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Abstract—A cognitive radio scenario is considered where the
signals transmitted by a secondary user (SU) are relayed by
multi-antenna relays using an amplify-and-forward cooperation
protocol. In this paper, the optimal power allocation and beam-
forming scheme is derived for the SU transmitters (SU-TXs)
which minimizes the exact outage probability of the SU network
with relay selection, under both a transmit power constraint
and a constraint on the interference power generated at every
primary user receiver. After deriving the optimal structure of
the beamforming matrix, several distributed resource allocation
algorithms are obtained for different levels of channel state
information (CSI) at the SU-TXs: perfect CSI and imperfect
CSI are considered, along with the case where only channel
distribution information (CDI) is available. The numerical results
show that the multi-antenna relays can significantly improve
the performance of the SU network, which would otherwise be
severely limited by the harsh interference constraints. Further,
we also investigate how the number of relays, the number of
antennas and the level of CSI impact the performance of the
SU network. Finally, we point out that the proposed algorithms
outperform several algorithms presented in literature.

Index Terms—Cognitive Radio, Cooperative Communications,
Distributed Power allocation, Optimization

I. INTRODUCTION

COGNITIVE radio (CR) has been recently recognized
as the key to tackle the demanding problems of both

scarcity and inefficient utilization of the frequency spectrum
[1], [2]. The basic idea behind the CR access framework
consists of allowing unlicensed users or secondary users (SUs),
to transmit over frequency bands owned by licensed users,
or primary users (PUs). One way to achieve this goal is the
underlay paradigm. In this scenario, the SU transmitter (SU-
TX) may occupy the same frequency band and time slot as
the PUs. However, the SU-TX has to adapt its transmission
parameters (TPs) with the aim of keeping the interference
level at the PU receivers (PU-RXs) below a given threshold
depending on the required quality of service (QoS) of the
PU network [3]–[5]. The underlay paradigm requires only a
reduced (or null) cooperation between the SU and PU network
and leads to a more efficient utilization of the spectrum,
though the price to be paid is that the interference level
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constraints to be met at the PU-RX limit the achievable data
rate performance.

In [6]–[8], a possible solution to alleviate the effect of the
interference level constraints on the achievable data rate is
proposed: the SU-TXs are equipped with multiple antennas to
balance between optimizing the SU performance and avoiding
interference to the PU-RXs, thus paving the way to the so-
called cognitive beamforming (CB) concept. In [6], the MIMO
channels from the SU-TX to the SU-RX and PU-RXs are
assumed to be perfectly known at the SU-TX. However, this
assumption is quite unrealistic since the PU and SU units
belong to independent networks, which implies a loose, or
even absence of, cooperation between them. In [7], a more
robust CB design is proposed which assumes that only the
mean and covariance matrix of the MISO channel between
the SU-TX and the PU-RX are available due to the loose
cooperation between the SU and PU. Robustness is provided
by keeping the interference to the PU-RX below a threshold
for all realizations of the channel between the SU-TX and the
PU-RX within a given uncertainty set. This robust design is
extended to a multi-user scenario in [8], where, in addition
to the interfering channels, also the channel state information
(CSI) about the SU channels is assumed to be imperfect.

In [9], it is shown that cooperative relaying can also
be successfully used in CR networks to reduce the outage
probability of the SU network. Although the design of a multi-
antenna relay node (RN) in a non-cognitive system was already
investigated in [10], [11], the design of multi-antenna RNs in a
cognitive setting is still under study. The design of the optimal
beamforming matrix for a multi-antenna RN is presented in
[12]. Therein, it is assumed that the RNs are equipped with
multiple antennas, while the PU-RXs, SU source node (SN)
and destination node (DN) are all equipped with only a single
antenna. In [13] and [14], the scenario is extended to the case
where all the nodes of the PU and SU network are equipped
with multiple antennas. In [14], the beamforming matrices
for both the SN and RN are jointly optimized in order to
maximize the throughput of the SU network. However, the
proposed centralized solution requires perfect CSI (PCSI) of
all the SU channels, as well as the interfering channels to the
PU network. The assumption of PCSI about all the channels
in a cooperative network is not realistic, because of estimation
errors and feedback delays in a fast-fading channel. A more
realistic algorithm is proposed for a multi-antenna RN in [15],
where the available CSI about the channels to the DN and the
PU-RXs is assumed to be imperfect.
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Motivation and Contributions. This paper addresses the de-
sign of a distributed resource allocation (RA) algorithm which
minimizes the exact outage probability of a single-carrier SU
network based on multi-antenna RNs operating in an amplify-
and-forward (AF) mode in an underlay scenario. Our aim, is
to extend our previous works [16]–[18] by considering fixed
RNs equipped with multiple transmit and receive antennas.
More specifically, first we show that the optimal CB matrix
at the RN, considered in [12], [15], can be reduced to a CB
vector. Then, in contrast with [12], [15], the presence of the
SN to DN link is exploited as well and the PU-RXs can also
be equipped with multiple receive antennas.

Further, an additional contribution of the paper is to op-
timize the SU network taking into account different levels
of CSI available at the SU-TX, (independently) for both the
SU-TXs to PU-RXs interference channels and the channels
toward the DN; these levels are: i) PCSI, ii) imperfect CSI
(ICSI), iii) channel distribution information (CDI). The pro-
posed approach allows to trade off the above levels of CSI,
requiring different complexity and message exchange, against
the achievable outage probability under the given interference
constraints at the PU-RXs. By deriving different algorithms
which depend on the available level of CSI, we extend the
robust approach used in the single-hop scenarios from [7], [8]
to a cooperative multi-antenna multi-relay scenario.

Finally, we stress the following facts about the proposed
RA algorithms: i) they minimize the exact outage probability
instead of an approximation as in [17]–[19]; ii) they are
distributed, thus meaning that each node of the SU network
can independently optimize its TPs. The latter results in more
practical algorithms when compared to the more general yet
centralized algorithms proposed in [14]; iii) in the numerical
results, they are shown to have a clear performance benefit
over other already existing algorithms, introduced in [15], [20].

Organization. Section II describes the system model and the
performance metric. Section III introduces the RA problem by
presenting the constraints and the objective function. Section
IV presents the optimal CB matrix and derives the optimal TPs
for the different levels of CSI. Section V shows the numerical
results, while Section VI concludes the paper.

Notations. Denoting by x a column vector, the quantities
xT , x∗, xH and ||x|| refer to the transpose, the conjugate,
the conjugate transpose and the norm of x, respectively.
z ∼ Nc(0,Σ) indicates that z is a zero-mean circularly
symmetric complex Gaussian random variable (RV) with
covariance matrix Σ. E [.], In, ⊗ and ∠z denote statistical
expectation, n × n identity matrix, the Kronecker product
and the phase angle of a complex scalar z, respectively. The
operator vec(X) produces a vector that contains the columns
of the matrix X, stacked below each other.

II. SYSTEM MODEL

A. The cooperative network
The CR scenario we consider is based on a single-carrier SU

network, consisting of a SN, a DN and M AF RNs. We also
assume that NPU PU-RXs are active in the same bandwidth. In
Fig. 1, we present a CR network that is typical for device-to-
device communications [15]: the SN and the DN are equipped

Fig. 1. The cognitive radio relay network.

with a single antenna, while the RNs have Na transmit/receive
antennas. It represents, for example, a scenario where two
mobile phones can communicate directly with the help of the
(multi-antenna) basestation of a femtocell. The PU-RXs have
K receive antennas.

We assume that all wireless channels are flat fading. Sim-
ilarly as in [12]–[15], the channel gains are assumed to be
zero-mean circularly symmetric complex Gaussian RVs. The
variables hs,d ∈ C, hs,r(m) ∈ CNa×1 and hr,d(m) ∈ CNa×1,
indicated in Fig. 1, denote the channel gains between the SN
and the DN, between the SN and the Na receive antennas
of the mth RN, and between the Na transmit antennas of
the mth RN and the DN, respectively. In the sequel we
make use of the covariance matrix of hr,d(m), defined as
Rh(m)

∆
= E

[
hr,d(m)hr,d(m)H

]
. The coefficients of the

Rayleigh-fading interference channels from the SN to the pth
PU-RX and from the mth RN to the pth PU-RX will be
denoted by gs,p ∈ CK×1 and Gr,p(m) ∈ CNa×K , respec-
tively, with respective covariance matrices Rs,p

∆
= E[gs,pg

H
s,p]

and Rr,p(m)
∆
= E

[
ḡr,p(m)ḡr,p(m)H

]
, where ḡr,p(m) =

vec(Gr,p(m)) (m = 1, . . . ,M ; p = 1, . . . , NPU).
In the first time slot, the SN transmits the symbol x, with

E[|x|2] = 1, to the DN and the M RNs. The signals received
by the DN and the mth RN, are expressed as1

ys,d =
√
E0hs,dx+ ns,d (1)

ys,r(m) =
√
E0hs,r(m)x+ ns,r(m), m = 1, . . . ,M (2)

where E0 denotes the transmit energy per symbol used by the
SN, and the noise terms ns,d and ns,r(m) are distributed as
Nc(0, σ

2
s,d) and Nc(0, σ2

s,r(m)INa
), respectively.

In the second time slot, the DN selects the RN which yields
the highest SNR at the DN [19], and the selected mth RN,
m = 1, . . . ,M , multiplies its received signal by a CB matrix
F(m) ∈ CNa×Na and forwards it to the DN. The signal
received by the DN from the mth RN can be written as

yr,d(m) = hr,d(m)TF(m)ys,r(m) + nr,d(m) (3)

where the noise vector nr,d(m) ∼ Nc(0, σ
2
r,d(m)). Further,

the average transmit energy per symbol Em of the mth RN is
given by

Em = E0‖F(m)hs,r(m)‖2 + σ2
s,r(m)‖F(m)‖2. (4)

1The interference from the PU-TXs can be included by increasing the
variance of the different noise terms [7].



3

B. The performance metric

The metric that will be used to quantify the performance of
the SU network is the link outage probability Pout between
the SN and the DN [21], defined as

Pout
∆
= Pr{C ≤ R} (5)

where the rate R is the average number of information bits per
channel use and C is the instantaneous capacity of the SN-DN
channel (including the selected relay channel). We note that
the optimization of the outage probability Pout is beneficial
for applications, such as video transmission, where the data
rate is fixed, as this increases the reliability of the system, at
the expense of additional throughput.

The SNR at the DN associated with the mth RN is given
by

ηm =
E0|hr,d(m)TF(m)hs,r(m)|2

σ2
s,r(m)‖hr,d(m)TF(m)‖2 + σ2

r,d(m)
. (6)

At the DN, the best RN is selected, i.e., the one yielding the
larger SNR ηm [19]. To make this possible, the SU network
has to use a periodic training interval, which allows all the
RNs to transmit separately. This will allow the SU DN to
measure the SNRs ηm of the different RNs (m = 1, . . . ,M ).

Hence, after the second time slot (with only one RN
transmitting out of M ), maximum ratio combining (MRC)
of the signals received from the SN and the selected RN
is applied. The overall received SNR at the DN of the AF
cooperative network after MRC yields

η = η0 + max
m∈{1,...,M}

ηm (7)

where η0 = E0 |hs,d|2/σ2
s,d. Thus, the corresponding instan-

taneous channel capacity (in bit per channel use) can be
expressed as C = (1/2) log2(1 + η). This leads to

Pout = Pr{η ≤ 22R − 1} (8)

where η depends on E0, the CB matrices {F(m), m =
1, ...,M} and all channel gains hs,d, {hs,r(m), m = 1, ...,M}
and {hr,d(m), m = 1, ...,M} from the SU network.

III. RESOURCE ALLOCATION

The RA consists of dynamically selecting the transmit
energy E0 at the SN and the CB matrix F(m) at the mth
RN (m = 1, . . . ,M ) such that Pout (8) is minimized, under
transmit energy constraints at the SU-TXs, and interference
constraints at the PU-RXs. The objective function and the
constraints depend on the level of available CSI.

A. Available channel information

Considering a generic vector f of channel gains, PCSI refers
to the case where the realization of f is known. In the case
of ICSI, one has access only to an estimate f̂ of f , and to the
covariance matrix Re of the corresponding estimation error
e = f − f̂ ; the error is caused by noise and/or feedback
delay (see Appendix B). In the case of CDI, only the channel
covariance matrix Rf is known.

We assume that the RNs and the DN always have
PCSI regarding their receiving channels, i.e., the mth

RN and the DN know the realizations of hs,r(m) and(
hs,d,hr,d(m)TF(m)hs,r(m)

)
, respectively (m = 1, . . . ,M ).

In order to perform the MRC, the DN also has to know the
noise variances σ2

s,d and σ2
s,r(m)‖hr,d(m)TF(m)‖2 +σ2

r,d(m)
which correspond to the signals received from the SN and from
the selected RN, respectively.

PCSI of the interference and transmission channels is much
harder to obtain in a time-varying environment, because it
requires feedback from the other SU nodes or even from the
PU network. Therefore, we will consider the optimization of
Pout for the cases where the SN and the RNs have PCSI,
ICSI or CDI regarding their interference channels (gs,p and
{Gr,p(m), m = 1, . . . ,M}, respectively) to the PU-RXs and
regarding their transmission channels ({hs,d, hs,r(m), m =
1, . . . ,M} and {hr,d(m), m = 1, . . . ,M}, respectively); later
on, we will point out that the SN needs no knowledge about
its transmission channels.

B. Transmit energy constraints

We impose the following constraint on the transmit energy
of the SN

0 ≤ E0 ≤ E(max)
0 (9)

while the transmit energy of the mth RN (m = 1, . . . ,M ) is
constrained by

0 ≤ Em ≤ E(max)
m (10)

where Em is given by (4). In the above, E(max)
m denotes the

maximal transmit energy per symbol that the mth SU node
(m = 0, . . . ,M ) is able or allowed to transmit.

C. The interference constraints

Denoting by Is,p and Ir,p(m) the interference at the pth
PU-RX (p = 1, . . . , NPU) caused by the SN and the mth RN,
respectively, we have

Is,p = E0‖gs,p‖2 (11)

Ir,p(m) = E0‖Gr,p(m)TF(m)hs,r(m)‖2

+ σ2
s,r(m)‖Gr,p(m)TF(m)‖2. (12)

According to the underlay paradigm, the interference at the
PU-RXs should be below a given interference threshold Γ.
The formulation of these interference constraints depends upon
the level of CSI that is available at the transmitting nodes
about their channel gains to the PU-RXs. In practice it will
be very difficult for the SU network to obtain PCSI about the
channel gains towards the PU-RXs. For this reason, we will
also consider ICSI and CDI.

Theoretically, the knowledge about the CSI or CDI related
to the interference channels can come directly from the PU;
practically, it will be provided by a centralized spectrum man-
ager which continuously monitors the frequency bandwidth of
interest [5].
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1) Interference constraints with PCSI: When PCSI is avail-
able at the corresponding transmitting node, the interference
constraints to be met by the SN and the mth RN, m =
1, . . . ,M , are expressed as

Is,p ≤ Γ, p = 1, . . . , NPU (13)

Ir,p(m) ≤ Γ, p = 1, . . . , NPU (14)

where Is,p and Ir,p(m) are given by (11) and (12), with gs,p

and Gr,p(m) denoting the actual channel realizations.
2) Interference constraints with ICSI: Here we assume that

the CSI at each SU-TX about its channel gain to the pth PU-
RX is imperfect. Similar to f̂ in (65), the variables ĝs,p and
ˆ̄gr,p(m) denote the estimates of gs,p and ḡr,p(m), respectively.

Based on the instantaneous channel gain given by (65), we
define for given ĝs,p, Bs,p, ˆ̄gr,p(m) and Br,p(m) the following
ellipsoid channel uncertainty sets [7]

Us,p(ĝs,p,Bs,p)
∆
=
{
gs,p : gs,p = ĝs,p + Bs,pεs,p, ‖εs,p‖2 ≤ 1

}
(15)

Ur,p(ˆ̄gr,p(m),Br,p(m))
∆
= {ḡr,p(m) :

ḡr,p(m) = ˆ̄gr,p(m) + Br,p(m)εr,p(m), ‖εr,p(m)‖2 ≤ 1
}
(16)

where εs,p ∈ CK×1 and εr,p(m) ∈ CKNa×1. The variables
ĝs,p and ˆ̄gr,p(m) denote the center of the ellipsoids, while the
variables Bs,p and Br,p(m) determine their shape. We now
choose Bs,p and Br,p(m), m = 1, . . . ,M , as

Bs,p =

√
χ2
α(2K)

2
R

1
2
e,s,p (17)

Br,p(m) =

√
χ2
α(2KNa)

2
Re,r,p(m)

1
2 (18)

where Re,s,p and Re,r,p(m) denote the error covariance matrix
Re from Appendix B, corresponding to the substitutions
f = gs,p and f = ḡr,p(m), respectively, and χ2

α(l) denotes the
α-percentile of the χ2-distribution with l degrees-of-freedom.
For the above values of Bs,p and Br,p(m), the actual channel
gains gs,p and ḡr,p(m) belong with probability α to their
respective sets Us,p(ĝs,p,Bs,p) and Ur,p(ˆ̄gr,p(m),Br,p(m)).
Hence, the task of the SU network is that of ensuring that the
interference constraints (13)-(14) hold for every channel gain
in Us,p(ĝs,p,Bs,p) and Ur,p(ˆ̄gr,p(m),Br,p(m)). The parameter
α denotes the desired level of robustness, namely the minimum
probability for which the interference constraints (13)-(14)
hold. Thus, the resulting interference constraints are expressed
as

Is,p ≤ Γ, p = 1, . . . , NPU ,

∀gs,p ∈ Us,p(ĝs,p,Bs,p) (19)
Ir,p(m) ≤ Γ, p = 1, . . . , NPU,

∀ḡr,p(m) ∈ Ur,p(ˆ̄gr,p(m),Br,p(m)). (20)

3) Interference constraints with CDI: In this case, we fol-
low the same approach as in Section III-C2. The interference
constraints are the same as in equations (19)-(20), but the
channel uncertainty sets (15)-(16) are slightly modified. The
values of the estimated channel gains are now fixed to the

mean of the actual channel gains, i.e., ĝs,p = E [gs,p] = 0
and ˆ̄gr,p(m) = E [ḡr,p(m)] = 0, while Bs,p and Br,p(m),
m = 1, . . . ,M , are selected as

Bs,p =

√
χ2
α(2K)

2
R

1
2
s,p (21)

Br,p(m) =

√
χ2
α(2KNa)

2
Rr,p(m)

1
2 (22)

where Rs,p and Rr,p(m) were introduced in Section II-A.

D. The objective function

The aim of the RA is to minimize the link outage probability
(8) by dynamically allocating the SN transmit energy E0 and
the RN beamforming matrices F(m) (m = 1, ...,M). Let
us stack all channel gains from the SU network (i.e., hs,d,
{hs,r(m), m = 1, ...,M} and {hr,d(m), m = 1, ...,M}) into
the vector hSU. Denoting by CSI the channel information
which is available at the SN and the RNs regarding the
channel vector hSU, the minimization of Pout is equivalent
with choosing the value of E0 and F(m) (m = 1, ...,M)
which minimizes

Pr{η ≤ 22R − 1|CSI} (23)

for a given value of CSI. Although we have presented the
objective function in a centralized manner, it will be demon-
strated in Section IV that for some types of CSI the resulting
RA algorithms are distributed: each node only needs CSI about
its own channel gains to calculate its TPs; for the other types
of CSI where the optimum RA algorithm is centralized, also
a (suboptimum) distributed algorithm will be derived.

IV. MINIMIZATION OF THE LINK OUTAGE PROBABILITY

In this section several distributed algorithms will be pro-
posed to minimize the outage probability Pout of the SU
network over the transmit energy E0 and the beamforming
matrices F(m) (m = 1, . . . ,M ) under the interference and
transmit power constraints.

In IV-A, we start by pointing out that the optimum beam-
forming matrix F(m) performs MRC of the received signals
followed by beamforming which is described by a beam-
forming vector v(m). This result simplifies the expression of
the transmission and interference constraints, and it becomes
clear that the constraints on E0 and F(m) (m = 1, . . . ,M )
are independent from each other. The independence of the
constraints, together with the observation that the outage
probability Pout (8) is a monotonically decreasing function
of E0, allows to separate the optimization of E0 from the
optimization of F(m) (m = 1, . . . ,M ). It is quite obvious
that the optimization problem (OP) of the SN reduces to
the constrained maximization of the transmit energy E0,
irrespective of the level of CSI available at the SN regarding
its transmission channel gains. This constrained maximization
of E0 is considered in Section IV-B. Next, the beamforming
vector v(m) is optimized in Section IV-C, making a distinction
between the different levels of channel information available
at the RNs about the channel gains towards the DN. For each
of these cases, we also consider three levels of CSI (PCSI,
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ICSI, CDI) for the interference channels, yielding a total of 9
combinations.

A. Structure of optimal beamforming matrix

The following theorem shows that the optimal beamforming
matrix F(m) has a specific structure, which is valid irre-
spective of the channel knowledge at the RNs regarding their
interference channels and channels to the DN.

Theorem 1. Assuming the mth RN has a perfect knowledge
of its channel vector hs,r(m) from the SN, the optimal beam-
forming matrix F(m), which minimizes the outage probability
under the transmit constraint (10) and the interference con-
straints that correspond to the level of available information
on the interference channels, has the following structure

F(m) =
v(m)∗hs,r(m)H/‖hs,r(m)‖√
E0‖hs,r(m)‖2 + σ2

s,r(m)
(24)

where v(m) ∈ CNa×1 can be any complex vector.

Proof: See Appendix A.
It should be noted that the normalization present in the

denominator of (24) implies that the RN has to determine
the average received energy per symbol for every frame. It
follows from (24) that the signal F(m)ys,r(m) transmitted by
the mth RN can be expressed as v(m)∗zs,r(m), where v(m)
is a beamforming vector (to be further optimized), and

zs,r(m) =
hs,r(m)Hys,r(m)

‖hs,r(m)‖
√
E0‖hs,r(m)‖2 + σ2

s,r(m)
(25)

results from applying MRC of the signals received by the mth
RN, followed by the proper scaling.

By substituting (24) in (4), (6) and (12), the energy Em,
the SNR ηm and the interference Ir,p(m), m = 1, ...,M , can
be expressed as

Em = ‖v(m)‖2 (26)

ηm =
ηs,r(m)ηr,d(m)

ηs,r(m) + ηr,d(m) + 1
(27)

Ir,p(m) = ‖v(m)HGr,p(m)‖2 (28)

where ηs,r(m) = E0‖hs,r(m)‖2/σ2
s,r(m) and ηr,d(m) =

|v(m)Hhr,d(m)|2/σ2
r,d(m). The constraints involving the op-

timum beamforming matrix F(m) can be expressed in terms
of the beamforming vector v(m). It will be convenient to
introduce the rank-1 matrix S(m)

∆
= v(m)v(m)H . The matrix

S(m) is positive semi-definite, which is denoted as S(m) � 0.
• The transmit constraint (10) at the mth RN (m =

1, . . . ,M ) becomes

‖v(m)‖2 ≤ E(max)
m (29)

or, equivalently,

Tr (S(m)) ≤ E(max)
m . (30)

• The interference constraint (14) to be met by the mth RN
(m = 1, . . . ,M ) in the case of PCSI reduces to

|v(m)HGr,p(m)|2 ≤ Γ, p = 1, . . . , NPU (31)

We transform this constraint into

Tr
(
S(m)Gr,p(m)Gr,p(m)H

)
≤ Γ, p = 1, . . . , NPU.

(32)
• In the case of ICSI, the interference constraint (20) related

to the mth RN (m = 1, . . . ,M ) is given by

|v(m)HGr,p(m)|2 ≤ Γ, p = 1, . . . , NPU,

∀ḡr,p(m) ∈ Ur,p(ˆ̄gr,p(m),Br,p(m))
(33)

with Br,p(m) given by (18). This can be rewritten as

ḡr,p(m)HSK(m)ḡr,p(m) ≤ Γ, p = 1, . . . , NPU,

∀ḡr,p(m) ∈ Ur,p(ˆ̄gr,p(m),Br,p(m)) (34)

where SK(m) = IK ⊗ S(m). Note that for given (m, p)
the constraint on S(m) must be satisfied for a continuum
of interference channel gains. However, we can convert
this constraint by using the following S-lemma [22].
Lemma 1. Let

fj(z) = zHAjz + 2<(bHj z) + cj , j = 1, 2

where z ∈ CN×1, Aj ∈ CN×N is a Hermitian matrix,
bj ∈ CN×1 and cj ∈ R. Suppose that there exists a z0

such that f1(z0) < 0. Then the following two statements
are equivalent:

a) f2(z) ≤ 0 for every z ∈ CN×1 for which f1(z) ≤ 0
b) There exists some λ ≥ 0 such that

λ

(
A1 b1

bH1 c1

)
−
(

A2 b2

bH2 c2

)
� 0. (35)

Defining f1(εr,p(m)) = εr,p(m)Hεr,p(m)− 1 and

f2(εr,p(m)) = εr,p(m)HBr,p(m)HSK(m)Br,p(m)εr,p(m)

+ 2<((Br,p(m)HSK(m)ˆ̄gr,p(m))Hεr,p(m))

+ ˆ̄gr,p(m)HSK(m)ˆ̄gr,p(m)− Γ (36)

we can use the S-lemma to rewrite the interference
constraint (34) for given (m, p) as

Equation (35) where

A1 = IKNa , A2 = Br,p(m)HSK(m)Br,p(m),

b1 = 0, b2 = Br,p(m)HSK(m)ˆ̄gr,p(m),

c1 = −1, c2 = ˆ̄gr,p(m)HSK(m)ˆ̄gr,p(m)− Γ,

λ = λp(m)
(37)

which has to hold for at least one non-negative value of
λp(m).

• In the case of CDI, the constraint related to the mth RN
(m = 1, . . . ,M ) is equal to (33) with Br,p(m) given by
(22) and ˆ̄gr,p(m) = 0, which yields

|v(m)HGr,p(m)|2 ≤ Γ, p = 1, . . . , NPU,

∀ḡr,p(m) ∈ Ur,p(0,Br,p(m)).
(38)
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This is equivalent to(
λp(m)IKNa −Br,p(m)HSK(m)Br,p(m) 0

0 Γ− λp(m)

)
� 0, p = 1, . . . , NPU. (39)

with λp(m) ≥ 0. The latter can be simplified to

Br,p(m)HSK(m)Br,p(m) � ΓIKNa , p = 1, . . . , NPU.
(40)

B. Optimal transmit energy E0

The new formulation of the constraints, shown in Section
IV-A, clearly demonstrates that the optimization of the trans-
mit energy E0 can be separated from the optimization of F(m)
(m = 1, . . . ,M ) without any performance loss. At the SN, the
following OP has to be solvedE

(opt)
0 = arg max

E0

E0

s.t. (9), intf constraints
(41)

where “intf constraints” refers to the relevant interference
constraints corresponding to the level of available knowledge
about the interference channels. As the transmit constraint
is given by (9), the SN needs information only about its
interference channels.

When PCSI about the channel gains to the PU-RXs is
available, the interference constraints (13) yield the following
solution

E
(opt)
0 = min

{
Γ

‖gs,1‖2
, . . . ,

Γ

‖gs,NPU‖2
, E

(max)
0

}
. (42)

When ICSI is available, the interference constraints are
given by (19). Using the lemma 1, this interference constraint
for a given PU-RX p (p = 1, . . . , NPU) can be rewritten as(

λpIK − E0B
H
s,pBs,p −E0B

H
s,pĝs,p

−E0ĝ
H
s,pBs,p Γ− λp − E0‖ĝs,p‖2

)
� 0,

λp ≥ 0.
(43)

The optimal E(opt)
0 is found by solvingE

(opt)
0 = arg max

E0,λ1,...,λNPU

E0

s.t. (9), (43)
(44)

which is a semidefinite program (SDP) that can be solved in
polynomial time using the software package CVX [23].

Finally, when only CDI is available, the solution is obtained
by substituting ĝs,p = 0 in (43), which can be simplified to

E0B
H
s,pBs,p � ΓIK , p = 1, . . . NPU (45)

where Bs,p (p = 1, . . . , NPU) is given by (21). The optimal
E

(opt)
0 is found as

E
(opt)
0 = min

{
Γ

σ2
max(1)

, . . . ,
Γ

σ2
max(NPU)

, E
(max)
0

}
(46)

where σmax(p) is the largest singular value of Bs,p (p =
1, . . . , NPU).

C. Optimal relay beamforming

In this subsection we will discuss the OPs for the different
RNs. A distinction is made between the levels of information
(PCSI, ICSI, CDI) at the RNs about their channel gains to the
DN. We will first introduce the generic OP{

V(opt) = arg min
V

Pr{η ≤ 22R − 1|CSI}

s.t. (29), intf constraints, m = 1, . . . ,M
(47)

where V
∆
= [v(1),v(2), . . . ,v(M)]. Depending upon the

available information on the interference channels, the con-
straint functions (31), (33) or (38) have to be used, for
PCSI, ICSI or CDI, respectively. As the constraints on v(m)
(m = 1, . . . ,M ) are independent, we will show that we can
split OP (47) into M independent subproblems. In order to
demonstrate this, we will assume that the RNs also know
the value of E0 and hs,d; however, it will turn out that this
requirement is unnecessary for most cases. First, we introduce
the conditional cumulative distribution function (CDF)

Fm(x) = Pr {ηm ≤ x|CSI} . (48)

This allows us to rewrite the objective function from OP (47)
as

Pr{ max
m∈{1,...,M}

ηm ≤ 22R − 1− η0|CSI}

=

M∏
m=1

Fm(22R − 1− η0) (49)

where the second step comes from the fact that the channels
to and from the different RNs are assumed to be independent.
The OP for the mth RN becomes (m = 1, . . . ,M )v(m)(opt) = arg min

v(m)
Fm(22R − 1− η0)

s.t. (29), intf constraints
. (50)

It will become clear that this OP is not necessarily concave
[24], which makes it very hard to solve. Therefore, we will
rewrite the OP in terms of the rank-1 positive semi-definite
matrix S(m) = v(m)v(m)H , which yields

S(m)(opt)

= arg min
S(m)�0,λ1(m)≥0,...,λNPU

(m)≥0
Fm(22R − 1− η0)

s.t. (30), intf constraints
(51)

where the interference constraint functions are (32), (37) or
(40). Note that λp(m) only appears as an optimization variable
if (37) is used. Further, we have dropped the rank-1 constraint
Rank(S(m)) = 1, which makes OP (51) a SDP. However, by
dropping the rank constraint, the matrix S(m)(opt) from (51)
in general can have a rank higher than 1. The optimal solution
to OP (50) is only found in the case that Rank(S(m)) = 1.

1) Beamforming with PCSI: In the case where the RNs
have perfect knowledge of their respective channel gains
to the DN, the minimization of the objective function in
(51) becomes equivalent with the maximization of ηm for
the given channel realizations. As ηm is a monotonically
increasing function of

∣∣v(m)Hhr,d(m)
∣∣2, the minimization of
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Fm(22R−1−η0) in (51) can be substituted by the maximiza-
tion of

∣∣v(m)Hhr,d(m)
∣∣2 = Tr

(
hr,d(m)hr,d(m)HS(m)

)
. In

Appendix C, we show that for the three levels of CSI regarding
the interference channels, OP (51) has a rank-1 solution.
Hence, we can write S(m)(opt) = v(m)(opt)v(m)(opt)H , and
v(m)(opt) is the optimal solution of OP (50).

2) Beamforming with ICSI: In the case where the RNs are
assumed to have ICSI on their channel gains to the DN, the
actual channel gain to the DN can be written as

hr,d(m) = ĥr,d(m) + er,d(m) (52)

where er,d(m) ∼ Nc(0,Re(m)) and Re(m) is defined as Re

in Appendix B, with f = hr,d(m).
The corresponding objective function to be minimized is

shown in (50), where among the variables affecting ηm only
the error vectors er,d(m) are considered random, and the
remaining variables are assumed to be known; for notational
convenience, the conditioning on the known vector CSI will
not be shown.

Using (27) we can manipulate the CDF (48) into Fm(x) =
Pr
[
|v(m)Hhr,d(m)|2 ≤ γm(x)

]
when 0 ≤ x < ηs,r(m) with

γm(x) = σ2
r,d(m)

x(ηs,r(m)+1)
ηs,r(m)−x . If x ≤ 0 or ηs,r(m) ≤ x, the

objective function Fm(x) is equal to 0 or 1, respectively, and
independent of the value of v(m). When 0 ≤ x < ηs,r(m),
exploiting the fact that the RV

∣∣v(m)Hhr,d(m)
∣∣2 is distributed

according to a scaled non-central χ2-distribution, the objective
function Fm(x) can be rewritten as [25]

Fm(x) = 1−Q
(√

2a(m),
√

2b(m,x)
)

(53)

where Q(·, ·) represents the first-order Marcum Q-function
[26, eq. (4.33)], and a(m) and b(m,x) are both real-valued

functions given by a(m) =
|v(m)H ĥr,d(m)|2
v(m)HRe(m)v(m)

and b(m,x) =
γm(x)

v(m)HRe(m)v(m)
. Using [27, eq. (7),(8)] it is easy to see that

Q
(√

2a(m),
√

2b(m,x)
)

is increasing in a(m) and decreas-
ing in b(m,x). Therefore, setting v(m)HRe(m)v(m) = c,
c being a real-valued variable, the OP (50) can be solved by
maximizing a(m) for each value of c. Hence, using S(m), the
objective function in OP (51) is changed to

S(m, c)

= arg max
S(m)�0,λ1(m)≥0,...,λNPU

(m)≥0
Tr
(
S(m)ĥr,d(m)ĥr,d(m)H

)
(54)

with an additional constraint: Tr [Re(m)S(m)] = c. Ideally,
this modified OP then has to be solved for every value of c,
where c ∈ [0, cmax]. In practice, we divide this interval in a
sufficiently number of points and solve this modified OP for
each point. The value of cmax can be found by solving OP
(51), but with the following objective function

cmax = max
S(m)�0,λ1(m)≥0,...,λNPU

(m)≥0
Tr [Re(m)S(m)] .

(55)
Finally, the optimal value of the original OP (51) is found by
substituting S(m, c) in (53) and then minimizing (53) over c.
With c∗ minimizing (53), the optimal value S(m)(opt) equals
S(m, c∗).

Because of the equality constraint Tr [Re(m)S(m)] = c,
the results from Appendix C cannot be applied here. This
means that in general Rank(S(m)(opt)) ≥ 1. In this case, a
suboptimal rank-1 solution can be obtained from the matrix
S(m)(opt) by using the randomization approach described
in [28]. First, we generate L independent random vectors
vl(m) ∼ Nc(0,S(m)(opt)) (l = 1, . . . , L), which are then
scaled such that each of them satisfies with equality the most
stringent constraint. Finally, the vector vl(m) (l = 1, . . . , L)
which gives the largest value for the objective function is
selected as an approximation for v(m)(opt).

Note that for the minimization of (53) the mth RN has to
know, apart from CSI about its own channel gains to the DN
and PU-RXs, the instantaneous SNR value η0 on the direct
SN-DN channel. Thus, this solution is not distributed as η0

depends on the realization of the channel gain hs,d and the
transmit energy E0 selected by the SN. Therefore, we also
consider a distributed version of this OP, which minimizes (53)
over c under the worst-case assumption on η0, that is η0 = 0.
The performance of this distributed yet suboptimum solution
will be compared to the optimum but centralized solution in
Section V-D.

3) Beamforming with CDI: In this case, we assume that
the RNs only know the distribution of their channel gains to
the DN. We follow the same reasoning as in Section IV-C2,
but now hr,d(m) is assumed to be a RV with mean 0 and
covariance matrix Rh(m). This means that in equation (53) we
have a(m) = 0 and b(m,x) = γm(x)

v(m)HRh(m)v(m)
. In Section

IV-C2, it was shown that Fm(x) is increasing with b(m,x).
Hence, the minimization of Fm(22R − 1− η0) in (51) can be
substituted by the maximization of Tr (Rh(m)S(m)). For the
scenario with PCSI about the interference channels, we prove
in Appendix C that we can always find a rank-1 solution to
OP (51). For the case of ICSI and CDI, it is possible that
S(m)(opt) has a rank higher than 1. In this case, a rank-1
approximation is found by using the randomization approach
described in Section IV-C2.

D. Computational complexity

In this subsection, we discuss the computational complexity
of our proposed algorithms. To calculate the complexity, we
use the same approach as in [29]. Using this approach, we
can show that the complexity scales linearly in the number
of RNs M . The computational complexity of the algorithm
proposed for beamforming with PCSI, ICSI and CDI is the
same. However, in the scenario with ICSI the complexity
scales linearly in the number of points that we consider for
the interval c ∈ [0, cmax]. Further there is a difference in
complexity depending upon the level of CSI that is available
about the interference channels. If PCSI is available about the
interference channels, the complexity for each RN to reach an
ε-optimal solution is in the order of

O((
√
NPU +NaN

6
a ) · ln(ε)) (56)

when Na and NPU go to infinity. As the complexity of the
algorithm in [12] can be shown to be O((

√
NPU +N2

aN
12
a ) ·
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Fig. 2. The topology of the network.

ln(ε)), it is clear that we were able to significantly reduce the
complexity.

In the scenario with ICSI or CDI about the interference
channels we get

O((K2.5N1.5
PUN

6.5
a +K3.5N1.5

PUN
5.5
a ) · ln(ε)) (57)

when Na, NPU and K go to infinity.

V. NUMERICAL RESULTS

We consider the configuration as shown in Fig. 2. The
SN and DN are located at coordinates (0, 0) and (1.375, 0),
respectively, while the supporting RNs are assumed to be
uniformly distributed inside an annulus with outer radius 1.25
and inner radius 0.25. The PU-RXs are uniformly distributed
inside an annulus with outer radius 2.5 and inner radius 1.5.
The SN broadcasts its message in the first time slot, and in
the second time slot only the best RN amplifies and forwards
the message to the DN. The solid lines refer to the messages
exchanged within the SU network, while the dashed ones refer
to the interference from the SN and RNs to the PU-RXs.

The outage probabilities are calculated by means of Monte
Carlo simulations. For each channel realization, we randomly
select a different location for the RNs and the PU-RXs. We
assume that E

[
|hs,d|2

]
= 1/d2

s,d, E
[
hs,r(m)hs,r(m)H

]
=

1/d2
s,r(m)INa

, Rh(m) = 1/d2
r,d(m)INa

, Rs,p = 1/d2
s,pIK

and Rr,p(m) = 1/d2
r,p(m)IKNa

(m = 1, . . . ,M ; p =
1, . . . , NPU), where ds,d, ds,r(m), dr,d(m), ds,p and dr,p(m)
denote the distances between the corresponding nodes.

We take the same value E(max) for the maximal transmit
energies E(max)

m (m = 0, . . . ,M ), and set the noise variances
on all channels equal to σ2. This allows to express the
outage probabilities of the different scenarios as a function
of E(max)/σ2 (dB). In the case of ICSI, the estimation error
σ2

e is chosen equal to σ2/(2E(max)). For all simulations, we
take memory of the predictor P = 7, R = 0.5 bits/channel
use, α = 0.9, symbol interval T = 50 ns, Doppler spread
fd = 144 Hz, Γ = σ2. For more information about these
channel variables we refer to Appendix B.

In the following, the performance of the relay network will
be compared to a SU direct-link network, which optimizes the
following expression for the outage probability

Pout = Pr{log2(1 +
E0 |hs,d|2

σ2
s,d

) ≤ R} (58)

where the optimum value of E0 is obtained from (42), (44) or
(46), depending upon the available CSI on the channel gains
to the PU-RXs. The main disadvantage of the relay network
compared to the direct-link network is the requirement of an
additional time slot.

We also note that in the case where Rank(S(m)) > 1,
a rank-1 solution is found by applying the randomization
approach from Section IV-C2. The number of generated
vectors L is chosen equal to 50. In our numerical results,
we have found that the performance loss compared to the
multi-rank solution is negligible. Therefore, in the case where
Rank(S(m)) > 1, only the performance curves corresponding
to the rank-1 approximation will be shown.

Unless mentioned otherwise, in the case where ICSI about
the channels to the DN is available, we will show the perfor-
mance corresponding to the centralized OP.

A. Influence of the number of antennas per PU-RX

We now consider the performance of a SU network with 2
RNs (M = 2) ; the RNs are each equipped with 3 transmit
and receive antennas (Na = 3). We show the performance in
the scenario where there are two PU-RXs present (NPU = 2)
with a single antenna (K = 1) and the scenario where there is
a single PU-RX (NPU = 1) with two antennas (K = 2). Fig.
3 shows three subfigures, where each subfigure corresponds
to a certain level of CSI about the interference channels. Each
subfigure then shows the curves for all the levels of CSI about
the coefficients between the RNs and the DN: PCSI, ICSI and
CDI.

1) PCSI about interference channel: Fig. 3a shows the
exact outage probabilities in the case where the SN and
the RNs have PCSI about their interference channels. The
availability of the PCSI will allow the RNs to transmit their
beams away from the PU-RXs. The performances in the case
of PCSI and ICSI about the channel coefficients to the DN
are very similar, because both cases allow the RNs to steer
their beams towards the DN and at the same time away from
the PU antennas. However when only CDI is available about
the channels gains to the DN, the RNs are only able to
reduce the interference at the PU-RXs. This explains the large
performance gap between the performance curves for CDI and
PCSI.

We also notice that the outage probability Pout is the highest
in the case where NPU = 1 and K = 2. This is explained by
the fact that we consider an interference constraint per PU-RX,
which means the interference constraint is harder to satisfy
when K > 1.

Additionally, it is worth emphasizing that the outage prob-
ability Pout will eventually converge to a non-zero value for
increasing E(max). To explain this, we take a closer look at
(7) and (27). In the case of PCSI about the channel gains
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Fig. 3. Outage probability for a single PU-RX with K = 2 and for two PU-RXs with K = 1 (M = 2, Na = 3). (a) PCSI of intf channels. (b) ICSI of
intf channels. (c) CDI of intf channels.

to the DN, when Na > KNPU and E(max) goes to infinity,
there are enough degrees of freedom available to select an
infinitely large v(m) which is orthogonal to the columns of
Gr,p(m) for p = 1, ..., NPU. This means that the optimal
solution of (50) will result in a value for

∣∣v(m)Hhr,d(m)
∣∣2

which is infinitely large, so that (27) can then be written as
ηm = ηs,r(m) = E0

σ2
s,r(m) ‖hs,r(m)‖2. Hence, using (5) and

(27), the outage probability for infinite E(max) can be written
as

Pout = Pr

{
E

(opt)
0 |hs,d|2

σ2
s,d

+ max
m∈{1,...,M}

E
(opt)
0

σ2
s,r(m)

‖hs,r(m)‖2 ≤ 22R − 1

}
(59)

where E(opt)
0 is given by (42). This lower limit can be further

decreased by adding more RNs to the SU network or by
equipping the RNs with more antennas. We have shown also
the limiting value (59) in Fig. 3a.

2) ICSI about interference channel: Fig. 3b shows the
exact outage probabilities in the case where the SN and the
RNs have ICSI about their interference channels. Comparing
these curves with those from Fig. 3a clearly shows that
the ICSI about the interference channels causes a significant
performance loss. Hence, having only ICSI (instead of PCSI)
on the channel gains to the PU antennas deteriorates the
performance much more than having ICSI on the channel gains
to the DN.

3) CDI about interference channel: Finally, Fig. 3c shows
the exact outage probabilities in the case where the SN and the
RNs only have CDI about their interference channels. In this
scenario we notice that for increasing E(max)/σ2 the outage
probability quickly converges to a non-zero limiting value.
This shows that the performance of the SU network is severely
limited by the interference constraints: the RNs are unable to
steer the transmit beam away from the PU-RXs, which means
they do not benefit from the higher allowed transmit energy
when E(max)/σ2 is increased. This is even worse for the case
where NPU = 1 and K = 2.

B. Influence of the number of RNs

We compare the performance of a SU network with a single
RN (M = 1) and with 2 RNs (M = 2). Further, we set
Na = 3, NPU = 2 and K = 1. In Fig. 4a, we consider
PCSI for the interference channels and the channels to the
DN. As a reference we have also shown the performance
of the maximal ratio reception (MRR)-orthogonally projected
maximum ratio transmission (OPMRT) and MRR-maximum
ratio transmission (MRT) schemes proposed in [20]. For the
MRT algorithm, the beamforming matrix is given by F(m) =
ah∗r,dhHs,r, where a ∈ R is chosen such that the constraint
(10) and (12) are satisfied. For the OPMRT algorithm, the
beamforming matrix is given by the projection of ah∗r,dhHs,r
into the null space of [Gr,1(m), . . . ,Gr,NPU(m)]T , where
a ∈ R is chosen such that (10) is satisfied. It can be
clearly seen that a significant performance improvement can
be achieved by using the optimal beamforming algorithm from
Section IV-C1, which we labeled PCSI in Fig. 4a. Further
we notice that we get a performance gain by increasing the
number of RNs M . This performance gain is explained by the
fact that the DN is able to select the RN which has the most
favorable channel conditions, which are: strong channel gain
between SN and RN, a strong channel gain between the RN
and the DN and a weak link between the RN and the PU-RXs.

In Fig. 4b, we consider ICSI for the interference chan-
nels and the channels to the DN. We have also shown the
performance of the robust beamforming (RB) proposed in
[15]. In order to compare both algorithms in a fair way, the
parameters Tp and Q described in [15] for the RB algorithm
are set to Tp = 2

χ2
α(2KNa)Re,r,p(m)−1 (p = 1, . . . , NPU)

and Q = 2
χ2
α(2Na)Re(m)−1. In Fig. 4b, we show that by

specifically optimizing the outage probability Pout, a higher
reliability can be achieved compared to the RB algorithm
which optimizes the worst-case capacity. Further, we again
see a clear gain in performance by increasing the number of
RNs from 1 to 2.

C. Number of antennas

In Fig. 5, we take M = 2, NPU = 2, K = 1 and
we compare the various scenarios for a different number of
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Fig. 4. Comparison of our proposed algorithms, the MRR-OPMRT and
MRR-MRT scheme from [20], and the robust beamforming scheme from [15]
(M = 1 and 2, Na = 3, NPU = 2, K = 1). (a) Beamforming with PCSI
(PCSI of intf channels). (b) Beamforming with ICSI (ICSI of intf channels).

transmit and receive antennas at each RN: Na = 2, 3 and 4.
As in Section V-A, we split the discussion according to the
level of CSI about the interference channel coefficients.

1) PCSI about interference channel: Fig. 5a shows Pout in
the case where the SU-TXs have PCSI about their interference
channel. We also show the limiting values of Pout when
E(max) goes to infinity and PCSI is available about the
channel gains to the DN. For Na = 3, 4, the limit is given by
(59), which is valid for Na > KNPU only; for Na = 2, we
have solved (41) and (51) without transmit energy constraint.
These lower limits clearly show that the largest performance
improvement is achieved by going from 2 to 3 antennas. This
is because we need at least Na = 3 to avoid interference at the
2 PU-RXs; for Na < 3, the RNs have to limit their transmit
energies in order not to violate the interference constraints.

In the case of CDI, we see an improvement by going from
Na = 2 to Na = 3, but only a very small improvement
by increasing the number of antennas Na from 3 to 4. The
latter gain is only caused by the MRC at the RN, while the
former gain is also caused by the fact that the number of
antennas Na exceeds the number of PU-RX antennas KNPU.
However, in the case of ICSI and PCSI we keep noticing a
large performance improvement by increasing the number of
antennas at the RNs. The gain is explained by the MRC and
beamforming towards the DN. We note that the performance

loss between the case of ICSI and PCSI is rather small (a
difference in E(max)/σ2 of around 1 − 2 dB). Finally, Fig.
5a also shows the performance of the direct link SN-DN in
the case of PCSI about the channel gains to the PU-RXs. The
relay network outperforms the direct link network in all three
cases.

2) ICSI about interference channel: In Fig. 5b, the case
where the SU-TXs have ICSI about their interference channel
is addressed. In the case of CDI, we again notice that there
is an improvement by going from Na = 2 to Na = 3, while
there is almost no performance difference between Na = 3
and Na = 4, since i) transmit beamforming towards the DN
is impossible, when only CDI is available about the channel
gains to the DN, and ii) at the RN, the gain offered by the
MRC is countered by the loss in performance caused by the
uncertainty on the interference channels. Further, from (18),
it is clear that the interference constraints are dependent on
the factor χ2

α(2KNa). This factor increases with the number
of antennas KNa, which makes the interference constraints
more stringent. In Fig. 5b, we also show the performance of
the direct link SU network in the case where the SN has ICSI
about its interference channel. Again, we can emphasize that
the multi-antenna multi-relay network has a significantly better
performance than the direct link network.

3) CDI about interference channel: In Fig. 5c, we consider
the case where the SU-TXs have CDI about the interference
channel. We observe that when only CDI is available about the
channel gains to the DN, increasing the number of antennas
at the RNs does not bring any performance gain and can even
lead to a degradation caused by the more stringent interference
constraints due to the larger value of the factor χ2

α(2KNa).
In the case of ICSI and PCSI about the channel gains to the
DN, we notice only a very small performance improvement.
It is clear that interference is the main limiting factor in
this scenario, and increasing the number of antennas does
not significantly improve the performance. Finally, in Fig. 5c
we have also shown the performance of the direct link SU
network which only has CDI about its interference channels.
In this case, the multi-antenna multi-relay network does not
provide any performance improvement, compared to the direct
link, when only CDI on the channels to the DN is available,
since beamforming is impossible and the multiple antennas
are not able to avoid interference at the PU-RXs; when using
the relays, the gain provided by MRC at the DN is offset by
the need for two time slots.

D. Centralized versus distributed solutions

In this subsection we assume that the SN and the RNs
have ICSI about their channel coefficients to the DN. We
make a distinction between PCSI, ICSI and CDI for the
knowledge about the interference channels. Choosing M = 2,
NPU = 2, K = 1 and Na = 3, the performance of the
centralized and distributed solutions of (51) are compared
in Fig. 6; note that in the centralized solution η0 must be
known by the RNs, whereas in the distributed solution the
RNs assume η0 = 0. In order to investigate the influence of
the distance ds,d on the performance, we show the outage
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Fig. 5. Outage probability for Na = 2, 3 and 4 (M = 2, NPU = 2, K = 1). (a) PCSI of intf channels. (b) ICSI of intf channels. (c) CDI of intf channels.
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Fig. 6. Comparison between the centralized and distributed solution (M = 2,
NPU = 2, K = 1, Na = 3, ICSI for channels to DN).

probability for two scenarios: one where the SN and DN are
separated by a distance d, and one where they are separated
by a distance d/2, with d = 1.375. Fig. 6 shows that the
distributed solution yields only a very small performance loss
when ds,d = d. In the case where ds,d = d/2, the performance
loss is slightly higher. However, as the distributed solution
is easier to implement, the slight performance loss of the
distributed algorithm is certainly acceptable.

E. Quality of the ICSI

In Fig. 7 the performances of the SU network are displayed
for different values of the channel estimation error σ2

e . We
consider σ2

e equal to σ2
e,low = 1

5
σ2

2E(max) , σ2
e,mod = σ2

2E(max)

and σ2
e,high = 5 σ2

2E(max) and assume that the SN and the
RNs have ICSI about their channel coefficients to the DN.
In the case of PCSI about the interference channels, the
RNs can avoid interference at the PU-RXs; the performance
differences for the considered values of σ2

e can be attributed
to the different accuracies of RN beamsteering towards the
DN. In the case of ICSI about the interference channels,
the RNs cannot avoid interference at the PU-RXs, yielding
a worse performance compared to PCSI; the performance
differences for the considered values of σ2

e are larger than
for PCSI, because the estimation error variance also applies
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Fig. 7. Outage probability for different estimation error variances (M = 2,
NPU = 2, K = 1, Na = 3, ICSI for channels to DN).

to the interference channels, hence affecting the amount of
interference. Finally, when only CDI about the interfering
channels is available, the performance is severely limited by
the interference constraints, and the effect of the estimation
error variance σ2

e is very small.

VI. CONCLUSIONS

In this contribution, several distributed RA algorithms have
been derived that minimize the exact outage probability of a
cooperative SU network with multi-antenna AF-relay selec-
tion, while protecting the QoS of the PU network.

The numerical results show that the introduction of multi-
antenna RNs can substantially improve the performance of
a SU network which uses the underlay paradigm. The per-
formance of the SU network was investigated for different
levels of channel knowledge. The SU network considerably
benefits from having at least imperfect channel knowledge of
the channel gains to the PU-RXs, and having RNs with a
number of antennas larger than the number of PU antennas.
When only CDI about the interference channels is available,
the interference constraints have a devastating effect on the SU
performance. The level of channel state information available
about the channels to the DN is shown to have a smaller impact
on the overall performance, as compared to the interference
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channel state information. But also here substantial gains
compared to CDI are achieved when an estimate of the channel
gains to the DN is available. The quality of this estimate has
less effect than the quality of the estimate of the interference
channels.

We have shown that having multiple RNs available can
considerably improve the SU performance, compared to the
case with a single relay, because the probability of having
poor channel conditions is significantly reduced.

Finally, we have pointed out that the proposed algorithms
compare favorably to several algorithms presented in literature,
in terms of outage probability and/or complexity.

APPENDIX A
PROOF OF THEOREM 1

The following proof is based on [13]. Assuming that the
mth RN knows hs,r(m), the matrix F(m) can without loss of
generality be decomposed as

F(m) = [w1(m)W2(m)]

[
hs,r(m)

‖hs,r(m)‖
H⊥s,r(m)

]H
(60)

where w1(m) ∈ CNa×1, W2(m) ∈ CNa×(Na−1) and
H⊥s,r(m) ∈ CNa×(Na−1). The matrix H⊥s,r(m) makes[

hs,r(m)
‖hs,r(m)‖ H⊥s,r(m)

]
a unitary matrix, which means that

H⊥s,r(m)Hhs,r(m) = 0. Using (60), it can be shown that ηm
from (6) is given by

ηm =

E0

σ2
s,r(m)‖hs,r(m)‖2|hr,d(m)Tw1(m)|2

|hr,d(m)Tw1(m)|2 + ‖hr,d(m)TW2(m)‖2 +
σ2
r,d(m)

σ2
s,r(m)

.

(61)

Combining equation (4) and (60), we can express the transmit
power Em as

Em = E0‖hs,r(m)‖2‖w1(m)‖2

+ σ2
s,r(m)(‖w1(m)‖2 + ‖W2(m)‖2). (62)

In the same way, by combining (12) and (60), the interference
Ir,p(m) to be used in the interference constraints from Section
III-C can be written as

Ir,p(m) = E0‖hs,r(m)‖2‖Gr,p(m)Tw1(m)‖2

+ σ2
s,r(m)(‖Gr,p(m)Tw1(m)‖2 + ‖Gr,p(m)TW2(m)‖2)

(63)

where Gr,p(m) denotes the actual interference
channel (PCSI), or a point in the volume
Ur,p(ˆ̄gr,p(m),Br,p(m)) (ICSI) or Ur,p(0,Br,p(m)) (CDI).
From (61) we see that the highest value of ηm is reached
when W2(m) = 0. From (7) and (8) it follows that a larger
value for ηm will certainly decrease the outage probability
Pout, irrespective of which information (PCSI, ICSI or CDI)
on hr,d(m) is available at the mth RN. Further, we note that
W2(m) = 0 will also lead to a lower value of the transmit
energy Em (62) and the interference Ir,p(m) (63). Therefore

we can conclude that the optimal value of W2(m) will
always be 0. Without loss of generality we can define

w1(m) =
v(m)∗√

E0‖hs,r(m)‖2 + σ2
s,r(m)

(64)

which leads to (24).

APPENDIX B
IMPERFECT CSI

In this section we will describe the case where the CSI
available at a SU-TX is imperfect due to feedback delay
and estimation errors. The following formulas use a generic
channel vector f ∈ CF×1, where F denotes the number
of components of f . Its covariance matrix is denoted by
Rf . We also introduce the vector ICSI which denotes the
imperfect CSI available at the SU-TX about the actual channel
realization f . We make the assumption that the channel vector
f and the ICSI are jointly zero-mean circular symmetric
Gaussian. It then follows that f conditioned on the ICSI
is Gaussian, with expectation f̂ = E[f |ICSI] and covariance
matrix Re = E[ffH |ICSI]−f̂ f̂H . Introducing e ∼ Nc(0,Re),
the instantaneous channel gain f can be decomposed as

f = f̂ + e (65)

where f̂ is the minimum mean-squared error (MMSE) estimate
of f based on ICSI, and the estimation error e is independent
of f̂ .

For the numerical results we will make some additional
assumptions about ICSI as in [16]. We consider the case
where the channel f(t) is slowly time-varying. According to
Jakes’ model [30], we take E[f(t+u)f(t)H ] = J0(2πfdu)Rf

where J(.) denotes the zeroth-order Bessel function of the
first kind, and fd denotes the Doppler spread. At the SU-
TX, the information about f(0) consists of P delayed channel
estimates, i.e., ICSI = [f̃(τ1)T , . . . , f̃(τP )T ]T .

The estimate f̃(τk), k = 1, ..., P, is given by

f̃(τk) = f(τk) + ẽ(τk) (66)

where τk represents the feedback delay relative to the in-
stantaneous channel vector f(0). The noise vector ẽ(τk) ∼
Nc(0, σ2

eIF ), where σ2
e denotes the variance of the estimation

error. In the numerical results we take τk = kDT , which
indicates that the channel estimates are updated every D
symbol intervals T .

Introducing the matrix J ∈ CP×P as Jk,l
∆
= J0(2πfd(τk −

τl)), k = 1, . . . , P ; l = 1, . . . , P, it can now be shown that
f̂ = XY−1ICSI, where

X
∆
= [J0(2πfdτ1), J0(2πfdτ2) . . . , J0(2πfdτP)]⊗Rf (67)

Y
∆
= J⊗Rf + IP ⊗ σ2

eIF (68)

and the covariance matrix is given by Re = Rf −XY−1XH .
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APPENDIX C
RANK-1 SOLUTION OF THE RELAXED OP

The following lemma, which is proven in [31], can be
directly applied to OP (51) with PCSI or CDI on the channels
to the DN, with PCSI on the interference channels.

Lemma 2. The following OP is convex in S and always has
solutions with Rank(S)≤ 1:{

S(opt) = arg max
S�0

Tr (AS)

s.t.Tr (BiS) ≤ bi, i = 1, . . . , I
(69)

where A is a Hermitian matrix, the matrices Bi are Hermitian
with Bi � 0 and

∑I
i=1 Bi � 0, and the scalars bi satisfy

bi ≥ 0, ∀i.

In the case where PCSI is available for the channels to
the DN and with ICSI or CDI on the interference channels,
we have to consider a different formulation of OP (51). If
we let χ denote the optimal value of the objective function
Tr
(
hr,d(m)hr,d(m)HS(m)

)
, we can rewrite the OP as fol-

lows
S(m) = arg min

S(m)�0,λ1(m)≥0,...,λNPU
(m)≥0

Tr (S(m))

s.t.Tr
(
hr,d(m)hr,d(m)HS(m)

)
≥ χ− δ

(37) or (40), p = 1, . . . , NPU

,

(70)
where δ denotes any small positive value and λp(m) is only
required when (37) is used. This OP is convex and it can be
easily verified that as δ approaches 0 the solution will approach
the same optimal value as OP (51). It can now be proven that
the solution to OP (70) has a rank-1 solution. For more details,
we refer to [15] where a similar proof is given in Appendix
D.
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