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Abstract

Combining renewable energy sources, as photovoltaic arrays (PV), wind turbine (WT), biomass fuel generators (BM), with back-up
units to form a Hybrid Renewable Energy System (HRES) can provide a more economic and reliable energy supply architecture
compared to the separate usage of such units. In this work an optimization tool for a general HRES is developed: it generates an
operating plan over a specified time horizon of the setpoints of each device to meet all electrical and thermal load requirements with
possibly minimum operating costs. A large number of devices, such as conventional and renewable source generators, mandatory
and deferrable/adjustable electrical loads, batteries, combined heat and power configurations are modeled with high fidelity. The
optimization tool is based on a Sequential Linear Programming (SLP) algorithm, equipped with trust region, which is able to
efficiently solve a general nonlinear program. A case study of a real HRES in Tuscany is presented to test the major functionalities
of the developed optimization tool.

Keywords: Energy systems, numerical optimization algorithms, Sequential Linear Programming, Hybrid Renewable Energy
Systems (HRES)

1. Introduction1

Nowadays, a large portion of the energy requirements all2

around the world is still supplied from conventional energy3

sources like coal, natural gas, crude oil, etc. On the other hand,4

the gradual scarcity of conventional energy resources, fuel price5

fluctuations and harmful emissions have made power gener-6

ation by conventional methods only, unsustainable and non-7

viable on the long term. A possible solution can be found in8

the use of renewable energy sources (i.e., solar, hydroelectric,9

biomass, wind, ocean and geothermal). Each one has its own10

special advantages that make it uniquely suited to certain ap-11

plications. The major drawback of the mentioned energy op-12

tions is their unpredictable nature and dependence on weather13

and climatic conditions. This problem can be overcome by in-14

tegrating renewable and traditional resources in a suitable hy-15

brid architecture. Hybrid Renewable Energy Systems (HRES)16

are composed of one renewable and one conventional energy17

source or more than one renewable with or without conven-18

tional energy sources, which operate in stand alone or grid con-19

nected mode [1]. These HRES comprise a number of devices20

which may generate, absorb or store electricity and/or heat. De-21

spite cases where the energy exchange is not possible, e.g. is-22

land operations or remote regions, the HRES is generally as-23

sumed bidirectionally interlaced with the electrical grid. In this24

way any electrical power generation excess/lack can be sold25
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to/bought from the grid. On the other hand, any heat require- 26

ment, generally transported by either hot or cold media (usually 27

water streams), has to be fulfilled in the exact amount within the 28

HRES. 29

The main goal of this work is to build an optimization system 30

that, given an HRES with all devices sized, optimizes their set- 31

points in order to minimize the overall operational cost over a 32

specified time horizon. This horizon lasts usually 24 hours, but 33

it can be longer or shorter as desired. The system is designed 34

to meet four of the possible tariff regimes actually in force in 35

Italy, but its structure is sufficiently general to be adapted to 36

other energy price policies. 37

This paper is organized as follows. A literature review on 38

HRES generalities and optimization methods is presented in 39

Section 2. The HRES modeling and how its operational cost is 40

calculated are presented in Section 3. The optimization problem 41

is then formulated and all constraints are explained in Section 4. 42

Based on this problem, the developed optimization algorithm is 43

presented in Section 5. The algorithm is then tested over a real 44

case study of an HRES located in Tuscany. Results and discus- 45

sions are reported in Section 6. Finally, Section 7 summarizes 46

the main achievements of this work. 47

2. Background 48

2.1. HRES generalities 49

An important feature of HRES is to combine two or more 50

renewable power generation technologies to make best use of 51

their operating characteristics. In this way efficiencies higher 52
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than those obtained from a single energy source can be ob-53

tained. HRES can address limitations in terms of fuel flexi-54

bility, efficiency, reliability, emissions and economics [2]. As55

mentioned, an HRES can be configured either in stand-alone56

or in grid-parallel application modes. Selection of the applica-57

tion mode depends on several factors such as grid availability,58

cost of grid supplied electricity, and meteorological conditions59

in the application site.60

• “On grid”: there is only one link with the grid per each61

HRES denominated “Point of Distribution”: it allows a bi-62

directional power flow. This is mostly used in urban sites63

as well as for large wind and solar farms.64

• “Stand-alone”: conceptually it can be obtained by a grid-65

parallel system, simply switching off the connection with66

electrical grid. Of course the starting grid-parallel system67

has to be equipped with back-up units and fuel genera-68

tor. Stand-alone HRES are considered as one of the most69

promising ways to handle electrification requirements in70

remote regions (e.g. island) [3].71

2.2. HRES optimization72

Optimal design. In order to obtain electricity from an HRES73

reliably and economically, an optimized sizing method is nec-74

essary. To this aim, Gupta et al. [4] present the analysis and75

design of a mixed-integer linear mathematical programming76

model to determine the optimal configuration and cost for an77

HRES. This consists of a PV array, biomass (fuelwood), biogas,78

small/micro-hydro, a fossil fuel generator and a battery bank.79

The cost function to be minimized is based on demand and po-80

tential constraints. Particularly, the optimal sizing of such sys-81

tems requires detailed analysis for a given location. There are82

indeed various site-dependent variables such as solar radiation,83

wind speed and temperature that influence to the system cost84

[3]. This design problem has the goal to determine the power85

system optimal configuration and location, type and sizing of86

generation units installed at certain nodes, in order to meet load87

requirements at minimum cost. Thus, the optimal HRES con-88

figuration seeks a combination of generator types and sizes re-89

sulting in the lowest lifetime cost and/or emission. Among all90

possible HRES configurations that are optimally dispatched,91

the configuration with the lowest “Net Present Cost (NPC)”92

is declared as the “optimal configuration” or the “optimal de-93

sign”. Yang et al. [5] presented a method for the optimization94

of hybrid PV-Wind-battery systems which minimize the “Lev-95

elized Cost of Energy (LCE)”. The optimization is carried out96

by changing component combinations: number and orientation97

of PV modules, rated power and tower height of wind turbine,98

capacity of the battery bank. Summarizing, there are two pos-99

sibile objective functions to be minimized for optimal design.100

• Net Present Cost (NPC): investment costs plus the dis-101

counted present values of all future costs during the system102

lifetime;103

• Levelized Cost of Energy (LCE): total cost of the entire104

HRES divided by the energy self produced.105

Additionally, reliability restrictions are usually included, evalu- 106

ating the objective function by means of a probability parame- 107

ter [6]. 108

Operational optimization. The HRES studied in this work has 109

not to be sized because device properties are already given as 110

input data and so are the electrical loads and the thermal loads, 111

where present. The optimization is then carried out adjusting 112

the operating setpoints of each HRES device. The optimiza- 113

tion system must compute the power production profile, when 114

an electrical load has to start, if it is convenient to charge a bat- 115

tery or not, and so on. A wide literature on this theme exists. 116

Barley et al. [7] face the problem of optimal dispatch strategy 117

for HRES in remote areas. Ashari et al. [8] present dispatch 118

strategies for the operation of a PV-diesel-battery HRES using 119

setpoints. The number of startup for the the diesel generator is 120

optimized in order to minimize the overall system costs. Wang 121

et al. [9] develop energy management strategies from both the 122

demand side and generation side. The intended goal is to sat- 123

isfy the electricity demand while minimizing both the overall 124

operating cost and environmental impact. The latter one is ac- 125

counted for by indicators of equivalent cost. Day-ahead and 126

real-time weather forecasting, demand response and model up- 127

dating are also integrated using a receding horizon optimization 128

strategy. HRES operational optimization finds also other appli- 129

cations as in Park et al. [10]. The authors propose an operation 130

control of a PV-diesel HRES for a small ship considering the 131

PV power fluctuation due to solar radiation. The control aim 132

is to minimize the fuel consumption with the smallest battery 133

storage capacity. Another energy management application is 134

the one in Wang et al. [11] in which the HRES (PV-Wind-fuel 135

cell) is used to manage the energy flows in the chlorine-alkali 136

process using receding horizon optimization techniques. En- 137

yard et al. [12] use a model predictive controller (MPC) to com- 138

mand the flow of water passing through a storage tank, the wood 139

boiler setpoint temperature to reduce CO2 emissions and oper- 140

ating cost of a boiler system. In HRES optimization, weather 141

forecasting is also a primary task to deal with. Many works in 142

literature are interested in proper and efficient forecasting tech- 143

niques. Among the many the authors suggest [13, 14, 15] and 144

references therein. HRES operational optimization is also rel- 145

evant in the so-called “Smart Grid” research field. Samadi et 146

al. [16] propose a novel real-time pricing algorithm for smart 147

grid, considering the importance of energy pricing as an essen- 148

tial tool to develop efficient demand side management strate- 149

gies. The algorithm aims to find the optimal energy consump- 150

tion levels for each subscriber to the grid, maximizing the ag- 151

gregate utility of all subscribers in a fair and efficient man- 152

ner. Zhu et al. [17] also proposed a consumption scheduling 153

mechanism for home area load management in smart grid, but 154

using an integer linear programming (ILP) technique. Wu et 155

al. [18] minimize electricity cost subject to a number of con- 156

straints, such as power balance, solar output and battery capac- 157

ity. Considering demand side management, an optimal con- 158

trol method (open loop) is developed to schedule the HRES 159

power flow over 24 h. MPC is then used as closed-loop method 160

to dispatch the power flow in real-time when uncertain distur- 161
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bances occur. MPC has been used also by Wei et al. [19] to162

operate a Wind-PV system. The authors take firstly into ac-163

count short-term optimal maintenance and operation consider-164

ations. Then, long-term optimal operation with battery main-165

tenance and time-varying electric power pricing is considered.166

An extensive literature survey on HRES applied to smart grid167

and micro-grid can be found in [20]. A framework of diverse168

objectives optimized to empower the micro-grid has been out-169

lined. A review about modeling and applications of renewable170

energy generation and storage sources is also presented in [20].171

Optimization techniques and tools. Various optimization tech-172

niques for HRES optimization have been reported in litera-173

ture. The most common ones are genetic algorithm (GA) [21,174

22, 23, 5], simulated annealing (SA) [24], and particle swarm175

optimization (PSO) [25, 26, 27]. There are also possible176

promising techniques for future use in HRES sizing, such177

as ant colony optimization (ACO) [28] or artificial immune178

system (AIS) algorithm [29]. Besides, many software tools179

are commercially available that can be helpful for real-time180

system integration. The most used are: “Hybrid Optimiza-181

tion Model for Electric Renewables (HOMER)” [30], as the182

most famous, “Hybrid Power System Simulation Model (HY-183

BRID2)” [31], “improved Hybrid Optimization by Genetic Al-184

gorithms (iHOGA)” [32], and so on. Several more optimization185

tools are also available for hybrid systems design [6]. A de-186

tailed literature survey specifically on commercially available187

software for the HRES performance evaluation, can be found188

in [33].189

Summary. As anticipated, in this work we present an optimiza-190

tion system able to perform an operational optimization of an191

HRES. In particular, we propose to optimize an already sized192

energy system, which means that this tool can be adapted also193

to pre-existing HRES. Our main novelty is a flexible and modu-194

lar modeling approach, obtained by considering every device as195

a single unit that can generate or absorb (electrical or thermal)196

power, as appropriate depending on the imposed constraints and197

on the economical convenience, and that contributes to an over-198

all cost. The optimization problem objective is constituted by199

a sum of costs, fees, and prizes due to fulfilling or not certain200

energy requirements. In this sense, within the usual framework201

of optimization and control systems, our optimization layer can202

be more assimilated to the concept of Dynamic Real-Time Op-203

timization [34, 35, 36, 37, 38, 39, 40] as its result is an econom-204

ically optimal sequence of setpoints spanned on a specific time205

horizon.206

3. HRES model207

3.1. Introduction208

The HRES considered in this work can be composed by sev-209

eral “devices” belonging to four different classes: electrical210

generators, electrical accumulators, electrical loads and ther-211

mal configurations [41]. A general description of each class, is212

given in §3.2. Each device model takes a setpoint, as input vari-213

able, ranging in [0,1], except for batteries where the setpoint214

ranges in [−1,1]. Any other quantity in each device model is 215

calculated from these setpoints: for instance, in a fuel burning 216

electrical generator, the device input is the ratio between gen- 217

erated power and nominal power, while fuel consumption and 218

generated power are outputs of the device model. Many devices 219

present some constraints to fulfill, e.g. bounds on the state of 220

charge (SOC) for batteries, or maximum number of startups for 221

fuel generators. Every model device gives, as calculated out- 222

put, its contribution to the cost function and to the constraint 223

vector. Let W (i) denote the net electrical power supplied by 224

HRES to the network at instant i. Let this quantity be positive 225

if the HRES is indeed selling electricity to network or negative 226

if the HRES is buying electricity from the network. At each 227

instant i ∈ {1, . . . ,N} the exchange of power with the network 228

is expressed by: 229

W (i) = ∑
k∈K

G(k, i)− ∑
m∈M

C(m, i)+ ∑
b∈B

A(b, i), (1)

in which: 230

• G(k, i) is the power generated by the k−th generator; 231

• C(m, i) is the power absorbed by the m−th electrical load; 232

• A(b, i) is the power released by the b−th accumulator, neg- 233

ative when the accumulator is charged. 234

Note that K is the set of all devices that can generate electric- 235

ity, M is the set of electrical loads, B is the set of batteries. 236

The typical time horizon considered in this work is 24 hours, 237

divided into N = 96 time steps, each of length τ = 0.25 h. The 238

horizon N, and also time step length τ , can be changed accord- 239

ing to specific requirements. Typically, the optimization tool is 240

run one day ahead using forecasts of weather conditions, load 241

demands, power exchange declared profile, etc. Results of this 242

optimization run are then used as setpoints for the HRES con- 243

trol system. However, it can also be re-run during the current 244

day to re-optimize the HRES operation in response to changes 245

in weather parameters, loads, etc., or in response to a demand 246

from the Dispatching Service Market of power exchange profile 247

variation. In this case the horizon can be shrunk accordingly to 248

cover the remaining portion of the current day. The computa- 249

tional efficiency of the developed tool is that, in principle, for 250

typical HRES it can be re-run at each time step similarly to an 251

MPC. 252

3.2. Devices models 253

Electrical generators. Three different electrical generators are 254

considered: photovoltaic (PV), wind turbine (WT) and fuel 255

burning generators. All generators take a vector of N setpoints 256

meant as the ratio between the actual electrical power and the 257

device nominal power over the time horizon. Another charac- 258

teristic of these devices is the fuel that enters them: for PV or 259

WT, the fuel is obviously priceless being sun and wind respec- 260

tively. All generators have nameplate data as input parameters, 261

and for the fuel burning ones, also the kind of fuel has to be 262

specified, e.g. biomass, diesel, natural gas. Generated power 263

[kWe] and the fuel rate [kg h−1] profile over the time horizon 264
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are the outputs calculated for all generators. The general for-265

mula for the electrical power production of the k-th generator266

is:267

G(k, i) = φ1(k, i)α(k, i) (2)

where φ1 formulation depends on the specific generator. For268

fuel burning generators the correlation for fuel consumption is:269

270

F(k, i) =
G(k, i)

LHV (k)ηe(k, i)
(3)

where LHV is the lower heating value and ηe is the electrical271

efficiency.272

Electrical accumulators. Two electrical accumulator models273

are defined, which differ in the rate of charging/discharging:274

the “BMS” one slows down the charge/discharge rate once a275

certain State-Of-Charge (SOC) value is reached, whereas such a276

limitation is not present in the conventional accumulator model.277

Accumulators take a vector of N setpoints meant as the ratio be-278

tween the actual electrical power, accumulated or released, and279

the device nominal power deducted by a calculated efficiency.280

Other input parameters are nameplate data, e.g. charging and281

discharging efficiencies, SOC bounds and the initial SOC value.282

Released/absorbed power [kWe] and the SOC [%] profile over283

the selected time horizon are the two main outputs of these de-284

vices.285

The general formula for the electrical power produc-286

tion/absorption of the b-th accumulator is:287

A(b, i) = ψ1(b, i)η1(b, i)β (b, i) (4)

where ψ1 formulation depends on the battery nominal power288

and η1 is the accumulator power exchange efficiency. The SOC289

profile correlation is then:290

SOC(b, i) = SOC(b, i−1)+ψ2(b)+ψ3(b)η2(b, i)β (b, i) (5)

where ψ2 and ψ3 counts for internal electrical effects and η2 is291

the accumular storage efficiency.292

Electrical loads. Three different electrical load models are293

here considered: L1, L2 and L3 loads. L1 types are used to rep-294

resent all mandatory, non adjustable electrical consumptions.295

L2 types are used to represent electrical consumption cycles296

which need to be completed (one or more times) at no specific297

time over the time horizon. L3 types, instead, represent loads298

normally on, that can be shut down for a limited amount of time299

without compromising the related process operation. Setpoints300

for the loads are here meant as the starting and ending times of301

each cycle: obviously L1 loads do not have any setpoint as they302

are fixed. The electrical absorbed power [kWe] profile over the303

time horizon is its only output calculated.304

The general formula for the electrical power consumption of305

the m-th electric load is:306

C(m, i) = fL(γ(m, i), i) (6)

where fL depends on the load type and γ is the setpoint for the307

time-varying loads.308

ENERGY
PRODUCTION

HOT
STORAGE

T1 THERMAL
LOAD

T2(= Ts)
F⇒

G ⇑

Ts
T3

T2

T3

Figure 1: General block diagram of HOT thermal configurations. The black
continuous lines represent the path followed in most of the configuration, while
the red dotted lines indicate a direct exchange between the energy production
device and the thermal load.

THERMAL
LOAD CHILLER

C ⇑

T5 COLD
STORAGE

ENERGY
PRODUCTION

ABSORPTION
REFRIGERA-

TOR

T1

T2

F⇒

G ⇑ C ⇓

T3

Ts

T4

T3

TsT4

Figure 2: General block diagram of COLD thermal configurations. The black
continuous lines represent the path followed in most of the configuration, while
the purple dotted lines indicate the paths followed in the presence of a cold
storage tank.

Thermal Configurations. The thermal configurations are di- 309

vided into two categories depending on the purpose of heat 310

transfer, i.e. whether heat is supplied to or removed from the 311

thermal utilizer. 312

As depicted in Figure 1, thermal configurations denoted as 313

“HOT” supply heat by means of a hot medium stream, usu- 314

ally water at 80÷ 90◦C. This material stream enters the ther- 315

mal load at temperature T2 and leaves it at temperature T3, with 316

T3 < T2. Many different configurations are possible, with or 317

without intermediate hot storage tanks. In Figure 1 the block 318

named “Energy Production” represents one or more devices that 319

use a “stream” F, fuel or electricity, to produce the heated ma- 320

terial stream at temperature T1 sent to a hot storage tank, or at 321

temperature T2 in case of direct exchange with the thermal load. 322

In some configurations, electrical power G can be produced, 323

usually through a combined heat and power system (CHP), and 324

utilized in the HRES or sold to the grid. It can be noticed that, in 325

case of multiple energy producers, an input setpoint is required 326

for everyone of them. 327

As depicted in Figure 2, thermal configurations denoted as 328

“COLD” remove heat at low temperature (e.g., 10÷ 12◦C us- 329

ing chilled water) in order to satisfy a generic thermal load. A 330

material stream at temperature T5 is sent to the thermal load, 331

and leaves it at temperature T3, with T3 > T5. Also in this case 332
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different formulations are possible, with or without intermedi-333

ate cold storage tanks. In Figure 2 there is still a block named334

“Energy Production” representing a device that uses a material335

fuel stream F to produce the heated stream at temperature T1336

that drives an absorption refrigerator [42]. As for HOT con-337

figurations, electrical power G can be produced, and in case of338

multiple energy producers, an input setpoint has to be defined339

for each of them.340

Each, HOT or COLD, thermal configuration takes the ther-341

mal load profile requirements as parameters and gives the ther-342

mal and generated/absorbed electrical power profiles over the343

time horizon as outputs. In addition, all nameplate data and344

fuel type used must be specified.345

Due to the complexity of these devices, a single general math-346

ematical formula cannot be given. The specific formulation for347

a particular thermal configuration can be seen in the example in348

§ 6.2.349

3.3. Objective function350

The objective function to be minimized, denoted by f , has351

the following structure:352

f = Costs−Revenues+Penalties (7)

in which:353

• Costs are associated to electricity bought from the network354

and fuel consumption.355

• Revenues are associated to electricity sold to the network356

and to incentives (e.g., for power generation using renew-357

able sources).358

• Penalties are associated to not respecting a power genera-359

tion profile.360

This objective function can be slightly different depending361

on the specific tariff regime. In this work four different tariff362

regimes may apply to an HRES: they represent the four most363

common energy policies currently available in Italy as estab-364

lished by law. As an example, one of the four tariff is explained365

and analyzed below to let the reader understand the objective366

function construction rationale.367

3.4. Example of tariff regime368

In this tariff regime, the cost function can be expressed by:369

f =
N

∑
i=1

[ fW (i)+ fF(i)− fI(i)+ fD(i)] (8)

in which:370

• fW (i) is the positive or negative cost associated to ex-371

change of electricity, during the i−th time step.372

• fF(i) is the positive cost associated to fuel consumption,373

during the i−th time step.374

• fI(i) is the positive incentive awarded, during the i−th 375

time step, for power generation by means of renewable 376

sources or High Efficiency Co-Generation (HECG) sys- 377

tems. 378

• fD(i) is the positive cost associated to penalties for missed 379

production and/or the negative cost associated to success- 380

ful responses to requests from the Dispatching Service 381

Market (DSM), during the i−th time step. 382

Cost of electrical energy exchange. The cost of selling/buying 383

electrical energy to/from the network (actual exchange) is eval- 384

uated as follows: 385

fW (i) = cW (i)W (i), with cW (i) =

{
−pS(i)τ if W (i)≥ 0
−pB(i)τ if W (i)< 0

(9)
where pS(i), pB(i) are the positive selling and buying electricity 386

prices [e/kWh] at each time step over the time horizon, and τ 387

is the time step length [h]. Notice that cW (i) ≤ 0, ∀i. Thus, 388

fW (i) ≥ 0 when W (i) < 0 i.e. when the HRES buys electricity 389

from the network, and fW (i) ≤ 0 when W (i) ≥ 0 i.e. when the 390

HRES sells electricity to the network. 391

Cost of fuel consumption. The fuel consumption cost for elec- 392

trical generators, HOT and COLD configurations is expressed 393

as: 394

fF(i) = ∑
k∈K

cF(k)τF(k, i) (10)

where F(k, i) is the fuel rate [kg/h] (at the i-th time step and for 395

the k-th generator) and cF(k) is its unit price [e/kg]. 396

Incentives for renewable generation and HECG systems. The 397

incentives for generation from renewable sources apply when 398

the HRES is composed by renewable generators of same type, 399

i.e. only PV or WT or biomass burning generators (BM), and 400

electrical loads. The incentives for HECG systems (“White 401

Certificates”, WC, and “Excise Tax reduction for HECG fueled 402

with Natural Gas”, NG) can apply together, but all other incen- 403

tives are lost. We can write all incentives at the i-th time step as 404

the following sum: 405

fI(i) = fPV (i)+ fWT (i)+ fBM(i)+ fWC(i)+ fNG(i) (11)

The first three terms represent the renewable contributions, 406

while both WC and NG are related to fuel burning genera- 407

tors with specific requirements on the efficiency and on the 408

fuel burned, respectively. Except for specific waived cases, for 409

a given HRES, according to the Italian energy policy, if the 410

fourth and/or fifth term are nonzero, then the first three terms 411

are zero. On the other hand only one of the first three terms can 412

be nonzero, and in such case the fourth and fifth term are also 413

zero. 414

Incentives and penalties of Dispatching Service Market (DSM). 415

Penalties are charged when the declared exchange of electricity 416

is not respected, within a predefined tolerance. For each time 417

step, we define PW (i) the penalty to pay for exchanging W (i) 418
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different from W̄ (i). Furthermore, incentives are awarded if419

the HRES responds successfully to a DSM request of variation.420

Such a request is defined in terms of a vector of N components421

DSM(i) representing a positive or negative variation from the422

declared power exchange W̄ (i). For each time step, we define423

ID(i) as the incentive awarded.424

It is useful to define the combined cost:425

fD(i) = PW (i)− ID(i) (12)

So, the term fD(i) can be written as follows:426

fD(i) = cW,D(i)W (i)+ f̄W (i) (13)

in which cW,D(i) and f̄W (i) are suitably defined depending on427

the sign and the value of (W (i)−W̄ (i)).428

Tariff summary. Collecting all terms together, the objective429

function can be finally written as follows:430

fT =
N

∑
i=1

f (i) (14)

in which431

f (i) = f̄W (i)+ cW,T (i)W (i)− ∑
k∈K

cG(k)G(k, i)

− ∑
k∈KHECG

cQ,WC(k)QCHP(k, i)+ ∑
k∈K

cF(k)F(k, i) (15)

with432

cW,T (i) = cW (i)+ cW,D(i) (16)

Few terms in (15) need to be explained: cG(k) is the coefficient433

associated to the electrical power generation [e/kW]; cQ,WC(k)434

is the coefficient associated to the heat power QCHP(k, i) [kW]435

generated by the CHP which earns the WC incentive [e/kW].436

Finally, for every device, it is possibile to calculate its associ-437

ated cost f̂ (i), selecting the specific terms of (15). For instance,438

for electrical loads it will be only f̄W (i)+ cW,T (i)W (i). How-439

ever, it is important to point out that despite this separability440

of the cost function into specific contributions of each HRES441

device, from (9), (13) and (16) it follows that the coefficients442

cW,T (i) depend on the overall power exchange W (i), thus cou-443

pling the cost function among all devices.444

4. Mathematical problem formulation445

The general formulation of the optimization problem to be446

solved can be written as follows. Let x∈Rnx denote the stacked447

vector of all device setpoints, and let xmin ∈Rnx and xmax ∈Rnx448

denote the associated bound constraints, i.e. 449

x =



β (1)
...

β (Nb)
γ(1)

...
γ(Nm)
α(1)

...
α(Nk)


, xmin =



−1
...
−1
0
...
0
0
...
0


, xmax =



1
...
1
1
...
1
1
...
1


,

in which Nb is the number of batteries, Nm is the number of 450

electrical loads, Nk is the number of generators plus thermal 451

configurations, 1 and 0 are vectors of suitable dimensions filled 452

with ones and zeros, respectively. Thus β (b) is the vector of set- 453

points for the b-th accumulator, γ(m) is the vector of setpoints 454

for the m-th electrical load, and α(k) is the vector of setpoints 455

for the k-th electrical generator. We notice that for L1 loads, the 456

setpoint and corresponding bound vectors are empty because 457

this device does not have any decision variable, but it affects 458

the cost function because the sign of the cost of exchanged elec- 459

tricity cW (i) depends on W (i). As anticipated in §3.1, a number 460

of devices (e.g., accumulators or thermal configurations) have 461

process constraints in addition to bound constraints on their set- 462

points. Let cα(k) be the (possibly empty) constraint vector for 463

the k−th generator and thermal configuration, cβ (b) the con- 464

straint vector for the b−th battery, cγ(m) the (possibly empty) 465

constraint vector for the m−th electrical load. These process 466

constraint vectors can be stacked together obtaining a single 467

vector of constraints: 468

c(x) =



cβ (1)
...

cβ (Nb)
cγ(1)

...
cγ(Nm)
cα(1)

...
cα(Nk)


≤ 0

Overall, we denote by nin the dimension of c(x), i.e. c(x)∈Rnin . 469

The optimization problem, in specific conditions, is also re- 470

quired to satisfy a vector of equality constraints on the overall 471

district power exchanged at each time step, i.e.: 472

W (i),
Nk

∑
k=1

W (k, i)+
Nb

∑
b=1

W (b, i)+
Nm

∑
m=1

W (m, i) = W̄ (i),

i = 1, . . . ,N (17)

in which, as anticipated in §3.1, W̄ (i) is the desired value of 473

exchanged power at each time step. For a stand-alone HRES, 474

clearly W̄ (i) = 0 for all i ∈ {1, . . . ,N}. On the other hand, 475
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for a grid-connected HRES, W̄ (i) represents a power exchange476

profile that the HRES must exchange with the network. Con-477

straint (17) is expressed in the following form:478

ceq(x) =

W (1)−W̄ (1)
...

W (N)−W̄ (N)

=

0
...
0

 (18)

in which ceq(x) ∈ RN . In some HRES, it is tolerable to satisfy479

a relaxed version of (18), as follows:480

−111ε1 ≤ ceq(x)≤ 111ε1 (19)

with ε1 > 0. This case falls back to the situation where only in-481

equality constraints are present, with the following redefinition:482

483

c(x)←

 c(x)
ceq(x)−111ε1
−ceq(x)−111ε1

 (20)

Finally, as better explained in §3.3, the objective function can484

be expressed as the sum of the partial objective functions of all485

devices, i.e.486

f (x) =
N

∑
i=1

(
Nk

∑
k=1

f̂ (k, i)+
Nb

∑
b=1

f̂ (b, i)+
Nm

∑
m=1

f̂ (m, i)

)
,

in which we notice that the inner sums define the overall district487

cost of each time instant i ∈ {1, . . . ,N}, i.e.488

f (i) =
Nk

∑
k=1

f̂ (k, i)+
Nb

∑
b=1

f̂ (b, i)+
Nm

∑
m=1

f̂ (m, i),

and the outer sum calculates the overall (daily) cost.489

Thus, the nonlinear program to be solved is in the form:490

min
x

f (x), (21a)

subject to491

xmin ≤ x≤ xmax (21b)
c(x)≤ 0 (21c)

ceq(x) = 0 (21d)

in which x ∈ Rnx , c(x) ∈ Rnin , ceq(x) ∈ RN .492

5. Optimization algorithm493

The main theoretical foundations of the Sequential Linear494

Programming (SLP) algorithm developed in this work are now495

discussed.496

497

5.1. General SLP formulation 498

There are various reasons why it was decided to implement 499

an SLP solver for this kind of problem. Non-linearity of most 500

of the model devices and objective function suggest us to solve 501

a general NLP as in (21). In addition, several optimization vari- 502

ables are in principle binary since devices can be on or off. 503

Moreover, we aimed at developing a tool able to handle quite 504

large HRES, leading to mixed-integer nonlinear programming 505

(MINLP) problems in sever hundreds/thousands of variables, 506

which cannot be efficiently tackled by off-the-shelf solvers. 507

Therefore, it has been decided to apply a smoothed replacement 508

for the integer variables (as for batteries and generators switch) 509

in order to avoid an MINLP approach. Sequential Quadratic 510

Programming (SQP) methods require second order information 511

(Hessian matrix), and most of these utilize approximated in- 512

formation (i.e. Broyden matrix) while in the SLP method this 513

is not necessary. Furthermore, there are many reliable, large- 514

scale, open-source LP solvers, while much less QP solvers are 515

available and overall they are less efficient. In the end, since 516

each device setpoint does not depend, in terms of local feasibil- 517

ity, on other device setpoint makes the SLP approach the best 518

choice for this particular problem structure. In particular, when 519

no global power profile constraints exist, one could parallelize 520

the local LPs and solve them separately for each device of the 521

HRES. 522

The considered approach falls in the class of nonsmooth 523

penalty methods [43, Sect. 17.2] implemented within a trust 524

region framework [43, Chp. 4]. Starting from a feasible initial 525

guess is not required, as well as feasibility of the nonlinear con- 526

straints (21c) (and of (21d)), is not necessarily maintained at 527

each iteration. Then, if the feasible region is nonempty, the al- 528

gorithm recovers a feasible point and then converges to a local 529

minimum or, otherwise, it reports that the problem is infeasi- 530

ble. The following nonsmooth cost function, associated with 531

the original nonlinear program (21) is defined: 532

Φ(x; µ) = f (x)+µ ∑
i
|ceq,i(x)|+µ ∑

i
[ci(x)]

+ (22)

in which [y]+ = max{0,y} for each y ∈ R, and µ > 0. At each 533

iteration, for a given µ , we make an attempt to solve the fol- 534

lowing nonsmooth NLP optimization problem, with bound con- 535

straints only: 536

min
x

Φ(x; µ) (23a)

subject to 537

xmin ≤ x≤ xmax (23b)

The penalty parameter µ is chosen large and increased if nec- 538

essary to promote feasible iterates. 539

The following smooth replacement for Φ(x; µ) in (23) is then 540

considered: 541

Φ̃(ξ ; µ) = f (x)+µ ∑
i

si +µ ∑
i

si +µ ∑
i

si (24a)
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subject to:542

c(x)≤ s (24b)
ceq(x) = s− s (24c)

s,s,s≥ 0 (24d)

in which543

ξ =


x
s
s
s

 , (25)

is the augmented decision variable. Thus, problem (24) is the544

one solved in the algorithm with an SLP procedure using a trust545

region method. In preparation to the algorithm, the following546

definitions are made:547

ξmin =


xmin

000
000
000

 , ξmax =


xmax

∞∞∞

∞∞∞

∞∞∞

 , Ψ(ξ ) = c(x)− s,

Γ(ξ ) = ceq(x)− s+ s, ∇Φ̃(ξ ; µ) =


∇ f (x)

111µ

111µ

111µ

 ,

∇Ψ(ξ ) =


∇c(x)
−III
000
000

 , ∇Γ(ξ ) =


∇ceq(x)

000
−III
III

 (26)

in which ∞∞∞ is a vector of “infinity”, 0 is vector/matrix of zeros,548

and III is the identity matrix, each of suitable dimensions. Let x j549

denote the vector x at the j−th iteration of the SLP algorithm550

described next. Likewise, let ξ j denote the augmented vector ξ551

at the j−th iteration. Finally, let ∆ j > 0 denote the trust region552

radius at the current j−th iteration of the SLP algorithm. The553

LP subproblem to be solved at the j-th iteration is the following:554

555

min
p

∇Φ̃(ξ j; µ j)
T p (27a)

subject to:556

Ψ̃(ξ j)+∇Ψ̃(ξ j)
T p≤ 000 (27b)

ξmin ≤ ξ j + p≤ ξmax (27c)
−111∆ j ≤ p j ≤ 111∆ j (27d)

in which p =
[
pT

x pT
s pT

s pT
s

]T
and

Ψ̃(ξ ) =

 Ψ(ξ )
Γ(ξ )
−Γ(ξ )

 , ∇Ψ̃(ξ ) =

 ∇Ψ(ξ )
∇Γ(ξ )
−∇Γ(ξ )

 .
To better clarify the algorithm structure, a block diagram is557

also presented in Fig. 3. Details of this scheme are given next,558

distinguishing between two variants: the basic algorithm uses559

a uniform trust region on all components, whereas the second560

one adopts a component based trust region.561

5.2. SLP method 1 (common trust region) 562

As anticipated, the HRES optimization tool utilizes an SLP 563

approach equipped with a trust region. The SLP algorithm is 564

described in Algorithm 1, in which default parameters are: ε = 565

10−6, ε f = 10−2, ρbad = 0.10 and ρgood = 0.75. 566

The main core of the algorithm is the LP in (27), solved in 567

Line 5 obtaining a candidate step p∗. Its norm is confronted 568

with the parameter ε for a local solution test (Line 6). If no 569

local solution is found, a feasibility check of the new candidate 570

iterate ξ j + p∗ is made (Line 9). If this check fails the trust re- 571

gion radius is reduced and the step rejected (Line 9). Otherwise, 572

the step is finally accepted or rejected on the basis of the ratio 573

between the actual reduction of Φ(·) and the reduction of its 574

smoother counterpart Φ̃(·), named ρ j (Line 10). If this parame- 575

ter is greater than a default value η , then the variable ξ j+1 is up- 576

dated with ξ j + p∗ (Line 12), otherwise p∗ is rejected (Line 14); 577

this means that the step is feasible but not good enough to be 578

applied. The parameter ρ j value plays a final role in the trust 579

region evolution (Lines 15–21): if ρ j is large it means that we 580

are confident about greater improvements and we can enlarge 581

the trust region to let the LP subproblem take larger steps. In 582

the opposite case, when ρ j is too small, even if the current it- 583

eration is feasible, the next one could not be, so we shrink the 584

trust region in order to better guarantee a feasible LP problem 585

at the next iteration. The new slack iterates are always rede- 586

fined as the actual new constraint violations (Line 22), while 587

the penalty parameter µ is increased (most often strictly) if the 588

current iterate is still infeasible (Line 24). Once feasibility is 589

recovered, µ is not further increased to prevent numerical ill 590

conditioning (Line 25). 591

Further comments to Algorithm 1 are useful. Line 4 finds a 592

step from the current augmented decision variable iterate ξ j to- 593

wards the minimization of problem (27) with variables x limited 594

by the trust region of size ∆ j. On the other hand, the step for 595

slack variables (s,s,s) is not limited by a trust region, because 596

these variables enter linearly in both the cost function and the 597

constraints. The check of Line 9 is performed to see if the ex- 598

pected slacked constraints at the next iterate are satisfied or not. 599

If these constraints do not hold, the behavior of the constraint 600

functions is too nonlinear and the trust region (of the x vari- 601

ables) should be reduced. In addition, if the step is rejected, the 602

trust region should not be reduced if it was already reduced by 603

Line 9. When the step is accepted with large ρ j, the trust region 604

radius is enlarged to a value that is no greater than the initial ρ 605

value. At the end, Line 27 performs the final feasibility check 606

for the found local solution. If constraints are not satisfied, the 607

considered NLP is reported to be infeasible. 608

5.3. SLP method 2 (component based trust region) 609

In Line 9 of Algorithm 1, when predicted constraints are vio- 610

lated, i.e. maxΨ̃(ξ j + p∗)> ε f , the trust region size is reduced 611

uniformly for all components of vector x. However, this is a 612

conservative approach because the violated constraints may be 613

affected by only a subset of components of x. This is partic- 614

ularly true for those systems in which setpoints and process 615

constraints are separated for each device. For instance: the 616
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µ j+1
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µ j+1

ξk = ξ0
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LP solver

min
p

∇Φ̃
T p

s.t.
pmin ≤ x+ p≤ pmax
∇Ψ̃T p+ Ψ̃(x)≤ 0
‖p‖ ≤ ∆ j

‖p∗‖ ≤ ε
p∗

maxΨ̃(ξ j + p∗)≤ ε f
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Method = 1
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∆
(i)
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∆
(i)
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2
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ξ j+1 = ξ j ∆ j+1 =
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ξ j+1 = ξ j + p∗ ∆ j+1 = ∆ j YES

Figure 3: Block diagram of the SLP algorithm with trust region.

accumulator SOC constraint is only affected by accumulator617

setpoints, so it is not necessary to shrink the trust region for618

setpoints of other devices to prevent its violation. From this ev-619

idence, a novelty is proposed on the standard SLP 1 to improve620

its behavior. In particular the trust region choice has been re-621

formulated in order to make this new algorithm variant more622

efficient. In this variant, each component of x has is its own623

trust region radius, i.e. ∆ j is a vector of length nx. The trust624

region constraint imposed at the j−th iteration is therefore:625

−∆ j ≤ px ≤ ∆ j (28)

For given inequality and equality constraint vectors Ψ(ξ ) =626

c(x)− s and Γ(ξ ) = ceq(x)− s+ s, and a tolerance ε f > 0, the627

following definitions are considered:628

I (ξ ;ε f ) = {i ∈ Nx | ∃ j ∈ Nin such that:

c j(x)− s j > ε f and
∣∣∣∣∂c j(x)

∂xi

∣∣∣∣> 0
}
,

E (ξ ;ε f ) =
{

i ∈ Nx | ∃ j ∈ Neq such that:

|ceq, j(x)− s j + s j|> ε f and
∣∣∣∣∂ceq, j(x)

∂xi

∣∣∣∣> 0
}
(29)

in which Nx = {1, . . . ,nx}, Nin = {1, . . . ,nin}, and Neq = 629

{1, . . . ,N}. It has to be observed that I (ξ ;ε f ) contains the in- 630

dices of the components of x which affect inequality constraints 631

that are violated beyond a tolerance ε f , whereas E (ξ ;ε f ) con- 632

tains only the indices of the components of x which affect equal- 633

ity constraints that are violated beyond a tolerance ε f . In partic- 634

ular, as shown in Fig. 3, the difference from the Algorithm 1 is 635

just in the Line 9. Algorithm 2 reports only the changed lines. 636

Considerations outlined for SLP 1 hold also for SLP 2, ex- 637

cept that the trust region reduction that occurs in Line 9 (of 638

either algorithm) is performed in SLP 2 only for those compo- 639

nents of x that affect the violated constraints. In this way, vari- 640

ables that do not affect violated constraints do not experience a 641

shrink of their trust region, and can take possibly large steps to 642

improve the algorithm convergence towards a local solution. 643

6. Applications 644

A brief explanation about the software implementation is 645

now provided. Then, a case study and a discussion about the 646

results obtained are reported. 647
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Algorithm 1 Infeasible SLP algorithm with common trust re-
gion (SLP 1)

1: Choose: µ0 > 0, µmax > 0, 0 ≤ η ≤ ρbad , 0 < σ < 1, and
x0 s.t. xmin ≤ x0 ≤ xmax.

2: Compute: Φ(x0), s0 = [c(x0)]
+, s0 = [ceq(x0)]

+, s0 =

[−ceq(x0)]
+. Define: ξ0 =

[
xT

0 sT
0 sT

0 sT
0
]T . Set: j = 0.

3: while j ≤ jmax do
4: Evaluate ∇Φ̃(ξ j; µ j), ∇Ψ(ξ j), ∇Γ(ξ j) from (26).
5: Solve LP problem (27) obtaining a candidate step p∗ =[

(p∗x)
T (p∗s )

T (p∗s )
T (p∗s )

T ]T , and λmax largest La-
grange multiplier.

6: if ‖p∗‖∞ ≤ ε then
7: ξ ∗ =

[
(x∗)T (s∗)T (s∗)T (s∗)T ]T is a local solu-

tion to the problem (23). Go to Line 27.
8: if maxΨ̃(ξ j + p∗)> ε f then
9: Reject the step: x j+1 = x j. Shrink the trust

region: ∆ j+1 =
1
2 ∆ j. Go to Line 22.

10: Compute the step evaluation parameter:

ρ j =
Φ(x j; µ j)−Φ(x j + p∗x ; µ j)

−∇Φ̃(ξ j; µ j)T p∗

11: if ρ j ≥ η then
12: Accept the step: x j+1 = x j + p∗x
13: else
14: Reject the step: x j+1 = x j.
15: if ρk ≤ ρbad then
16: Shrink the trust-region: ∆ j+1 =

1
2 ∆ j

17: else
18: if ρ j ≥ ρgood and ‖p∗x‖∞ ≥ 0.8∆ j then
19: Enlarge the trust-region: ∆ j+1 = min{2∆ j,∆0}
20: else
21: ∆ j+1 = ∆ j.
22: Update: s j+1 =

[
c(x j+1)

]+, s j+1 =
[
ceq(x j+1)

]+, s j+1 =[
−ceq(x j+1)

]+.
23: if maxc(x j+1)> ε f or max |ceq(x j+1)|> ε f then
24: Update: µ j+1 = min{max{µ j/σ ,λmax},µmax}
25: else
26: µ j+1 = µ j
27: Check the computed solution to NLP (23), ξ ∗:
28: if maxc(x∗)≤ ε f and −111ε f ≤ ceq(x∗)≤ 111ε f then
29: x∗ is a local solution to (21).
30: else
31: NLP problem (21) appears infeasible.

Algorithm 2 Infeasible SLP algorithm with component trust
region (SLP 2)

1: · · ·
2: · · ·
3: · · ·
4: · · ·
5: · · ·
6: · · ·
7: · · ·
8: if maxΨ̃(ξ j + p∗)> ε f then
9: Reject the step: x j+1 = x j. Shrink the trust region of

some components:
∆ j+1,i = 1

2 ∆ j,i for all i ∈ I (ξ + p∗;ε f ) ∪ E (ξ +
p∗;ε f ). Go to Line 22.

10: · · ·

6.1. Software implementation 648

The optimizer is implemented in C++ and compiled for both 649

32-bit and 64-bit Windows platforms using Microsoft Visual 650

Studio Express 2012. The class diagram of the software archi- 651

tecture is depicted in Figure 4. The District class contains 652

one or more device instances (Device implementations). De- 653

vices are grouped in sub-categories represented by the abstract 654

classes: Generator, Accumulator and Load. A general 655

tariff interface is defined by the abstract class Tariff. The 656

district then contains only a particular tariff implementation 657

(concrete tariff). Besides the modeling interfaces, the district 658

itself is an implementation of an analysis interface denoted by 659

the NLPinterface abstract class. It means that the district 660

defines a nonlinear programming problem as the one in (21). 661

All NLP constitutive functions are suitably constructed based 662

on the devices contained in the district along with the specific 663

tariff. One of the advantages of the proposed architecture is 664

the freedom to add additional devices and tariffs without mod- 665

ifying the existing code. Only a new class should be added 666

implementing the corresponding abstract interface. 667

All the device and tariff data are provided by the optimiza- 668

tion tool user by means an Excel spreadsheet that is parsed by a 669

district composer. Of course, plain C++ does not provide all the 670

features to parse spreadsheets. In general additional packages 671

have been used to provide particular services such as linear al- 672

gebra computation or Excel spreadsheet manipulation. Signifi- 673

cant effort has been made also to use free software, as detailed. 674

1. Armadillo (http://arma.sourceforge.net/): Ar- 675

madillo is a C++ linear algebra library (matrix maths) aim- 676

ing towards a good balance between speed and ease of use. 677

The syntax (API) is deliberately similar to Matlab. The 678

use of this package helps the software development while 679

keeping the code highly readable. 680

2. Excel Format Library (http://www.codeproject. 681

com/Articles/42504/ExcelFormat-Library/): 682

The Excel Format Library processes spreadsheet Excel 683

files in the BIFF8 XLS file format. It performs the basic 684

operation as read/write operation but it also perform a cell 685

format setting. 686
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Figure 4: Optimizer Class Diagram.

3. GLPK (http://www.gnu.org/software/glpk/): As687

seen in §5, the optimization algorithm used to find the688

optimal setpoints is based on a SLP. The main core of689

the SLP is the linear programming problem to solve at690

each iteration defined in (27). In designing the software691

it has been convenient developing the SLP solution strat-692

egy using plain C++, and using an existing package to693

solve the LP problem. The GLPK (GNU Linear Program-694

ming Kit) package is intended for solving large-scale LP,695

mixed-integer linear programming (MILP), and other re-696

lated problems. It consists in a set of routines written in697

ANSI C and organized in the form of a callable library. Of698

course an ad-hoc interface has been built between the SLP699

and GLPK to perform the overall optimization problem.700

The Excel prototype and interface. As anticipated, the HRES701

definition is made in a single Excel workbook. Each work-702

book is composed by several sheets, one for each device and703

other few mandatory sheets containing general information for704

the HRES definition. Some environment forecast are needed,705

namely: wind speed, solar radiation and ambient temperature.706

In addition, the energy price regime can be selected and spec-707

ified through all its parameters: W̄ (i), electricity price (pS and708

pB), and all other parameters that depend on the tariff itself.709

All of these pieces of information have to be known in order710

to define the HRES model properly. In order to solve the op-711

timization problem, the solver parameters have to be specified,712

as well as which one between the Algorithm 1 and Algorithm 2,713

is chosen.714

6.2. Case study 715

A real HRES located in Tuscany is presented as case study: 716

data for its design have been collected in a campaign of few 717

days. Firstly the HRES modeling is detailed and then results 718

for a specific day data are illustrated. The HRES in this exam- 719

ple is composed by four devices: PV generator, WT generator, 720

L1 load and a thermal configuration (HOT 2). Its schematic 721

representation is depicted in Figure 5, where the bold arrows 722

represent the electric current flow. 723

6.2.1. HRES description 724

PV model. The PV generator model can be summarized in its 725

power (G) calculation equation as follows: 726

G = φ1α (30)

where 727

φ1 =

(
DNIa

DNIr

)
PN [1+ γ (Tb−Tr)]η (31)

in which: α is the setpoint that ranges in [0,1], DNIa is the 728

corrected irradiation, DNIr and Tr are the reference irradiation 729

and the reference temperature, γ is a power correction coeffi- 730

cient, PN is the nominal PV array power and η is its overall 731

efficiency. Tb is cell back temperature calculated from the cell 732

temperature and the standard temperature difference. 733

WT model. The WT generator model can be summarized in its 734

power (G) calculation equation as follows: 735

G = fk(v)α (32)
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Figure 5: Test case process scheme.

where α is the setpoint that ranges in [0,1] and fk is a func-736

tion of the wind speed v that interpolates values from the WT737

characteristic curve.738

L1 model. The L1 load model simply requires the electrical739

load profile C(i) over the time horizon.740

Thermal configuration HOT 2. As briefly shown in section §3,741

this thermal configuration has two heat generation systems, and742

so two decision variables need to be specified: one for the CHP743

(αCHP) and one for the boiler, later indicated as BO, (αBO). A744

detailed scheme of this configuration is depicted in Figure 5.745

The electrical power is produced only by the CHP and calcu-746

lated through the following equation:747

G = PNCHPθCHPαCHP (33)

where PNCHP is the nominal CHP power and θCHP represents a748

boolean variable ON-OFF indicating the CHP status. The ther-749

mal power, instead, is composed by two contributes, one from750

the CHP (QCHP) and one from the boiler (QBO), as follows:751

QCHP =

{
PNTCHPηtTCF αCHP−G if G > 0
0 otherwise

(34)

752

QBO = PNBOθBOαBO (35)

where PNTCHP and PNBO are the nominal thermal powers (CHP753

and BO respectively), ηt is the CHP total efficiency, TCF is a754

temperature correction factor applied on the temperature of the755

stream from the storage, θBO represents a boolean variable ON-756

OFF indicating the BO status. In this way when the storage757

temperature (Ts) is lower than T2, then BO will be switched on758

to reach the thermal requirements. On the other hand, if Ts is759

high enough, no additional heat by boiler is needed. Ts evolu- 760

tion is described by integration of the corresponding differential 761

energy balance of the time step τ , which leads to: 762

Ts(i+1) =
[

QCHP(i)
ṁH2OCp,H2O

+T3(i)
]
(eΘ−1)+Ts(i)eΘ (36)

where T3 is the thermal load outlet temperature, and 763

Θ =
ṁH2OCp,H2O

Cs
τ (37)

in which: Cs is the storage heat capacity, ṁH2O and Cp,H2O are 764

the water mass flow and specific heat, respectively. This device 765

has also several constraints to fulfill. The first one is on the 766

CHP maximum number of startups in order to avoid its dam- 767

age, and the other one is on the thermal requirement, here ex- 768

pressed in terms of temperature matching: the calculated BO 769

outlet temperature must match the thermal load inlet tempera- 770

ture T2 within a tolerance εT . 771

6.2.2. Results 772

In order to assess the effective optimization benefits provided 773

by the software to the HRES, a reference case must be identi- 774

fied. The selected reference case is the so called “Thermal Led” 775

operation of the CHP, which is the standard in this HRES. This 776

means that the CHP in this mode follows the thermal demand of 777

the user: when the thermal demand is below the CHP minimum 778

operational limit, heat demand is covered by the BO; further- 779

more the gas fired BO covers also the difference between ther- 780

mal demand and maximum CHP thermal power when required. 781

It is important to notice that, whenever the generated electrical 782

power is lower than the required one, the HRES buys it from 783

the grid. The starting HRES total daily cost for the selected day 784
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Figure 7: Electrical power profiles during the entire day.

is 89.13 e. After the optimization the economic benefits are785

tangible: the optimized daily cost is 81.27 e, with a cost saving786

of 10 % from the non-optimized case. As can be better seen in787

Figure 6, this HRES has benefitted incentives both from white788

certificates and PV presence: this system has a special energetic789

policy with waiver on incentives treatments. In Figures 7 and 8790

the electrical and thermal power profiles are shown. From Fig-791

ure 8, we observe that the algorithm tries to respect the imposed792

constraints on the temperature T2 (here hidden in the thermal793

profile), even if it costs more tariff penalizations staying away794

from the declared electrical power profile, as shown in Figure 7795

(in this case W̄ (i) = 0 ∀i).796

In addition, both Algorithm 1 and Algorithm 2 have been797

tested, obtaining the same results. This can be explained as798

the problem is already feasible when entering the optimization,799

so the step acceptance difference has no influence here. For800

the same reason, no difference in processing time have been801
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Figure 8: Thermal power profiles during the entire day.
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Figure 9: Electrical power profiles during the entire day. The second part of the
day has changed according to the DSM request of variation.

measured between the two methods in this case study. 802

In the end, another option of the software tool is tested. The 803

DSM asks for a variation of the power exchange profile: in 804

particular a negative variation of 15 kW is proposed for the 805

time period between 12:00 and 18:00, i.e. DSM(i) = −15 kW 806

∀ i ∈ [49,96]. The HRES has to accept or refuse the proposed 807

power exchange profile variation, depending on which option 808

is more profitable. Thus, the algorithm is re-run only over the 809

second half of the day leaving the first part unchanged. Re- 810

sults are shown in Figure 9, from which can be seen that the 811

algorithm has decided to accept the DSM request of variation 812

giving a final total day cost of 76,34 e. As can be seen from 813

the comparison against Figure 7, the first part of the day it is the 814

same, while the second one shows a rather accentuated modifi- 815

cation between 12:00 and 18:00. In this case in fact, the CHP 816

is forced to follow the market offer trying to avoid fees. As the 817
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CHP does not have a sufficiently large nominal power, the re-818

quired DSM cannot be achieved ∀ i ∈ [49,96] but only during819

the central hours of the day (12:00 - 15:00, i.e. i ∈ [49,61])820

when also PV can generate electrical power. From this point,821

for the rest of the day (15:00 - 24:00, i.e. i ∈ [61,96] ) the CHP822

is still running at its maximum in order to minimize the penalty823

due to not achieving the required DSM.824

7. Conclusions825

In this work the problem of operation optimization of Hy-826

brid Renewable Energy Systems (HRES) has been addressed.827

To this aim an HRES modeling and optimization system has828

been developed. Different device models, ranging from conven-829

tional, renewable, combined heat and power generators, to elec-830

trical/thermal loads and accumulators, have been considered.831

An operational optimization problem is formulated considering832

different energy policies available in Italy, and a numerical opti-833

mization algorithm has been developed. The optimization sys-834

tem is based on a Sequential Linear Programming (SLP) algo-835

rithm, equipped with trust region, that is able to solve a general836

nonlinear program: two different step acceptance possibilities837

have been proposed. With the modified trust region method,838

variables that do not affect violated constraints do not experi-839

ence a shrink of their trust region and can take possibly larger840

steps to improve the convergence of the algorithm towards a lo-841

cal solution. This new proposed method gives, in most of the842

cases, improvements on the optimal point reached.843

In the end a real case study has been analyzed. The modeling844

of each single device has been elaborated making it as close as845

possible to reality. After running the optimization algorithm,846

sensible improvements have been shown with a save equal to847

10% for the specific case. Results show the potentialities of848

the developed optimization tool including the possibility of re-849

running the optimization for a portion of the time window in850

response to changes in forecasts or requests from the dispatch-851

ing service market.852
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