. 

 

Figure 8 – Relative sea level data (RSL) along the Patagonian coast for the “high stand” by different 

authors:  redline: data from Codignotto et al. (1992); dark line: data from Zanchetta et al. (2014), 

and from this work reported as a.s.l.; (for sites location see fig.1 ).  The indicative meaning reported 

in the figure is discussed in the text, while the indicative meaning cannot be reported for Codignotto 

et al. 1992. 
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 2 

Table 1 - Radiocarbon ages obtained for this study wereperformed using IntCal13 and MARINE13 

radiocarbon age calibration curves (Reimer et al. 2015). *Data from Schellmann and Radke (2010) 
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Lab. Code Sample 

code 

14
C yr BP Cal yr BP 

(±2σ) 

Material Elevation 

(m asl) 

DSH2744 Wpi-424-2 

 

5641±46 5924-6168 Australomegabalanus 

psittacus 

3.7 

DSH3170 Wpi-436A 

 

5515±50 

 

 

5741-6015 Australomegabalanus 

psittacus 

3.6 

DSH2738 AO-164 5132±67 5313-5608 Australomegabalanus 

psittacus 

3.9 

DSH2742 Wpi-436b 4995±89 5106-5560 Encrustation 3.6 

DSH2736 AO-154D 5567±44 5865-6099 Mytilus edulis 3.9 

DSH2745 Wpi-436 5562±43 5861-6092 Mytilus edulis 5.2 

DSH4023 AO-164 5370±60 5604-5878 Mytilus edulis 3.5 

Hd-23504 Pa04/7* 5560±38 5866-6065 Protothaca antiqua 3.8 
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Figure 1 -Location map of the studied area. Green circles: sites mentioned along the text; orange circle: 
location of Puerto Santa Elena; red square: study area; red stars: location of sampled sites.  
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Figure 2 – Tide level derived from the current tide tables of Puerto Santa Elena. Elevation data are  referred 
to the reduction plane (theoretical plane located under the mean sea level in order to have only positive tidal 
values in the tables). MLLW: Mean Lower Low Water; MLHW: Mean Lower High Water; MHLW: Mean Higher 

Low Water; MHHW: Mean Higher High Water; MHW: Mean High Water; MTL: Mean Tide Level.  
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Figure 3 - Simplified geomorphological map of the studied area: H=Holocene beach ridges subdivided into 
H1, H2, H3 from the oldest to the youngest Beach Ridge, according to the morphostratigraphic units 

identified by Schellmann and Radke 2010; P= Pleistocene beach ridge.  

 
150x219mm (300 x 300 DPI)  

 

 

Page 28 of 32

http://mc.manuscriptcentral.com/holocene

HOLOCENE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 4 - Geological sections (see map in Fig. 3 for location): 2a) geological section AA’2b) geological 
section BB’; 2c) geological section CC’.  
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Figure 5 -  Elevation range of barnacles and incrustations in the three outcrops described. The data were 
measured by DGPS Trimble with a maximum error of 10 cm in elevation.  
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Figure 6 - Images of barnacles (Austromegabalanuspsittacus) (a); incrustation (b); storm deposit infilling 
fractures within bedrock (c). Thin-section microscope photographs of the studied bioencrustations. A-B, 

encrusting acervulind shells (ac) showing chamber arrangement (arrows) with successive layersin sub-axial 
sections; the chambers are open in lateral walls (arrows). C, encrusting coralline algal thallus (cor) showing 

the transversal section of a uniporate conceptacle (c) with a cylindrical porecanal (arrow). Scale bar 
represents 500 µm.  
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Figure 7 –Total plot of the Camarones area index points: fixed biological indicatorsfrom this work; valley 
mouth terrace indicators from Schellmann and Radke (2010). Limiting point from this work.  
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Figure 8 – Relative sea level data (RSL) along the Patagonian coast for the “high stand” by different 
authors:  redline: data from Codignotto et al. (1992); dark line: data from Zanchetta et al. (2014), and from 
this work reported as a.s.l.; (for sites location see fig.1 ).  The indicative meaning reported in the figure is 

discussed in the text, while the indicative meaning cannot be reported for Codignotto et al. 1992.  
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