
Integrated simulation and formal verification of a

simple autonomous vehicle∗

A. Domenici1 A. Fagiolini2

M. Palmieri3 1

1Dept. of Information Engineering, University of Pisa

2Dipartimento di Energia, Ingegneria dell’Informazione
e Modelli Matematici (DEIM), University of Palermo

3DINFO, University of Florence

Abstract

This paper presents a proof-of-concept application of an approach to

system development based on the integration of formal verification and

co-simulation. A simple autonomous vehicle has the task of reaching an

assigned straight path and then follow it, and it can be controlled by

varying its turning speed. The correctness of the proposed control law

has been formalized and verified by interactive theorem proving with the

Prototype Verification System. Concurrently, the system has been co-

simulated using the Prototype Verification System and the MathWorks

Simulink tool: The vehicle kinematics have been simulated in Simulink,

whereas the controller has been modeled in the logic language of the Proto-

type Verification System and simulated with the interpreter for the same

language available in the theorem proving environment. With this ap-

proach, co-simulation and formal verification corroborate each other, thus

strengthening developers’ confidence in their analysis.

1 Introduction

Simulation and formal verification are complementary techniques, both required
in the development of complex, possibly safety-critical systems. Formal spec-
ification enables developers to deal with complexity using well-proven tools of
logic and mathematics, providing strong assurance on compliance with require-
ments. On the other hand, it is always possible to correctly formalize wrong
assumptions, or to prove wrong conclusions from wrong assumptions. It is also

∗Postprint. Published in: Cerone A., Roveri M. (eds) Software Engineering and For-
mal Methods. SEFM 2017. Lecture Notes in Computer Science, vol 10729. Springer,
Cham. The final authenticated publication is available online at https://doi.org/10.1007/
978-3-319-74781-1_21

1

possible to produce simply wrong proofs, but this risk is mitigated by the use
of automatic or interactive theorem proving. This given, simulation provides
sanity checks at early stages of development, besides being a prototyping tool
supporting the exploration of user interaction.

In the field of CPSs, simulation often takes the form of co-simulation, i.e., in-
tegrated simulation of different subsystems, each modeled with a specific formal-
ism and simulated by a specific simulation engine. The need for co-simulation
arises naturally from the fact that CPSs are usually composed of parts that
follow different physical laws, or must be described under different aspects: For
example, the rotor, stator, and winding of an electric motor are both electrical
and mechanical systems.

A further motivation for using co-simulation stems from the previous con-
siderations on the complementarity of simulation and verification, and also from
the separation of controller and plant in a CPS: A model of the controller ex-
pressed in a logic language can be proved correct with respect to a model of the
plant expressed in the same language, then the controller model can be simu-
lated using an interpreter for that language, along with a simulation of a plant
model built with an application-specific formalism, such as, e.g., a Simulink
toolbox.

This paper illustrates the above approach to integrated co-simulation and
verification with a simple case study from the field of autonomous vehicles. The
case study concerns a single-axle vehicle, which moves at constant speed and
whose turning speed can be controlled. The controller must be able to steer
the vehicle until it reaches its assigned path, a straight line. The kinemat-
ics of the vehicle and the control law have been expressed in the higher-order
logic language of the Prototype Verification System (PVS) [22]. Using the well-
established methods of control theory, it has been proved that the target configu-
ration (i.e., the vehicle following an assigned straight line) is an asymptotically
stable state. Concurrently, a Simulink model of the vehicle’s kinematics has
been co-simulated with the PVS specification of the control law.

In the rest of the paper, Section 2 cites work related to the topics of this
paper; Section 3 provides basic information on the PVS environment; Section 4
describes the case study; Section 5 reports on the verification of the considered
system; Section 6 reports on its co-simulation; and Section 7 concludes the
paper.

2 Related Work

Work on co-simulation of CPSs has produced a large body of literature that
cannot be surveyed exhaustively within the limits of the present paper. Only a
small number of recent works will be cited, while the reader is referred to more
extensive reviews, such as [11].

The Vienna Development Method (VDM) [9] and the Bond-Graph nota-
tion [13] have been used in the Crescendo tool [15] to co-simulate discrete sys-
tems in VDM and continuous systems with Bond-Graphs.

2

In the approach proposed by Attarzadeh et al. [20], heterogeneous processes,
executing models expressed in different modeling or programming languages, or
even implemented in hardware, are organized hierarchically and coordinated by
a framework that takes into account each process’s Model of Computation [16]
defining the time, synchronization, and communication models of the process.

Differential dynamic logic [24] is used with the KeYmaera X [10] theorem
prover, developed for the verification of CPSs. Its language includes conditions,
non-determinism, loops, composition, and continuous dynamics, i.e., behaviors
defined by differential equations.

Another family of operational-style formalisms that produce executable mod-
els is the one of languages based on Petri Nets, such as Stochastic Activity
Networks [25], used, e.g., to model FPGAs [1, 2].

The PVS environment has been used in several application fields, such as
hardware verification [23] or air traffic control [6]. Recently, it has been used to
verify the specification and the implementation of a set of collision-avoidance
algorithms for unmanned aircraft systems [19]. The authors of the present paper
used the PVS environment to co-simulate an implantable pacemaker with a
Simulink model of the heart [4]. The pacemaker was modeled by a PVS theory as
a network of timed automata and executed in the PVSio-web framework [21, 17],
connected to a Simulink tool executing the heart model. The PVS language has
also been used to verify a simple nonlinear hybrid control system [3].

3 Background on the PVS Environment

The PVS theorem prover is based on higher-order logic and the sequent calcu-
lus [26]. A PVS user writes theories containing definitions of types, constants,
and variables. A function is a constant whose type is the function’s signature.
For example, the type expression ‘[int → real]’ denotes the type of functions
from integers to reals. Variables may range over function types, and a function
type may have other function types as domain and codomain.

A theory also contains statements of two kinds: axioms, assumed as valid
by the prover, and theorems to be proved. A proved theorem can be used in
further proofs. The language identifies statements with labels followed by the
keywords axiom for axioms and theorem, lemma, or others, for theorems.

A theory may refer to other theories introduced by the importing declaration.
A large number of pre-proved fundamental theories is collected in the prelude
library and implicitly imported in all theories. Many other theories are available
in several libraries, such as the NASA PVS Library (NASALIB) [8, 12].

The PVS deduction system is based on sequent calculus. A sequent is an
expression of the form A1, A2, . . . , An ⊢ B1, B2, . . . , Bm, where formulae Ai’s
and Bi’s are called the antecedents and the consequents, respectively.

The inference rules transform sequents, possibly introducing subgoals, gener-
ating a proof tree. A proof terminates successfully when all branches terminate
with a sequent where either any formula occurs both as an antecedent and as a
consequent, or any antecedent is false, or any consequent is true.

3

The PVS theorem prover offers inference rules that directly implement the
basic rules of the sequent calculus, or combine them into powerful strategies
that may often prove goals with a single prover command, such as assert or
grind, that apply several substitutions and simplifications in one step.

The PVS language is purely declarative, but the PVSio extension [18] can
compute the value of ground (i.e., fully instantiated) applications of a function.
The PVSio ground evaluator, included in the PVS environment, can then be
used as an interpreter for functions declared in a PVS theory. This feature makes
it possible to use the PVS environment as a prototyping and co-simulation tool.

4 Case Study: a Two-Wheeled Vehicle

Let us consider an abstract representation of a terrestrial vehicle with a pair of
wheels connected through an axle, moving on a flat surface. This representation
abstracts away the workings of all subsystems, such as propulsion and steering
mechanisms. In a rectangular Cartesian frame, its configuration can be defined
by three state variables: the coordinates x and y of the axle’s midpoint, and
the orientation ψ (yaw angle) of the vehicle’s instantaneous direction with the
x axis (Fig. 1).

ψ

y = (tanψc)x + y0

d

ψc

p

σ0

pcσ

Figure 1: Representation of the case study.

Let us further assume that the vehicle’s linear speed v is a constant V. The
only controlled variable is then the yaw angle, which must satisfy the relation
ψ̇ = ω, where ω is the rotational speed around the vertical axis of the vehi-
cle imposed by the controller. The kinematics of the vehicle in the Cartesian
reference frame are then given by the following system:

4











ẋ = Vcosψ

ẏ = V sinψ

ψ̇ = ω

In this case study, the objective is to prove that a given control law is suf-
ficient to lead the vehicle to move along an arbitrarily assigned target straight
line. It is also required that the vehicle approaches the line smoothly, without
oscillations.

Let the generic target line c be represented as

y = (tanψc)x+ y0 . (1)

If p = (x, y) is the vehicle’s position and pc is the orthogonal projection of
p on c, then d =| p − pc | and θ = ψ − ψc are, respectively, the distance from
the vehicle to the target line and the difference between the vehicle’s direction
and the direction of the target line. It is convenient to adopt a mobile reference
frame with pc as its origin and σ and d as the spatial coordinates, where σ is
the distance of pc from a reference point σ0 on c. In this new frame, we have











σ̇ = Vcos θ

ḋ = V sin θ

θ̇ = ψ̇ = ω

(2)

The objective of the control law is then to have d and θ vanish asymptotically
with time, and in particular we intend to verify that this can be accomplished
with the control law

ω = −dv sinc θ − kθ (3)

where

sinc θ =

{

sin θ
θ if θ 6= 0

1 otherwise

and ‘k’ is a parameter of the control law.

5 Verification

In this section, the PVS interactive theorem prover is used to verify that the
movement along the x-axis is locally asymptotically stable, i.e., that the tra-
jectory of a vehicle, described by the kinematics of 2 and controlled by the
law of 3, approaches the target line 1 as time approaches infinity, if the initial
movement is contained within a “sufficiently small” neighborhood of the desired
trajectory. Also, a condition on the control parameter k is found, guaranteeing
that the movement is free of oscillation. The proof is very simple, and follows
the common practice in control theory: The system is linearized at the desired
state, the system’s Jacobian is formulated, and the asymptotic stability of the

5

state (without oscillations) is verified by showing that the eigenvalues are real
and negative.

With the control law 3, the kinematics are given by this system of generating
functions:











σ̇ = fσ(σ, d, θ) = V cos θ

ḋ = fd(σ, d, θ) = V sin θ

θ̇ = fθ(σ, d, θ) = −dV sinc θ − kθ ,

whose partial derivatives are

∂fσ
∂σ

= 0
∂fσ
∂d

= 0
∂fσ
∂θ

= −V sin θ

∂fd
∂σ

= 0
∂fd
∂d

= 0
∂fd
∂θ

= V cos θ

∂fθ
∂σ

= 0
∂fθ
∂d

= −V sinc θ
∂fθ
∂θ

= −V d(θ cos θ − sin θ

θ2
)− k .

The partial derivatives are expressed in the intrinsic kinematics theory:

intrinsic_kinematics: THEORY BEGIN

IMPORTING sinc_th

t: VAR nnreal % time

sigma(t): real % sigma coordinate

d(t): real % d coordinate

V: posreal % linear velocity

k: posreal

theta(t): real % angle between velocity and target line

omega(t): real % turning speed

% partial derivatives of the generating functions

dfsigma_dsigma(sigma, d, theta: [nnreal -> real], t: real):

real = 0

dfsigma_dd(sigma, d, theta: [nnreal -> real], t: real): real = 0

dfsigma_dtheta(sigma, d, theta: [nnreal -> real], t: real):

real = -V*sin(theta(t))

dfd_dsigma(sigma, d, theta: [nnreal -> real], t: real): real = 0

dfd_dd(sigma, d, theta: [nnreal -> real], t: real): real = 0

dfd_dtheta(sigma, d, theta: [nnreal -> real], t: real):

real = V*cos(theta(t))

dftheta_dsigma(sigma, d, theta: [nnreal -> real], t: real):

real = 0

dftheta_dd(sigma, d, theta: [nnreal -> real], t: real):

real = -V*sinc(theta(t))

dftheta_dtheta(sigma, d, theta: [nnreal -> real], t: real):

real =

6

-V*d(t)*(cos(theta(t))/theta(t) - sin(theta(t))/(theta(t))^2) - k

END intrinsic_kinematics

In the above theory, the importing clause makes the sinc th theory available,
containing the definition of the ‘sinc’ function with an axiom defining its value at
the origin. The initial declarations introduce t as the independent variable over
non-negative reals (nnreal), σ, d, θ, and ω as real functions of t, and V and k
as positive real (posreal) constants. The generating functions are then defined
with four arguments: the three functions of time (of type [nnreal → real]) σ, d,
and θ, and time t itself.

Another theory, linearized intrinsic, defines the Jacobian that linearizes the
system around the target configuration d = 0, θ = 0:

J =













∂fσ
∂σ

∂fσ
∂d

∂fσ
∂θ

∂fd
∂σ

∂fd
∂d

∂fd
∂θ

∂fθ
∂σ

∂fθ
∂d

∂fθ
∂θ













=





0 0 −V sin θ
0 0 V cos θ
0 −V sinc θ −V d(θ cos θ−sin θ

θ2)− k





In PVS, a matrix like this can be represented as a function of two natural
numbers i and j, of the three state variables, and of time. The numbers i and
j are the row and column indices of the matrix, which select one of the nine
partial derivatives, which is then evaluated for the triple (σ, d, θ) and for the
value t of time:

linearized_intrinsic: THEORY BEGIN

IMPORTING intrinsic_kinematics

% Jacobian

J(i, j: {n: posnat | n <= 3}, sigma, d, theta: [nnreal -> real], t)

: real =

let idx = 3*(i - 1) + (j - 1)

in cond

idx = 0 -> dfsigma_dsigma(sigma, d, theta, t),

idx = 1 -> dfsigma_dd(sigma, d, theta, t),

...

idx = 7 -> dftheta_dd(sigma, d, theta, t),

idx = 8 -> dftheta_dtheta(sigma, d, theta, t)

endcond

In the above code, indices i and j are used to compute index idx, whose
value is used in the cond clause to select one the nine elements of the Jacobian.

At the target configuration, the Jacobian reduces to

J0 =





0 0 0
0 0 V
0 −V −k





as stated in the linearized intrinsic theory by the J 0 predicate:

7

% Jacobian at desired configuration

J_0(sigma, d, theta: [nnreal -> real], t) : bool =

J(1, 1, sigma, d, theta, t) = 0 and

...

J(2, 3, sigma, d, theta, t) = V and

J(3, 1, sigma, d, theta, t) = 0 and

J(3, 2, sigma, d, theta, t) = -V and

J(3, 3, sigma, d, theta, t) = -k

The characteristic polynomial is

P (λ) = −λ3 − kλ2 − V 2λ

whose eigenvalues are

λ1 =−
√
k2−4V 2+k

2 λ2 =

√
k2−4V 2−k

2 λ3 = 0 .

Accordingly, the theory has these declarations:

% characteristic polynomial of J_0

char_J(lam: real) : real = -lam^3 - k*lam^2 - (V^2)*lam

% eigenvalues

lam_1: real = - (sqrt(k^2 - 4*V^2) + k)/2

lam_2: real = (sqrt(k^2 - 4*V^2) - k)/2

lam_3: real = 0

Note that in this theory the eigenvalues are declared to be reals, due to the
requirement that the vehicle’s approach to the target line be free of oscillations.
The PVS theorem prover keeps record of each variable’s type and uses this infor-
mation to generate automatically type-check conditions that must be discharged
to complete a proof.

The above listings are the axiomatic part of the theory, i.e., the declarations
needed to formalize the problem at hand. The verification part involves writing
lemmas to be proved, stating the desired properties. In this case, it must be
proved that the three values proposed as eigenvalues are indeed roots of the
characteristic polynomial, and that they are real and nonpositive.

The correctness of J0 is expressed by this lemma:

J_0_lem: LEMMA

d(t) = 0 and theta(t) = 0 implies J_0(sigma, d, theta, t)

which is proved introducing two simple lemmas on the values of the sine and
cosine functions at zero and applying the assert rule.

From the form of the candidate eigenvalues λ1 and λ2, it is clear that k and
V must satisfy k ≥ 2V for the eigenvalues to be real. We may note that if this
constraint is overlooked (as might happen in a more complex case), interactive
theorem proving can help discover it. In fact, let us try to prove the following:

8

eigenvals: LEMMA % FIRST ATTEMPT

char_J(lam_1) = 0 and char_J(lam_2) = 0 and char_J(lam_3) = 0

The proof does not succeed, but the failure shows clearly what is missing, since
several steps in the attempted proof generate this unsolvable goal:

k*k >= 4*(V*V)

i.e., the condition on k and V required to have real-valued eigenvalues, which
can then be introduced in the eigenvals lemma:

eigenvals: LEMMA k > 2*V implies

char_J(lam_1) = 0 and char_J(lam_2) = 0 and char_J(lam_3) = 0

The above lemma is used as a step to prove the conclusive lemma on local
stability (labeled as a theorem just to set it aside from the preliminary steps):

local_stability: THEOREM k > 2*V implies

char_J(lam_1) = 0 and char_J(lam_2) = 0 and char_J(lam_3) = 0

and lam_1 < 0 and lam_2 < 0

The proof of both lemmas is straightforward, relying mostly on basic sequent
transformations, expansion of definitions, and algebraic manipulations. The
latter play a major role in the proof, and are carried out with dedicated rules
from the manip package [7], simple lemmas from the prelude or the NASALIB
libraries, or ad hoc lemmas that are proved with the grind rule.

6 Co-Simulation

In order to co-simulate the vehicle system, the control law has been expressed
as a PVS theory executed by PVSio and the kinematics have been modeled and
simulated with Simulink. The two simulations are coordinated by a module em-
bedded in the Simulink model as an S-function, i.e., a user-defined block written
in Matlab or, in this case, in C. More precisely, the Simulink model is composed
of two subsystems: the vehicle kinematics and an S-function block that spawns
the PVSio process executing the control law theory and then manages the com-
munication between PVSio and Simulink.

6.1 Simulink Model of the Plant

Figure 2 shows the complete Simulink model, where the controller block pro-
duces the ω and v inputs to the kinematics block. The outputs of the latter are
fed back to the controller, which also takes as input the parameters ψc and y0
defining the target line.

The co-simulation is driven by the Simulink engine. At the beginning, the
controller opens two Unix pipes for bidirectional communication with PVSio
and spawns a PVSio process. At each subsequent simulation step, the controller
block submits a request to evaluate a step function (explained below) for the

9

y_0

psi_c

Scope

x

y

psi

controller

v v

omega

kinematics

x

y

psiomega

Figure 2: Co-simulation model.

current state. The interpreter’s reply is parsed to extract the computed values
of ω and v, which are returned to the Simulink engine.

The kinematics of the vehicle are modeled in Simulink as shown in Fig. 3.
The turning speed ω is integrated to obtain the yaw angle ψ, which is fed to
the blocks computing sine and cosine, their outputs are multiplied by the linear
speed v, and the result is integrated to obtain the coordinates x and y.

1
s

cos

sin

psi

X
1
s

x

X
1
s

y

v

omega

Figure 3: Kinematics model in Simulink.

6.2 PVS Model of the Controller

In the previous sections, the partial derivatives of the generating functions have
been expressed directly in the PVS notation and used for verification. In order
to simulate the behavior of the controller, i.e., to produce a sequence of values
for ω corresponding to discrete instants, we must represent the controller as a
transition system whose state changes at each step according to the specified
control law. This is done by defining a state data structure containing the
instantaneous values of all the variables, and a step function that updates the
state.

At each simulation step, the controller Simulink block reads the values of
x, y, and ψ from the kinematics block, composes a state record containing
this information along with other parameters, and encodes the record into an
application expression of the step function. The PVSio interpreter evaluates the

10

k = 0.5

p(0) = (−14,−14)

ψ(0) = π/2

Figure 4: Example simulation, k = 0.5.

new value of ω according to the control law, and inserts it in the updated state,
which is returned to the controller block on the Simulink side.

The controller is defined by the controller theory:

controller : THEORY BEGIN

IMPORTING stdmath

State : TYPE = [#

y: real, x: real, psi: real, % inputs

y_0: real, psi_c: real, % target line

k: real, v: real, % parameters

w: real #] % output

sinc(angle: real) : real =

IF (angle = 0) THEN 1.0 ELSE SIN(angle)/angle ENDIF

This theory uses the stdmath prelude theory, providing executable definitions
of various functions, such as SIN and COS, to be used for simulation or proto-
typing purposes. These functions are logically equivalent to the corresponding
functions, such as sin and cos, axiomatically defined in the NASALIB theories
for verification purposes.

The state record type contains the vehicle coordinates and yaw angle com-
ing from the Simulink side, the parameters of the target line, the control law
parameters, and the turning speed to be sent to the Simulink side. The step
function uses the input and parameter fields of the state record to compute the
new value of ω and replace the previous one in a new copy of the record:

step(s:State): State = s WITH [w := -(y(s)*COS(psi_c(s))

11

- x(s)*SIN(psi_c(s)) - y_0(s)*COS(psi_c(s)))

v(s)(sinc(psi(s)-psi_c(s))) - k(s)*(psi(s) - psi_c(s))]

In the above code, expressions like y(s) or psi c(s) denote the values of the fields
y or psi c of the state record s. The expression s WITH [w := . . .] denotes a
copy of s, where the value of field w is replaced by a new value. Please note that,
in spite of its assignment-like appearance, this expression is purely declarative:
It is the PVSio ground evaluator that turns this declaration into executable
code. The function applications produced by the Simulink controller block are
similar to the following:

step((#y:=1,x:=0,psi:=0,y_0:=0,psi_c:=0,k:=0.5,v:=0.1,w:=0#));

Such expressions are generated by the S-function in the Simulink model and
sent to the PVSio interpreter, which returns a string with a similar syntax, sent
back to Simulink and parsed by the S-function.

It can be seen that the theory defining the controller is extremely simple.
The relevant fact is that the controller theory used for co-simulation relies on the
same control law as the one used for verification, without any need of translating
it from one language (PVS) to another (Simulink), and therefore without any
need of checking the equivalence between two forms of the same law.

6.3 Examples of Co-Simulation

The co-simulation model has been exercised by varying the parameters of the
target line and of the control law, and the initial position and orientation of the
vehicle. For example, Fig. 4 shows the path of the vehicle starting at (−14,−14)
with ψ(0) = π/2 and approaching a straight line with ψc = π/4 and y0 = 5. The
control law parameters are k = 0.5 and v = 0.2. If parameter k is reduced to
0.05, the resulting trajectory has an oscillating transient, as shown in Fig. 5(a).
In Fig. 5(b), the starting point is (−10, 5) with ψ(0) = 0.

7 Conclusions

This paper proposes an approach to CPS development integrating co-simulation
and formal verification, using a simple case study to provide a concrete example.
The key concept is that both (co-)simulation and formal verification are neces-
sary in this type of systems, and that both techniques can take advantage of
environments where the same formalism is used to produce declarative models
that can be both verified and executed. In this paper, it has also been shown
how a PVS model can be co-simulated together with heterogeneous models.

In the case study reported in this paper, the higher-order language of the
Prototype Verification System was used to model a simple autonomous vehi-
cle and to specify its required behavior. The model of the vehicle consists in
two parts: its kinematics and its control law. The theory defining the vehi-
cle and its requirements has been used to verify that the control law complies

12

k = 0.05

p(0) = (−14,−14)

ψ(0) = π/2

(a)

k = 0.05

p(0) = (−10, 5)

ψ(0) = 0

(b)

Figure 5: Example simulations, k = 0.05.

with the requirements, provided that its parameters satisfy a relation needed in
the proof. Concurrently, the control law has been used to build an executable
model of the controller, which has been co-simulated with a Simulink model
of the plant, i.e., the vehicle’s kinematics, thus providing a validation of the
verification results. For example, simulations have shown the system’s behavior

13

when the verification’s assumptions are violated. This procedure has two useful
consequences: (i) Using exactly the same controller model for verification and
simulation avoids the effort both of producing two models of the same controller
and of proving their equivalence; and (ii) having different plant models for ver-
ification and simulation makes it possible to cross-check the two models. This
case study has convinced the authors that interactive theorem proving can be
used effectively and efficiently in the development of CPSs. Another relevant
aspect of the case study is the co-simulation framework. In this case, integra-
tion of PVSio and Simulink has been achieved quite simply by embedding the
PVSio interpreter in the Simulink model, using the S-function feature and the
operating system primitives for process management and communication. More
general approaches can be used, such as, e.g., the Functional Mockup Interface
standard [5] used in the INTO-CPS tool [14], or the PVSio-web framework [21].

References

[1] C. Bernardeschi, L. Cassano, A Domenici, and L. Sterpone. ASSESS: A
Simulator of Soft Errors in the Configuration Memory of SRAM-Based FP-
GAs. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 33(9):1342–1355, Sept 2014.

[2] Cinzia Bernardeschi, Luca Cassano, Mario G.C.A. Cimino, and Andrea
Domenici. GABES: a Genetic Algorithm Based Environment for SEU
Testing in SRAM-FPGAs. Journal of Systems Architecture, 59(10, Part
D):1383–1254, 2013.

[3] Cinzia Bernardeschi and Andrea Domenici. Verifying safety properties of a
nonlinear control by interactive theorem proving with the Prototype Veri-
fication System. Information Processing Letters, 116(6):409–415, 2016.

[4] Cinzia Bernardeschi, Andrea Domenici, and Paolo Masci. A PVS-Simulink
Integrated Environment for Model-Based Analysis of Cyber-Physical Sys-
tems. IEEE Transactions on Software Engineering, PP(99):1–1, 2017.

[5] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß, H. Elmqvist,
A. Junghanns, J. Mauß, M. Monteiro, T. Neidhold, D. Neumerkel, H. Ols-
son, J.-V. Peetz, and S. Wolf. The Functional Mockup Interface for Tool
independent Exchange of Simulation Models. In Proc. of the 8th Inter-
national Modelica Conference, pages 105–114. Linköping University Elec-
tronic Press, 2011.

[6] Victor Carreño and César Muñoz. Aircraft trajectory modeling and alert-
ing algorithm verification. In Mark Aagaard and John Harrison, editors,
Theorem Proving in Higher Order Logics, volume 1869 of Lecture Notes in
Computer Science, pages 90–105. Springer Berlin Heidelberg, 2000.

[7] Ben Di Vito. Manip User’s Guide, Version 1.3. retrieved 8/18/2015.

14

[8] Bruno Dutertre. Elements of mathematical analysis in PVS. In Gerhard
Goos, Juris Hartmanis, Jan van Leeuwen, Joakim von Wright, Jim Grundy,
and John Harrison, editors, Theorem Proving in Higher Order Logics, vol-
ume 1125 of Lecture Notes in Computer Science, pages 141–156. Springer
Berlin Heidelberg, 1996.

[9] John S. Fitzgerald, Peter Gorm Larsen, and Marcel Verhoef. Vienna De-
velopment Method. John Wiley & Sons, Inc., 2007.

[10] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André
Platzer. KeYmaera X: An axiomatic tactical theorem prover for hybrid
systems. In International Conference on Automated Deduction, pages 527–
538. Springer, 2015.

[11] Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and
Hans Vangheluwe. Co-simulation: State of the art. ACM Computing Sur-
veys, 2017, to appear.

[12] Hanne Gottliebsen. Transcendental Functions and Continuity Checking in
PVS. In Mark Aagaard and John Harrison, editors, Theorem Proving in
Higher Order Logics, volume 1869 of Lecture Notes in Computer Science,
pages 197–214. Springer Berlin Heidelberg, 2000.

[13] Dean Karnopp and Ronald Rosenberg. Analysis and simulation of multiport
systems; the bond graph approach to physical system dynamics. M.I.T.
Press, Cambridge, MA, USA, 1968.

[14] P. G. Larsen, J. Fitzgerald, J. Woodcock, P. Fritzson, J. Brauer, C. Kleijn,
T. Lecomte, M. Pfeil, O. Green, S. Basagiannis, and A. Sadovykh. Inte-
grated tool chain for model-based design of Cyber-Physical Systems: The
INTO-CPS project. In 2016 2nd International Workshop on Modelling,
Analysis, and Control of Complex CPS (CPS Data), pages 1–6, April 2016.

[15] Peter Gorm Larsen, Carl Gamble, Kenneth Pierce, Augusto Ribeiro, and
Kenneth Lausdahl. Support for Co-modelling and Co-simulation: The
Crescendo Tool, pages 97–114. Springer, 2014.

[16] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing
models of computation. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 17(12):1217–1229, Dec 1998.

[17] Paolo Masci, Patrick Oladimeji, Yi Zhang, Paul Jones, Paul Curzon, and
Harold Thimbleby. PVSio-web 2.0: Joining PVS to HCI. In Daniel
Kroening and S. Corina Păsăreanu, editors, Computer Aided Verifica-
tion: 27th International Conference, CAV 2015, Proceedings, Part I,
pages 470–478. Springer International Publishing, 2015. Tool available at
http://www.pvsioweb.org.

15

[18] C. Muñoz. Rapid prototyping in PVS. Technical Report NIA 2003-03,
NASA/CR-2003-212418, National Institute of Aerospace, Hampton, VA,
USA, 2003.

[19] César Muñoz, Anthony Narkawicz, George Hagen, Jason Upchurch, Aaron
Dutle, and Maŕıa Consiglio. DAIDALUS: Detect and Avoid Alerting Logic
for Unmanned Systems. In Proceedings of the 34th Digital Avionics Systems
Conference (DASC 2015), Prague, Czech Republic, September 2015.

[20] S. H. Attarzadeh Niaki and I. Sander. Co-simulation of embedded systems
in a heterogeneous MoC-based modeling framework. In 2011 6th IEEE
International Symposium on Industrial and Embedded Systems, pages 238–
247, June 2011.

[21] Patrick Oladimeji, Paolo Masci, Paul Curzon, and Harold Thimbleby.
PVSio-web: a tool for rapid prototyping device user interfaces in PVS. In
FMIS2013, 5th International Workshop on Formal Methods for Interactive
Systems, London, UK, June 24, 2013, 2013.

[22] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas. PVS: combining
specification, proof checking, and model checking. In R. Alur and T.A.
Henzinger, editors, Computer-Aided Verification, CAV ’96, number 1102
in LNCS, pages 411–414. Springer-Verlag, 1996.

[23] S. Owre, J. Rushby, N. Shankar, and M. Srivas. A tutorial on using PVS
for hardware verification. In R. Kumar and T. Kropf, editors, Theorem
Provers in Circuit Design (TPCD ’94), number 901 in LNCS, pages 258–
279. Springer-Verlag, 1997.

[24] André Platzer. Logics of dynamical systems. In Proceedings of the 2012
27th Annual IEEE/ACM Symposium on Logic in Computer Science, LICS
’12, pages 13–24, Washington, DC, USA, 2012. IEEE Computer Society.

[25] William H. Sanders and John F. Meyer. Stochastic activity networks: for-
mal definitions and concepts. In Lectures on formal methods and perfor-
mance analysis: first EEF/Euro summer school on trends in computer sci-
ence, pages 315–343. Springer-Verlag New York, Inc., New York, NY, USA,
2002.

[26] Raymond Merrill Smullyan. First-order logic. Dover publications, New
York, 1995.

16

