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Abstract

Objective—Biomarkers are defined as anatomical, biochemical or physiological traits that are 

specific to certain disorders or syndromes. The objective of this paper is to summarise the current 

knowledge of biomarkers for anxiety disorders, obsessive-compulsive disorder (OCD) and 

posttraumatic stress disorder (PTSD).

Methods—Findings in biomarker research were reviewed by a task force of international experts 

in the field, consisting of members of the World Federation of Societies for Biological Psychiatry 

Task Force on Biological Markers and of the European College of Neuropsychopharmacology 

Anxiety Disorders Research Network.

Results—The present article (Part II) summarises findings on potential biomarkers in 

neurochemistry (neurotransmitters such as serotonin, norepinephrine, dopamine or GABA, 

neuropeptides such as cholecystokinin, neurokinins, atrial natriuretic peptide, or oxytocin, the 

HPA axis, neurotrophic factors such as NGF and BDNF, immunology and CO2 hypersensitivity), 

neurophysiology (EEG, heart rate variability) and neurocognition. The accompanying paper (Part 

I) focuses on neuroimaging and genetics.

Conclusions—Although at present, none of the putative biomarkers is sufficient and specific as 

a diagnostic tool, an abundance of high quality research has accumulated that should improve our 

understanding of the neurobiological causes of anxiety disorders, OCD and PTSD.
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Anxiety disorders; neuroimaging; genetic; neurochemistry; neurobiology; review

Introduction

This consensus statement on biological markers of anxiety disorders was organised by 

members of the World Federation of Societies for Biological Psychiatry Task Force on 

Biological Markers and of the Anxiety Disorders Research Network (ADRN) within the 
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European College of Neuropsychopharmacology Network Initiative (ECNP-NI; Baldwin et 

al. 2010), an initiative intended to meet the goal of extending current understanding of the 

causes of central nervous system (CNS) disorders, thereby contributing to improvements in 

clinical outcomes and reducing the associated societal burden.

The present article (Part II) summarises the findings on potential biomarkers in 

neurochemistry, neurophysiology, and neurocognition. Part I (Bandelow et al. 2016) focuses 

on neuroimaging and genetics.

Neurochemistry

Plasma appears to be a rational source for proteomic and metabolomic measurements in 

psychiatric conditions because it is easily accessible, and several molecules from the brain 

are transported across the blood–brain barrier and reach the peripheral circulation. However, 

it is difficult to draw inferences from the neurochemical composition of plasma on the 

situation in brain cells. Lumbar puncture is an invasive method, and the composition of 

cerebrospinal fluid (CSF) does not reflect exactly the neurochemistry in brain cells. 

Nevertheless, as a biomarker measure, such recourses are highly valuable, and several 

examples of evidence in the literature points to possible links between CNS and periphery. 

In the following sections, some of these findings are listed and described.

Neurotransmitters

Monoaminergic systems have long been suggested to play a major role in depression and 

anxiety disorders. While the “reward system” is modulated by endogenous dopamine and 

opioids (Barbano & Cador 2007; Berridge & Aldridge 2008; Le Merrer et al. 2009; 

Bandelow & Wedekind 2015), the “punishment system” is mainly driven by serotonin (5-

HT; Stein 1971; Daw et al. 2002). Goal-directed behaviours are stimulated by dopamine 

(DA), and dopamine neurons have been suggested to be a substrate for intracranial self-

stimulation (Wise & Bozarth 1982; Mason & Angel 1984; Aboitiz 2009). Norepinephrine 

(noradrenaline; NE) has been connected to “emotional memory” and the consolidation and 

retrieval of the emotional arousal induced by particular behaviours (van Praag et al. 1990; 

Goddard et al. 2010). NE neurons regulate vulnerability to social defeat through inhibitory 

control of ventral tegmental area DA neurones (Isingrini et al. 2016).

Serotonergic system—Findings on brain imaging and genetics of the serotonin system 

are summarised in Part I (Bandelow et al. 2016).

5-HT is a monoamine, found in the CNS, in blood platelets, and the gastrointestinal tract. 

The principal source of serotonin release in the brain are the raphe nuclei in the brainstem. 

They are hypothesised to have a dual role in aversive contingencies (Deakin & Graeff 1991; 

Deakin 2013). 5-HT can inhibit periaqueductal grey matter-medicated fight/flight responses 

from threats, while it can also facilitate amygdala-mediated anxiety responses. The latter 

mechanism has been demonstrated both in animals (Deakin & Graeff 1991; Deakin 2013) 

and humans (Blanchard et al. 2001; Mobbs et al. 2007; Feinstein et al. 2013). Such 

differences may explain partly the different types of emotions (Mobbs et al. 2007) and 

anxiety disorders seen in humans (Deakin & Graeff 1991). Therefore, reaction to threat, 
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mediating periaquaeductal-grey-mediated threats, related to the emotion named “fear”, may 

be more closely related with phobic, escape-dominant behavioural syndromes, such as 

specific phobias, social anxiety disorder (SAD) and panic disorder with or without 

agoraphobia (PDA; Gray & McNaughton 2000; McNaughton & Corr 2004), while 

amygdala-mediated threats seem to be linked to the emotion named “anxiety” such as 

general anxiety disorder (GAD) and obsessive-compulsive disorder (OCD; Gray & 

McNaughton 2000; McNaughton & Corr 2004). Recently, a functional difference in 5-HT 

between fear and anxiety disorders was demonstrated using an acute tryptophan depletion 

technique that transiently lowers brain 5-HT (Corchs et al. 2015). In this study, decreasing 

the function of the 5-HT system, using tryptophan depletion in patients in clinical remission 

lead to psychological and physiological exacerbation in response to stressors in PDA, SAD 

and posttraumatic stress disorder (PTSD), but not in GAD or OCD. This difference might be 

due to long-lasting neuronal changes, needed in anxiety disorders after serotonin-mediated 

therapeutics, in which acute 5-HT depletion does not cause such effects (Graeff & Zangrossi 

2010). Animal data and genetic and neuroimaging studies in humans point to a role of the 

5HT1A receptor in the neural processing of anxiety (Akimova et al. 2009). Recently, a 

review of the 5HT2C receptor suggested that this receptor may play a crucial role in anxiety 

(Chagraoui et al. 2016).

In the following paragraphs, the 5-HT involvement in various disorders is discussed in more 

details.

PDA: 5-HT plasma levels measured by high-performance liquid chromatography were 

found to be significantly lower in PDA patients compared with control volunteers (Schneider 

et al. 1987b). Furthermore, in a study of males with PDA, serum 5-HT concentrations were 

measured via enzyme-linked immunosorbent assay. The authors reported lower serum 5-HT 

in patients compared with control group at baseline, which was further decreased after 

treatment with the selective serotonin reuptake inhibitor (SSRI) paroxetine, although 

symptom improvements were observed (Shutov & Bystrova 2008).

Platelet 5-HT reuptake site binding was found to be decreased in PDA patients in two 

studies (Iny et al. 1994; Lewis et al. 1985), while most studies reported no difference 

comparing to controls (Innis et al. 1987; Nutt & Fraser 1987; Pecknold et al. 1987; 

Schneider et al. 1987a; Uhde et al. 1987; Norman et al. 1989a, 1989b; Butler et al. 1992;). 

Moreover, platelet 5-HT concentration was reported also not to change in PDA patients 

(Balon et al. 1987; McIntyre et al. 1989), except in one report, where decreased 5-HT 

concentrations were observed (Evans et al. 1985). Two studies have reported increased 

platelet 5-HT uptake in PDA patients (Norman et al. 1986; Norman et al. 1989b), while two 

studies reported decreased platelet 5-HT uptake in a PDA group, compared with controls 

(Pecknold et al. 1988; Butler et al. 1992). Moreover, platelet aggregation in response to 5-

HT was significantly lower in panic patients compared with controls (Butler et al. 1992).

CSF levels of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) were not different 

between PDA patients and healthy controls; nevertheless, in a small study with PDA patients 

responding to clomipramine or imipramine for at least 2 months, CSF 5-HIAA levels 

decreased significantly compared with baseline levels (Eriksson et al. 1991). Nevertheless, 
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in female patients with major depressive disorder (MDD) comorbid with PDA, CSF 5-HIAA 

levels were significantly higher than in MDD patients without PDA and in healthy 

volunteers (Sullivan et al. 2006). Higher CSF 5-HIAA in women with comorbid MDD and 

lifetime panic disorder was indicative of greater 5-HT release, increased 5-HT metabolism, 

and/or decreased 5-HIAA clearance in this group. Esler et al. (2004) measured brain 5-HT 

turnover via measurement of 5-HIAA levels in plasma from internal jugular veins that has a 

direct overflow from brain neurons and not from the cerebrovascular sympathetic nerves 

(Lambert et al. 1995). A significant increase in brain 5-HT turnover, estimated from the 

jugular venous overflow of 5-HIAA, was observed in non-medicated PDA patients 

compared with healthy subjects (Esler et al. 2004).

Another approach measuring 5-HT disruption is via measurement of antibodies directed at 

the 5-HT system, such as anti-serotonin and 5-HT anti-idiotypic antibodies (directed at the 

serotonin receptors). Using this approach, Coplan et al. (1999) showed significantly elevated 

levels of plasma anti-serotonin and serotonin anti-idiotypic antibodies in panic disorder 

patients compared with controls. These findings suggest an autoimmune mechanism 

interrupting the 5-HT system in PDA.

GAD: Platelet 5-HT reuptake site binding was found to be decreased in GAD patients (Iny 

et al. 1994). 5-HT binding in lymphocytes did not differ in GAD patients compared with 

controls (Hernandez et al. 2002). Moreover, both 5-HT and 5-HIAA in platelet-rich and - 

poor plasma as well as in lymphocytes did not differ between GAD patients and controls 

(Hernandez et al. 2002).

SAD: The therapeutic efficacy of SSRIs and serotonin norepinephrine reuptake inhibitors 

(SNRIs) strongly suggests that 5-HT plays a crucial role in SAD. Patients with SAD show 

an exaggerated cortisol response to the serotonin-releasing compound fenfluramine, 

indicating supersensitivity of the post-synaptic serotonin receptors (Tancer 1993). In a 

similar study, SAD patients underwent challenges for serotonergic (fenfluramine), 

dopaminergic (levodopa), and noradrenergic (clonidine) systems in a double-blind study. 

They had an increased cortisol response to fenfluramine administration, compared with 

healthy volunteers. Neither the prolactin response to fenfluramine, the growth hormone or 

norepinephrine response to clonidine, nor prolactin or eye-blink responses to levodopa, 

differed between patients with SAD and healthy volunteers (Tancer et al. 1994b).

Platelet 5-HT2 receptor density did not differentiate between the SAD patients and controls, 

but was associated with severity (Chatterjee et al. 1997).

Patients with SAD, healthy control subjects, and OCD control subjects were challenged with 

single doses of the partial serotonin agonist oral meta-chlorophenylpiperazine (mCPP) and 

placebo. SAD patients did not significantly differ from normal or OCD control subjects in 

prolactin response to mCPP. Female patients with SAD had more robust cortisol responses 

to mCPP challenge (Hollander et al. 1998).

SAD patients, who had been successfully treated with an SSRI, underwent a tryptophan 

depletion challenge combined with a public speaking task. Salivary α-amylase, a marker of 
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autonomic nervous system response, and hypothalamic-pituitary-adrenal (HPA) axis 

response, as measured with salivary cortisol, were assessed. The tryptophan depletion group 

showed a significant larger salivary α-amylase response to the public speaking task as 

compared with the placebo group, whereas no differences were seen in cortisol responses 

(van Veen et al. 2009).

OCD: Measurement of peripheral serotonergic parameters, like whole-blood 5-HT 

concentration, CSF concentration, platelet 5-HT transporter (5-HTT), 5-HT2A receptor 

binding characteristics and platelet inositol 1,4,5-triphosphate content, is the oldest classical 

approach, which has identified some predictors of clinical outcome of the treatment in OCD 

patients medicated with SSRIs.

In an early study, Thoren et al. (1980) showed initially elevated 5-HIAA levels in the CSF 

and a decrease during treatment were associated with better clinical outcome in patients 

treated with clomipramine (Flament et al. 1985).

There was no difference in blood 5-HT content between children and adolescents with 

severe OCD and the normal controls. However, OCD patients with a family history of OCD 

had significantly higher blood 5-HT levels than did either the OCD patients without family 

history or the healthy controls (Hanna et al. 1991). Blood 5-HT levels were decreased after 

treatment with SSRIs (Kremer et al. 1990; Humble & Wistedt 1992; Humble et al. 2001), 

and higher 5-HT concentrations were associated with better outcome after treatment of OCD 

(Aymard et al. 1994; Delorme et al. 2004).

Serotonin reuptake binding capacity on platelets was found to be reduced in children and 

adolescents with OCD, but not in Tourette syndrome (Sallee et al. 1996). The binding 

capacity of the 5-HTT for SSRIs and the tricyclic antidepressant (TCA) imipramine 

decreased in untreated OCD patients (Marazziti et al. 1996; Sallee et al. 1996). After 

treatment with the TCA clomipramine, binding was decreased (Black et al. 1990), whereas 

another study has found increased binding after treatment with the SSRI with fluvoxamine 

and or clomipramine (Marazziti et al. 1992).

PTSD: In an early review of trauma-related studies involving epinephrine, norepinephrine, 

and serotonin, evidence of serotonergic dysregulation in PTSD was reported, including 

frequent symptoms of aggression, impulsivity, depression and suicidality, decreased platelet 

paroxetine binding, blunted prolactin response to fenfluramine, exaggerated reactivity to m-

chlorophenylpiperazine (mCPP), and clinical efficacy of SSRIs (Southwick et al. 1999).

No change in 5-HT1A receptor binding was found in a study by Bonne et al. (2005). A lower 

number of platelet [3H]paroxetine binding sites and a lower dissociation constant for 

[3H]paroxetine binding in combat veterans with PTSD compared with normal control 

subjects was reported (Fichtner et al. 1995). Platelet 5-HT concentration was significantly 

lower in suicidal PTSD and non-PTSD patients compared with non-suicidal patients or 

healthy controls (Kovacic et al. 2008). Compared with the control subjects, the PTSD 

patients showed significantly lower platelet-poor plasma 5-HT levels, elevated platelet-poor 

plasma norepinephrine levels, and significantly higher mean 24-hour urinary excretion of all 
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three catecholamines (norepinephrine, dopamine and homovanillic acid; HVA) (Spivak et al. 

1999).

During presentation of a trauma-related video, CSF concentrations of 5-HIAA diminished, 

but there was only a trend for statistical significance for this finding (Geracioti et al. 2013).

Dopaminergic system—Dopamine is involved in reward-motivated behaviour and motor 

control. Findings on brain imaging and genetics of the dopamine system are summarised in 

Part I (Bandelow et al. 2016). Similarly as for the serotonergic system, current findings 

related to the dopaminergic system are described in the following paragraph.

PDA:  Eriksson et al. (1991) reported no significant change in CSF levels of HVA, the major 

metabolite of dopamine in patients with PDA compared with healthy controls. Nevertheless, 

in another study in both PDA and SAD, low CSF HVA levels were observed (Johnson et al. 

1994).

SAD: In a study evaluating eye-blink response to administered levodopa, no dysfunction of 

the dopaminergic system was reported (Tancer et al. 1994a). Another approach is to 

challenge with dopamine agents such as the antagonist sulpiride and the agonist 

pramipexole. Hood et al. (2010) found that patients with SAD responded with increased 

anxiety to both drugs but that the effect of treatment with SSRIs was to attenuate the impact 

of pramipexole, suggesting a degree of dopamine D3 receptor desensitisation after SSRI 

treatment.

OCD: Acute deep brain stimulation targeted at the nucleus accumbens of 15 OCD patients 

induced a decrease in binding potential to the dopamine D2/D3 receptor (measured via 

SPECT [123I]IBZM binding), and chronic stimulation induced an increase in HVA plasma 

levels, implying that deep brain stimulation induces striatal dopamine release in OCD 

patients (Figee et al. 2014).

PTSD: In the aforementioned study by Geracioti et al. (2013), CSF HVA concentrations 

diminished significantly after a traumatic video. Compared with control subjects, PTSD 

subjects showed significantly higher mean 24-h urinary excretion of dopamine (Spivak et al. 

1999).

Noradrenergic system—NE is a catecholamine produced mainly in the locus coeruleus 

in the pons. It is an important neurotransmitter in the autonomic nervous system. The 

metabolism and functions of norepinephrine have been studied extensively in depression and 

anxiety disorders. Hypofunction is postulated for the former, and hyperfunction for the latter. 

Findings on brain imaging and genetics of the noradrenergic system are summarised in Part I 

(Bandelow et al. 2016).

PDA: Stimulation of noradrenergic systems produces abnormal changes in measures of 

anxiety, somatic symptoms, blood pressure and plasma NE metabolite and cortisol levels in 

patients with PDA but not in patients with GAD, OCD, depression or schizophrenia, 
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indicating specificity of abnormality in the regulation of the NE system in patients with PDA 

(Boulenger & Uhde 1982; Heninger & Charney 1988).

There is a body of evidence for NE involvement in anxiety in humans; e.g., anxiety can be 

induced using NE neuronal activators such as piperoxane and yohimbine (Redmond & 

Huang 1979). In patients with PDA, peripheral markers, including platelet aggregation to 

NE and to 5-HT, platelet a2-receptor density, lymphocyte β-receptor density, [3H]ketanserin 

binding to platelet 5-HT2 receptors and [3H]5-HTT uptake into platelets, largely remained 

abnormal during 6 months treatment with either clomipramine or lofepramine, despite 

clinical improvement (Butler et al. 1992). Therefore, these peripheral markers have been 

suggested to be potential trait markers in patients with PDA. Adrenergic receptor function 

has been measured in several clinical studies. Platelet α2-adrenoceptors have been studied in 

PDA patients using clonidine and yohimbine binding assays and correlated to symptom 

ratings and measurement of lying and standing plasma adrenaline and NE levels (Cameron 

et al. 1996; Nutt & Fraser 1987). Tritiated clonidine binding was decreased and resting heart 

rate was increased in PDA patients before treatment (fluoxetine, tricyclics or alprazolam). 

The magnitude of decrease in receptor binding was correlated with symptom severity and 

standing plasma NE (Cameron et al. 1996). In a similar approach, Gurguis et al. (1999) 

showed that patients with PDA had high α2-adrenoceptor density in both conformational 

states.

Stimulation of the locus coeruleus, an area containing most of the noradrenergic cell bodies 

of the brain, has been shown to induce anxiety and to raise the concentration of the main 

central NE metabolite, 3-methoxy-4-hydroxyphenyl glycol (MHPG) in patients with panic 

attacks. The decrease in plasma MHPG concentrations was found to parallel the response of 

patients with PDA to treatment (Charney et al. 1983). However, this could not be confirmed 

in a study of the effects of imipramine in PDA by Nutt & Glue (1991). Similarly, CSF levels 

of MHPG were not changed significantly in patients with PDA (Eriksson et al. 1991). On the 

other hand, Lista (1989) reported short time urine sampling to measure NE excretion as a 

marker for monitoring sympathetic activity. NE excretion was highest in major depression, 

followed by “minor” depression, anxiety disorders and healthy controls. Although plasma 

catecholamines (NE and epinephrine), blood pressure and heart rate were only partially 

correlated with salivary α-amylases, Kang (2010) proposed α-amylase as a measure of 

stress sensitivity causing an increase in anxiety scores. Recently, it was shown that 

epinephrine (24-h urine collection) was positively correlated with anxiety but not with 

depression, whereas 24-h urinary NE excretion was neither correlated with anxiety nor 

depression (Paine et al. 2015).

A low pre-treatment β-adrenoceptor affinity was found to predict the treatment response to 

paroxetine in patients with PDA and was suggested as a biomarker of pharmacological 

outcome in PDA (Lee et al. 2008).

PTSD: Compared with control subjects, PTSD patients showed significantly elevated 

platelet-poor plasma NE levels, and significantly higher mean 24-h urinary excretion of all 

three catecholamines (NE, dopamine and HVA) (Spivak et al. 1999).
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γ-Aminobutyric acid—There is ample evidence that the pathogenesis of anxiety 

disorders is in part linked to a dysfunction of central inhibitory mechanisms. With regard to 

neurotransmission, the γ-aminobutyric acid (GABA) system serves as the most important 

inhibitory neurotransmitter system (Domschke & Zwanzger 2008). According to both 

preclinical and clinical studies, this system has been suggested to be strongly involved in the 

pathophysiology of anxiety and anxiety disorders. For example, benzodiazepines, which act 

at the GABA system, are used to treat anxiety. GABA is synthesised by a specific enzyme – 

glutamate acid decarboxylase – from glutamate. Released in the synaptic cleft, it either binds 

on GABA receptors or is removed by the main degradative enzyme GABA-transaminase 

(GABA-T) (for a review, see Olson 2002).

So far, three major subtypes of GABA receptors have been identified: GABAA, GABAB and 

GABAC receptors. GABAA and GABAC receptors belong to the class of ligand-gated ion 

channels, GABAB receptors serve as transmembrane receptors, coupled with G-proteins and 

activate second messenger systems (Chebib & Johnston 1999). However, the fast inhibitory 

action of the neurotransmitter GABA is mediated through GABAA receptors. A large variety 

of GABAA receptor subtypes has been characterised so far: α 1-6, β 1-3, γ 1-3, δ, ε 1-3, θ, 

π (Jacob et al. 2008); see Figure 1.

GABAA receptors consist of two α subunits, two β subunits and one γ or δ subunit (Jacob et 

al. 2008). Moreover, there are two distinct binding sites on the GABAA receptor: whereas 

GABA itself binds on the GABA binding site, which is located at the interface between the 

α and γ subunit, anxiolytic agents such as benzodiazepines bind at the benzodiazepine 

binding site at the interface between the α and the γ subunit. According to several 

preclinical studies, anxiolytic effects of benzodiazepines have been shown to be mostly 

mediated by the α2-subunit of the GABAA receptor (Low et al. 2000).

Therefore, a specific role of distinct GABAA receptor subunits can be hypothesised with 

regard to the pathogenesis of anxiety. Research on specific subunit selective 

psychopharmacological compounds targeting the α2-subunit of the GABAA receptor and 

lacking sedative or other associated side effects of benzodiazepines is ongoing.

PDA: Neurochemistry. An interesting approach investigating the role of GABAA receptors 

on the pathogenesis of panic attacks stems from Nutt et al. (1990) who suggested alterations 

in benzodiazepine receptor sensitivity in patients with PDA. After intravenous challenge, 

subjects with panic disorder exhibited panic attacks after flumazenil injection, a 

phenomenon which has been interpreted as a possible shift of the “receptor setpoint” (Nutt 

et al. 1990). However, these results have not been replicated (Strohle et al. 1999).

There is also evidence for a dysfunction of GABAA receptor modulatory neuroactive steroid 

regulation in panic disorder patients (Rupprecht 2003). It has been demonstrated that panic 

disorder patients show increased concentrations of GABA agonistic 3α-reduced neuroactive 

steroids (Strohle et al. 2002), which has been interpreted as a counter-regulatory mechanism 

against the occurrence of spontaneous panic attacks. In contrast, during experimentally 

induced panic induction with lactate or cholecystokinin-tetrapeptide (CCK-4) panic disorder 

patients show a significant decrease of GABA agonistic 3α-reduced neurosteroids along 
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with an increase of the antagonistic 3α-reduced isomer, when compared with healthy 

controls (Strohle et al. 2003).

Translocator protein (TSPO) is an 18-kDa protein in the mitochondrial membrane which 

was first thought to be a peripheral binding site for benzodiazepines (Papadopoulos et al. 

2006). However, recent research has found that it is not only expressed in the body but also 

in the brain. Ligands of this protein may promote the synthesis of endogenous neurosteroids. 

Some metabolites of progesterone are potent, positive allosteric modulators of GABAA 

receptors. Their concentrations are reduced during panic attacks in patients with PDA 

(Strohle et al. 2003). Unexpectedly, patients with PDA had significantly greater 

concentrations of the agonistic 3α-reduced neuroactive steroids (Strohle et al. 2002). The 

TSPO ligand XBD173 enhanced GABA-mediated neurotransmission and exerted antipanic 

activity in humans. In contrast to benzodiazepines, the drug did not cause withdrawal 

symptoms or sedation. Thus, TSPO ligands are promising candidates for novel anxiolytic 

drugs (Rupprecht et al. 2009), though a polymorphism of the binding site exists in humans 

that means around 10% have a low affinity variant (Owen et al. 2011).

Neuroimaging studies have found a reduction of GABA concentrations and benzodiazepine 

binding in patients with PDA (see chapter Neuroimaging, Part I; Bandelow et al. 2016). A 

few genetic studies have attempted to elucidate the role of GABA in anxiety disorders (see 

chapter Genetics, Part I (Bandelow et al. 2016). Pharmacological modulation of the GABA 
system. From a clinical point of view, the significance of the GABA system in the 

pathophysiology of panic and anxiety has also been derived from observing beneficial 

effects on symptoms following selective GABAergic treatment. In addition to the rapid and 

strong anxiolytic properties of benzodiazepines, targeting the benzodiazepine binding site of 

the GABAA receptor, modulation of GABA metabolism has also been shown to reduce 

anxiety and the occurrence of panic attacks. Among anticonvulsants, tiagabine and 

vigabatrin both increase GABA availability via a reduction of GABA degradation by 

inhibition of the GABA transaminase (vigabatrin) or inhibition of GABA reuptake via 

blockade of the GABA transporter GAT-I (tiagabine). For both compounds, anxiolytic action 

has been suggested through clinical studies and studies using pharmacological panic 

induction with CCK-4 (for a review, see Zwanzger & Rupprecht, 2005).

Other drugs that enhance GABAergic tone (e.g., barbiturates, ethanol, valproate) have 

anxiolytic effects, whereas negative modulators produce anxiogenic-like effects (Zwanzger 

et al. 2001; Kalueff & Nutt 2007; Zwanzger et al. 2009).

SepAD and benzodiazepines: Several studies favour the role of TSPO as a useful 

biological marker of adult separation anxiety disorder (A-SepAD). The TSPO is involved in 

the secretion of neurosteroids, whose levels are reported to be changed in several diseases 

and to be implicated in the pathogenic mechanisms of anxiety and mood disorders in 

humans. A reduction of platelet expression of TSPO density was found to relate specifically 

to the presence of A-SepAD in samples of patients with PDA (Pini et al. 2005) or major 

depression (Chelli et al. 2008) or bipolar depression (Abelli et al. 2010). Furthermore, Costa 

et al. (2012) found Ala147Thr substitution in TSPO to be associated with A-SepAD in 

patients with depression.

Bandelow et al. Page 10

World J Biol Psychiatry. Author manuscript; available in PMC 2017 April 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Neuropeptides

CCK—CCK is one of the most abundant neurotransmitter peptides in the brain and has been 

shown to induce excitation of central neurons as well as inhibitory post-synaptic effects 

(Bourin & Dailly 2004). CCK-1 and -2 receptors (G protein-coupled receptors) (recently 

reclassified as A and B) are widely distributed throughout the CNS. A large body of 

evidence suggests that the neuropeptide CCK might be an important modulator of the 

neuronal networks that are involved in anxiety, in particular in PDA.

PDA: In humans, CCK-induced anxiety may be mediated via CCK-B receptors (vs. CCK-B 

and -A in mice) (Li et al. 2013). Intravenous administration of exogenous CCK-4, -8 or the 

CCK agonist pentagastrin produced panic-like attacks in healthy volunteers within one 

minute, and these effects were attenuated by pre-treatment with benzodiazepines (de 

Montigny 1989; Bradwejn et al. 1991b). The most common clinical effects observed after 

administration of intravenous CCK-4 were dyspnoea, palpitations/tachycardia, chest pain/

discomfort, faintness, dizziness, paresthaesia, hot flushes/cold chills, nausea/abdominal 

distress, anxiety/fear/apprehension and fear of losing control – a cluster of symptoms similar 

to those observed in spontaneous panic attacks in PDA.

In addition, the dose-response to intravenous CCK-4 reliably differentiates PDA patients 

from healthy controls with no personal or family history of panic attacks (Bradwejn et al. 

1992). Furthermore, a relationship between dose and effect was found in healthy volunteers 

(Bradwejn et al. 1991a). While the panic rate after injection of 25 μg of CCK-4 was 91% for 

patients as compared with only 17% for controls, and 50 μg induced a full-blown panic 

attack in 100% of patients vs. 47% of controls.

In contrast to the findings in patients with PDA, in CCK-4-sensitive healthy volunteers, 

treatment with an antipanic SSRI did not cause a reduction of CCK-4-induced panic attacks 

beyond the effect of placebo (Toru et al. 2013). However, a significant reduction in CCK-

induced anxiety was observed after administration of the benzodiazepine alprazolam and the 

GABAergic anticonvulsant vigabatrin (Zwanzger et al. 2001; Zwanzger et al. 2003). 

Baseline anxiety is a not a major determinant of the subjective panic response to CCK-4, 

emphasising the importance of neurobiological factors (Eser et al. 2008). It was proposed 

that benzodiazepine-mediated antagonism of CCK-induced excitation might be an important 

mechanism by which benzodiazepines exert their clinically relevant actions.

Moreover, in PDA patients, decreased concentrations of CCK-8 in the CSF have been 

reported compared with control subjects (Lydiard et al. 1992). Concentrations of CCK-8 in 

lymphocytes were also significantly reduced in patients with PDA compared with healthy 

controls (Brambilla et al. 1993). Finally, CCK-B receptor expression and binding are 

increased in animal models of anxiety. These findings are in favour of abnormalities in the 

CCK system in PDA patients.

The key regions of the fear network, such as basolateral amygdala (Del Boca et al. 2012), 

hypothalamus, periaqueductal grey, or cortical regions such as the anterior cingulate cortex 

(ACC), seem to be connected by CCK-ergic pathways (Dieler et al. 2008). Moreover, these 

effects seem to be modulated by molecular mechanisms, since neurochemical alterations 
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were dependent on neuropeptide S genotype (Ruland et al. 2015). In humans, amygdala 

activation may be involved in the subjective perception of CCK-4-induced fear (Eser et al. 

2009). In the amygdala, CCK may act in concordance with the endogenous cannabinoid 

system in the modulation of fear inhibition and extinction. In addition, CCK-4-induced 

panic is accompanied by a significant glutamate increase in the bilateral ACC (for a review, 

see Bowers et al., 2012). In contrast to placebo, alprazolam abolished the activation of the 

rostral ACC after challenge with CCK-4 and increased functional connectivity between the 

rostral ACC and other anxiety-related brain regions such as the amygdala and the prefrontal 

cortex (PFC). Moreover, the reduction in the CCK-4 induced activation of the rostral ACC 

correlated with the anxiolytic effect of alprazolam (Leicht et al. 2013). Finally, social stress-

induced behavioural deficits are mediated partly by CCK-B receptors as a molecular target 

of ΔFosB in the medial prefrontal cortex (mPFC) and by molecular adaptations in the mPFC 

involving ΔFosB and CCK through cortical projections to distinct subcortical targets. In fact, 

CCK in mPFC-basolateral amygdala projections mediates anxiety symptoms (Vialou et al. 

2014).

CCK also interacts with several anxiety-relevant neurotransmitters such as the serotonergic, 

GABAergic and noradrenergic systems, as well as with endocannabinoids, neuropeptides Y 

and S (for a review, see Zwanzger et al., 2012). For a review of CCK genes in anxiety 

disorders, see Part I (Bandelow et al. 2016).

In conclusion, experimental panic induction with CCK-4 has been established as a model to 

study the pathophysiology of PDA and might serve as a tool to assess the anti-panic 

potential of novel anxiolytic compounds if the challenge procedure is carried out according 

to strictly comparable conditions (Eser et al. 2007).

Neurokinins (tachykinins)—Central neurokinins (tachykinins) have been shown to play 

a role in the modulation of stress-related behaviours and anxiety. Different forms exist, 

termed neurokinins 1, 2 and 3. Substance P, a ligand of the neurokinin 1 (NK1) receptor, is 

released in response to stress, anxiety, and pain (Saria 1999; Carrasco & Van de Kar 2003; 

Ebner & Singewald 2006).

PDA: In a positron emission tomography (PET) study, decreased NK1 receptor binding was 

found in patients with PDA (Fujimura et al. 2009); see Part I (Bandelow et al. 2016). 

Attempts have been made to develop neurokinin antagonists for the treatment of anxiety 

disorders. The NK1 receptor antagonist vestipitant showed anxiolytic effects in a preliminary 

study (Poma et al. 2014). However, vofopitant, a NK1 antagonist, and onasetant, a NK3-

receptor antagonist, were not effective (Kronenberg et al. 2005; Poma et al. 2014).

Specific phobia: In a PET study in women with specific phobias, uptake of the labelled 

NK1 receptor antagonist [11C]GR205171 was significantly reduced in the right amygdala 

during phobic stimulation (Michelgard et al. 2007).

Atrial natriuretic peptide

PDA: Atrial natriuretic peptide (ANP) is not only synthesised by atrial myocytes and 

released in the circulation (de Bold 1985), but is also found in various brain areas where 
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specific receptors have been identified. ANP has been shown to inhibit the corticotropin-

releasing hormone (CRH)-stimulated release of adrenocorticotropic hormone (ACTH; 

Kellner et al. 1992) and cortisol (Strohle et al. 1998a). Also, peripheral and central 

administration of ANP has an anxiolytic activity in different animal models of anxiety 

(Strohle et al. 1997). In patients with PDA, ANP reduced CCK-4-induced panic attacks 

(Strohle et al. 2001) and an activation of the HPA system (Wiedemann et al. 2001). 

Furthermore, a significantly accelerated ANP release has been described in patients with 

lactate-induced panic attacks (Kellner et al. 1995), and it has been suggested that this 

increase also contributes to the paradoxical blunting of ACTH and cortisol secretion during 

lactate-induced and possibly spontaneous panic attacks. As physical activity increases ANP 

concentrations, the anxiolytic activity of exercise might be associated with increased ANP 

concentrations. And indeed, the anxiolytic activity of a single exercise bout was correlated 

with the increased ANP concentrations (Strohle et al. 2006).

Although there have been major efforts to develop small-molecule, non-peptide receptor 

ligands acting as CRH1 antagonists, NK-antagonists or ANP agonists, we still lack 

convincing clinical proof-of-concept studies with peptidergic treatment approaches in 

patients with anxiety disorders.

Oxytocin

SAD: In humans, modulation of anxiety by oxytocin has been demonstrated by showing 

reduced amygdala responses to aversive stimuli. Moreover, intranasal oxytocin promotes 

trust, and reduces the level of anxiety, possibly at the level of the amygdala (Kirsch et al. 

2005; Kosfeld et al. 2005; Zak et al. 2005; Heinrichs et al. 2009). The dysregulation of 

oxytocin as a putative mechanism underlying social attachment has been examined widely in 

animal studies (e.g., Williams et al. 1994), and recently has become of interest in human 

studies.

In a study examining oxytocin as add-on to exposure therapy in patients with SAD, 

participants administered with oxytocin showed improved positive evaluations of appearance 

and speech performance, but these effects did not generalise to improve overall treatment 

outcome from exposure therapy (Guastella et al. 2009).

The role of oxytocin in SAD has also been shown in neuroimaging studies (chapter 

Neuroimaging, Part I; Bandelow et al. 2016).

SepAD: Genetic studies have shown a possible role of oxytocin in SePAD (chapter 

Genetics, Part I; Bandelow et al. 2016).

PTSD: In Vietnam veterans with PTSD, no beneficial effects of intranasal oxytocin on 

physiological responses to combat imagery were observed (Pitman et al. 1993).

HPA axis

PDA—A growing number of studies has aimed to delineate the possible role of HPA axis 

function in the pathophysiology of the anxiety disorders, mainly through the use of plasma, 
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urine, or saliva cortisol levels in basal conditions or after pharmacological or psychological 

challenge test as a potential biological marker (Elnazer & Baldwin 2014).

Basal levels: Baseline plasma levels of cortisol in PDA patients were reported to be elevated 

during the day (Nesse et al. 1984; Roy-Byrne et al. 1986; Goetz et al. 1989) or during the 

night (Abelson et al. 1996) by some authors, but to be normal by others (Brambilla et al. 

1995; Cameron et al. 1987; Stein & Uhde 1988). Urinary free cortisol in PDA patients was 

found to be normal (Uhde et al. 1988), elevated (Bandelow et al. 1997) or elevated only in 

patients with complicated PDA (Lopez et al. 1990) when compared with healthy controls.

Baseline ACTH concentration in plasma was increased in patients compared with controls 

(Brambilla et al. 1992). HPA axis stimulation tests showed significantly lower ACTH 

responses to CRH in patients compared with normal control subjects in three studies (Roy-

Byrne et al. 1986; Holsboer et al. 1987; Brambilla et al. 1992) and normal responses in one 

(Rapaport et al. 1989). Cortisol release after CRH was found to be lower in two (Roy-Byrne 

et al. 1986; Brambilla et al. 1992) and normal in two other studies (Holsboer et al. 1987; 

Rapaport et al. 1989).

HPA axis response during panic attacks: Cameron et al. (1987) measured cortisol during 

spontaneously occurring panic attacks while patients stayed at bed-rest with an indwelling 

venous catheter for sampling of blood. They found non-significantly elevated plasma 

cortisol levels during attacks.

During naturally occurring panic attacks, a significantly increased salivary cortisol secretion 

could be shown in PDA patients compared with values of the same individuals obtained at 

comparable daytime on panic-free days (Bandelow et al. 2000). The salivary method used in 

this study proved to be a useful non-invasive method to measure HPA function in anxiety 

disorders, and has often been used in subsequent research.

During exposure to feared situations, PDA patients did not show increased levels of 

concentrations of cortisol and ACTH (Siegmund et al. 2011). In order to investigate cortisol 

levels during panic attacks, panic provocation tests have been performed. In most studies, 

patients who panicked during lactate infusion did not show elevations in ACTH or cortisol 

(Carr et al. 1986; Levin et al. 1987; Den Boer et al. 1989; Gorman et al. 1989; Targum 1992; 

Strohle et al. 1998b). In a study by Liebowitz et al. (1985), only patients who rapidly 

developed panic attacks after lactate infusion had marginally higher cortisol levels than 

controls. By contrast, Hollander et al. (1998) found that cortisol levels fell significantly 

during lactate-induced panic in patients and controls. Interestingly, patients who panicked 

after lactate had higher plasma cortisol levels before the infusion than controls (Coplan et al. 

1998).

Inhalation of carbon dioxide (CO2) did not induce a significant increase in plasma or 

salivary cortisol in panickers (Gorman et al. 1989; van Duinen et al. 2004). However, 

subsequent studies suggested that 35% CO2 significantly increases plasma levels of ACTH 

and cortisol in PDA patients (van Duinen et al. 2007) and of cortisol in healthy subjects 

(Argyropoulos et al. 2002). Nevertheless, in PDA patients, no specific association emerged 
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between the 35% CO2-induced panic attacks and HPA axis activation observed after this 

challenge (van Duinen et al. 2007).

Patients reporting yohimbine-induced panic attacks had significantly larger increases in 

plasma cortisol than healthy subjects (Charney et al. 1987). mCPP or oral caffeine increased 

plasma cortisol in both patients and controls (Charney et al. 1985; Klein et al. 1991). 

However, a placebo-controlled study suggested that the significant increases in plasma 

cortisol, ACTH and dehydroepiandrosterone sulphate (DHEAS) observed after oral caffeine 

(400 mg) administration in PDA patients are not associated with the occurrence or non-

occurrence of a panic attack at post-challenge (Masdrakis et al. 2015). Pentagastrin (CCK-4) 

induced panic attacks were associated with a pronounced rise of plasma cortisol levels 

(Abelson et al. 2007).

HPA axis response to treatment: Some studies investigated the effect of treatment on the 

HPA axis in patients with PDA. Nocturnal urinary cortisol excretion did not change during 

treatment with paroxetine vs. placebo combined with relaxation training or aerobic exercise 

(Wedekind et al. 2008). On the contrary, exercise training was associated with lowered 

salivary cortisol levels in PDA patients (Plag et al. 2014).

HPA axis suppression tests: Findings with the dexamethasone suppression test (DST) were 

summarised by Ising et al. (2012). Most studies found a normal reaction in the DST in PDA 

patients, e.g., Cameron & Nesse (1988), while cortisol non-suppression after dexamethasone 

was found in at least some patients in some other investigations (Avery et al. 1985; Erhardt 

et al. 2006; Petrowski et al. 2013). Results of studies employing the CRH stimulation test in 

PDA have been mixed. While two studies suggest an abnormal CRH response pattern in 

terms of a blunted ACTH response and a reduced ACTH/cortisol ratio, three studies were 

negative or showed inconsistent findings (Ising et al. 2012). Also, combined dexamethasone 

suppression/CRH tests supported the assumption of an impaired HPA axis regulation in PDA 

(Ising et al. 2012). Demiralay et al. (2012) found a blunted response of ACTH release 

following CCK-4 injection only after hydrocortisone pre-treatment.

HPA axis and neurotrophic factors: Early stressful life events may provoke alterations of 

the stress response and the HPA axis, which can endure until adulthood (Faravelli et al. 

2012). Glucocorticoids suppress brain-derived neurotrophic factors (BDNF) at messenger 

ribonucleic acid and protein level. Activated glucocorticoid and mineralocorticoid receptors 

repress the transcription activity of the BDNF promoter site. Neurogenesis in the human 

brain is most prominent in the dentate gyrus of the hippocampus. Hypercortisolism caused 

by prolonged stress can suppress this neuroplasticity process. Acute stress, however, 

activates BDNF, stimulates neuroplasticity and hence improves learning and memory. 

Therefore, under chronic stress conditions such as in PDA, an increasing loss of neural 

plasticity may emerge and consequently the ability to appropriate coping (Bandelow & 

Wedekind 2006). The role of neurotrophic factors is reviewed in the next chapter 

(Neurotrophic factors, page 33).
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GAD

Basal levels and HPA axis response to stressors: It remains uncertain whether untreated 

GAD is associated with abnormally increased cortisol levels. Thus, some studies suggest 

that GAD patients and controls demonstrate similar baseline cortisol levels and cortisol 

responses to challenge tests. More precisely, baseline urinary free cortisol levels between 

patients with “chronic moderate-to-severe anxiety” and normal controls did not differ 

significantly (Rosenbaum et al. 1983). Twenty GAD male adolescents and normal controls 

displayed similar cortisol plasma levels after a stressful test, but anxious subjects had 

demonstrated greater pre-stress ACTH concentrations (Gerra et al. 2000). In an extensive 

study with 1427 anxious patients and normal controls, GAD patients demonstrated 

significantly greater cortisol awakening response than controls, only when also suffering 

MDD (Vreeburg et al. 2010). Among 4256 Vietnam-era veterans, those suffering from GAD 

and normal controls showed similar cortisol and DHEAS plasma levels and cortisol/DHEAS 

ratio (Phillips et al. 2011). Corresponding to younger subjects, baseline cortisol levels of 201 

elderly subjects with at least one anxiety disorder (including GAD and phobias) were 

comparable with those of normal controls. However, under stress, males showed a slower 

decline rate of post-stress cortisol increases compared with controls, while clinical severity 

was associated with larger post-stress cortisol increases and lower recovery capacity in 

females (Chaudieu et al. 2008). Administration of 7.5% CO2 did not significantly change 

salivary cortisol levels in medication-free GAD patients (Seddon et al. 2011). Finally, 7–11-

year-old children with GAD did not differ from controls concerning pre-sleep salivary 

cortisol, despite the presence of sleep disturbances (Alfano et al. 2013).

On the contrary, other studies report abnormal – either increased or decreased – HPA axis 

activity in GAD. Thus, in elderly GAD patients, compared with non-anxious controls, 

cortisol levels were overall significantly more elevated, were higher during morning hours 

and were positively associated with GAD symptoms (Mantella et al. 2008). Moreover, not 

only untreated but also SNRI-treated GAD patients demonstrated significantly higher 

cortisol levels compared with normal controls (Hood et al. 2011).

A recent development is the analysis of hair cortisol concentrations, which reflect the long-

term cortisol levels independently of the acute HPA axis responses in the laboratory context. 

GAD patients demonstrate up to 50–60% lower hair cortisol concentrations compared with 

healthy controls (Staufenbiel et al. 2013; Steudte et al. 2011). These results accord with the 

notion that chronic anxiety – an essential clinical feature of GAD – may result in down-

regulation of HPA axis activity. Thus, older adults (≥65 years old) suffering from long-

lasting anxiety disorders demonstrated a lower cortisol awakening response than normal 

controls. This association was most prominent in GAD patients, however, irrespectively of 

the duration of illness (Hek et al. 2013). Likewise, chronic anxiety may finally exhaust the 

capacity for increase in 5-HTT activity due to the chronically elevated plasma cortisol levels, 

e.g., GAD patients could not increase serotonin uptake in their lymphocytes after cortisol 

administration (Tafet et al. 2001).

HPA axis suppression tests: Non-suppression in the DST in GAD patients (up to 27%) is 

comparable to that of MDD outpatients, but seems to have little value in distinguishing 
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between GAD and other disorders, including PDA, MDD and agoraphobia (Avery et al. 

1985; Schweizer et al. 1986; Tiller et al. 1988; Okasha et al. 1994; Schittecatte et al. 1995).

HPA axis response to treatment: Some studies report that successful psychological or 

pharmacological treatment of GAD is associated with post-treatment cortisol level 

reductions. Thus, after successful cognitive-behavioural therapy (CBT) treatment for GAD, 

significant decreases in both anxiety symptoms and (the latter already elevated at baseline) 

plasma cortisol levels were observed (Tafet et al. 2005). GAD patients over 60 years of age 

displayed greater reductions in both peak and total salivary cortisol after escitalopram 

treatment, compared with placebo-treated patients (Lenze et al. 2011). Furthermore, cortisol 

reductions were positively associated with improvements in anxiety, although this was 

limited to subjects with elevated (above the median) baseline cortisol levels. Of note, genetic 

variability at the 5-HTT promoter predicted these cortisol changes. Furthermore, in the 

escitalopram (but not in the placebo) treatment group, salivary cortisol changes were 

significantly associated with changes in immediate and delayed memory tasks, suggesting 

that targeting HPA axis dysfunction may improve memory in older GAD patients (Lenze 

2008). Tiller et al. (1988) reported that all GAD patients who were DST non-suppressors at 

pre-treatment were suppressors after successful behavioural treatment. Finally, refocusing 

GAD patients’ attention (and thus distracting them from their anxious thoughts) seems to 

reduce cortisol levels (Rosnick et al. 2013).

However, other studies report no association between a positive treatment outcome and post-

treatment changes in cortisol levels, or no change of cortisol levels at all. Thus, effective 

treatment of GAD either with buspirone (Cohn et al. 1986) or with alprazolam (Klein et al. 

1995) did not significantly alter cortisol levels. Intravenous administration of diazepam in 

eight GAD patients was associated with post-challenge reductions in cortisol (dose 

dependently) and ACTH (dose independently) (Roy-Byrne et al. 1991). There was no 

interaction with diagnosis for any of these endocrine measures, indicating no differential 

effects of diazepam on ACTH or cortisol in the GAD and control groups. Subsequently, in a 

larger study in GAD patients and healthy controls, diazepam reduced plasma cortisol levels 

both when acutely administered at baseline and during chronic treatment and this effect was 

most apparent in the elderly (60–79 years) compared with the young adults (19–35 years) 

(Pomara et al. 2005). However, this effect was not associated with the presence of GAD.

SAD—The HPA axis is an important stress system concerning social interaction. Primates 

with higher baseline HPA axis activity and greater reactivity to stressful stimuli demonstrate 

increased social avoidances (Sapolsky & Plotsky 1990; Kalin et al. 1998). Consequently, 

research concerning the pathophysiology of SAD has focussed on the potential role of 

cortisol in regulating cognitive processes and behavioural responses (e.g., avoidances) to 

social stressors (Sapolsky 1990; de Kloet et al. 1999; Roelofs et al. 2009; van Peer et al. 

2010; Elnazer & Baldwin 2014).

Basal levels and HPA axis response to stressors: Some studies suggest that baseline 

cortisol levels or cortisol responses after pharmacological or psychological challenges are 

similar between SAD patients and controls. Thus, no evidence of HPA axis hyperactivity in 

SAD patients compared with healthy controls was observed, as this is reflected in urinary 
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free cortisol levels or in the free cortisol/creatinine ratio (Potts et al. 1991), as well as in the 

24-h excretion of urinary free cortisol and in post-dexamethasone cortisol levels (Uhde et al. 

1994). In addition, diurnal saliva cortisol levels and cortisol increases observed both before 

attending school and before the Trier Social Stress Test were similar between 27 adolescent 

girls with SAD and healthy controls (Martel et al. 1999). Moreover, SAD patients, compared 

with controls, demonstrated significantly greater ACTH and cortisol responses to stress 

(Young et al. 2004) and a significantly greater cortisol awakening response (Vreeburg et al. 

2010), only when suffering major depression as well. Intravenous administration of CCK-4 

in SAD or OCD patients, or normal controls did not reveal any significant between-groups 

differences concerning post-challenge ACTH, cortisol, growth hormone and prolactin 

responses (Katzman et al. 2004). Intravenous administration of citalopram in SAD patients 

and healthy controls resulted in significantly greater increases in cortisol and prolactin 

plasma levels compared with placebo administration, but the changes were similar in 

patients and controls (Shlik et al. 2002). Although a rapid intravenous mCPP challenge 

resulted in significantly greater rate of panic attacks in PDA patients (85%) compared with 

generalised SAD patients (14%) and healthy controls (0%), post-challenge changes in 

cortisol levels were still comparable between these groups (van Veen et al. 2007).

In SAD patients evaluated at baseline and after dexamethasone, no differences were found 

concerning cortisol awakening response, post-dexamethasone and other cortisol 

measurements, in contrast to the observed elevations in diurnal and post-dexamethasone 

levels of salivary α-amylase, a marker of autonomic nervous system function (van Veen et 

al. 2008). Subsequently, SAD patients successfully treated with a SSRI underwent either a 

tryptophan depletion challenge or a placebo-test, combined with a public speaking-

challenge. The tryptophan depletion group showed a significant larger salivary α-amylase 

response compared with the placebo group, but the two groups demonstrated similar salivary 

cortisol responses (van Veen et al. 2009). Accordingly, SAD patients who underwent an 

electrical stimulation test demonstrated significantly greater baseline and post-challenge 

salivary α-amylase levels compared with controls. Concerning salivary cortisol levels, 

neither within-subject nor group differences were observed (Tamura et al. 2013). These 

findings led some researchers to suggest that pathological vulnerability of the autonomic 

nervous system – and not of the HPA axis – may underlie SAD psychopathology (van Veen 

et al. 2008, 2009; Tamura et al. 2013). However, both salivary cortisol and α-amylase levels 

were similar between SAD children (aged 8–12 years) and healthy controls after undergoing 

the Trier Social Stress Test for Children, although the former demonstrated significantly 

higher reactivity compared with the latter (Kramer et al. 2012).

On the contrary, other studies suggest that SAD patients differ significantly from controls 

concerning baseline cortisol levels and/or cortisol responses to pharmacological or 

psychological challenges. Thus, in SAD patients, administration of fenfluramine (Tancer et 

al. 1994b) or mCPP (Hollander et al. 1998) resulted in significantly greater cortisol 

responses compared with controls. Furlan et al (2001) reported different dichotomies in 

magnitude and in distribution of cortisol responses to a speech-stressor between SAD 

patients and normal controls. Thus, seven patients and 14 controls demonstrated post-

challenge cortisol increases (90 and 50%, respectively), while in the remaining 11 patients 

and three controls, cortisol decreased. Of note, both patient groups were significantly more 

Bandelow et al. Page 18

World J Biol Psychiatry. Author manuscript; available in PMC 2017 April 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



anxious at post-challenge compared with controls. On the contrary, SAD patients and 

controls showed similar cortisol responses to a physical exercise challenge, suggesting that 

distinct biological processes underlie responses to different stressors in SAD (Furlan et al. 

2001). Patients with SAD, compared with healthy controls, had a significantly larger cortisol 

response when performing an arithmetic/working memory task in front of an audience 

(Condren et al. 2002). Baseline ACTH and cortisol, as well as post-challenge ACTH 

responses were all similar between the two groups. Exaggerated cortisol response to a 

speech-stressor was suggested to be a potential neurobiological marker for pre-pubertal SAD 

children (van West et al. 2008). Moreover, an elevated afternoon salivary cortisol level at the 

age of 4.5 years was one of four risk factors (the others being female gender, early exposure 

to maternal stress and early manifestation of behavioural inhibition) mediating the 

association between chronic high inhibition in school age and SAD occurrence during 

adolescence (Essex et al. 2010). In addition, in adolescents, a higher baseline cortisol 

awakening response significantly predicted increased first onsets mainly of SAD (among 

other anxiety disorders) over a 6-year follow-up (Adam et al. 2014). Finally, recent data 

suggest that 8–12-year-old children with an anxiety disorder (including SAD, GAD, specific 

phobia and SePAD) demonstrate psychophysiological characteristics resembling those of 

chronic stress, i.e., a baseline pattern comprising reduced HPA axis functioning and elevated 

sympathetic and lowered parasympathetic activity compared with controls (Dieleman et al. 

2015).

Increased cortisol stress-responsiveness may be linked to increased social avoidance 

behaviours in SAD patients. Indeed, SAD patients showed larger cortisol responses to a 

social stressor, compared with healthy controls. Most crucially, cortisol responses were 

correlated positively to avoidance behaviours displayed during the social stressor and, 

furthermore, predicted them irrespective of blood pressure and anxiety (Roelofs et al. 2009). 

The authors speculate that some studies failed to find an increased HPA axis response to 

social stressors in SAD patients due to protocol violations – e.g., manipulations that reduce a 

patient’s experimentally induced stress in order to avoid dropout of the patient – which 

might critically reduce their cortisol responses.

The potential role of cortisol in threat processing in SAD remains unclear. Event-related 

potential (ERP) analysis indicated that in SAD patients, cortisol administration prior to a 

social stress-related reaction time task increases the early processing of social stimuli 

(particularly angry faces) during avoidance (van Peer et al. 2009). A subsequent ERP study 

suggested a highly specific effect of cortisol on early motivated attention to social threat in 

SAD (van Peer et al. 2010).

HPA axis response to treatment: Clinical improvement after fluvoxamine treatment in 

SAD patients was not associated with baseline and post-treatment plasma cortisol responses 

to a speech-test (DeVane et al. 1999).

Glucocorticoids in the treatment of SAD: Elevated glucocorticoid levels might inhibit the 

retrieval of fear-related memories and, thereby, reduce phobic fear. Thus, in SAD patients, 

cortisone administered orally 1 h before a social stressor significantly reduced social fear 

(but not general anxiety) during the anticipation, exposure and recovery phase of the 
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stressor. Moreover, the stress-induced release of cortisol in placebo-treated subjects 

correlated negatively with fear ratings, suggesting that endogenously released cortisol in a 

phobic context buffers fear symptoms (Soravia et al. 2006).

Specific Phobia

Basal levels and HPA axis response to stressors: Most studies suggest that specific phobia 

is characterised by exaggerated cortisol increases during exposure to phobic stimuli. Thus, in 

patients with specific phobia, exposure to phobic slides elicited larger cortisol excretion (as 

well as greater distress and skin-conductance responses), compared to neutral exposures 

(Fredrikson et al. 1985). Likewise, in women with animal phobias, cortisol levels (as well as 

levels of epinephrine, norepinephrine, growth hormone and insulin) significantly rose during 

in vivo exposure sessions, together with increases in anxiety, blood pressure and heart rate 

(Nesse et al. 1985). Moreover, in two patients who underwent exposure therapy for height 

phobia, increased cortisol responses remained over the course of treatment despite 

behavioural and subjective improvements (“desynchrony”) (Abelson & Curtis 1989). 

Subjects with driving phobia, compared to healthy controls, had significantly greater cortisol 

increases during driving and its anticipation one hour before driving. Cortisol levels were 

similar between the two groups on a non-driving day and on morning awakening (Alpers et 

al. 2003). Pregnant women with blood-injection phobia, when compared with healthy 

pregnant women, had a higher output of cortisol, although both groups demonstrated similar 

diurnal cortisol rhythms (Lilliecreutz et al. 2011).

Of note, van Duinen et al. (2010) reported that – although during exposure to phobic stimuli 

spider phobic patients demonstrated significantly stronger fear reaction compared with 

controls –cortisol levels were however similar between both groups, thereby suggesting a 

“desynchrony” in patients’ response systems.

HPA axis response to treatment: In army recruits with protective mask phobia, 

exaggerated salivary cortisol secretion was observed at both baseline and post-treatment, as 

well as in the morning. After successful 2-day intensive CBT, significant reductions in 

cortisol levels were observed (Brand et al. 2011). It has been suggested that phobic patients 

may not respond uniformly regarding HPA axis function when exposed to phobic stimuli 

and that this should be taken into consideration when tailoring individualised 

psychotherapeutic interventions. Hence, only two-thirds of women with spider phobia 

showed increased cortisol responses when exposed to spider photographs, while the rest, 

defined as “low-responsive”, showed lower cortisol responses compared with “medium-to-

high responsive” non-phobic individuals (Knopf & Possel 2009).

Glucocorticoids in the treatment of specific phobia: Glucocorticoid treatment seems to 

reduce symptoms of specific phobia acutely and might have a prolonged effect concerning 

fear extinction, especially in combination with exposure therapy (de Quervain & Margraf 

2008; Soravia et al. 2006). Thus, in subjects with spider phobia, repeated oral administration 

of cortisone (25 mg) 1 h before exposure to spider photographs reduced phobic (but not 

general) anxiety significantly more than placebo, and this effect was maintained for 2 days 

(Soravia et al. 2006). In addition, patients fearing heights who underwent a three-session 
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virtual-reality exposure therapy after receiving cortisol (20 mg) 1 h before each session, 

demonstrated significant fear reduction, as well as reductions in acute anxiety and in skin 

conductance during exposures to phobic stimuli (de Quervain et al. 2011).

OCD

Basal levels and HPA axis response to stressors: Some studies found no difference in 

plasma and salivary levels of cortisol or circadian plasma cortisol variations (Brambilla et al. 

1997a; Brambilla et al. 2000; Kawano et al. 2013; Millet et al. 1998), while one study found 

increased diurnal secretion of ACTH and cortisol in patients (Kluge et al. 2007).

After apomorphine infusion but also after saline infusion, OCD patients showed a higher rise 

in cortisol levels than healthy controls (Brambilla et al. 2000). Cortisol responses to 

administration of saline and of clonidine were the same in patients and controls (Brambilla 

et al. 1997a).

In a study with youth with OCD, higher early-morning cortisol values were found when 

compared with healthy controls. Cortisol levels in the OCD group diminished in response to 

a psychological stressor (exposure to a feared stimulus or a fire alarm), while an increase 

was found in healthy controls (Gustafsson et al. 2008). In a similar study, exposure with 

response prevention, was used as a stressor. Despite considerable psychological stress, no 

difference in increase of salivary cortisol was observed when compared with controls 

(Kellner et al. 2012).

In a study using deep brain stimulation for OCD, an increase in obsessive–compulsive and 

depressive symptoms correlated strongly with an increase in urinary free cortisol levels after 

the DBS device was switched off (de Koning et al. 2013).

PTSD—Some studies have found lower cortisol excretion in PTSD patients. According to a 

review by Yehuda (2005), most studies demonstrate alterations consistent with an enhanced 

negative feedback inhibition of cortisol on the pituitary, an overall hyper-reactivity of other 

target tissues (adrenal gland, hypothalamus), or both in PTSD. However, findings of low 

cortisol and increased reactivity of the pituitary in PTSD are also consistent with reduced 

adrenal output. The possible clinical applications of HPA biomarkers have been reviewed by 

Lehrner & Yehuda (2014).

Basal levels: Low urinary cortisol excretion was found in combat veterans with PTSD as 

compared with controls (Yehuda et al. 1990). Holocaust survivors with PTSD showed 

significantly lower mean urinary cortisol excretion than subjects without PTSD (Yehuda et 

al. 1995). In a small study, patients with PTSD were compared with patients with PDA and 

healthy controls. PTSD patients had lower cortisol and marginally reduced cortisol volatility 

compared with patients with panic disorder (Marshall et al. 2002). Low cortisol levels in the 

immediate aftermath of trauma were found to predict the development of PTSD (Delahanty 

et al. 2005; Delahanty et al. 2000; Yehuda et al. 1998). A meta-analysis of 47 studies 

revealed that daily cortisol output was lower for PTSD patients relative to healthy controls 

without trauma; subjects who were exposed to trauma but did not develop PTSD did not 

differ from healthy controls without trauma (Morris et al. 2012).
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However, in a recent study assessing hair cortisol (which reflects long-term cortisol 

changes), PTSD patients and traumatised control subjects without PTSD exhibited lower 

hair cortisol concentrations than non-traumatised control subjects suggesting that trauma 

exposure per se, either in the absence or presence of PTSD is a correlate of long-term lower 

basal cortisol levels (Steudte et al. 2013).

Glucocorticoids in the treatment of PTSD: Based on the above-mentioned findings of 

decreased cortisol concentrations in PTSD, it has been hypothesised that glucocorticoid 

administration might benefit patients. Indeed, individuals who received a high dose of 

hydrocortisone within 6 h of a traumatic event had a reduced risk for the development of 

PTSD, compared with individuals who received placebo (Zohar et al. 2011).

In summary, although the clinical picture of anxiety disorders suggests the potential for a 

prominent role for disturbed stress response regulation, there are more inconsistencies than 

consistencies in the relevant research findings.

In PDA, findings are inconsistent regarding baseline cortisol and ACTH levels, response to 

spontananeously occurring panic attacks, response to exposure to feared situations, 

chemically provoked panic attacks or response to the dexamethasone suppression or CRH 

challenge.

In GAD, findings are inconsistent regarding whether baseline cortisol levels are normal or 

pathologically elevated, while findings from hair cortisol analysis – a recently developed 

technique, which reflects the long-term cortisol levels – suggest significantly lower hair 

cortisol concentrations. Although dexamethasone non-suppression in GAD patients is 

comparable to that of MDD outpatients, it seems to be of little value in the differential 

diagnosis of GAD from other mental disorders. Most, but not all, related studies suggest that 

successful psychotherapy or pharmacotherapy of GAD is associated with post-treatment 

reductions in cortisol concentrations.

With regard to patients with SAD, some, but not all, studies suggest that they differ 

significantly from healthy controls concerning baseline cortisol levels, and/or demonstrate 

exaggerated cortisol stress-responsiveness possibly linked to increased social avoidances.

Regarding specific phobia, most studies suggest inflated cortisol responses during exposure 

to phobic stimuli, which are however amenable to behaviour therapy.

Overall, it seems that various pathological findings are found in HPA axis function across 

the anxiety disorders. Nevertheless, it is not clear, as yet, whether this reflects reality, or is 

due to methodological weaknesses of current research. In order to more vigorously evaluate 

the potential role that HPA axis function plays in the pathophysiology of anxiety disorders, a 

number of strategies have previously been proposed, such as achieving greater consensus on 

study objectives and on clinical features of patient groups and designing meticulous 

methodological protocols (Baldwin et al. 2010; Elnazer & Baldwin 2014).
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Neurotrophic factors

Neurotrophins are proteins involved in neurogenesis. Although most of the neurons in the 

brain are formed prenatally, some parts of the adult brain have the ability to form new 

neurons from neural stem cells, a process named neurogenesis. Neurotrophins include nerve 

growth factor (NGF), BDNF, neurotrophin-3, neurotrophin-4, and artemin.

Nerve Growth Factor (NGF)—NGF is a neuropeptide involved in the regulation of 

neuron growth. It may be involved in the alert mechanism associated with homeostatic 

adaptations (Cirulli & Alleva 2009), and might modulate sympathetic neurons, and therefore 

occupies a key position in controlling the responsiveness of immune-competent cells (Levi-

Montalcini et al. 1995). Furthermore, NGF, via the hypothalamus (Scaccianoce et al. 1993), 

can activate the HPA axis (Otten et al. 1979) and plays a role in adaptive responses. More 

importantly, there is evidence that NGF might be an autocrine/paracrine factor for the 

development and regulation of immune cells (Levi-Montalcini et al. 1995). NGF is produced 

by T and B lymphocytes (Lambiase et al. 1997), which display functional NGF receptors 

(Franklin et al. 1995). Furthermore, NGF promotes the proliferation and differentiation of T 

and B lymphocytes (Brodie & Gelfand 1992), and acts as a survival factor for memory B 

lymphocytes (Torcia et al. 1996).

An association between trait anxiety and a genetic variation of NGF was found in healthy 

volunteers (Lang et al. 2008). In soldiers making their first parachute jump, NGF was 

increased during and after the jump (Aloe et al. 1994).

While a reduction of NGF in depression has been consistently reported (Wiener et al. 2015), 

NGF has not been studied widely in patients with anxiety disorders. In one GAD study, NGF 

was increased after successful CBT (Jockers-Scherubl et al. 2007).

BDNF—BDNF is a protein that acts on neurons in the brain and the peripheral nervous 

system, involved in neurogenesis and in the forming of new synapses. It has been assumed 

that BDNF is implicated in the aetiologies of depression and anxiety, but data on brain 

BDNF levels in anxiety disorders are inconsistent.

PDA: Serum BDNF levels of PDA patients with poor response to CBT were significantly 

lower than those of patients with good response (Kobayashi et al. 2005). Moreover, BDNF 

serum levels increased after 30 min of aerobic exercise in subjects with panic but not in 

healthy controls (Strohle et al. 2010).

GAD: In a treatment study with GAD patients, no significant association was found between 

baseline plasma BDNF levels and GAD severity. Patients who received the SNRI duloxetine 

had a significantly greater mean increase in plasma BDNF level, when compared with 

patients who had received placebo (Ball et al. 2013). In a sample of 393 patients with panic 

disorder, agoraphobia, GAD or SAD, no differences in BDNF levels were found when 

compared with 382 healthy controls (Molendijk et al. 2012).

A small study comparing patients with GAD or MDD to healthy subjects showed doubled 

levels of BDNF and artemin, a glial cell-line derived neurotrophic factor family member, in 
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GAD patients compared with normal controls, while depressed patients showed a reduction 

(Pallanti et al. 2014).

In summary, neurotrophic factors seem to play a different role in mood disorders compared 

with anxiety disorders. While brain atrophy and growth factor reduction have been observed 

in mood disorders the opposite has been demonstrated in anxiety disorders. One hypothesis 

could be that the increase of neurotrophic factors and inflammatory factors observed in 

anxiety disorders are related to brain volume increase observed in brain areas such as the 

dorsal midbrain by some studies on anxiety disorders (Fujiwara et al. 2011; Uchida et al. 

2008) (see also Chapter neuroimaging, Part I (Bandelow et al. 2016)).

Immunological markers

Neurobiological research on anxiety disorders has shown the possible relevance of 

neuroplasticity and inflammation processes in the pathophysiology of these disorders. The 

high rate of comorbidity between anxiety disorders and several inflammatory medical 

conditions has been interpreted as the result of specific inflammatory pathways. Anxiety has 

been linked to cardiovascular risk factors and diseases such as atherosclerosis (Seldenrijk et 

al. 2010), metabolic syndrome (Carroll et al. 2009), and coronary heart disease (Roest et al. 

2010), which are also associated with low-grade systemic inflammation (Libby 2002). While 

depressive disorders, which are highly comorbid with anxiety disorders, have repeatedly 

been associated with the immune system (Kim et al. 2007; Myint & Kim 2014), only few 

studies have investigated the relationship between anxiety disorders and inflammation 

(Vogelzangs et al. 2013). These have suggested that certain inflammatory markers are 

elevated in anxiety disorders (Weik et al. 2008).

The immune system—The immune system is divided into the innate and the acquired 
immune system. The latter again is divided into the cellular and the humoral immune 

system. The humoral system is based on antibodies, while the cellular immune system 

involves the phagocytes, cytotoxic T-lymphocytes, and cytokines. Lymphocytes are white 

blood cells in the lymph that include thymus cells (T cells), which can produce enzymes that 

destroy pathogenic cells, bone marrow cells (B cells), which produce antibodies for the 

humoral immune system to fight bacteria and viruses, and natural killer cells, which defend 

the host from tumour cells and virus infections. Inflammatory responses are characterised by 

a complex interaction between pro- and anti-inflammatory cytokines (Pavlov & Tracey 

2005). Cytokines are small proteins, including the interleukins (ILs) such IL1, -2, -6, -10, 

-18 and others, tumour necrosis factors (TNFs) and interferons (IFNs) such as IFNα, β and 

γ. Interferons are released by cells that have been infected by a virus, and are used as drugs 

(e.g., α-interferon for the treatment of hepatitis C or cancer, β-interferon for multiple 

sclerosis or interleukin 2 for cancer). Interferons also activate natural killer cells.

Epinephrine and norepinephrine modulate the release of cytokines and inflammation 

through α- and β-adrenoceptors on immune cells (Hasko & Szabo 1998). Results of in vitro 

and in vivo studies have suggested that norepinephrine enhances TNF production (Bertini et 

al. 1993; Spengler et al. 1994). TNF is an early cytokine mediator of local inflammatory 

response that causes inflammation and secondary tissue damage when released in excess 
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(Tracey 2002). Both catecholamines have been reported to stimulate IL-6 release by immune 

cells and other peripheral cells (Chrousos 2000). NE augments macrophage phagocytosis 

and tumouricidal activity (Koff & Dunegan 1985). In contrast, acetylcholine dose-

dependently inhibit the release of TNF and other pro-inflammatory cytokines such as IL1, 

IL6, and IL18, from endotoxin-activated primary human macrophages (Borovikova et al. 

2000). However, the production of IL10, which is an anti-inflammatory cytokine, was 

unaffected by acetylcholine. Inhibition of acetyl-cholinesterase activity, which increases 

acetylcholine levels in the CNS, resulted in the suppression of the immune response, 

indicating that acetylcholine has an immunoinhibitory role in the brain (Pavlov et al. 2009). 

When stressful situations are prolonged, adrenergic agents can increase and acetylcholine 

can decrease, due to continuous sympathetic activation and the lack of parasympathetic 

counteractivation. Therefore, pro-inflammatory cytokines such as TNF, IL1, and IL6 can 

increase in prolonged stressful situations, such as anxiety disorders.

The autonomic nervous system and the immune system: Although stress initially 

activates both the sympathetic nervous system and the HPA axis, the role of the autonomic 

nervous system and its interactions with stress and the immune system has received much 

less attention than the HPA axis (Elenkov et al. 2000). Stress-induced interactions between 

nervous, endocrine and immune systems are depicted in Figure 2.

Mental arithmetic and public speaking tasks applied as brief laboratory stressors induce 

increases in natural killer cell activity (Breznitz et al. 1998). These increases were 

potentiated in individuals who had greater cardiovascular reactivity to stress (Cacioppo et al. 

1995). In other words, individuals who showed the greatest sympathetic nervous system and 

endocrine response to brief psychological stressors, also showed increased immune system 

alterations. Thus, the effect of stress on the neuroendocrine system and the mechanism by 

which that effect influences the immune system has become a subject of interest in recent 

years (Larson et al. 2001).

Cellular Immunity

PDA: In PDA patients, peripheral lymphocyte subsets did not differ initially from control 

subjects. However, after three months of treatment with the SSRI paroxetine, the percentages 

of some lymphocyte subsets were significantly increased, while others were decreased (Kim 

et al. 2004). This finding suggests that pharmacological treatment may affect immune 

function in panic disorder patients. In a study by Schleifer et al. (2002), drug-free patients 

with PDA showed decreased percentages and total circulating CD19+ B lymphocytes, but no 

differences in other lymphocyte measures. Natural killer cell activity did not differ between 

PDA patients and healthy control subjects in this study.

GAD: In a study by Wingo & Gibson (2015), anxiety as a symptom of GAD was associated 

with blood gene expression profiles in 336 community participants (157 anxious subjects 

and 179 controls). Findings did not show a significant differential expression in females, but 

631 genes were differentially expressed between anxious male and healthy controls. Gene 

set-enrichment analysis revealed that genes with altered expression levels in anxious men 

were involved in response of various immune cells (B-cells, myeloid dendritic cells and 
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monocytes) to vaccination and to acute viral and bacterial infection (peripheral blood 

mononuclear cells). In addition, this analysis also identified a network affecting traits of 

metabolic syndrome. These results suggest potential molecular pathways that can explain the 

negative effects of GAD on physical health that are observed in epidemiological studies. 

Remarkably, even mild anxiety, which most of the study participants had, was associated 

with observable changes in immune-related gene expression levels.

OCD: Studies in OCD have shown that circulating natural killer cells were either increased, 

decreased or not changed compared with controls. In one study, circulating natural killer 

cells were elevated predominantly in males which persisted after 12 weeks of SSRI 

treatment, possibly reflecting either characteristic of the illness, or a lack of true remission 

(Ravindran et al. 1999). Another study found that patients with childhood onset of OCD had 

significantly more natural killer cells than patients with late onset OCD (Denys et al. 2004). 

A subsequent study reported that the percentage and absolute numbers of natural killer cells 

measured as CD56 lymphocyte subpopulations, were unchanged (Marazziti et al. 1999). 

Patients with first-degree relatives with OCD also had significant lower natural killer cell 

activity compared with patients who had no relative with OCD (Denys et al. 2004). In a 

study by Marazziti et al. (1999), OCD patients had increased CD8+ T cells, both in terms of 

percent values and absolute number, and decreased CD4+ T cells. The CD3+, CD19+ and 

CD56+ lymphocyte subpopulations were unchanged.

Cytokines—PDA. Patients with PDA had reduced cell-mediated functions compared with 

healthy controls before pharmacological treatment, but after treatment, no significant 

differences were seen (Koh & Lee 2004). One study showed increased levels of 18 cytokines 

in subjects with PDA and PTSD, leading the authors to suggest that a generalised 

inflammatory state may be present in these diseases (Hoge et al. 2009). However, small 

studies on cytokines in PDA showed non-significant elevations of TNF-α, IL1-α, IL2 and 

IL3 but a significant increase of IL1 β (Brambilla et al. 1994; Rapaport & Stein 1994; 

Weizman et al. 1999). In a study conducted on PDA patients and healthy controls, plasma 

concentrations of TNF-α, IFN-γ, IL1β, IL2, IL6 and IL12 were measured. Decreased levels 

of IFN-γ and IL12 were observed, which suggested a correlation between levels of IFN-γ 
and anxiety-like behaviour, as seen in animal models (Tukel et al. 2012).

GAD—C-reactive protein (CRP) was found to be increased in some studies (Bankier et al. 

2008; Copeland et al. 2012). A pilot study measured peripheral levels of relevant cytokines 

(α-MSH, IL2 and IL10) in small cohorts of GAD and MDD patients and compared them to 

healthy controls. They found increases in plasma concentrations of IL10 and α-MSH, but no 

significant variations in IL2 (Tofani et al. 2015). One study in patients with GAD and PDA 

measured cell-mediated immune functions through the lymphocyte proliferative response to 

phytohemagglutinin, IL2 production and natural killer cell activity. This study suggested a 

reduction in this function when compared with healthy controls (Koh & Lee 1998).

SAD—Among individuals with an anxiety disorder, those with SAD, females in particular, 

had lower levels of CRP and IL6. The highest CRP levels were found in those with an older 

age at anxiety disorder onset (Vogelzangs et al. 2013). CRP is an acute-phase protein 
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produced in the liver that increases stimulated by IL6, which is in turn secreted by 

macrophages and T cells. OCD Different methodologies, including ex vivo production and 

peripheral blood or CSF measurements via a variety of techniques, make comparisons 

difficult. Several studies (Mittleman et al. 1997; Fluitman et al. 2010) have shown that 

cytokine levels may depend on factors such as age, and the content of obsessions. For 

example, a study by Fluitman et al. (2010) showed that norepinephrine levels increased 

while lipopolysaccharide-stimulated TNF-α and IL6 production by peripheral leucocytes 

decreased during exposure to disgust-related objects in OCD patients, but not in healthy 

controls. These data suggest that symptom provocation in OCD patients with contamination 

fear is accompanied by alterations in the immune and neuroendocrine systems, but does not 

affect cortisol levels.

In OCD, several studies have demonstrated diminished production of TNF-α (Brambilla et 

al. 1997b; Denys et al. 2004; Fluitman et al. 2010). One of the first studies in the field 

(Brambilla et al. 1997b) showed lower plasma concentrations of IL1β and TNF-α in OCD 

patients compared with controls, which has been related to hyperactivity of the 

noradrenergic system and of the HPA axis. In a study by Denys et al. (2004), the ex vivo 

production of TNF-α in whole blood cultures was significantly decreased in medication-free 

patients with OCD compared with controls. The same study showed reduced natural killer 

cells activity. The reduction in both TNF-α and natural killer cells activity suggests a 

potential role of altered immune function in the pathophysiology of OCD. Other studies 

have revealed normal cytokine production in OCD patients (Weizman et al. 1996). On the 

other hand, the possible involvement of the immune system in certain subtypes of OCD is 

supported by the relationship between the severity of the disorder and the IL6/IL6 receptor 

levels (Maes et al. 1994). However, childhood OCD appears to differ from that occurring at 

other ages, as increased CSF levels of cell-mediated cytokines have been reported in 

children with OCD, when compared with children with schizophrenia or attention deficit 

hyperactivity disorder (Mittleman et al. 1997). Hounie et al. (2008) reported a genetic 

association between the - 308 G/A and -238 G/A TNF-α polymorphisms and OCD in a 

Brazilian sample.

PTSD—Cytokine levels appear to be constantly elevated in PTSD. Some studies have 

reported higher plasma IL6 and TNF (von Kanel et al. 2007; Gill et al. 2008), and CSF IL6 

levels (Baker et al. 2001) among PTSD. Higher levels of IL6 are linked to PTSD 

vulnerability following trauma (Sutherland et al. 2003; Pervanidou et al. 2007; Gill et al. 

2009). Higher levels of stimulated TNF and IL6 were reported in PTSD patients. In a study 

by Rohleder et al. (2004), LPS-stimulated production of IL6, but not TNF-α, was markedly 

increased in patients. Spivak et al. (1997) showed that serum ILlβ levels (but not slL-2R) 

were significantly higher in PTSD patients than in controls. As these levels correlated 

significantly with the duration of PTSD symptoms, it was proposed that desensitisation of 

the HPA axis in chronic PTSD patients counteracted the stimulatory effect of ILlβ on 

cortisoI secretion. Another study showed that levels of TNF-α and of IL1β were higher in 

patients than in controls, while CRP, IL4 and IL10 were not significantly different (von 

Kanel et al. 2007). One study found higher IL1 β and lower IL2R levels in PTSD patients 

than in controls (Tucker et al. 2004). In all participants, TNF-α was correlated with PTSD 
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severity. IL4 correlated with total hyperarousal symptoms, and PTSD total symptom score, 

after controlling for systolic blood pressure and smoking status. PTSD patients showed a 

low-grade systemic proinflammatory state that was related to disease severity, suggesting 

one mechanism by which PTSD could contribute to atherosclerotic disease. A study by 

Miller et al. (2001) reported a positive relationship between posttraumatic psychological 

disturbances and serum levels of receptors to interleukin 6 (sIL6r) and CRP, which provides 

the basis for further research on the effects of psychological disturbance on physical 

recovery after injury.

Humoral Immunity

PDA: Mannan-binding lectin (MBL) and MBL-associated serineprotease-2 (MASP-2) 

represent important arms of the innate immune system, and different deficiencies may result 

in infections or autoimmune diseases. Although PDA was associated with increased 

inflammatory response, infections and high comorbidity, the basis for these findings is not 

clear. A study by Foldager et al. (2014) investigated associations with MBL, MASP-2 or the 

gene MBL2 (which codes for MBL) with PDA. A large proportion (30%) of MBL deficient 

individuals was observed along with significantly lower levels of MBL and MASP-2 plus 

association with the MBL2 YA two-marker haplotype. Since MBL deficiency is highly 

heterogeneous and associated with both infectious and autoimmune states, more research is 

needed to identify which complement pathway components could be associated with PDA.

Antibodies:  PANDAS (PANS/CANS). OCD is a clinically heterogeneous disorder with 

several possible subtypes. It has been hypothesised that one of these subtypes is associated 

with autoimmune disorders triggered by streptococcal infections (e.g., rheumatic fever and 

Sydenham’s chorea) (Miguel et al. 2005). Children who develop acute OCD after a group A 

β-haemolytic streptococci (GABHS) infection were first described by Swedo (2002), who 

coined the acronym PANDAS (Paediatric Autoimmune Neuropsychiatric Disorders 

Associated with Streptococci). However, as the aetiology of the syndrome remains 

controversial, new descriptions have been proposed, including paediatric acute-onset 

neuropsychiatric syndrome (PANS) and idiopathic childhood acute neuropsychiatric 

syndrome (CANS; APA 2013).

Children with PANDAS showed OCD symptoms and tics, but did not have rheumatic fever 

or Sydenham’s chorea. It has also been reported that 4% of parents and grandparents of 

Sydenham’s chorea patients and 6.7% of the parents and grandparents of PANDAS patients 

had a history of rheumatic fever compared with 1.4% of parents and grandparents of 

controls. This suggests a common liability between rheumatic fever and OCD triggered by 

streptococcus infections (Swedo 2002). The presence of autoantibodies due to molecular 

mimicry mechanisms is one potential explanation for the association between OCD and 

rheumatic fever, following the autoimmune model for Sydenham’s chorea.

Infections with GABHS might result in PANDAS, and viral infections might trigger the 

autoimmune process that leads to OCD (Allen et al. 1995; Khanna et al. 1997). Furthermore, 

patients with rheumatic fever show a high level of antineural antibodies against the caudate 

(Husby et al. 1976). They also have high levels of a monoclonal antibody called D8/D17, 
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which reacts with a particular antigen in B lymphocytes (Zabriskie 1986). The search for the 

trait marker for susceptibility (Singer & Loiselle 2003) showed that this antigen is also 

present in patients with childhood OCD, Tourette syndrome, and chronic tic disorder 

(Murphy et al. 1997). This D8/D17 antibody has expanded expression in individuals with 

Sydenham’s chorea (89%) compared with healthy children (17%). Preliminary studies of the 

D8/17 antibody in individuals with PANDAS also found that 85% of children with PANDAS 

compared with 17% of healthy children have this antibody (Swedo et al. 1997). The exact 

significance of these finding and how this marker is related to the disease process is remain 

unclear, especially since it has been reported in patients with other neuropsychiatric 

disorders of childhood onset, including autism (Hollander et al. 1999; Murphy et al. 1997).

An autoimmune hypothesis has been suggested for early onset OCD and Tourette syndrome. 

Antineural antibodies have been studied and found in the sera of some patients with these 

disorders, and they are thought to cross-react with streptococcal and basal ganglia antigens 

(Morer et al. 2008). Positive anti-basal ganglia antibodies were found in 64% of PANDAS 

patients but in only 9% of controls with a documented streptococcal infection but no 

neuropsychiatric symptoms (Pavone et al. 2004). Immunoblotting has identified multiple 

bands against the caudate supernatant fraction in PANDAS with primary tics that are 

different from the control group (Church et al. 2004). The presence of antibrain antibodies 

was reported in 42% of a group of children with OCD compared with rates between 2% and 

10% in three different paediatric control (autoimmune, neurological and streptococcal) 

groups (Church et al. 2004). In addition, antibodies from a Sydenham’s chorea patient 

reacted against lysoganglioside and N-acetyl-beta-D-glucosamine, a neuronal antigen also 

found on the GABHS surface (Kirvan et al. 2003). In a second study of the same group 

(Kirvan et al. 2006), antibodies in PANDAS reacted with the neuronal cell surface and the 

caudate–putamen and induced calcium–calmodulin-dependent protein (CaM) kinase II 

activity in neuronal cells. Depletion of serum IgG abrogated CaM kinase II cell signalling 

and reactivity of CSF was blocked by streptococcal antigen N-acetyl-beta-D-glucosamine 

(GlcNAc). Antibodies against GlcNAc in PANDAS sera were inhibited by lysoganglioside 

GM1. Results suggest that antibodies from an infection may signal neuronal cells in some 

behavioural and movement disorders.

Dale et al. (2006) have identified antibodies against neuronal glycolytic enzymes (NGE) 

autoantigens (pyruvate kinase M1, aldolase C, neuronal-specific and non-neuronal enolase) 

in 20 unselected post-streptococcal patients with central nervous diseases compared with 20 

controls. These enzymes are multifunctional proteins that are expressed both intracellularly 

and on the neuronal cell surface. On the neuronal plasma membrane, NGEs are involved in 

energy metabolism, cell signalling and synaptic neurotransmission. GABHS also expresses 

glycolytic enzymes on cell surfaces that have 0–49% identity with human NGE. This 

suggests molecular mimicry and autoimmune cross-reactivity may be the pathogenic 

mechanism in post-streptococcal CNS disease. Kansy et al. (2006) identified the M1 isoform 

of the glycolytic enzyme pyruvate kinase (PK) as an autoimmune target in Tourette 

syndrome and associated disorders. Antibodies to PK reacted strongly with surface antigens 

of infectious strains of streptococcus, and antibodies to streptococcal M proteins reacted 

with PK. Moreover, immunoreactivity to PK in patients with exacerbated symptoms who 

had recently acquired a streptococcal infection was 7-fold higher compared with patients 
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with exacerbated symptoms and no evidence of a streptococcal infection. These data suggest 

that PK can also function as an autoimmune target and that this immunoreactivity may be 

associated with Tourette syndrome, OCD, and associated disorders.

Further support for an autoimmune hypothesis comes from evidence of induced stereotypic 

movements in rats after infusion of IgG of sera from patients with PANDAS (Taylor et al. 

2002). The pathogenic role of these antibodies remains unclear. Specific binding with 

molecules from the GABHS surface, such as lysoganglioside or glucosamine, and more 

NGE as piruvate kinase, aldolase or enolase support the notion of an autoimmune brain 

disease (Kirvan et al. 2003; Dale et al. 2006). However, these antibodies might not be 

pathogenic, but may instead result from local damage.

However, some studies do not support an autoimmune hypothesis. If proved true, this 

hypothesis gives rise to new therapeutic approaches. In fact, some studies suggest that 

immuno-modulating strategies are effective in children with PANDAS (Garvey et al. 1999; 

Perlmutter et al. 1999; Murphy & Pichichero 2002; Snider et al. 2005). A study by 

Perlmutter et al. (1999) has demonstrated an improvement of obsessive–compulsive 

symptoms after plasmapheresis or intravenous immunoglobulin treatment. Twenty-nine 

children with PANDAS recruited from a nationwide search were randomised in a partially 

double-blind fashion (no sham apheresis) to an immunoglobulin, “immunoglobulin placebo” 

(saline), and plasmapheresis group. One month after treatment, the severity of obsessive-

compulsive symptoms improved by 58 and 45% in the plasmapheresis and immunoglobulin 

groups, respectively, compared with only 3% in the saline control group. In contrast, tic 

scores significantly improved only after plasmapheresis treatment, but not in the 

immunoglobulin and the control group. Improvements in both tics and obsessive-compulsive 

behaviours were sustained for 1 year.

Even though PANDAS is by definition a paediatric disorder, patients with adult onset (after 

the age of 27) OCD or tic disorders related to streptococcal infections have also been 

described. These cases support the hypothesis that streptococcal disease may result in adult-

onset OCD in some patients. It is possible that GABHS infection just serves as a trigger in 

childhood, and that autoimmune antibodies directed against neuronal structures later 

maintain obsessive–compulsive symptoms without new infections. In such cases, adult OCD 

with childhood onset may show anti-brain antibodies without elevated anti-streptolysin O 

(ASLO) titres or other signs of recent streptococcal infections. For a small proportion of 

OCD patients, autoimmune reactions towards neuronal structures are present, but further 

investigations are needed to demonstrate their aetiopathogenetic relevance (Maina et al. 

2009). The vast majority of OCD patients are diagnosed and treated for the first time while 

they are already adults; the mean time from initial symptom manifestation to seeking 

professional care is approximately 10 years (Maina et al. 2009).

Immunological alterations appear to be different in paediatric and adult patients and 

probably reflect different pathophysiological mechanisms, such as primary processes in the 

first case, and perhaps, secondary alterations in adulthood (Marazziti et al. 1999).
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A study by Maina et al. (2009) showed that the proportion of subjects with tic comorbidity 

or positive ASLO titre (>200 IU/ml) was significantly greater in OCD than in MDD patients. 

No other differences in antibody parameters were found. Four of 74 OCD patients (5.4%) 

and none of the controls were positive for anti-brain antibodies. The majority of adult OCD 

patients do not seem to have autoimmunity disturbances. However, a greater percentage of 

subjects with OCD have positive ASLO titres. For a small proportion of OCD patients, 

autoimmune reactions towards neuronal structures are present although further 

investigations are needed to demonstrate their etiopathogenetic relevance.

Two studies evaluated antineuronal antibodies or other markers of autoimmunity in samples 

of adult OCD patients; Black et al. (1998) found no humoral evidence of autoimmunity, but 

the study has certain limitations. The sample was small and heterogeneous, the severity of 

symptoms was not assessed at the time that blood was drawn, and an age- and gender-

matched control group was not utilised. In a second study, child onset OCD was associated 

with higher mean ASLO titres and higher frequencies of tic disorders and tonsillitis in 

childhood, while no differences were found in D8/17 antibody titres or in other autoimmune 

parameters (Morer et al. 2006). This study suggested that OCD in adults is a heterogeneous 

disorder and that only childhood-onset OCD is related to an autoimmune aetiology. This 

topic needs further investigation, as the possible autoimmune aetiopathogenesis in some 

OCD patients could lead to new therapeutic scenarios for adults similar to those already 

suggested for the children. In fact, as a significant proportion of adult OCD patients do not 

respond to conventional treatment strategies, the search for alternative and hypothesis-driven 

treatments is critical.

Early detection of these conditions through serum search of antibodies against human brain 

enolase, neural tissue and Streptococcus can provide valuable information regarding 

etiopathogenesis and suitable therapies (Nicolini et al. 2015). While prophylactic antibiotic 

therapy is marginally helpful in preventing symptom exacerbation, intravenous 

immunoglobulin therapy, plasmapheresis and immunosuppressive doses of prednisone may 

be effective treatments in select individuals (Allen et al. 1995; Swedo et al. 2001; Nicolini et 

al. 2015).

In conclusion, elevated levels of pro-inflammatory cytokines such as TNF, IL1 and IL6 

could serve as biological markers of anxiety disorders. TNF, IL1 and IL6 trigger the 

activation of both the HPA axis and the sympathetic nervous system (Chrousos 1995), which 

could prolong the inflammatory state. The effects of these cytokines are synergistic when 

produced in combination (Chrousos 2000). In accordance with our current understanding of 

how anxiety disorders represent a state of inflammation, previous studies have attempted to 

investigate whether anti-inflammatory drugs have treatment effects on anxiety disorders or 

other psychiatric disorders deeply related to stress and anxiety. Several human and animal 

studies have suggested that certain anti-inflammatory drugs might play an important 

adjunctive role in the treatment of major depression, bipolar disorder and OCD (Najjar et al. 

2013). Although only few studies have reported positive results for the efficacy of anti-

inflammatory drug treatment on anxiety disorders (Rodriguez et al. 2010; Sayyah et al. 

2011), such results do illustrate the proinflammatory nature of anxiety disorders. As such, 

inflammatory conditions are considered to be triggered by an over-driven sympathetic 
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nervous system together with an under-driven parasympathetic nervous system, treatments 

that increase parasympathetic tone and hence strengthen the cholinergic anti-inflammatory 

pathway (Pavlov 2008) could be useful in treating anxiety related disorders. This may 

explain why methods that increase parasympathetic tone, such as vagus nerve stimulation, 

may be effective in treating anxiety disorders (George et al. 2008).

CO2 hypersensitivity

Inhalation of air “enriched” with an increased proportion of CO2 can be used to induce 

anxiety in non-clinical (healthy volunteers) and clinical (patients) groups, and represents a 

human translational model aiding development of potential new treatments for anxiety 

disorders. CO2 inhalation has become one of the most frequently used experimental 

approaches to investigating panic, although studies employ variable challenge procedures, 

altering the CO2 concentration, the duration of inhalation, the population sample, and the 

range of outcome measures.

Anxiety induction via CO2 challenge was first performed in a small sample of patients with 

PDA undergoing 5% CO2 inhalation, and was found to induce panic attacks (Gorman et al. 

1984). This finding was confirmed in a larger sample of PDA patients, who experienced a 

greater incidence of panic attacks during challenge than did healthy controls or patients with 

other anxiety disorders (Gorman et al. 1988). Brief inhalation of air with high concentrations 

of CO2 (such as single vital capacity inhalations of 35% CO2) is associated with the 

experience of acute severe anxiety, which often includes panic attacks. A single vital 

capacity breath of air enriched with 35% CO2 was found to induce panic and so was 

suggested as an approach for conducting exposure therapy in patients with PDA (Van den 

Hout & Griez 1984): the same group reported that patients with panic disorder were more 

sensitive to CO2 challenge than were healthy controls (Griez et al. 1987). Findings from 

subsequent studies in a range of diagnostic groups indicated that panic disorder patients 

were more sensitive to the panicogenic effects of CO2 challenge than were patients with 

other diagnoses (Leibold et al. 2015; Vollmer et al. 2015).

The mechanisms underlying the provocation of anxiety by CO2 challenge are not fully 

established, although findings from animal models and human pharmacological intervention 

studies provide many insights (Leibold et al. 2015; Vollmer et al. 2015). Twin studies 

suggest an association between genetic factors and CO2 hypersensitivity (Battaglia et al. 

2007, 2008). Inhalation of air enriched with a high proportion (35%) of CO2 may be 

associated with increased cortisol secretion (Argyropoulos et al. 2002; Kaye et al. 2004), 

although it is unclear how specific the cortisol response is to CO2 challenge, rather than to 

other aspects of the experimental procedure (Leibold et al. 2015): most studies employing 

lower CO2 concentrations find no increase in cortisol levels, when compared with baseline 

(Woods et al. 1988; Coplan et al. 2002; Kaye et al. 2004). The potential role of disturbances 

in respiratory physiology in panic attack induction through CO2 inhalation is not fully 

clarified, but experimentally induced panic attacks are associated with low end-tidal CO2 

and high ventilation variance at baseline (Papp et al. 1997). In a functional magnetic 

resonance imaging (fMRI) study, a greater activation in the brainstem during CO2 inhalation 

was found in patients with PDA compared with normal controls. Interestingly, the authors 
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also showed that experienced divers showed the opposite, i.e., they were less sensitive than 

normals to increased CO2 (Goossens et al. 2014).

Serotonergic mechanisms may influence the panic response to CO2 challenge. Although 

tryptophan depletion does not have panicogenic effects (Goddard et al. 1994), depletion can 

enhance the panic response to CO2 inhalation (Schruers et al. 2000), and administration of 

the 5-HT precursor L-5-hydroxytryptophan can reduce the panic response (Schruers et al. 

2002). Correlations between increases in subjective anxiety, heart rate and blood pressure in 

healthy volunteers following 35% CO2 challenge suggest a common and presumably 

noradrenergic-mediated mechanism underlying CO2 sensitivity (Bailey et al. 2003). Most 

norepinephrine (NE) in the brain is synthesised by neurones originating in the locus 

coeruleus, and afferent locus coeruleus neurones project to components of the limbic system 

that are known to be overactive in anxiety disorders (Martin et al. 2010). Changes in CO2 

saturation may act upon pH or CO2-dependent chemoreceptors within the locus coeruleus 

and thereby increase the release of NE, as 5% CO2 increases locus coeruleus neuronal firing 

rate in rat brain slices (Martin et al. 2010). This CO2-induced release of NE may mediate 

autonomic and subjective features of anxiety through afferent projections to brain centres 

involved in cardiovascular control and the limbic system; and endocrine responses may be 

mediated by altered noradrenergic input into the paraventricular nucleus, thereby causing 

release of corticotrophin releasing factor (CRF) and anti-diuretic hormone, and triggering 

subsequent cortisol secretion.

There are limitations in an explanation of the anxiogenic effects of CO2 challenge which is 

based solely on altered NE function. For example, autonomic arousal is not consistently 

observed, and the effect of 7.0–7.5% CO2 on plasma cortisol is inconsistent. The attenuating 

effect of benzodiazepines and certain SSRIs on self-report anxiety but not on physiological 

markers suggest alterations in autonomic function may lie upstream of psychological 

anxious responding (Bailey et al. 2011a). Drugs which affect noradrenergic function have 

shown little effect on subjective responses to CO2 (Pinkney et al. 2014). Overall, it appears 

that while norepinephrine may be important in mediating anxiety provoked by 35% CO2 

challenge, there is persisting uncertainty about the exact mechanism underlying 7.5% CO2-

induced anxiety in humans.

Chemosensors within the amygdala are known to be directly linked to CO2 reactivity in 

mice (Ziemann et al. 2009). The most well-characterised chemosensor is the acid-sensing 

ion channel 1 (ASIC1a), which is a voltage-insensitive H+-gated cation channel, highly 

expressed in the amygdala, dentate gyrus, cortex, striatum and nucleus accumbens (Wemmie 

2011). Inhalation of 2–20% CO2 elicits normal mouse fear behaviour in the presence of fully 

functioning acid-sensing ion channels (ASIC1a), which are expressed in the amygdala, but 

pharmacological blockade or elimination of ASIC1a in knockout mice impairs fear 

responses to CO2, whereas subsequent amygdala-localised re-expression restores fear 

behaviour.

Other potentially relevant chemosensitive structures include orexin neurones in the 

hypothalamus, serotonergic neurones in the medullary raphe (Wang et al. 1998), T cell 

death-associated gene-8 receptors in the subfornical organ, and hypoxia-sensitive 

Bandelow et al. Page 33

World J Biol Psychiatry. Author manuscript; available in PMC 2017 April 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



chemosensory neurones in the periaqueductal grey (Vollmer et al. 2015). Perturbations in the 

activities of chemosensors may not fully explain the physiological effects of changes 

accompanying CO2 challenge and may not translate to humans, but suggest potential 

additional mechanisms, which operate alongside CO2-provoked alterations in noradrenergic 

activity.

Low dose (less than 15%) CO2 inhalation in healthy volunteers and patients—
More prolonged (typically 15–20 min) inhalation of CO2 at lower concentration (between 

5.0 and 7.5%) does not frequently result in panic, but reliably induces an experience which 

resembles the symptoms of GAD, with increased subjective and physiological features of 

anxiety, but no accompanying changes in cortisol secretion. Studies in healthy volunteers 

support the use of 20-min, 7.0–7.5% CO2 challenge to induce subjective and autonomic 

responses and neurocognitive changes which resemble the features of generalised anxiety. 

Increases in heart rate and systolic blood pressure are consistently seen, but an increase in 

diastolic blood pressure is less frequently observed.

Low dose (7.5%) but prolonged (20 min) CO2 inhalation was first found to induce anxiety in 

a double-blind, placebo-controlled trial involving healthy volunteers: when compared with 

normal (placebo) air inhalation, CO2 inhalation was associated with increased heart rate and 

blood pressure and heightened subjective anxiety (Bailey et al. 2005). A single-blind, 

placebo-controlled healthy volunteer study found that when compared with air, 7% CO2 

inhalation increased respiratory rate, minute volume and endtidal CO2, skin conductance and 

subjective feelings of anxiety: a subgroup of participants who experienced marked anxiety 

underwent a subsequent identical inhalation with good test-retest repeatability. However, the 

study findings highlight potential limitations of the model, as 30% of participants were 

“non-responders”, and 10% of participants experienced significant anxiety during (placebo) 

air inhalation (Poma et al. 2005).

The effect of CO2 inhalation on attentional biases, which characterise anxiety states, has also 

been investigated. For example, 20-min 7.5% CO2 challenge is associated with performance 

deficits in an emotional anti-saccade task, similar to those seen in individuals with high 

levels of generalised trait anxiety (Garner et al. 2011). As 20 min of 7.5% CO2 inhalation 

has been found to significantly modulate attention, with increased alerting and orienting 

network function in the Attention Network Task, this suggests that CO2 challenge facilitates 

hypervigilance to threat and alters attention network function in a manner consistent with 

that seen in GAD (Garner et al. 2012).

Inhalation challenges with less than 15% CO2 provoke significantly more panic attacks in 

patients with PDA than in healthy controls (Bailey et al. 2011a), but it is uncertain whether 

altered sensitivity to “low dose” CO2 inhalation is also seen in patients with GAD. A single-

blind, randomised, cross-over design study in medication-free GAD patients which 

employed a repeated 7.5%, 20-min inhalation paradigm found CO2 inhalation increased 

subjective anxiety and systolic blood pressure, when compared with air: a qualitative 

assessment indicated participants’ experiences resembled their usual symptoms, more 

closely for physiological rather than cognitive symptoms (Seddon et al. 2011). The findings 
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should be viewed cautiously given the small sample (n = 12) and discontinuation of three 

participants due to panic responses.

Attenuation of CO2-induced anxiety by pharmacological interventions—The 

effectiveness of psychotropic medication (benzodiazepines, antidepressants, novel 

compounds) in attenuating CO2-evoked anxiety, has been assessed in a number of studies, 

with variable findings. In general terms, acute benzodiazepine administration reduces 

subjective CO2-provoked anxiety but has little impact on the physiological response. 

Administration of selective SSRIs, the SNRI venlafaxine, tricyclic antidepressants and the 

monoamine oxidase inhibitor toloxatone can all attenuate the panic response to CO2 

challenge (Leibold et al. 2015). Administration of 2 mg of lorazepam was found to attenuate 

subjective anxiety (with no accompanying change in autonomic measures) when compared 

with placebo in healthy participants undergoing 20-min 7.5% CO2 inhalation (Bailey et al. 

2007). These findings were replicated when lorazepam was employed as a control in studies 

using the same inhalation procedure to assess novel anxiolytic compounds (Bailey et al. 

2011b; de Oliveira et al. 2012). Both alprazolam (1 mg) and the partial benzodiazepine 

receptor antagonist zolpidem (5 mg) attenuated subjective anxiety in healthy volunteers after 

20 min of 7.5% CO2 inhalation (Bailey et al. 2009). However, a subsequent double-blind, 

placebo-controlled cross-over study which investigated dose-response relationships with 

lorazepam and which used the same experimental paradigm and measures found no 

attenuation of subjective or autonomic responses (Diaper et al. 2012).

Certain SSRIs and SNRIs are licenced for the treatment of GAD and their effect in 

attenuating the anxiogenic effects of CO2 inhalation is a marker of the predictive validity of 

the model. Investigations in small groups of patients with panic disorder found that 

treatment with different SSRIs and SNRIs reduced subjective anxiety following 5 and 7% 

CO2 challenge, when compared with baseline, pre-treatment inhalation (Gorman et al. 

2004). However, a larger study involving 3 min of 5% CO2 in individuals “at high risk of 

panic disorder” found that 2-week administration of the SSRI escitalopram had no effect on 

self-report or autonomic indicators of anxiety (Coryell & Rickels 2009). Given that SSRIs 

typically take 2–4 weeks to exert notable therapeutic effects in GAD, longer drug 

administration may be needed to generate valid results.

Studies involving SSRI or SNRI administration in healthy volunteers using a 20-min 7.5% 

CO2 challenge have generated variable findings. Placebo-controlled administration of the 

SSRI paroxetine for 21 days reduced subjective anxiety (Bailey et al. 2007). A placebo-

controlled investigation of 3-week administration of the SNRI venlafaxine or the anxiolytic 

pregabalin found no significant effect on change from baseline to post-treatment ratings of 

subjective anxiety or autonomic response in the venlafaxine group (Diaper et al. 2013). A 2-

week randomised double-blind, placebo-controlled study of the SNRI duloxetine in healthy 

subjects found it had little attenuating effect on subjective anxiety or autonomic arousal 

following a 20-min, 7.5% CO2 challenge, though duloxetine administration was associated 

with improved accuracy in the anti-saccade task and reduction in negative thought intrusions 

(Pinkney et al. 2014).
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As with benzodiazepines, SSRI or SNRI administration has a limited effect on physiological 

responses to CO2 challenge, and drugs within the same class may act variably on subjective 

anxiety, which raises questions about the validity of the model. However, a study involving 

the beta-blocker propranolol (40 mg) found it had no attenuating effect on self-report 

anxiety in healthy volunteers undergoing 20 min of 7.5% CO2 (Papadopoulos et al. 2010), 

which accords with its lack of efficacy in anxiety disorders (Gorman et al. 1988; Steenen et 

al. 2016). The same study also found the anti-histamine hydroxyzine (25 mg) had only 

limited effects.

From current knowledge to potential clinical applications—The response to CO2 

inhalation could also be useful in predicting the likelihood of response to treatment, but this 

potential application has not been examined extensively. Investigation of the effects of 

double 35% CO2 vital capacity inhalations in a small sample of patients with PDA after 1 h, 

2 weeks and 6 weeks of clonazepam treatment found that when compared with placebo both 

acute and chronic clonazepam administration reduced objectively rated panic attacks after 

CO2 inhalation (Valenca et al. 2002).

Inhalation of air “enriched” with 7.5% CO2 is an experimental tool for inducing anxiety 

without features of panic in healthy volunteers, the anxious response being composed of 

replicable changes in autonomic arousal (increased heart rate and systolic blood pressure), 

neurocognitive function (impaired performance in emotional antisaccade and attention 

control tasks) and subjective experience. The CO2 inhalation experimental model of anxiety 

disorders may therefore be useful for signalling the potential efficacy of novel therapeutic 

agents: and has been utilised in investigations of the CRF1 receptor antagonist R317573 

(Bailey et al. 2011a) which did attenuate subjective effects, and the NK1 receptor antagonists 

vestipitant and vofopitant (Poma et al. 2014).

The model may be suitable for testing putative anxiolytics (Bailey et al. 2007), and 

compounds which are found to attenuate CO2-induced anxiety have potential clinical 

relevance. Studies with compounds which target chemosensory mechanisms may be 

informative in the development of anxiolytics with a novel mechanism of action: for 

example with the ASIC ion channel antagonist amiloride, which has been found to have 

neuroprotective effects (Arun et al. 2013); with orexin receptor antagonists, which can 

attenuate anxiety-like responses to CO2 challenge in rats (Johnson et al. 2012); and with the 

carbonic anhydrase inhibitor acetazolamide, which blocks the conversion of CO2 to carbonic 

acid and thence to hydrogen and bicarbonate ions (Vollmer et al. 2015).

SepAD—CO2 hypersensitivity was investigated in adult SepAD because children of adults 

with PDA experience elevated rates of SePAD and because childhood separation anxiety 

disorder (C-SepAD) was found to be associated with adult PDA (Bandelow et al. 2001). 

Support for this hypothesis comes from a study in which 104 children (aged 9–17 years), of 

whom 57 had an anxiety disorder, underwent 5% CO2 inhalation (Pine et al. 1998; Pine et 

al. 2000). In this study, CO2 hypersensitivity was clearly present for SepAD, as indicated by: 

(1) enhanced respiratory rate response during CO2 breathing; (2) elevated minute 

ventilation; and (3) lower end-tidal CO2 during room-air breathing. These correlates were 

also observed – albeit to a much lesser degree – in GAD, and were absent in SAD. Similarly, 
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in a study of 212 offspring from 135 families, abnormal respiratory physiology in response 

to CO2 exposure was found in offspring with both SepAD and parental PDA relative to 

offspring with either of these features alone (Roberson-Nay et al. 2010). Given the common 

physiological perturbations of PDA and SepAD (i.e., physiological abnormalities, 

respiratory dysregulation, and reaction to inhaled CO2), the specificity of this biological 

correlate need further confirmatory research data.

Neurophysiology

Electroencephalography (EEG) and ERP

Basal instability of the cortical arousal system was reported in quantitative EEG (qEEG) 

studies as a common feature of most patients with anxiety disorders (Clark et al. 2009). This 

manifests as changed spectral power of specific EEG frequency bands in the theta (4–8 Hz) 

and alpha (8–13 Hz) ranges throughout most of the brain areas and beta range (above 13 Hz) 

especially in frontal and central brain regions. While none of the qEEG alterations are 

specific for anxiety disorders, they are regarded as related to anxiety symptoms and are 

targeted, e.g., by neurofeedback training (Simkin et al. 2014). Generally, sleep EEG 

(polysomnography; PSG) findings in anxiety disorders are in line with findings from wake 

EEG showing altered EEG-vigilance regulation in these patients. Patients with anxiety 

disorders typically have prolonged sleep latency, reduced sleep efficiency and shortened 

total sleep time. However, in contrast to patients with major depression, rapid eye movement 

(REM) sleep latency is usually not shortened in patients with anxiety disorders. 

Furthermore, a reduction of slow wave sleep is not as common as in some mental disorders, 

e.g., schizophrenia (Cox & Olatunji 2016).

PDA—Studies in patients with PDA showed increased cortical arousal in waking EEG, 

during sensory gating, and heightened cerebral processing of panic-relevant stimuli. This is 

reflected as increased beta power in qEEG and elevated contingent negative variation (CNV) 

and P3 components of ERP (Clark et al. 2009).

GAD—Electrophysiological studies in GAD studies did not report any ERP abnormalities 

(Clark et al. 2009).

SAD—In SAD, studies generally indicate tonic hyperarousal, as reflected in reduced low 

frequency (LF) and increased high frequency EEG power and an elevated PI component 

(Clark et al. 2009).

Specific phobias—In a few studies, cortical hypervigilance was reported in specific 

phobias, with indications of enhanced P3 and CNV components of ERP to phobic stimuli. 

One study has shown that the P3 amplitude can be normalised following successful 

behavioural therapy (Clark et al. 2009).

PTSD—Frontal asymmetry is a frequently studied biomarker in PTSD, and is calculated as 

the difference in mean alpha band power between the left and right frontal cortex over a time 

span of several minutes. Relatively greater left frontal activity is regarded as being related to 

appetitive motivation, and lower levels of depression and anxiety in PTSD patients (Meyer et 
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al. 2015). However, this biomarker is not specific for PTSD, as it has also been reported in 

depression, premenstrual dysphoric disorder, and schizophrenia. Moreover, in some studies, 

no deviance in alpha asymmetry from healthy control groups was found in PTSD and 

anxiety disorders (Gordon et al. 2010).

Patients with PTSD, when compared with controls, were found to have decreased resting-

state EEG frontal connectivity, which was significantly correlated with PTSD symptom 

severity, and with depressive and increased arousal symptoms (Lee et al. 2014). In a review, 

significant associations have been described with PTSD symptoms not only for alpha EEG 

rhythm but also for P200 and P300 ERP components (Lobo et al. 2015). Moreover, 

alterations of ERP components (N200 and P300 amplitudes) while performing an inhibitory 

control task (Stop Task) were reported to classify veterans with mild traumatic brain injury 

associated or not associated with the development of PTSD with high accuracy (Shu et al. 

2014).

In PTSD, sleep disturbances shortly after trauma exposure predict the development of PTSD 

at follow-up assessment, however, the evidence is less clear regarding objective 

polysomnographic indices (Babson & Feldner 2010).

OCD—Over the past two decades, performance monitoring has been extensively studied in 

patients with OCD, using advanced methodologies, such as EEG source localisation, 

simultaneous EEG and MRI recording, intracerebral EEG recording, 

magnetoencephalography, EEG-informed fMRI and valuable results were obtained.

Research on “performance monitoring” and “error processing” has been undertaken 

extensively in OCD patients, who appear to monitor their thoughts and actions more 

carefully to avoid losing control or committing errors. Theoretically, error processing 

involves both recognising that an error has occurred and adjusting future responses. Deficits 

in either of these abilities could contribute to rigid, repetitive behaviour. Enlarged error 

signals have been consistently found in patients with OCD (Endrass & Ullsperger 2014). 

The introduction of specific task paradigms and emotional challenge conditions in such 

research has been shown to enhance individual differences, which can be more reliable than 

resting state measurements (Zambrano-Vazquez & Allen 2014).

Error processing is thought to be associated with activity in anterior/posterior medial frontal 

cortex, anterior insula/operculum, ventrolateral prefrontal cortex, dorsolateral prefrontal 

cortex and lateral parietal cortex (Grutzmann et al. 2014). The mid-cingulate cortex is 

specifically recognised to signal the need for adjustment of cognitive control to prevent 

subsequent errors (Ullsperger et al. 2014). In particular, the error-related negativity (ERN), a 

response-locked ERP, is defined as a negative voltage deflection that occurs 50–100 ms after 

an error or conflict response and is thought to specifically reflect activity of the response-

monitoring system (Gehring et al. 1990).

Numerous EEG studies have found larger ERN amplitudes in patients with OCD, in adult 

(Gehring et al. 2000; Endrass et al. 2008; Endrass et al. 2010; Stern et al. 2010; Riesel et al. 

2011; Xiao et al. 2011; Klawohn et al. 2014; Riesel et al. 2014) and paediatric (Hajcak et al. 
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2008; Hanna et al. 2012; Carrasco et al. 2013) samples. Enhancement of the ERN in OCD 

seems to be independent of pharmacological or psychological interventions (Endrass et al. 

2010; Stern et al. 2010) and occurs among all major symptom dimensions (Riesel et al. 

2014). Moreover, the same results have been obtained in individuals with subclinical OCD 

symptoms (Santesso et al. 2006; O’Toole et al. 2012) and non-affected first-degree relatives 

of patients with OCD (Riesel et al. 2011; Carrasco et al. 2013).

Globally, these findings have identified increased ERN amplitudes as a promising candidate 

vulnerability marker for OCD. However, to date, its sensitivity and specificity is not clearly 

defined (Manoach & Agam 2013). For example, some studies have also found an enhanced 

negativity on correct trials (sometimes referred to as the correct-related negativity), 

suggesting the presence of an overall hyperactivity during response monitoring in people 

with OCD (Ursu et al. 2003; Maltby et al. 2005). Broadly, amplified error signals in OCD 

might reflect hyperactive cortico-striatal circuitry during action monitoring (Agam et al. 

2014; Grutzmann et al. 2014). Convergent results suggest the existence of a self-monitoring 

imbalance involving inhibitory deficits and executive dysfunctions in OCD (Melloni et al. 

2012). In this model, the imbalance might be triggered by an excitatory role of the basal 

ganglia (associated with cognitive or motor actions without volitional control) and inhibitory 

activity of the orbitofrontal cortex (OFC) as well as excessive monitoring of the ACC to 

block excitatory impulses. This imbalance would simultaneously interact with the reduced 

activation of the parietal-dorsolateral prefrontal cortex network, leading to executive 

dysfunction (Melloni et al. 2012).

Further electrophysiological data suggest that the candidate network might be extended and 

include specific additional regions in the medial frontal cortex involved in performance 

monitoring, such as anterior insula or the pre-supplementary motor area (Bonini et al. 2014; 

Grutzmann et al. 2014; Ullsperger et al. 2014); posterior mid-cingulate regions (Agam et al. 

2011); and sub-genual ACC regions, for which increased activity has been found in OCD 

(Agam et al. 2014). Thus, patients with OCD might tend to evaluate errors as being 

disproportionately salient. This would support the theory that inappropriate and exaggerated 

error signalling leads to a pervasive sense of incompleteness and self-doubt and triggers 

compulsions to repeat behaviours (Maltby et al. 2005). Other theories hypothesise that the 

ERN is not only associated with error detection, but may be modulated by the affective 

significance of an error (Hajcak et al. 2005). Hence, other factors that can potentially 

characterise the overactive response monitoring observed in individuals with OCD, such as 

error significance, have been also investigated. However, the results have been equivocal 

with some studies showing no difference in ERN amplitude between conditions with 

punishment and no punishment after error in participants with OCD but a significant 

difference in controls (Endrass et al. 2010); others have found that punishing errors leads to 

an enhanced ERN and, moreover, that it has long-lasting effect on the ERN (Riesel et al. 

2012).

In the analysis of the activity of intracortical EEG sources in patients with OCD using low-

resolution electromagnetic tomography and independent component analysis, both methods 

provided evidence for medial frontal hyperactivation in OCD (Koprivova et al. 2011).
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Patients with OCD were also found to have frontal alpha rhythm asymmetry, compared with 

healthy controls, with frontal slow alpha power (8–10 Hz) being more dominant in the left 

hemisphere at rest and during presentation of neutral, aversive, and OCD-related pictures. 

These changes in hemispheric alpha band topography were proposed as biomarker for 

increased avoidance motivation in OCD patients (Ischebeck et al. 2014).

In sleep studies, OCD patients were reported to have significant disturbances of sleep 

continuity measures but in most cases, no abnormalities of slow wave sleep or REM sleep 

were found. Many of the sleep disturbances were characteristic for depression or related to 

depressive symptoms. Severe OCD symptoms were consistently associated with greater 

sleep disturbance (Paterson et al. 2013).

Other Obsessive-Compulsive-Related Disorders (OCRDs): Electrophysiological studies 

in other OCRDs are still scarce. One study has attempted to explore the ERN as a measure 

of response monitoring capabilities in trichotillomania (Roberts et al. 2014). Results 

reported that individuals with hair pulling symptomatology might have significantly smaller 

ERNs than the control group, supporting the idea that trichotillomania is distinct from OCD. 

Smaller ERNs are believed to reflect deficits in error checking that contribute to difficulty 

monitoring one’s own actions, and such results might indicate that individuals with 

symptoms of trichotillomania have shortfalls in self-monitoring, perhaps related to more 

impulsive tendencies (Roberts et al. 2014). One other study has used meta-analysis to further 

characterise the ERN in OCD, and pooled data across studies to examine the ERN in OCD 

with or without hoarding (Mathews et al. 2012). When stratified, OCD showed a 

significantly enhanced ERN only in response conflict tasks. However, OCD with hoarding 

showed a marginally larger ERN than OCD without hoarding, but only for probabilistic 

learning tasks. These results suggest that the abnormal ERN in OCD might also be task-

dependent, and that OCD with hoarding might show different ERN activity from OCD 

without hoarding, perhaps suggesting different pathophysiological mechanisms of error 

monitoring across these clinical dimensions.

In summary, as neurophysiological examinations are among the most sensitive tests in 

psychiatry, many alterations in EEG, ERP or PSG were found in patients with anxiety 

disorders. While some of these alterations can be used as biomarkers for specific research 

questions, especially in treatment studies looking at hyperarousal performance monitoring 

and information processing, they are not specific and cannot be used as diagnostic tests for 

anxiety disorders. Moreover, many of these reported neurophysiological findings are 

influenced by comorbid depressive symptoms and co-existing pharmacological treatment.

Heart rate variability

Cardiologists have long held the view that a heart rate which fluctuates over time, in contrast 

to a heart beating to a strict metronomic rhythm, is a marker of good cardiovascular health. 

Heart rate variability (HRV), the extent to which the interval between beats varies with time, 

is reduced in several cardiovascular disorders such as after myocardial infarction (Bigger et 

al. 1992; Carney et al. 2001), in coronary artery disease (Wennerblom et al. 2000) and in 

hypertension (Singh et al. 1998) and is a predictor of mortality (Dekker et al. 2000; La 
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Rovere et al. 2003). As will be described in this section, heart rate variability is thought to be 

closely linked to the function of the autonomic nervous system and its sympathetic and 

inhibitory parasympathetic influences.

Anxiety, cardiovascular disorders and autonomic dysfunction—Anxiety 

disorders are associated with cardiovascular disease (Roest et al. 2010; Davies & 

Allgulander 2013) and may be a risk factor in sudden cardiac death (Kawachi et al. 1994). 

The leap from employing HRV as a marker in cardiovascular disorders to anxiety disorders 

relies on the hypothesis that there may be shared dysfunctions in the autonomic nervous 

system, which underlie, or at least are measurable in, many disorders in both fields.

PDA: An association of panic attacks or PDA with hypertension has been reported both in 

clinical samples (Davies et al. 1999) and in population-based data (Davies et al. 2012), and 

the possibility that this association is due to shared autonomic dysfunction has been explored 

(Davies et al. 2007). Symptoms of autonomic activation, such as racing heart, sweating and 

flushing are included in diagnostic criteria for PDA. Several authors have suggested that 

autonomic nervous system dysfunction may be an important aetiological factor in PDA, for 

instance, Klein (1993) categorised panic attacks into two distinct types; attacks caused by 

false suffocation alarms and those attributable to autonomic surges or HPA axis activation.

Esler’s group studied norepinephrine and adrenaline release (spill-over) from major organs 

in patients with PDA using invasive methods requiring cannulation of large vessels. Spill-

over of adrenaline from the heart was significantly greater in patients with PDA than in 

controls at rest. During panic attacks, whole body adrenaline spill-over was markedly 

increased with proportionally smaller increases in norepinephrine spill-over (Wilkinson et al. 

1998). This finding supports several studies which report evidence of sympathetic over-

reactivity in PDA such as enhanced noradrenergic volatility during clonidine challenge 

(Coplan et al. 1997) and excess blood pressure overshoot on standing (Coupland et al. 1995). 

The latter effect was not observed in patients with autonomic failure (Mathias 2002) 

suggesting that the autonomic nervous system is essential in mediating this response.

Others have examined central autonomic system function and reported catecholamine or 

adrenoceptor function as being altered centrally in PDA (Nutt 1989; Tancer et al. 1993). 

Esler has demonstrated excess catecholamine spill-over in hypertension (Esler et al. 2001) 

and autonomic dysfunction is now understood to be a core aetiology of what was previously 

termed “essential” hypertension. PDA and hypertension may share a failure of control of 

sympathetic activation, perhaps through compromise of those centres which control the C1-

adrenergic cell group in the rostral-ventrolateral medulla, which include the raphe pallidum 

and ventrolateral periaqueductal grey, the latter under the influence of the pre-frontal cortex 

(Johnson et al. 2004; Davies et al. 2007).

HRV measures—Heart rate variability allows an estimation of autonomic nervous system 

input to the heart to be ascertained speedily and non-invasively. There are both 

parasympathetic (cholinergic) and sympathetic (noradrenergic) influences on the heart. The 

sympathetic nervous system is linked to mobilisation behaviours, often in response to 

stressors, which may induce the classic “flight or fight response” requiring cardiac 

Bandelow et al. Page 41

World J Biol Psychiatry. Author manuscript; available in PMC 2017 April 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



activation, whereas the parasympathetic system, mediated through the vagus nerve, is linked 

to immobilisation and disengagement (Porges 2001). Frequency of heart rate fluctuations are 

decreased when sympathetic tone is increased (Pagani et al. 1984) and with parasympathetic 

blockade (Akselrod et al. 1985).

The most commonly utilised measures HRV measures are “frequency-domain” and “time-

domain” variables. Frequency-domain measures are based on power spectral analysis, which 

allows detection of LF and high frequency (HF) oscillation. HF oscillation relates to the 

activity of the parasympathetic system, mainly mediated through the vagus nerve, while LF 

oscillation is thought to be linked to variation in sympathetic tone. The LF/HF ratio was 

previously employed as a proxy measure of sympatheto-vagal balance (Pagani et al. 1984), 

having the advantage of being influenced by change in both sympathetic and 

parasympathetic nervous system cardiac input but the problem that simultaneous change in 

both parameters might be undetected.

Time-domain measures of HRV fall into two categories. The first are derived from the 

differences between adjacent beat intervals, the most frequently used being root mean square 

of successive differences (RMSSD) and pNN50 (mean occasions per hour where change in 

consecutive normal sinus (NN) intervals exceeds 50 ms (Ewing et al. 1984)). RMSSD and 

pNN50 are highly correlated with frequency domain derived HF oscillation (Stein et al. 

1994). A second category, derived from observing beat to beat intervals over time, includes 

standard deviation of normal sinus intervals (SDNN) which represents the standard deviation 

of “NN” intervals (Sztajzel 2004). Since SDNN varies with the total recording time, 

comparisons between values obtained over widely differing time periods are problematic.

HRV: association of frequency domain and time domain measures with 
anxiety disorders—While the possibility of HRV being a biomarker in anxiety disorders 

has been considered for more than a decade (Gorman & Sloan 2000), a systematically 

organised meta-analysis of the relation of HRV to the presence of anxiety disorders has only 

recently been published. Chalmers et al. (2014) identified 36 studies meeting criteria 

requiring a comparison in HRV outcomes between patients with anxiety disorders and 

controls. The studies had 2086 participants with anxiety disorders and 2204 controls and 

employed a variety of methodologies. Recording periods ranged from 2 min to 24 h and 

studies used frequency domain measures such as LF and HF, time domain measures or other 

approaches including detection of respiratory sinus arrhythmia. The authors chose not to 

extract data on LF/HF ratio given its questionable utility and gave RMSSD preference over 

other time domain measures.

Across all anxiety disorders, the frequency domain HF oscillation variable (reported in 34 

studies), was strongly and significantly associated with having an anxiety disorder. The 

association of time domain measures, reported in 20 studies, was of borderline significance 

but became highly significant after exclusion of one outlying study. The LF oscillation 

variable, reported in 22 studies, was a poor predictor of anxiety disorders. When specific 

anxiety disorders were considered, PDA featured in the most studies with 24 of the 34 

papers having some participants with this disorder, in comparison to 13 for PTSD, five for 

GAD, four for SAD, two for OCD and one for specific phobia. The meta-analysis revealed 
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that time domain measures were strong predictors of PDA, PTSD and GAD and weaker but 

still significant predictors of SAD and specific phobia. HF was strongly associated with 

GAD and SAD and had weaker but significant relations with PDA and PTSD. Neither 

measure was associated with OCD. LF was not associated with any of the anxiety disorders. 

The strength of association of both HF and time domain measures of HRV in generalised 

anxiety disorder, is of interest for the conceptualisation of this disorder. Although both 

analyses rely on only three studies, the results suggest that despite Diagnostic and Statistical 

Manual of Mental Disorders (DSM)-IV and DSM-5 excluding clinical features suggestive of 

autonomic dysfunction from the list of symptoms contributing to the diagnosis, GAD may 

indeed be associated with autonomic dysfunction (Thayer et al. 1996).

Response of HRV to treatment and experimental neurotransmitter 
manipulation—Treatment of anxiety disorders may be associated with a restoration in 

HRV, especially when the treatment involves modulation of serotonin. Reduced HRV 

demonstrated in PDA was reversed by a serotonin promoting antidepressant (Yeragani et al. 

1999) but not by nortriptyline, which primarily promotes central norepinephrine 

transmission (Tucker et al. 1997). However, serotonin-modulating drugs are not essential for 

improvement in HRV on treating anxiety CBT and SSRIs were equally capable of increasing 

HRV.

In healthy individuals, HRV is reduced during panic provoking challenges but SSRI 

treatment appears to blunt this response (Agorastos et al. 2015). The involvement of the 

serotonin system in the neurobiology of anxiety disorders has also been examined using the 

technique of tryptophan depletion (Hood et al. 2005). When this method is applied in 

subjects who have recovered from anxiety disorders, depletion is associated with a transient 

return of anxiety symptoms and exaggerated response to stress challenges (Davies et al. 

2006). In one study in remitted patients with depression, HRV was measured before and 

during tryptophan depletion (Booij et al. 2006). Tryptophan depletion was associated with a 

significant reduction in HRV (ascertained using both time domain measures and the 

frequency domain HF measure) although this effect was limited to subjects who had 

experienced suicidal ideation. Notably, these patients experienced increased anxiety during 

the tryptophan depletion period.

The therapeutic effect of modulating serotonin in anxiety disorders appears, in the majority 

of studies, to ameliorate autonomic function as reflected in improving heart rate variability. 

One exception is a study reporting that CBT alone increased HRV in PDA, but that a CBT/

SSRI combination did not (Garakani et al. 2009). Nevertheless, the potential for serotonin to 

influence autonomic function (and thereby HRV) has a neurobiological basis (Davies et al. 

2007), since animal studies suggest that pH-dependent serotonergic neurons projecting to the 

RVLM may tonically inhibit sympathetic outflow (Richerson et al. 2001). Clinically, the 

enhanced noradrenergic volatility in PDA described during clonidine challenge was 

attenuated after successful treatment with SSRI antidepressants (Coplan et al. 1997).

Utility of HRV as a biomarker—Heart rate variability, whether ascertained using the 

frequency-domain measure of HF oscillation or by time domain measures, has advantages 

over other potential biomarkers of being non-invasive and easy to administer with valid data 
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being obtainable in a matter of minutes. As such, it has potential use in case detection and in 

large population-based cohorts. As it is ameliorated by treatments that are effective in 

anxiety disorders and reduced by neurotransmitter manipulations known to provoke anxiety, 

it offers the possibility of identification of treatment response.

The proliferation of differing outcome measures is receding in importance as a disadvantage 

since the frequency domain HF measure, and time domain measures (RMSSD, pNN50 and 

SDNN) appear to be preferable to LF or the LF/HF ratio. However, several common 

disorders beyond the realm of anxiety are also associated with reduced HRV, including the 

cardiovascular disorders discussed earlier, depression, Alzheimer’s disease, fibromyalgia 

and diabetes, and indeed any disorder where autonomic nervous system dysfunction is 

typically present. This reduces specificity for detection of anxiety disorders. Furthermore, 

HRV is known to decrease with age (Liao et al. 1995), which may complicate its 

interpretation. Finally, standard HRV measurements cannot be used in subjects who are not 

in sinus rhythm (Sztajzel 2004).

In summary, HRV appears to offer a degree of sensitivity but limited specificity in anxiety 

disorders. Ease of ascertainment and the ability to detect treatment related changes are clear 

strengths. We await population-based longitudinal studies in larger sample sizes where more 

invasive approaches may be impractical.

Neurocognition

PDA

In a review of the literature investigating the neuropsychological disturbances PDA, limited 

support for impairment in short-term memory among individuals with PD was found in 

some but not all studies. Moreover, the studies did find some evidence for impairment in 

other areas of cognitive functioning, including executive function, long-term memory, 

visuospatial or perceptual abilities and working memory (O’Sullivan & Newman 2014). The 

review included 14 studies (total 439 patients, 510 healthy controls), the majority of which 

had average to high methodological quality. Studies with a sample size of less than 15 

participants per group were excluded.

GAD

In a study including 112 patients with different anxiety disorders, no differences in 

neuropsychological functions were found in seven patients with GAD compared with 

healthy controls; of course, such a study would only have been powered to detect group 

differences with massive effect size (Airaksinen et al. 2005). Another study found that 

performance on executive and non-verbal memory tasks of GAD patients (n = 40) was 

largely worse than in healthy controls (n = 31). These cognitive deficits seemed to be more 

marked in patients taking antidepressants than in drug-naïve patients (Tempesta et al. 2013). 

However, the study was not randomised with regard to medication intake; therefore, it is 

problematic to assume a causal relationship between antidepressants and cognitive 

functioning.

Bandelow et al. Page 44

World J Biol Psychiatry. Author manuscript; available in PMC 2017 April 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



SAD

Cognitive models of SAD assume that patients with SAD have cognitive biases regarding 

their interpretation of ambiguous social situations. A systematic review of 30 studies of the 

neuropsychological performance in SAD (698 patients) revealed that individuals with SAD 

consistently showed decreased performance on tests of verbal memory functions. In 

particular, the studies showed decreased performance regarding visual scanning and 

visuoconstructional ability as well as some indication for verbal memory difficulties 

(O’Toole & Pedersen 2011). Since this review was published, a study compared 25 subjects 

with SAD and 25 healthy controls and reported no significant between-group differences, 

based on a composite analysis of variance test (Sutterby & Bedwell 2012). In post hoc tests, 

patients had worse visual working memory performance than controls, but this finding did 

not withstand Bonferroni correction. In a subsequent study, SAD (n = 42 patients) performed 

worse than healthy controls (n = 42) on processing speed, visuospatial construction, 

visuospatial memory, verbal learning and word fluence (O’Toole et al. 2015).

OCD

Considerable evidence demonstrates that behavioural performance during cognitive tests, 

and related functional activations, are abnormal when OCD patients are probed on domains 

dependent upon the integrity of fronto-striatal circuitry.

Response inhibition—The ability of response inhibition can be measured by means of 

go/no-go tasks and stop signal reaction time (SSRT) tasks. Both types of paradigm require 

the participants to make a motor response on some trials and to withhold the response on 

some other trials, with the SSRT being more sophisticated in using stepwise tracking to 

measure inhibitory control. Deficits in response inhibition have been suggested as a 

candidate cognitive endophenotype for OCD (Chamberlain et al. 2007b). Moreover, 

impaired response inhibition was shown to be associated with reduced grey matter volume in 

the OFC and right inferior frontal regions, as well as increased grey matter volume in the 

cingulate, parietal and striatal regions in OCD patients and matched-relative groups, as 

compared with controls (Menzies et al. 2008); and these combined behavioural-structural 

MRI measures were significantly heritable. Inhibition difficulties were also pinpointed at the 

functional level, whereby successful inhibition on an SSRT task was associated with greater 

activation in the supplementary motor area in OCD patients (n = 41) and their siblings (n = 

17), versus controls (n = 37) (de Wit et al. 2012). Impaired performance on response 

inhibition tasks was found to have a moderate effect size (0.49) in a meta-analysis on adult 

OCD patients as compared with control participants (Abramovitch et al. 2013). This meta-

analysis comprised 115 studies (total 3452 patients) overall, although only a subset of these 

related to response inhibition.

Cognitive flexibility—The clinical manifestation of OCD is commonly represented by 

repetitive compulsive acts that might be linked to impaired cognitive flexibility 

(Chamberlain et al. 2005). The Intradimensional/Extradimensional set shifting paradigm 

allows a fine-grained examination of different cognitive processes germane to flexible 

responding including reversal learning, set formation and the ability to inhibit and shift 

attention between stimuli. By employing this multiple stage paradigm, it was shown that 
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OCD patients were generally able to form an attentional set but impaired in their ability to 

switch their focus to a new, previously irrelevant dimension (extradimensional stage; ED 

shift) (Veale et al. 1996; Watkins et al. 2005; Chamberlain et al. 2006). Considering that 

impaired performance was unrelated to symptom severity and present irrespective of 

treatment, ED deficits might represent a trait marker of the disorder (Chamberlain et al. 

2006). More conclusively, non-affected first-degree relatives (n = 20) exhibited impairments 

as well, versus controls (n = 20) (Chamberlain et al. 2007b).

Across species, the ability to flexibly adjust behavioural responses in face of negative 

feedback is subserved by the OFC and can be assessed by reversal learning tasks. As such 

reversal of responses is normally relatively easy for humans to manage, reversal learning 

abnormalities are mainly identified using imaging rather than behavioural tests, due to 

ceiling effects for the latter. Dampened OFC activation during reversal learning was reported 

in one fMRI study of OCD patients (n = 20), as compared with controls (n = 27) (Remijnse 

et al. 2006). Controlling for the potential confounding effect of comorbid depression, 

Chamberlain et al. (2008) showed that patients with OCD (n = 14) and unaffected relatives 

(n = 12) had extensive clusters of hypo-activation in the lateral OFC, lateral PFC and parietal 

cortices, versus controls (n = 15). Task switching abilities, strongly relying on the cross-talk 

between basal ganglia and PFC (Cools et al. 2004), have separately been assessed in OCD 

patients. Significantly higher error rates in task-switching trials and reduced activation of 

dorsolateral prefrontal cortex lateral OFC, ACC and caudate body were observed in 21 OCD 

patients versus 21 controls (Gu et al. 2008).

Planning—Executive planning entails the ability of attaining a goal through intermediate 

steps, which do not necessarily lead directly to that goal. It is tested by means of the Tower 

of London task and its variants, for which MRI versions are also often available. Studies in 

OCD patients revealed lengthened responses times (Veale et al. 1996; Nielen & Den Boer 

2003) and, on more difficult task versions, impaired performance (Chamberlain et al. 

2007a). Planning deficits have been linked with dorsolateral prefrontal cortex and basal 

ganglia (caudate, putamen) hypo-activation in OCD patients, in a study conducted in 

medication-free patients and healthy controls (van den Heuvel et al. 2005). Behavioural 

impairment – fewer correct responses and increased response times – was also found in 

unaffected relatives of OCD patients compared with normal participants (Delorme et al. 

2007), suggesting that planning deficits constitute a vulnerability measure for OCD.

Goal-directed system and habit learning—Convergent evidence from the animal and 

human literature suggests that fronto-striatal loop circuits mediate the balance between 

purposeful, goal-directed actions and habitual, automatic behaviours. Considering the 

literature linking fronto-striatal loops to OCD symptomatology, it was proposed that OCD 

could be characterised as a disorder of maladaptive habit learning (Rauch et al. 2002). The 

hypothesis has been formally tested in a series of experiments that led to the conclusion that 

a defective “goal-directed system” may bias OCD patients to heavily rely on habits (Gillan 

& Robbins 2014). More specifically, it was first shown using an appetitive instrumental 

learning task that OCD patients (n = 21) were not able to refrain from responding to 

outcomes no longer associated with reward, as compared with controls (n = 30) (Gillan et al. 
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2011). Similarly, in an aversive context, OCD patients were trained to avoid mildly aversive 

electrical shocks by performing the correct response to a predictive stimulus. Following a 

training period, participants were instructed that the cable delivering the shock had been 

disconnected from one of their wrists. Patients (n = 25) on average made significantly more 

responses to the stimuli no longer associated with any shock than did controls (n = 25) 

(Gillan et al. 2014). An fMRI-compatible version of the task showed that excessive caudate 

activity was associated with increased performance of the avoidance habits in 37 OCD 

patients, compared with 33 healthy controls (Gillan et al. 2015). The finding that aberrant 

activation in the caudate nucleus occurred more in patients showing a bias towards the 

premature development of habits suggested that, in OCD, reliance on repetitive, habit-like 

behaviours might stem from dysfunction within goal-directed behaviour loci within the 

dorsal striatum (Yin & Knowlton 2006).

Despite the existence of some discordant findings, deficits related to behavioural inhibition, 

cognitive flexibility and executive functioning seem to represent core traits of OCD, and 

hold face validity considering the clinical manifestation of the disorder. Neuropsychological 

and imaging studies demonstrate that non-affected first-degree relatives show, to some 

extent, similar abnormalities to patients. On the one hand, these shared findings represent 

valuable tools for investigating the effect of specific genetic variants on both cognitive and 

neural substrates and importantly for investigating the disorder across species, possibly 

leading to better treatment. On the other hand, the similarity between affected and non-

affected relatives demonstrates that our understanding of the steps leading from an “at risk” 

or vulnerable state to the development of “state” OCD is limited; as is our understanding of 

protective or resilience-related biological factors. Multi-modal investigation, providing 

convergent evidence and guided by specific theoretical hypotheses, might help to address 

these issues.

Other OCRDs

Trichotillomania has been associated with impaired stop-signal inhibitory control in multiple 

studies compared with controls, while set-shifting has generally been reported to be intact 

(Chamberlain et al. 2006; Odlaug et al. 2014). The sample sizes were 17 patients and 20 

controls in the former study; and 12 patients and 14 controls in the latter study. However, 

there appear to be some differences in subtypes: in people with childhood onset 

trichotillomania (<11 years of age, n = 42), the neuropsychological profile appears to be 

more like OCD; i.e., impaired set-shifting and lesser stop-signal impairments; compared 

with later onset trichotillomania (n = 56) (Odlaug et al. 2012).

Patients with excoriation (skin-picking) disorder (n = 20) showed impaired stop-signal 

inhibition but intact set-shifting versus controls (n = 20) (Odlaug et al. 2010). Impaired 

response inhibition on a stop-signal task was found in patients with trichotillomania (n = 12) 

and their clinically asymptomatic first-degree relatives (n = 10) versus controls (n = 14) in a 

more recent study, suggesting that it may represent a vulnerability or predisposing factor 

(Odlaug et al. 2014). In a head-to-head comparison of skin-picking disorder (n = 31 patients) 

against trichotillomania (n = 39 patients), stop-signal impairments were more marked in the 

former group (Grant et al. 2011).
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As is the case for imaging, cognitive studies in relation to compulsive hoarding have mostly 

been undertaken in the context of other disorders, rather than in “hoarding disorder” as a 

discrete entity. One exception to this is a recent study that compared cognition in people 

with hoarding disorder without OCD (n = 22), people with OCD plus hoarding (n = 24), and 

healthy controls (n = 28) (Morein-Zamir et al. 2014). Deficits in cognitive flexibility were 

common to both clinical groups, arguing against hoarding disorder having a distinct 

neuropsychological profile from that of OCD-hoarding, and highlighting the importance of 

cognitive rigidity in relation to these two disorders.

There are very few cognitive studies of body dysmorphic disorder (BDD). One study found 

that subjects with BDD exhibited deficits in cognitive flexibility in comparison to controls 

(Jefferies et al., submitted for publication). Consistent with this proposition, patients with 

comorbid skin-picking disorder and BDD (n = 16) had disproportionately impaired set-

shifting compared with subjects with non-comorbid skin-picking disorder (n = 39) (Grant et 

al. 2015). Other research suggests that individuals with BDD may have abnormalities in 

visual processing (Feusner et al. 2010). The sample size was 17 patients and 16 controls. In 

sum, caution is warranted due to the small numbers of studies, but there is some evidence 

that the grooming disorders (trichotillomania, excoriation disorders) are commonly 

associated with impaired response inhibition; while hoarding disorder and BDD appear more 

OCD-like in their neuropsychological profiles.

PTSD—Research on the neuropsychology of PTSD has identified several neurocognitive 

deficits associated with the disorder (Everly & Horton 1989; Vasterling et al. 1998; 

Sachinvala et al. 2000; Levy-Gigi et al. 2012). In one study, subjects with PTSD (n = 38), 

trauma-exposed subjects without PTSD (n = 108) and healthy control subjects (n = 89) did 

not differ significantly on a number of neuropsychological tests; however, the study was 

done in a non-clinical sample of undergraduate students (Twamley et al. 2004). In a double-

blind study with 18 PTSD patients, treatment with the SSRI paroxetine resulted in a 

significant increase in verbal declarative memory function (Fani et al. 2009). It remains 

unclear whether the memory deficits in PTSD can only be attributed to stress-related 

alterations. As there is a genetic vulnerability for developing PTSD, cognitive dysfunctions 

may have existed before the trauma and may have been, at least in part, the reason why 

vulnerable individuals develop PTSD after a trauma. Cognitive impairments in PTSD have 

also been attributed to comorbidity with substance abuse or other psychiatric disorders. 

However, in a study reporting memory function in rape victims with PTSD (n = 15), 

compared with rape victims without PTSD (n = 16), deficits were mild and not attributable 

to comorbid depression, anxiety or substance abuse (Jenkins et al. 1998).

One DSM-5 criterion for PTSD is the “inability to remember an important aspect of the 

traumatic event (typically due to dissociative amnesia)”. One may speculate that dissociative 

amnesia is associated with the memory impairments generally found in PTSD. However, it is 

contentious whether the phenomenon of dissociative amnesia exists at all (for a discussion, 

see McNally, 2007).
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Gender issues

In international epidemiological surveys, the female to male ratio of the prevalence rates of 

anxiety disorders varied between 1.5:1 and 2.1:1% (Bandelow & Michaelis 2015). 

Psychosocial contributors (e.g., childhood sexual abuse and chronic stressors), but also 

genetic and neurobiological factors have been discussed as possible causes for the higher 

prevalence in women. Identification of the causes of gender-specific susceptibility for 

anxiety disorders may be useful for better understanding the aetiology of anxiety disorders 

in general. It is most likely that higher anxiety susceptibility in women is due to a delicate 

interplay between psychosocial and neurobiological factors. Hypotheses about the role of 

gender-specific stressors, and gender differences in the expression of fears warrant further 

investigation. Sex-specific variance has been identified in numerous neurotransmitter 

systems. The serotonin system may be of particular importance, as most drugs used in the 

treatment of anxiety disorders enhance serotonin neurotransmission and alterations in the 

serotonergic system have been found in anxiety patients relative to healthy controls. It seems 

likely that female sex hormones are involved, as periods of fluctuating levels of oestrogen 

and progesterone have been linked to increase or decrease of symptomatology in patients 

with PDA. Moreover, a plausible explanation for the gender-specific risk is a genetic one. 

For example, in PDA, the catechol-O-methyltransferase and monoamine oxidase (MAOA) 

genes have been associated with the higher risk of women to develop PDA (Bandelow & 

Domschke 2015).

Discussion

To our knowledge, there has been no comparable consensus initiative that put together all 

major research lines in the field of biomarkers for anxiety, OCD and PTSD. It is a challenge 

to summarise the incredible amount of findings collected in this paper and the 

accompanying article (see Part I; Bandelow et al. 2016) in a simple way.

First, a change in paradigms has been observed. In the 1980s and 1990s, “wet research” 

predominated, meaning that blood or CSF samples were taken from patients and healthy 

controls, either in resting state or after challenge tests with anxiety-provoking agents, e.g., 

lactate or carbon dioxide. Blood-based biomarkers of treatment response in psychiatric 

disorders remain in early stages of development and none has demonstrated reliability for 

predicting pharmacological outcome. Although research efforts in the past decades have 

definitely increased our knowledge of the neurobiological underpinnings of pathological 

anxiety, we still do not have the proof that a specific dysfunction of a neurotransmitter 

system, e.g., the serotonergic system, is the main cause for anxiety disorders. Still, the most 

robust evidence for an involvement of serotonin derives from the fact that a large number of 

drugs that are effective in anxiety disorders, OCD and PTSD have a common denominator, 

i.e., that they have an impact on serotonergic neurotransmission.

Serotonin reuptake inhibition is the main mechanism of action of these antidepressants but 

there also some drugs that have agonist or antagonist properties at serotonin receptors. Other 

medications that can treat anxiety act at the GABA binding site. However, as these binding 

sites are widespread in the brain and have non-specific inhibitory effects, the efficacy of 
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benzodiazepines in anxiety disorders cannot be taken as evidence that a dysfunction of the 

GABA binding site is the cause of pathological anxiety.

Since the end of the 1990s, there has been a strong shift to neuroimaging and genetic studies 

– which are summarised in Part I of this consensus paper (Bandelow et al. 2016), while the 

publication output in neurochemistry studies seems to have declined.

Interpreting the abundant number of results of neuroimaging studies in anxiety disorders is a 

difficult task. The existing studies have found abnormalities in many different regions of the 

brain, and it is a challenge to synopsise the often contradictory findings in a uniform theory. 

A problem is the high number of statistical comparisons that are possible, and if the results 

are not corrected for multiple testing, there is a high chance for false-positive findings. The 

main methodological problem in most of the studies is the small sample size, making it 

difficult to reliably separate artefacts from substantiate findings.

Likewise, there is a plethora of genetic studies. In association studies, a large number of 

candidate genes have been investigated. The only clear result that we can derive from these 

studies is that anxiety disorders are not based on a single gene but are multigenic, while the 

contribution of single genes is only small. Genome-wide association studies may be a future 

possibility to separate relevant findings from findings by chance. Again, correction for 

multiplicity is crucial, and this again requires larger sample sizes that are often used in 

genetic research. International cooperation is needed to generate adequate sample sizes for 

this kind of research. Despite the manifold methodological shortcomings, the neuroimaging 

and genetics fields are two of the most promising areas for neurobiological research. In the 

future, neurochemistry, neurophysiology, neuropsychology, neuroimaging, genetics and 

other fields will have to be integrated in order to elucidate the neurobiological causes of 

anxiety. Increasing efforts are being made to find reliable biomarkers for diagnostic 

procedures or prediction of treatment outcome in anxiety disorders, OCD and PTSD. 

However, as with research in other mental disorders such as depression, there is still no 

biological or genetic predictor of sufficient clinical utility to inform the selection of a 

specific pharmacological compound for an individual patient, because of low sensitivity and 

specificity of the suggested biomarkers. Ideally, in the future, we will possibly be able to 

diagnose a mental disorder simply by taking a blood test and to choose a personalised 

medication or psychological treatment for a specific patient (“precision medicine”).
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Abbreviations

5-HIAA 5-Hydroxyindoleacetic acid

5-HT Serotonin

5-HTP Hydroxytryptophan

5-HTT Serotonin transporter

5-HTTLPR Serotonin-transporter-linked polymorphic region

A-SepAD Adult Separation Anxiety Disorder

ACC Anterior cingulate cortex

ACTH Adrenocorticotropic hormone or corticotropin

ADRN Anxiety Disorders Research Network

ANP Atrial natriuretic peptide

ASLO Anti-streptolysin O

BDD Body Dysmorphic Disorder

BDNF Brain-derived neurotrophic factor

C-SepAD Childhood Separation Anxiety Disorder

CBT Cognitive-behavioural therapy

CCK Cholecystokinin
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CNS Central nervous system

COMT Catechol-O-methyltransferase

CRH Corticotropin-releasing hormone

CRP C-reactive protein

CSF Cerebro-spinal fluid

DHEAS Dehydroepiandrosterone sulphate

DAT Dopamine transporter

DSM Diagnostic and Statistical Manual of Mental Disorders

DST Dexamethasone suppression test

ECNP European College of Neuropsychopharmacology

EEG Electroencephalography

ELISA Enzyme-linked immunosorbent assay

ERN Error-related negativity

ERP Event-related potential

fMRI Functional magnetic resonance imaging

GABA γ-Aminobutyric acid

GABHS Group A beta haemolytic streptococci

GAD Generalized Anxiety Disorder

GWAS Genome-wide association study

HF High frequency (high frequency oscillation is a frequency-domain heart rate 

variability measure)

HPA axis Hypothalamic-pituitary-adrenal axis

HPLC High-performance liquid chromatography

HRV Heart rate variability

IL Interleukin

LF Low frequency (low frequency oscillation is a frequency-domain heart rate 

variability measure)

MAO Monoamine oxidase

MDD Major Depressive Disorder

mPFC Medial prefrontal cortex
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mRNA Messenger ribonucleic acid

NE Norepinephrine (noradrenalin)

NET Norepinephrine transporter

NGF Nerve growth factor

NK Neurokinin

OCD Obsessive-Compulsive Disorder

OC-RD Obsessive-Compulsive-Related Disorders

OFC Orbitofrontal cortex

PANDAS Pediatric autoimmune neuropsychiatric disorder associated with 

streptococcal infections

PANS Pediatric acute-onset neuropsychiatric syndrome

PDA Panic disorder with or without Agoraphobia

PFC Prefrontal cortex

POMC Proopiomelanocortin

PSG Polysomnography

PTSD Posttraumatic Stress Disorder

RMSSD Root mean square of successive differences

SAD Social Anxiety Disorder

SDNN Standard deviation of normal sinus intervals

SNRI Serotonin norepinephrine reuptake inhibitor

SSRI Selective serotonin reuptake inhibitor

SSRT Stop signal reaction task

TNF Tumor necrosis factor

TSPO Translocator protein

WFSBP World Federation of Societies for Biological Psychiatry
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Figure 1. 
GABA-A receptor and subunit structure; GABA and benzodiazepine (BZD) binding site 

(Domschke & Zwanzger 2008).
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Figure 2. 
Stress-induced interactions between nervous, endocrine and immune systems. The 

hypothalamus secretes CRH in response to stress, and from the paraventricular nucleus of 

the hypothalamus. CRH-containing neurons have projections to the locus coeruleus. The 

locus coeruleus sends direct projections to the sympathetic and parasympathetic 

preganglionic neurons, increasing sympathetic activity and decreasing parasympathetic 

activity through the activation of adrenoceptors. In turn, the activation of the sympathetic 

nervous system stimulates the release of CRH. The products of sympathetic and 

parasympathetic nervous system activity are NE and E, and ACh, respectively. When stress 

is prolonged, as in anxiety disorders, the sympathetic nervous system continues to be 

activated with a lack of parasympathetic counteractivity. As a result, NE and E levels are 

increased and ACh levels are decreased, which leads to an increased release of pro-

inflammatory cytokines from immune cells. Pro-inflammatory cytokines such as TNF, IL1 

and IL6 then trigger the activation of the sympathetic nervous system. CRH, corticotropin-

releasing hormone; NE, norepinephrine; E, epinephrine; ACh, acetylcholine, TNF, tumour 

necrosis factor; IL1, interleukin-1; IL6, interleukin-6; +, stimulation; −, inhibition.
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