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Abstract 

We describe a two-step Bayesian algorithm for seismic-reservoir characterization, which, thanks 

to some simplifying assumptions, is computationally very efficient.  The applicability and reliability 

of this method are assessed by comparison with a more sophisticated and computer intensive 

Markov Chain Monte Carlo (MCMC) algorithm, which in a single-loop directly estimates 

petrophysical properties and litho-fluid facies from pre-stack data. The two-step method first 

combines a linear rock-physics model with the analytical solution of a linearized amplitude versus 

angle (AVA) inversion, to directly estimate petrophysical properties, and related uncertainties, from 

pre-stack data under the assumptions of a Gaussian prior model and weak contrasts at the reflecting 

interface. In particular, we use an empirical, linear rock-physics model, properly calibrated for the 

investigated area, to reparametrize the linear time-continuous P-wave reflectivity equation in terms 

of petrophysical contrasts instead of elastic constants. In the second step, a downward 1-D Markov 

chain prior model is used to infer the litho-fluid classes from the outcomes of the first step. The 

single-loop MCMC algorithm uses a convolutional forward modelling based on the exact Zoeppritz 

equations, and adopts a non-linear rock-physics model. Moreover, it assumes a more realistic 

Gaussian mixture distribution for the petrophysical properties. Both approaches are applied on an 

onshore 3-D seismic dataset for the characterization of a gas-bearing, clastic reservoir. 

Notwithstanding the differences in the forward-model parameterization, in the considered rock-

physics model, and in the assumed a-priori probability density functions, the two methods yield 



maximum a-posteriori solutions that are consistent with well log data, although the Gaussian 

mixture assumption adopted by the single-loop method slightly improves the description of the 

multimodal behavior of the petrophysical parameters. However, in the considered reservoir, the 

main difference between the two approaches remains the very different computational times, being 

the single-loop method much more computationally intensive than the two-step approach.    

 

Introduction 

Three-dimensional (3-D) numerical reservoir models play a key role in the exploration and 

production industry, as they describe the spatial variability of reservoir properties (i.e. porosity, 

water saturation, shale content) and litho-fluid facies around the target zone. However, due to sparse 

well coverage, reservoir models are often poorly constrained away from well locations. Therefore, a 

key challenge for reservoir geoscientists is the quantitative integration of 3-D seismic data to obtain 

a more accurate representation of the reservoir characteristics between the wells (Doyen, 2007). To 

this aim, recent efforts have been focused in developing inversion algorithms for seismic-reservoir 

characterization that reliably estimate rock properties and litho-fluid facies from pre-stack seismic 

data (Avseth et al. 2005; Bosch et al., 2010). However, it is known that seismic data do not provide 

direct information about reservoir properties or litho-fluid facies, but instead reflect the elastic 

contrasts in the subsurface (i.e. the contrasts in P-wave velocity, Vp; S-wave velocity, Vs, and 

density, ρ). For this reason, seismic-reservoir characterization is usually a multi-step procedure: first 

elastic parameters are estimated from seismic data by means of an inversion procedure that can be 

tackled using high computer intensive strategies, such as full-waveform inversion (Bachrach et al. 

2004; Sajeva et al. 2016; Aleardi et al. 2016; Aleardi and Mazzotti 2017), or adopting methods that 

are less computationally demanding, such as the amplitude versus angle (AVA) approach (Buland 

and Omre 2003; Mazzotti and Zamboni 2003; Veire et al. 2006; Skopintseva et al. 2012; Aleardi 

and Mazzotti, 2014; Aleardi et al. 2015; Aleardi and Tognarelli 2016). The step of petrophysical 

inversion that follows, uses a rock physics model (RPM) and the seismic attributes obtained from 



elastic inversion, to estimate the petrophysical properties of interest, such as porosity, clay volume, 

and possibly fluid saturations. The RPM is a mathematical model that converts the petrophysical 

properties into the elastic properties, and it can be defined adopting both empirical or theoretical 

approaches (Mazzotti and Zamboni, 2003; Chiappa and Mazzotti, 2009; Mavko et al. 2009; Aleardi 

and Ciabarri 2017a). If needed a transfer function or a classification algorithm can be used to 

associate the petrophysical (or elastic) properties previously estimated to a given litho-fluid class 

(Aleardi and Ciabarri, 2017b).  

As discussed in Doyen (2007), this multi-step approach often does not guarantee that the final 

petrophysical model is fully consistent with the seismic data, in that the seismic response computed 

from the earth model are not guaranteed to reproduce the observed seismic data. In other words, this 

multi-step approach gives not identical results to the approach in which reservoir properties are 

directly estimated from pre-stack data (Bosh, 2004). Another drawback of this multi-step approach 

concerns the error propagation from the data (seismic) space to the model (petrophysical) space, 

especially for non-linear inversions (Zunino et al. 2014; Li and Zhang, 2015). To circumvent these 

issues, the rock physics model and the facies classification can be integrated into the seismic 

inversion workflow. In this approach, usually referred to as single-loop inversion (Grana et al. 

2012), a model of facies (or litho-fluid classes) is generated; the petrophysical properties are 

distributed into the facies model and successively the rock physics model is applied to generate the 

corresponding elastic properties. Then synthetic seismic traces are computed (i.e. by a 

convolutional model) and are compared to real seismic data to evaluate the mismatch; the procedure 

is iterated by modifying the current model until a satisfactory match between synthetic and 

observed seismic amplitudes is achieved. As an alternative to this computationally demanding 

method, a mathematical transformation can be used to directly link the sought petrophysical 

parameters to the seismic response. Once that this seismic-petrophysical transformation has been 

defined, it can be included into an inversion framework to directly estimate petrophysical properties 

from pre-stack data. As demonstrated in Mazzotti and Zamboni (2003) this petrophysical 



reparameterization of the inversion kernel also helps reducing the range of admissible petrophysical 

solutions that is, the ambiguity of the seismic-petrophysical inverse problem.  

Independently from the approach adopted, the estimation of reservoir properties from pre-stack 

seismic data is an ill-posed inverse problem, which means that the model parameters cannot be 

uniquely recovered. For this reason, this inverse problem is usually casted into a Bayesian 

framework (Tarantola, 2005; Aster et al. 2011; Fernandez Martinez et al. 2012). The final solution 

of a Bayesian inversion is the posterior probability density function (PDF), which expresses the 

probability of occurrence of model given the observed data. Two common assumptions in Bayesian 

inversion are a Gaussian prior PDF, and the linearity of the physical relation between the model and 

the data. These two assumptions are not necessary for solving the inverse problem, but make the 

analytical computation of the posterior PDF possible. Several physical models in geophysics are 

linear or can be locally linearized (i.e. convolutional model, acoustic and elastic wave-equations). 

But unfortunately, many properties in the subsurface, such as elastic attributes, or petrophysical 

properties are generally non-Gaussian, but exhibit a multimodal behavior related to the different 

fluid and rock properties of different litho-fluid classes (Grana and Della Rossa 2010; Sauvageau et 

al. 2014; Amaliksen 2014). Accounting for this multimodality can provide more reliable uncertainty 

estimations (Grana et al. 2017). In addition, rock-physics models are often nonlinear so that 

nonlinear optimization algorithms, such as gradient-based methods (i.e Gauss-Newton; steepest 

descent; Aster et al. 2011), or stochastic optimization algorithms (i.e. genetic algorithms, particle 

swarm, simulated annealing; Sajeva et al. 2017a) must be used to solve the inverse problem. From 

the one hand, gradient-based methods linearize the problem around an initial solution, losing the 

information necessary for a correct uncertainty appraisal. In addition, these methods are limited by 

their local nature; i.e., they terminate in the nearest minimum of the misfit function, which may not 

coincide with the global minimum. Despite these limitations, local methods are often applied for 

their limited computational cost (Chiappa and Mazzotti 2009; Aleardi et al. 2017a). On the other 

hand, stochastic optimization algorithms are less prone to get trapped into local minima, but 



requires a computational cost that exponentially increases with the number of model parameters. In 

addition, these methods often give biased uncertainty estimations (Sen and Stoffa, 1996), although 

some strategies have been proposed to tackle this issue (Sambridge, 1999; Aleardi and Mazzotti, 

2017; Sajeva et al. 2017b).  

Otherwise, Markov Chain Monte Carlo (MCMC) methods (Sambridge and Moosegard 2002) are 

a class of sampling algorithms that can be used to numerically compute the posterior PDF (Sen and 

Stoffa, 1996; Eidsvik et al., 2004; Larsen et al., 2006; Gunning and Glinsky, 2007; Rimstad and 

Omre, 2010; Ulvmoen and Omre, 2010). In case of non-linear problems, MCMC methods provide 

some advantages over the gradient-based approach at the expense of an increased computational 

effort. First of all, MCMC methods can handle the nonlinearities of the inverse problem because 

only forward modeling and sampling of the prior PDF are needed to run the algorithm without the 

need to compute derivatives. Secondarily, MCMC algorithms efficiently explore the model space, 

so that several regions may be sampled. In addition, MCMC algorithms can be also used to sample 

non-parametric distributions. This results in a more comprehensive characterization of possible 

solutions, and a more robust estimation of uncertainties.  

In this work, we present a fast, two-step (TS) approach for seismic-reservoir characterization in 

which we assume a Gaussian prior model, and linear relations between seismic and elastic attributes 

and between elastic attributes and petrophysical properties. First, a linear seismic-petrophysical 

forward operator is derived by combining a linear RPM (properly calibrated for the investigated 

area) and the linear time-continuous AVA equation for P-P reflectivity (Stolt and Weglein, 1985), 

which is valid for weak elastic contrasts at the reflecting interface and for a limited range of 

incidence angles (usually, 0-30 degrees). In the second step, the posterior PDF of litho-fluid facies 

is derived by combining the estimated petrophysical properties and associated uncertainties, with a 

downward Markov Chain prior model. Several authors (i.e. Buland and Omre, 2003; Alpak et al. 

2006; Shahraeeni and Curtis, 2011; Bongajum et al. 2013; Jalalalhosseini et al. 2014; Grana 2016; 

Gong and McMechan, 2016; Grana et al. 2017; among many others) have implemented inversion 



approaches that estimate elastic attributes from seismic data or convert elastic characteristics into 

petrophysical properties. Differently, in this work we use the seismic-petrophysical forward 

operator to integrate the elastic and the petrophysical inversions into a single inversion kernel for 

the analytical and direct estimation of petrophysical properties, and related uncertainties, from pre-

stack data.  

The TS method relies on three fundamental assumptions: a linear or almost linear rock-physics 

model, Gaussian-distributed model parameters, and weak contrasts at the reflecting interface. To 

analyses the effects of these assumptions on the estimated reservoir properties in the investigated 

area, we compare the predictions of the two-step method with those provided by a non-linear 

MCMC inversion in which the elastic inversion, the petrophysical inversion and the litho-fluid 

facies classification are integrated into a single-loop algorithm. Differently from the TS approach, 

this method (that we indicate with the acronym SL) more realistically assumes a Gaussian mixture 

prior model, so that the facies dependent behavior of petrophysical properties is taken into account. 

In addition, the SL algorithm adopts a theoretical, non-linear, RPM based on granular media models 

(Mavko et al. 2009; Avseth et al. 2005), and uses the exact Zoeppritz equations as the seismic 

forward modelling, thus relaxing the assumptions of a linear RPM and weak contrasts at the 

reflecting interface. Being the theoretical RPM and the exact Zoeppritz equations non-linear, the SL 

approach guarantees an accurate uncertainty propagation from the data to the model space.  For 

both algorithms, we adopt a statistical approach to rock-physics modelling, in which the uncertainty 

related to the RPM definition is treated as a random variable and correctly propagated into the final 

predictions. The TS and SL approaches, overlook the lateral correlation of elastic, petrophysical 

properties and litho-fluid facies. Therefore, the lateral continuity of our results will be mainly 

related to the lateral correlation of seismic data that is dependent on the Fresnel zone and the 

associated migration operator. Conversely, the vertical correlation of petrophysical properties and 

litho-fluid facies are correctly taken into account by the two inversion algorithms. In particular, a 

stationary correlation function (Buland and Omre, 2003) is used to model the vertical correlation of 



petrophysical properties, whereas a downward transition matrix is used to properly model the 

vertical succession of litho-fluid facies. 

We start by introducing the theoretical aspects of the two inversion strategies. Then, we focus 

our attention on analyzing and validating the empirical, linear, rock-physic model. Finally, both 

synthetic data and field data inversions are used to compare the two methods. In the field data 

example, a blind test is also used to assess the prediction capability of the two methods and the 

reliability of the results.   

 

Theoretical framework 

We formulate the inversion a Bayesian setting, in which the final outcomes and their related 

uncertainties, are expressed using posterior probability density functions (PDFs; Tarantola, 2005).  

By considering l time samples, the vector e will refer to elastic properties (P-wave velocity, Vp, S-

wave velocity Vs, and density ρ; e=[Vp1,…,l, Vs1,…,l, ρ1,…,l]
T), m indicates the natural logarithm of 

such properties (m=[ln(Vp1,…,l), ln(Vs1,…,l), ln(ρ1,…,l)]
T), r represents the petrophysical properties of 

interest (water saturation Sw; porosity φ; shaliness, Sh). The vector d indicates the observed seismic 

data (partially stacked data at different incidence angles), whereas f expresses the litho-fluid facies 

(shale, brine sand and gas sand).  

 

The Bayesian approach and the Markov Chain Monte Carlo methods 

In a Bayesian inversion, the posterior PDF can be derived as (Tarantola, 2005):  

)(/ d(k)k)|(dd)|(k pppp = (1) 

where k represents the vector of model parameters, the symbol p() indicates a probability density 

function, and the pipe symbol | indicates a conditional dependence. The probability p(k|d) is the 

target PDF, p(k) is the prior PDF of model parameters, usually defined independently from the data 

d, and p(d|k) is the so-called likelihood function that expresses the probability of measuring the 

observed data d for a given model k. The denominator p(d) is the prior PDF of data that is usually 



considered a normalizing factor that makes the integral of p(k|d) over the model space equal to 

unity. A plain and exact analytical solution of equation 1 only exists in case of a linear inverse 

problem with Gaussian assumptions about the distributions of model parameters and data. In case of 

non-linear problems Markov Chain Monte Carlo methods can be used to derive a numerical 

solution of equation 1 (Sambridge and Mosengard, 2002). A Markov Chain Monte Carlo method is 

an algorithm that samples different points in the model space according to a random walk. In each 

step, the probability of transition to the following point depends only on the current sampled model. 

in this work among the many MCMC algorithms, we use the Metropolis-Hasting method (Hastings, 

1970), which can be simply summarized in a two-step procedure: in the first step, a candidate model 

is drawn from the prior PDF, while in the second step this model is accepted with a probability that 

depends on its fits with the observed data. If the candidate model is accepted the random walk 

moves to such model, otherwise the current model is repeated in the walk, and another candidate 

model is drawn and its fit with the observed data is evaluated. The ensemble of accepted models is 

the final output of the algorithm that can be used to numerically compute the posterior PDF. Once 

that a candidate model is drawn from the prior probability, it is accepted following the so-called 

Metropolis rule. According to that, the probability of accepting a candidate model (usually called 

the acceptance ratio) is: 
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where kcand is the candidate model and kcurr is the current model (the last model accepted during the 

random walk). Equation 2 indicates that if the likelihood of the candidate model is higher than the 

likelihood of the current model, the candidate model is always accepted. Conversely, if the 

likelihood of the candidate models is lower than that of the current model, the candidate model is 

accepted with probability equal to p(d|kcand)/p(d|kcurr). It can be demonstrated that if the candidate 

models are generated according to the prior PDF, the Metropolis rule generates a random walk that 

samples the target posterior PDF (Mosegaard and Tarantola 1995). Generally, to increase the 



reliability of the results, multiple random walks are sequentially performed starting from different 

parts in the model space, and the models collected by each walk are combined to derive the 

posterior PDF. In addition, it is known that the samples accepted at the beginning of the chain 

(during the so called “burn-in” period) may not accurately represent the posterior probability 

density function. For this reason, these models are usually not considered in the computation of the 

posterior PDF. Obviously, the length of the burn-in phase depends on the complexity of the 

problem being solved and on the recipe used to implement the MCMC algorithm. If needed, the 

potential scale reduction factor can be used to monitor the convergence of the MCMC algorithm to 

a stable posterior PDF (Gelman et al. 2013). 

 

The two-step approach (TS) 

The main objective of the two-step approach is to provide a fast and reliable inversion algorithm 

for seismic-reservoir characterization. This method estimates reservoir properties and litho-fluid 

facies from seismic data in two sequential steps. In the first step, a Bayesian linear inversion 

technique (valid for weak elastic contrasts and a small-range of reflection angles) is used to estimate 

the posterior probability p(r|d) of petrophysical properties conditioned upon the observed pre-stack 

data. To make the inversion computationally fast, we integrate the petrophysical and the elastic 

inversions into a single inversion step, in which the petrophysical properties are directly estimated 

from seismic data under the assumption of Gaussian distributed reservoir properties: 

),;()( rrμrr = Np      (3) 

where N indicate the Gaussian PDF, with mean vector and covariance matrix expressed by μr and 

Σr, respectively. The statistical properties of this a-priori PDF can be easily derived from the 

analysis of available borehole logs.  

Most of amplitude versus angle inversion algorithms adopt an elastic forward operator based on 

a time-continuous linear approximation of the Zoeppritz equations. For example, this forward 



operator can be parameterized in terms of the Vp, Vs and density contrasts at the reflecting interface 

(Stolt and Weglein, 1985): 
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where Rpp is P-wave reflection coefficients, t is the time, θ is the incidence angle and αVp(θ), αVs(θ) 

and αρ(θ) are given (for each time position) by: 
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where Vp and Vs are the averages of P-wave and S-wave velocities across the reflecting interface. 

In matrix notation equation 4 can be written as: 

ADmRpp = (6) 

where the derivative matrix D approximates the time derivatives of ln(Vp), ln(Vs) and ln(ρ), 

whereas the sparse matrix A contains discrete time samples of the coefficients Vp )( , Vs )(  and 

 )( . The equation that relates the elastic properties to the seismic data can be written as follows:  

mGWADmd m==       (7) 

where Gm is the seismic-elastic forward operator (for brevity called elastic forward modelling from 

here on) that groups together the wavelet convolutional matrix W, the derivative matrix D and the 

matrix A. For a detailed description of the parameterization of W and A see Appendix B of Buland 

and Omre (2003). Being Gm a linear forward operator and by assuming a multivariate Gaussian a-

priori PDF for m (that is a log-Gaussian PDF for Vp, Vs and density), the estimated elastic 

parameters m, are again represented by a multivariate Gaussian a posteriori PDF with analytical 

expressions for the mean and the covariance (Buland and Omre, 2003): 
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where, mμ and mΣ are the mean and the covariance of the a-priori PDF of m, while 

n
T
mmmd ΣGΣGΣ += , where nΣ is the covariance matrix expressing the noise in the seismic data.  

In order to implement the TS approach, the time-continuous reflectivity function of equation 4 is 

reparametrized in terms of petrophysical properties. To this aim a linear rock-physics model relating 

the petrophysical properties to the natural logarithm of the elastic attributes, can be defined as 

follows: 
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where z is the depth, while a, b and c are the regression coefficients that can determined by a 

stepwise regression of well log or core information. Differentiating equations 10.1-3 sample-by-

sample by applying the Δ operation, leads to: 
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in which the z term has been eliminated by assuming a negligible depth interval between adjacent 

samples. Equations 11.1-3 express the contrasts in elastic properties in terms of contrasts in 

petrophysical properties. Equations 11 can be compactly written in matrix notation as:   

BDrDm = (12) 

where B is a sparse matrix that contains the a, b and c coefficients of equations 11.1-3. By 

combining equation 6 and equation 12, gives: 

FDrABDrRpp == (13) 

Writing equation 13 in a time continuous form, similar to that of equation 4, results in: 
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where fφ(t,θ), fSw(t,θ), and fSh(t,θ) are the discrete time samples contained in matrix F and expressing 

the influence of the petrophysical properties in the P-wave reflection coefficients. Now by adding 

the convolutional matrix W to equation 13 leads to: 

rGWFDrWABDrd r=== (15) 

where Gr is the seismic-petrophysical forward modelling (for brevity called petrophysical forward 

modelling from here on) that directly links the seismic response d to the petrophysical properties r. 

The forward modelling Gr is used to cast the petrophysical inversion into a Bayesian framework. 

Similarly to equations 8 and 9, the mean (μr|d) and variance (Σr|d) of the posterior PDF of 

petrophysical properties conditioned upon the observed seismic data p(r|d) can be written as: 
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where Σe is the matrix expressing the error term (see discussion below). The matrix Σr expresses 

both the mutual correlation of petrophysical properties and their vertical variability. In particular, 

their mutual correlation is given by a stationary covariance matrix, while the vertical correlation is 

obtained by multiplying (Kronecker product) the stationary covariance matrix by a matrix 

expressing the vertical correlation. This vertical correlation is given by a second-order exponential 

function (Buland and Omre, 2003) that approximates the actual vertical variability of petrophysical 

properties: 
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where   is the time-lag and, ξ1 and ξ2 are the parameters characterizing the temporal dependency.  

Both the stationary covariance matrix of petrophysical properties and the vertical correlation 

function, can be determined from available well log information. In our approach Σe includes both 



the error affecting the seismic data Σn, and the uncertainty related to the derived linear RPM 

(ΣRPM). The matrix Σe can be expressed as (Gouveia and Scales 1998; Aleardi et al. 2017a):  

RPMne += (18) 

To compute the matrix Σn we assume a normally distributed random noise with a null mean value 

and a diagonal covariance matrix. More in detail, Σn is computed by comparing adjacent seismic 

gathers, and by assuming that they are produced by similar petrophysical properties. This implies 

that the differences between these gathers are only due to noise contamination. If the assumption 

that only random noise contaminates the observed data holds, this procedure gives a realistic 

estimation of the noise variance. If coherent noise (residuals of multiples, suboptimal normal-move-

out corrections) contaminate the data, this approach will result in an overestimation of the random 

noise. More in detail, let Dj be the matrix containing along each column, the j-th seismic gather dj 

and the q adjacent gathers: 
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Then, the matrix Σj
n that represents the noise that affects the j-th seismic gather is computed as: 

)cov( j
j

n
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where I is the identity matrix.  

 The differences between the logged elastic properties and the elastic properties predicted by 

the linear RPM, are used to derive the ΣRPM matrix. We assume that this difference follows a 

Gaussian PDF with a given covariance matrix and a null mean value: 

),0;()( εε Σμεε == NpTS (21) 

Obviously, a similar approach can be used to define the uncertainties affecting the theoretical 

RPM used in the SL approach (pSL(ε)). 

After defining the pTS(ε), we use the following Monte Carlo approach to derive the ΣRPM matrix: 



1. Consider a 1D vertical profile and draw random values from the a-priori PDF of 

petrophysical properties p(r), taking into account both their mutual and their vertical 

correlation; 

2.  Apply the empirical RPM to convert the petrophysical properties into the elastic 

properties;  

3. Perturb the elastic properties by adding random vector drawn from pTS(ε). Also in this 

case, the vertical correlation is considered;  

4. Use equation 7 to derive the seismic data; 

5. Repeat steps 3 and 4 q-times and collect all the q seismic gathers, each one generated by 

a perturbation of the elastic properties according to the pTS(ε) PDF; 

6. Let Ds
q be the matrix containing the q-th simulated seismic data (ds) along each column: 
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then the ΣRPM matrix is computed as follows: 
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In other words, the differences between the q simulated seismic gathers quantify the fluctuations 

in the seismic response related to uncertainties in the rock-physics model. To prevent overfitting the 

data, additional sources of errors can be added to equation 18, such as uncertainties in the estimated 

source wavelet, modelling errors, or else uncertainties related to the different scale of well log data 

(used to derive the RPM) and seismic data (the input of the inversion). To this end, Aleardi et al. 

(2017b) adopted an approach based on Backus averaging and Monte Carlo simulations. However, 

in this work only the error in the seismic data and the uncertainties in the rock-physics model are 

accounted for in the inversion.  

The second step of the TS algorithm is the litho-fluid facies classification, in which the outcomes 

of the petrophysical inversion, namely the p(r|d) PDF, are combined with a downward Markov-



chain prior model (as in Larsen et al., 2006) in order to derive the posterior PDF of litho-fluid facies 

conditioned upon the observed data:     
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t
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where t indicates the time position, while the probability p(ft|ft-1) can be obtained from the 

downward Markov-chain transition matrix Tm of litho-fluid classes. In the transition matrix, each 

element aij along the i-th row and j-th column expresses the probability of a transition from the 

facies i located above the interface to the facies j located below. In the following application, we 

consider three facies: shale, brine sand and gas sand that are defined on previous geological 

knowledge about the investigated area and on the basis of well log data investigating the target 

zone. The T matrix derived from well log information is the following: 
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T (25) 

From top to bottom, rows correspond to shale, brine sand, and gas sand at generic vertical 

position t, while from left to right the columns refer to shale, brine sand, and gas sand at vertical 

position t-1, respectively. Note that we impose a null probability for the downward transition from 

brine sand to gas sand. 

 

The single-loop inversion algorithm (SL) 

The single-loop approach was implemented to verify the reliability of the predictions given by 

the TS method. In particular, the comparison between the results provided by the TS and SL 

algorithms, allows us to assess the suitability of the linear RPM, of the Gaussian a-priori model, and 

of the weak contrasts assumption, for the investigated reservoir. For this reason, the SL algorithm 

uses a non-linear theoretical RPM, considers the exact Zoepprtiz equations as forward modelling, 

and more realistically assumes a Gaussian mixture (GM) a-priori PDF for the petrophysical 

properties (Grana and Della Rossa, 2010). The GM assumption implies that the petrophysical 



properties are Gaussian distributed within each facies. In the following application, we assume that 

the number of components of the GM-PDF corresponds to the number of facies considered (shale, 

brine sand, and gas sand). Mathematically, this probability density function can be written as: 
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(26) 

where Q is the total number of facies, λh represents the weights of the components (i.e., the 

proportion of the different facies), whereas μh
r and Σh

r are the mean vector and the covariance 

matrix for each facies. The parameters that define the a-priori GM-PDF can be obtained applying 

the expectation maximization algorithm (Hastie et al. 2002) to the ensemble of available well log 

data. 

Following the chain rule, the posterior PDF that is the target of the SL inversion algorithm, can 

be compactly written as follows: 
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Note that in equation 27 the model vector k of equation 1 now contains an ensemble of litho-fluid 

facies, petrophysical properties and elastic properties k=[f,r,e]. In the implemented SL algorithm, 

the following steps are used to define the initial model at the beginning of the chain: 

1a) Define a vertical succession of litho-fluid facies according to the derived downward 

transition matrix (equation 25); 

2a) Define the petrophysical parameters by drawing random numbers from the conditional 

probability p(r|f). In our case, in which a GM-PDF is assumed for the petrophysical properties, this 

step reduces to draw random candidates from the prior probability ),;( hhN rrμr  . The mutual 

correlation of petrophysical properties is modelled by a stationary covariance matrix, while a 

vertical correlation function based on equation 17 is used to model the vertical correlation;  

3a) Apply the rock-physics model (in our case a theoretical, non-linear, RPM) to convert the 

petrophysical properties into the elastic parameters (Vp, Vs and density); 



4a) Add to the derived elastic parameters the uncertainties associated to the rock physics model 

expressed by pSL(ε). Also in this case, we consider the vertical correlation when drawing random 

numbers from pSL(ε). Step 3a) and 4a) are used to pick the elastic parameters from the conditional 

probability p(e|r,f); 

5a) Compute the likelihood for the considered model p(d|m,r,f). The seismic response associated 

to this model is computed by using a convolutional forward modelling based on the exact Zoeppritz 

equations. The so derived seismic data is compared with the observed data, in order to compute the 

likelihood value. The likelihood function we consider is based on a least-squares measure of misfit 

in which the noise is assumed to be normally distributed with a null mean value and a diagonal 

covariance matrix Σn. Under this assumption, the likelihood value is: 
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in which w is the number of data points and v is the data misfit vector. The matrix Σn can be 

computed with an approach similar to that previously described (equations 19 and 20) 

6a) Accept the initial model as the current model. 

After generating the initial model, a candidate model must be defined. The steps advocated to 

this aim are the following: 

1b) Select q time positions along the vertical profile by drawing q integer random numbers 

uniformly distributed, each one representing a given time sample along the considered time interval;  

2b) For each q-th time position, draw a random number γ uniformly distributed over [0,1];  

3b) If γ <0.3, take the current model and perturb the litho-fluid facies in the considered q-th 

position. This step reduces to draw a random candidate from the prior PDF p(f) that represents the 

actual proportion of litho-fluid facies derived from matrix T. For a given time position q, the facies 

perturbation is accepted if a random number α uniformly distributed over [0,1] satisfies: 

),( jiT (29) 



where i identify the facies at the time position q-1 and j is the proposed facies at position q. If the 

perturbation is accepted, draw a random sample from p(r|f) to define the petrophysical properties of 

the candidate model at the position q. In order to maintain vertically correlated petrophysical 

properties, we propagate the local perturbation at the q-th time position along the entire vertical 

profile. In particular, for a perturbed time position q, we compute the difference between the current 

model and the candidate, perturbed, model in that position: 

 q
curr

q
cand

q
diff rrr −= (30) 

This difference is then convolved with a delta Dirac function located at the q-th time position 

(tq): 

 )tδ(tr)t(tδ q
q

diffqr −=− (31) 

Then the total perturbation vector rpert is derived by convolving δ(t-tq) with the vertical 

correlation function ν(t): 

 ν(t))t(tδr qrpert −= (32) 

Finally, the candidate, perturbed, petrophysical model is computed as follows: 

 pertcurrcand rrr += (33) 

4b) If γ≥0.3, define the petrophysical properties of the candidate model by perturbing the 

petrophysical properties of the current model in the q-th time position. This perturbation follows a 

random walk that samples the p(r|f). The litho-fluid facies in this case are kept fixed. Being the 

prior PDF of the petrophysical properties a GM, this perturbation follows a random walk that 

samples the normal prior density function ),;( hhN rrμr  . To get a better understanding of this step, 

let us consider a continuous variable x and a target probability p(x); the algorithm will generate a 

candidate value xp by perturbing x: 

xxx p += (34) 

where the PDF of the perturbation Δx has null mean value and a variance that must be small 

compared to the variance of p(x) and that should be set in order to accept a reasonable fraction of 



candidate models. Indeed, as discussed in Agostinetti and Malinverno (2010) the method used to 

perturb the current model assumes particular importance in a MCMC inversion. A too weak 

perturbation is computationally expensive and the convergence of the algorithm will be very slow. 

Conversely, a too strong perturbation is inefficient because tends to generate proposed models with 

a likelihood values usually lower than that of the current model. There is not a unique rule to set the 

amplitude of the perturbation; however, experience has shown that an acceptance ratio (the ratio 

between the number of accepted models and the number of proposed models) between 0.2-0.5 is 

optimal in most applications (Mosegaard 2006). In the implemented MCMC algorithm we follow 

this general rule in setting the parameters that define the model perturbations, the number of time 

positions to be perturbed at each iteration, and the other user-defined parameters of the MCMC 

algorithm. After perturbing x, the algorithm moves to xp with a probability: 









=

)(

)(
,1min

xp

xp p
 (35) 

If a Gaussian probability is assumed, the ratio p(xp)/p(x) reduces to: 
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In our application μx and σx are the mean and the standard deviation of the normal PDF 

),;( hhN rrμr  . Similarly to step 3b), the local perturbation at the q-th time position is propagated 

along the vertical profile of petrophysical properties with the method previously described; 

5b) Repeat 2b, 3b or 4b for each q-th time position.  

After step 5b) we compute the elastic parameters associated to the candidate model and its 

likelihood value by repeating steps 3a), 4a) and 5a). Finally, the candidate model is accepted 

according to the Metropolis rule. If the candidate model is accepted kcurr=kcand, and if the burn-in 

period is over kcand is collected. Then, the steps 1b-4b are repeated until the desired number of 

accepted model is reached. This procedure draws models from p(f), p(r|f), p(e|r,f) and p(d|e,r,f) 

and the posterior PDF p(r,e,f|d) can be numerically compute from the collected ensemble of 



models. In all inversion tests described in the following, we use 15 different random walks that start 

from different initial models. In each walk 7000 models are collected and only the last 3500 are 

considered in the computation of the final PDF, thus considering a burn-in period of 3500 models.  

 

Deriving and validating the linear rock-physics model 

The reservoir considered in this work is located in a shale-sand sequence and is constituted by 

gas-bearing sands at the depth range of 900–1000 m. Borehole logs from 7 wells provide elastic and 

petrophysical information needed to fully characterize the reservoir rocks in terms of Vp, Vs, 

density, effective porosity, water-saturation and shaliness (i.e. dry clay + clay-bound water). The 

reservoir sand is rather clean with no cementation and low clay content; effective porosity ranges 

from 0 to 35%, while gas saturation usually varies between 0% and 80%. With the aim to derive a 

comprehensive RPM, valid both for reservoir sands and for the intra-reservoir shales, theoretical 

models, and linear and non-linear regression approaches have been tested. In particular, here we 

limit our attention to two RPMs:  
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the
1
RPMf is an empirical, linear RPM applied in the TS approach, whereas 

2
RPMf is a theoretical, 

non-linear, RPM based on granular media models (Hertz-Mindlin contact theory, Hashin-Shtrikman 

bound and Gassmann model) used by the SL algorithm. In particular, this section is aimed at 

demonstrating that a linear RPM is suitable for reservoir characterization in the investigated area. 

The linear RPM has been estimated using a stepwise regression approach performed over a set of 

more than 4000 well log samples for Vp and density and more than 2000 sample for Vs. The
1
RPMf is 

expressed by the following relations:  
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where Vp and Vs are expressed in m/s, density in kg/m3, z in m, and the petrophysical properties in 

percentage. As a first rough appraisal of the empirical RPM, note that the estimated equations show 

a physically-consistent behavior. In particular, the depth shows a very limited influence on the 

elastic properties due to the limited depth range (centered around the target interval), that has been 

considered in deriving the RPM. In addition, as expected, the Vp, Vs and density decrease with the 

increase of porosity. The increase of water saturation slightly increases the three elastic property 

values, while an increase of shaliness determines a decrease of seismic velocities and density. By 

observing the magnitude of the coefficient of equations 38.1-3 we conclude that the porosity is the 

parameter that plays the major role in controlling the elastic properties, followed by the shaliness 

and the water saturation. From these considerations, we expect that the porosity will be the best 

resolvable parameters in the inversion, while the shaliness and particularly the water saturations will 

be less resolvable. Figure 1 shows a comparison between logged elastic properties and the 

predictions given by the linear and the theoretical RPMs. The good match between the actual and 

the predicted properties evidences the reliability of both RPMs, and proves that in the investigated 

area, a linear RPM can reliability express the relation linking the elastic attributes to the 

petrophysical properties. 

 



 

Figure 1: Comparison between logged elastic properties (black curves) and predicted properties 

by the empirical RPM (red curves) and by the theoretical RPM (green dashed curves). a), b) And c) 

refer to ln(density), ln(Vp) and ln(Vs), respectively. Note the very similar predictions given by the 

empirical and the theoretical RPMs. For the empirical RPM the resulting correlation coefficients 

are 0.94, 0.91 and 0.81 for density, Vp, and Vs respectively. For the theoretical RPM the resulting 

correlation coefficients are 0.94, 0.93 and 0.82 for density, Vp, and Vs respectively. 

 

In Figure 2 are represented the so-called rock physics templates (RPTs) (Avseth et al. 2005) for 

the linear RPM, which are cross-plots showing the influence of the petrophysical properties on the 

elastic attributes (i.e. P-impedance, Ip and S-impedance, Is). Figure 2a shows the RPT derived from 

the actual well-log data and the associated petrophysical properties. We observe a decrease of Ip 

and Is as the water saturation, shaliness and as the porosity increase. These general trends are well 

matched by the RPTs derived from the empirical 
1
RPMf , thus indicating the suitability of this RPM 

for reservoir characterization in the investigated zone. 

The PDF of the error associated with the two RPMs can be derived by computing the difference 

between the logged elastic property values and the corresponding values predicted by each RPM. 

For the empirical RPM, we represent in Figure 3 the sample-by-sample difference between actual 

b) 

a) 

c) 



and predicted P- and S-wave impedances (Ip and Is, respectively). By assuming that this difference 

is Gaussian distributed, we can compute the mean and the covariance of the error PDF associated to 

the empirical RPM (pTS(ε)), which will be used to propagate the uncertainties in the RPM into the 

estimated petrophysical properties. In Figure 3 note that the derived pTS(ε) has a mean value very 

close to the assumed value of zero.  

 

 

Figure 2: Comparison between actual and predicted RPTs by the empirical RPM of equation 

38.1-3. a) RPTs derived from actual well log data and showing the influence of each petrophysical 

parameter on the natural logarithm of the P-impedance (Ip) and S-impedance (Is) values. The 

influence of water saturation, porosity and shaliness is represented from top to bottom. b) RPTs 

predicted by the empirical RPM. Note that the main trends visible in a) are well predicted by the 

estimated RPM. 

a) b) 



 

Figure 3: The error PDF pTS(ε) for the empirical RPM (
1
RPMf ) that expresses the variability of 

elastic properties that is not described by the estimated rock-physics model. The black dots show 

the difference between the natural logarithm of actual and predicted Ip and Is values, whereas the 

colored contours represent the Gaussian PDF derived on the ensemble of black dots (blue and red 

colors code low and high probabilities, respectively).  

 

As previously introduced, the geological knowledge on the investigated has been exploited to 

define the number of litho-fluid facies to be considered: shale, brine sand and gas sand. Figure 4 

shows cross-plots of the natural logarithm of the logged Vp, Vs and density values within each 

considered facies around the reservoir zone. Note that the Vp progressively decreases passing from 

shale, to brine sand and to gas sand. The lower Vp value for the gas sand with respect to the brine 

sand, is related to the decrease in bulk modulus that occurs when gas replaces brine in the pore 

space. The density is characterized by a slight decrease when passing from shale to brine sand and a 

significant decrease when moving from brine sand to gas sand. This trend is associable to the lower 

density value that characterizes the gas with respect to brine. It is noteworthy that the Vs maintains 

an almost constant value across the three facies. This is probably related both to the depth interval 

where the reservoir is located, in which shale and sand are characterized by a similar Vs value, and 

also to the insensibility of the shear modulus to the saturating fluid.   



 

Figure 4: a) and b) Cross-plots showing the distribution of the natural logarithm of P-wave, S-

wave velocities and density within each facies. The data have been extracted from the available well 

log data around the reservoir interval. Gray, yellow and green colors refer to shale, brine sand and 

gas sand, respectively. Note the decreases of density and Vp when moving from shale, to brine 

sand, and to gas sand and also the very similar S-wave velocity values within the three litho-fluid 

facies.  

 

We now investigate if the different facies in the target area are characterized by peculiar and 

discernible AVA responses. Basing on the distribution of elastic properties of Figure 4 and by 

making use of a Monte Carlo simulation, we derive the expected PDFs of AVA responses in the 

target area for three different case: shale-shale, shale-brine sand and shale-gas sand interfaces. The 

procedure we use can be schematized in the following steps: 

1) Consider a single reflecting interface separating the overlying shale and an underlying facies 

(shale, brine sand or gas sand); 

2) Pick the elastic properties of the underlying and overlying layers from the associated PDFs 

that can be derived from the cross-plot of Figure 4; 

3) Use the elastic properties resulting from 2) and equation 4 to compute the AVA response 

associated to the reflecting interface; 

4) Store the resulting AVA response and iterate from 2) to 4) (in the following simulation we 

repeat this procedure 1500 times, that is until a stable PDF is attained). 

 

a) b) 



From the ensemble of derived AVA responses, the corresponding PDF can be derived via a 

numerical approach (Avseth et al. 2005). From Figure 5 we observe that the shale-shale reflecting 

interface has, as expected, a reflection coefficient at normal incidence close to zero and negligible 

variations of the reflected amplitudes with the increase of the incidence angle. The shale-brine sand 

contact is associated with a slightly negative reflection coefficient at normal incidence that again 

tends to remain constant as the incidence angle increases. Finally, the shale-gas sand interface 

produces a negative reflection coefficient at normal incidence that remains almost constant when 

varying the incidence angle. Note that the slight Vs contrast between shale and sand determines 

negligible variations of the reflection coefficient as the incidence angle increases. If we consider the 

two-term Shuey approximation of the Zoeppritz equations, we can also derive the 2D PDF for the 

intercept and gradient values that characterize the expected AVA responses (Figure 6). This 2D 

representation allows us to better analyze the expected, theoretical, overlapping between the AVA 

responses associated to the different facies. Taking into consideration the Castagna and Swan 

(1997) classification, the shale-brine sand interface is mostly associated with a class II AVA 

response that is characterized by small intercept and gradient values. In the investigated case, the 

shale-gas sand interface does not generate a clear class III anomaly due to the weak Vs contrast 

between shale and sand.  

 

 



  

Figure 5: The expected PDFs of AVA responses in the target zone computed for a shale-shale 

contact (a), a shale-brine sand contact (b), and a shale-gas sand contact (c). In all cases note the 

limited variations of the reflected amplitudes as the incidence angle increases. 

 

Figure 6: The expected PDF of the intercept and gradient values for the shale-shale, shale-brine 

sand and shale-gas sand reflecting interfaces.  

 

a) 

b) 

c) 



Before describing the inversion results, we want to demonstrate the reliability of the derived 

linear RPM. To this end, we consider the borehole data pertaining to an exploration well (named 

well A in the following) and we compare the seismic data obtained from well A when using the 

elastic forward modelling of equation 7 and the petrophysical forward modelling of equation 15 

(Figure 7). The close match between the seismic data resulting from the two forward modelling 

parameterizations is a first confirmation of the reliability of the derived RPM.  

 

Figure 7: Comparison between synthetic CMP gathers obtained from well A by using an elastic 

forward modelling (equation 7) and a petrophysical forward modelling (equation 15) that was 

derived by incorporating the empirical RPM of equation 38.1-3 in the time-continuous 

approximation of the P-wave reflection coefficients. The negligible differences between the seismic 

data obtained by the two different forward modelling parameterizations, demonstrate the reliability 

of the derived linear RPM. For a better comparison, all the seismograms are represented with the 

same amplitude normalization. 

 

Another more quantitative confirmation of the reliability of the empirical RPM of equation 38.1-

3 can be obtained by directly inverting the logged Vp, Vs and density values for deriving the 

petrophysical properties. The mathematical framework of this inversion procedure is similar to that 

described in equation 15, in which the data vector d is now replaced by the vector of elastic 

properties m. The final results shown in Figure 8, demonstrate that the estimated maximum a 



posterior (MAP) solution closely follows the actual petrophysical properties along the entire time 

interval we consider. As expected, we observe a high resolution for the porosity and lower 

resolutions for the shaliness and water saturation estimates. As previously discussed this fact is 

related to the different influences played by the petrophysical parameters in determining the elastic 

properties. 

 

Figure 8: a), b) and c) Posterior PDFs for water saturation, porosity and shaliness estimated by 

the TS method when the logged elastic properties of Vp, Vs and density of well A are inverted. The 

match between the true properties values (continuous black lines) and the MAP solutions (dashed 

magenta lines) confirms the reliability of the empirical RPM of equation 38.1-3 and its suitability 

for reservoir characterization in the investigated area. Note the increase of uncertainties when 

passing from porosity, to shaliness and to water saturation.  

 

Inversion of synthetic data 

In the following, we describe the applications of the two implemented algorithms for the 

inversion of a synthetic seismic CMP gather that has been computed from actual well log 

measurements pertaining to well A. The seismic data have been computed with a convolutional 

forward modelling and using a 50 Hz Ricker wavelet that mimics the expected resolution of the 

available field seismic data.  

 

a) b) c) 



Inversion with the TS algorithm 

Figure 9 shows the results obtained by inverting the synthetic CMP associated to the considered 

well, within an angle range between 0 and 30 degrees. Note that the inversion has been able to 

predict, although with a low vertical resolution, the true petrophysical properties values. Again note 

that the expected resolution decreases moving from porosity, to shaliness and to water saturation. 

 

Figure 9: Inversion results provided by the TS algorithms for a synthetic CMP gather pertaining 

to well A. a), b) c) And d) represent the observed CMP gather, and the posterior PDFs for the 

petrophysical properties of water saturation, porosity and shaliness, respectively. The continuous 

black and dashed magenta lines display the logged property values and the MAP solution, 

respectively. Note that, although with a lower vertical resolution, the MAP solutions closely match 

the actual property values.  

 

Figure 10 displays the results of litho-facies classification obtained from the outcomes of the 

petrophysical inversion shown in Figure 9. Note that the predicted facies profile closely matches the 

actual one derived from borehole information, although the filter effect introduced by the seismic 

wavelet impedes the identification of the thinnest layers, as the very thin brine saturated sand layer 

located at 0.982.  

a) b) c) d) 



 

Figure 10: a) Actual facies profile at well A. b) And c) MAP solution and posterior PDF of litho-

fluid facies provided by the TS algorithm for the synthetic inversion of the seismic data derived 

from well A, respectively. Note the close match between the actual and the predicted profiles.  

 

Inversion with the SL algorithm 

Before the seismic data inversion, we run the SL algorithm by setting the likelihood to unity in 

order to verify whether the proposed candidate models are distributed according to the prior 

probability density functions p(f) and p(r). Indeed, from equation 1 emerges that if the likelihood is 

fixed to one, the posterior PDF coincides with the prior PDF. Figure 11 shows the results of this 

exercise and demonstrates that the posterior PDF of litho-fluid facies and of petrophysical 

properties (water saturation, porosity and shaliness) are equal to the corresponding prior PDFs. This 

confirms the efficiency and the reliability of the implemented MCMC algorithm.  

Figure 12 displays the posterior PDF p(r|d) obtained by inverting the synthetic seismic data 

pertaining to well A. Note that with respect to the inversion with the TS algorithm, the forward 

modelling engine of the SL approach based on the exact Zoeppritz equations, allow us to extend the 

angle range considered in the inversion (in the following test 0-40 degrees). Similarly, to the TS 

algorithm, also the SL approach has been able to predict the true petrophysical properties values. 

Note that the multimodal a priori PDF we consider for the petrophysical property tend to generate a 

multimodal posterior p(r|d). Figure 13 demonstrate that also the MAP solution for litho-fluid facies 

a) b) c) 



and the probability p(f|d) are in accordance with the actual vertical facies profiles. Figure 14 shows 

an example of the first 1000 realizations (that are the accepted models) of the SL algorithm in the 

inversion of the synthetic seismic. Note that the model realizations of petrophysical properties and 

litho-fluid facies rapidly converge toward the actual well log information.  

 

Figure 11: Comparison of prior and posterior PDFs of litho-fluid facies and petrophysical 

properties, derived by imposing in the SL inversion a likelihood value equal to one. a), b), c) And d) 

represent the PDFs of litho-fluid facies, water saturation, porosity and shaliness, respectively. The 

close match between prior and posterior PDFs proves that the distribution of the proposed models 

exactly follows the prior PDF.  

 

 

Figure 12: Inversion results provided by the SL algorithms for the synthetic CMP gather 

pertaining to well A. a), b) c) And d) represent the observed CMP gather, and the posterior PDFs 

for the petrophysical properties of water saturation, porosity and shaliness, respectively. The 

c) 

a) b) c) d) 

b) 

d) 

a) 



continuous black and dashed magenta lines display the logged property values and the MAP 

solution, respectively. Note that, although with a lower vertical resolution, the MAP solutions 

closely match the true property values.  

 

Figure 13: a) Actual facies profile at well A. b) and c) MAP solution and posterior PDF of litho-

fluid facies provided by the SL algorithm for the synthetic inversion of the seismic data derived 

from well A, respectively. Note the close match between the actual and the predicted profiles. 

 

a) b) c) 



  
Figure 14: Comparison between the actual petrophysical properties and litho-fluid facies with 

the realizations of the SL algorithm for the inversion of the synthetic seismic data pertaining to well 

A. a), b), c) And d) pertain to the water saturation, porosity, shaliness and litho-fluid facies.  

 

The very similar MAP solutions achieved by the TS and SL algorithms (Figure 9, Figure 10, 

Figure 12, and Figure 13) seem to confirm the applicability of the two-step method for the 

investigate reservoir area. We now extend this comparison to the field data inversion. 

 

Inversion of field data 

We run the two implemented algorithms as part of appraisal studies of a gas-field located 

onshore, where seismic data were acquired with a maximum offset of 6 Km and processed 

following a true amplitude processing-sequence. The dominant frequency of the available seismic 

data is around 45-50 Hz. Angle gathers derived from time-migrated CMPs are the inputs for the two 

b) 

c) 

a) 

d) 



implemented inversion algorithms. As previously discussed, borehole logs provide seismic 

velocities, density and petrophysical information needed to compute all the a-priori information and 

to derive the rock-physic models for the target zone. The information brought by these wells has 

been also used to validate the inversion results, while well A was used for a blind test. 

Figure 15 represents a close-up of a stack section extracted from the 3D seismic volume along an 

in-line direction. Note the high-amplitude reflector associated with the top of the reservoir.  

 

Figure 15: Example of stack section along an in-line direction extracted from the 3D seismic 

volume. The green rectangle delimits the target zone, while the black arrow points toward the top 

reflections of the reservoir. 

 

Figure 16 illustrate the p(r|d) provided by the TS algorithm for the inversion of the CMP gathers 

closest to well A. First of all, note that due to the limited depth at which the reservoir is located, the 

first utilizable incidence angle was 15 degrees, and that only 4 seismic traces (pertaining to the 

incidence angles of 15-20-25-30 degrees) have been considered in the inversion. However, we 

observe that, although with higher uncertainties (that is broader posterior PDFs) with respect to the 

synthetic tests, the inversion provides MAP solutions that correctly capture the variability in the 

logs. In particular, note that the true properties are usually contained in the range of admissible 

solutions defined by the posterior PDFs. In addition, Figure 16a confirms the conclusion drawn 

from the Monte Carlo simulations of the expected AVA responses (Figure 5). Indeed, note that the 

shale-sand reflections are characterized by negligible variations of the seismic amplitudes as the 



incidence angle increases. The predicted facies profiles (Figure 17) confirms the reliability of the 

inversion results.  

 

Figure 16: Inversion results provided by the TS algorithm for a field CMP gather located in 

correspondence of well A. a), b) c) And d) represent the observed CMP gather, and the posterior 

PDFs for the petrophysical properties of water saturation, porosity and shaliness, respectively. The 

continuous black and dashed magenta lines shown the logged properties values and the MAP 

solution, respectively.  

 

Figure 17: a) Actual facies profile at well A. b) and c) MAP solution and posterior PDF of litho-

fluid facies provided by the TS algorithm for the inversion of the CMP gather located in 

correspondence of well A, respectively. Note the match between the actual and the predicted 

profiles. 

 

a) b) c) d) 

a) b) c) 



Figure 18 and Figure 19 display the p(r|d) and p(f|d) estimated by the SL inversion algorithm. 

Again, we observe a satisfactory match between the MAP solutions and the well log information. In 

particular, note that with respect to the TS approach, the exact Zoeppritz equations used by the SL 

method as forward modelling engine, allows us to slightly extend the angle range considered in the 

inversion up to a maximum incidence angle of 40 degrees (Figure 18a). 

 

 

Figure 18: Inversion results provided by the SL algorithm for a field CMP gather located in 

correspondence of well A. a), b) c) and d) represent the observed CMP gather, and the posterior 

PDFs for the petrophysical properties of water saturation, porosity and shaliness, respectively. The 

continuous black and dashed magenta lines show the logged properties values and the MAP 

solution, respectively.  

a) b) c) d) 



 

Figure 19: a) Actual facies profile at well A. b) and c) MAP solution and posterior PDF 

provided by the SL algorithm for the inversion of the CMP gather located in correspondence of well 

A, respectively. Note the close match between the actual and the predicted profiles. 

 

In all the inversion tests we observe that, as expected, the uncertainty on the estimated 

petrophysical properties increase passing from porosity to shaliness and to water saturation. As 

previously discussed, this fact can be related to the different influence of the petrophysical 

properties in determining the elastic properties, and thus the seismic response. Analogously to the 

synthetic tests, the very similar MAP solutions yielded by the TS and SL algorithms confirm the 

applicability of the two-step method for reservoir characterization in the investigated area. 

To more quantitatively compare the posterior PDFs estimated in the field data inversion by the 

TS and the SL algorithm, we compute the coverage probability for all the field seismic gathers for 

which well control was available to validate the results. The coverage probability is the actual 

probability that the considered interval (in the following the 0.80 probability interval) contains the 

true property value. In Table 1 note that, although the similarity between the MAP solutions 

estimated by the two methods, the SL algorithm provides slightly superior prediction intervals 

compared to the TS method. This proves that accounting for the dependence of the petrophysical 

properties on the litho-fluid facies can produce a more accurate description of the uncertainties 

affecting the estimated parameters. 

a) b) c) 



 TS method SL method 

Water Saturation 0.75 0.79 

Porosity 0.87 0.90 

Shaliness 0.84 0.85 

Table 1: The coverage probability (0.80) computed by considering the inversion results obtained 

for the inversion of the seismic gathers for which well control was available to validate the results.  

 

Figure 20 and Figure 21 show the MAP solutions for petrophysical properties estimated by the 

TS and SL algorithms, respectively, along the in-line section and within the green rectangle 

represented in Figure 15. Note the high porosity and low water saturation and shaliness values that 

characterize the target interval located around 0.95 s and between cross-lines 150-200. Again, note 

the similarity between the predictions provided by the two methods along the entire section, and 

particularly around the target interval. The more scattered predictions visible in Figure 21 with 

respect to Figure 20, can be ascribed to the multimodality of the posterior PDF p(r|d) estimated by 

the SL algorithm. Figure 22 compares the MAP solution of litho-fluid facies classification 

estimated by the two methods. The considerations are similar to those drawn from Figure 20 and 

Figure 21. Note the prediction of gas saturated sands around the target interval.  

 



 

Figure 20: MAP solution of the petrophysical properties estimated by the TS algorithms along 

the in-line section and within the green rectangle represented in Figure 15. a), b) And c) refer to 

water saturation, porosity and shaliness, respectively. Note the decrease of water saturation and 

shaliness and the increase of porosity occurring at the target layer located around 0.95 TWT and 

between cross-lines 145-210 (green rectangles).  

 

 

Figure 21: As in Figure 20 but for the SL algorithm.  

 

a) 

b) 

c) 

a) 

b) 

c) 



 

Figure 22: MAP solutions for the litho-fluid facies estimated by the TS and SL algorithms (parts 

a) and b), respectively) along the in-line section and within the green rectangle represented in 

Figure 15. Note the fair match between part a) and b) and the prevalence of gas sands in 

correspondence of the target layer located around 0.95 TWT and between cross-lines 145-210 (red 

rectangles).  

 

Discussion 

The implemented TS approach constitutes a very fast inversion algorithm that adopts an 

analytical Bayesian formulation under Gaussian assumption for the petrophysical parameter. This 

method being based on a petrophysical reformulation of a time-continuous linearization of the exact 

Zoepprtiz equations, is obviously limited to be applied to a narrow range of incidence angle (i.e 0-

30 degrees) and under the assumption of weak elastic contrasts at the reflecting interfaces. This 

algorithm is based on a linear RPM; however, rock-physics models are generally non-linear, but the 

nonlinearity is often not strong as in the reservoir zone considered in this work. In this context, the 

main advantage is that the linear RPM allows us to derive analytical solutions of the petrophysical 

inverse problem. In addition, for slightly non-linear RPMs (i.e Raymer model, stiff sand model, 

inclusion model) the TS inversion can be implemented by using a local linearization of the RPM 

based on a truncated Taylor series and an analytical derivation of the Jacobian matrix (Grana 2016). 

If the rock-physics model is strongly non-linear the TS method cannot be applied, and a numerical 

a) 

b) 



evaluation of the posterior PDF is required. Obviously, if needed, the TS approach can be extended 

to other parameterizations of the elastic forward operator: such as parameterizations in terms of 

seismic impedances, Lamé parameters, Poisson ratio and so on. Similarly, other rock and fluid 

properties, such as oil saturation and/or calcite volume, can be estimated as long as suitable rock-

physics models are available. As previously discussed the TS algorithm, in its actual 

implementation, assumes Gaussian distributed petrophysical properties but petrophysical properties 

are generally not Gaussian. Grana and Della Rossa (2010) and Rimstad and Omre (2010) presented 

analytical formulations of the Bayesian approach for multimodal and skewed PDFs, respectively. 

These formulations could be used in the petrophysical inversion but they will increase the 

computational effort. From the one hand, the more realistic Gaussian mixture PDF provides slightly 

superior prediction intervals compared with the Gaussian assumption. From the other hand, the 

Gaussian assumption, although neglecting the facies dependent characteristics of petrophysical 

properties, not only simplifies the practical implementation of the inversion method, but makes it 

also possible to implement a fast and analytic inversion procedure that yields final estimates that 

can correctly capture the variability in the logs.  

The SL algorithm being based on a MCMC method, provides a highly computer intensive 

inversion tool for an accurate uncertainty propagation. In this case, the elastic forward modelling 

based on the exact Zoeppritz equations makes it possible to relax the assumption of weak elastic 

contrasts at the reflecting interfaces and allows us to increase the angle range considered in the 

inversion. In addition to the GM-PDF, the SL algorithm ca be easily extended to sample different a-

priori PDF of the petrophysical properties. If needed, the convolutional elastic forward modelling 

can be substituted with other forward operators that more realistically models the wave propagation 

in the subsurface (i.e. the reflectivity method). At the expense of a higher computational cost, this 

modification makes it possible to include multiple wave phenomena (i.e converted wave, multiple 

reflections) in the inversion, that might help reduce the petrophysical null-space. The SL algorithm 

can obviously manage linear, non-linear, empirical or theoretical RPMs, or else can be used with 



different RPMs for different litho-fluid facies. Both the TS and SL inversion algorithms assume that 

the derived RPM calibrated at the well location is also valid far away from the well. In addition, the 

two methods assume bounded petrophysical properties (i.e. shaliness and water saturation bounded 

between 0 and 100%). For this reason, in the SL inversion, we reject any proposal that falls outside 

the bounds, while in the TS approach we simplistically consider the bounds as hard constrains that 

make the a-priori probability equal to zero outside the admissible ranges. This implies that the 

standard deviations of the petrophysical parameters are not representative for the whole a-priori 

PDF, but they are only valid for the Gaussian part (see Duijndam, 1988). However, if needed, logit 

transformation could be applied to transform bounded variables to variables with support in ℝ 

(Bosch et al. 2007). For the investigated reservoir, the main difference between the TS and SL 

algorithm is their very different computational times. Considering a Matlab implementation and the 

same hardware configuration (an Intel i5 CPU @2.67 GHz), the TS method requires just a couple of 

hours to invert and classify the 2D section we considered, whereas the single-loop approach 

requires more than three days. However, the computational cost of the SL inversion can be greatly 

reduced by a parallel implementation in which many CMP gathers are inverted simultaneously or in 

which the models in each chain are sampled simultaneously. In addition to speed up the inversion 

procedure, the MCMC method can be substituted by the probability perturbation method (Caers et 

al. 2006) that seems to guarantee a faster convergence than the standard MCMC methods. A 

possible improvement to promote the lateral continuity of the results could be obtained by 

introducing spatial constrains (i.e. in the form of a variogram model) between the petrophysical 

properties and/or the litho-fluid facies, or else by additionally constraining the inversion results on 

hard data (i.e. well log data). Further work on these research topics is currently ongoing.  

 

Conclusions 

We implemented a two-step (TS) approach for seismic-reservoir characterization. In the first 

step, petrophysical properties are directly estimated from pre-stack seismic data by using a linear 



empirical rock-physics model (RPM) and under the assumption of a Gaussian prior model. These 

characteristics make it possible an analytical formulation of the posterior probability density 

function (PDF) of petrophysical properties, and thus allowed us to implement a very fast inversion 

procedure. In particular, the linear RPM, specifically derived for the investigated area, was used to 

rewrite the time-continuous reflectivity function, which links the P-wave reflection coefficients to 

the elastic contrasts at the reflecting interface, in terms of petrophysical contrasts. This seismic-

petrophysical forward modelling being based on a linear approximation of the exact Zoeppritz 

equations, limits the inversion to consider a limited range of incidence angles and to assume weak 

elastic contrasts at the reflecting interfaces. In the second step of litho-fluid facies identification, the 

posterior PDF estimated in the first step are combined with a downward Markov Chain prior model 

in order to estimate the posterior probability of litho-fluid facies. 

To assess the reliability of the TS algorithm, we compared its predictions with those provided by 

a single-loop (SL) MCMC algorithm that uses the exact Zoeppritz equations as forward model, 

adopts a non-linear theoretical RPM, and more realistically assumes a Gaussian mixture a-priori 

model. From a practical point of view, the synthetic and field inversion tests proved the consistency 

between the MAP solutions provided by the two methods and the well log information, and 

demonstrated the validity of the Gaussian assumption and the suitability of the linear rock-physics 

model for reservoir characterization in the investigated area. The Gaussian mixture model adopted 

by the SL algorithm produced only a slight improvement of the description of the multimodal 

behavior of the final solution. In both inversions, it resulted that the porosity is the best resolved 

parameter, whereas the shaliness, but particularly the water saturation, are less resolvable due to 

their minor influence in determining the elastic parameters, and then the seismic response. 
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Figure captions 

Figure 1: Comparison between logged elastic properties (black curves) and predicted properties 

by the empirical RPM (red curves) and by the theoretical RPM (green dashed curves). a), b) And c) 

refer to ln(density), ln(Vp) and ln(Vs), respectively. Note the very similar predictions given by the 

empirical and the theoretical RPMs. For the empirical RPM the resulting correlation coefficients 

are 0.94, 0.91 and 0.81 for density, Vp, and Vs respectively. For the theoretical RPM the resulting 

correlation coefficients are 0.94, 0.93 and 0.82 for density, Vp, and Vs respectively. 

 

Figure 2: Comparison between actual and predicted RPTs by the empirical RPM of equation 

38.1-3. a) RPTs derived from actual well log data and showing the influence of each petrophysical 

parameter on the natural logarithm of the P-impedance (Ip) and S-impedance (Is) values. The 

influence of water saturation, porosity and shaliness is represented from top to bottom. b) RPTs 

predicted by the empirical RPM. Note that the main trends visible in a) are well predicted by the 

estimated RPM. 

 

Figure 3: The error PDF pTS(ε) for the empirical RPM (
1
RPMf ) that expresses the variability of 

elastic properties that is not described by the estimated rock-physics model. The black dots show 

the difference between the natural logarithm of actual and predicted Ip and Is values, whereas the 

colored contours represent the Gaussian PDF derived on the ensemble of black dots (blue and red 

colors code low and high probabilities, respectively).  

 

Figure 4: a) and b) Cross-plots showing the distribution of the natural logarithm of P-wave, S-

wave velocities and density within each facies. The data have been extracted from the available well 

log data around the reservoir interval. Gray, yellow and green colors refer to shale, brine sand and 

gas sand, respectively. Note the decreases of density and Vp when moving from shale, to brine 



sand, and to gas sand and also the very similar S-wave velocity values within the three litho-fluid 

facies.  

 

Figure 5: The expected PDFs of AVA responses in the target zone computed for a shale-shale 

contact (a), a shale-brine sand contact (b), and a shale-gas sand contact (c). In all cases note the 

limited variations of the reflected amplitudes as the incidence angle increases. 

 

Figure 6: The expected PDF of the intercept and gradient values for the shale-shale, shale-brine 

sand and shale-gas sand reflecting interfaces.  

 

Figure 7: Comparison between synthetic CMP gathers obtained from well A by using an elastic 

forward modelling (equation 7) and a petrophysical forward modelling (equation 15) that was 

derived by incorporating the empirical RPM of equation 38.1-3 in the time-continuous 

approximation of the P-wave reflection coefficients. The negligible differences between the seismic 

data obtained by the two different forward modelling parameterizations, demonstrate the reliability 

of the derived linear RPM. For a better comparison, all the seismograms are represented with the 

same amplitude normalization. 

 

Figure 8: a), b) and c) Posterior PDFs for water saturation, porosity and shaliness estimated by 

the TS method when the logged elastic properties of Vp, Vs and density of well A are inverted. The 

match between the true properties values (continuous black lines) and the MAP solutions (dashed 

magenta lines) confirms the reliability of the empirical RPM of equation 38.1-3 and its suitability 

for reservoir characterization in the investigated area. Note the increase of uncertainties when 

passing from porosity, to shaliness and to water saturation.  

 



Figure 9: Inversion results provided by the TS algorithms for a synthetic CMP gather pertaining 

to well A. a), b) c) And d) represent the observed CMP gather, and the posterior PDFs for the 

petrophysical properties of water saturation, porosity and shaliness, respectively. The continuous 

black and dashed magenta lines display the logged property values and the MAP solution, 

respectively. Note that, although with a lower vertical resolution, the MAP solutions closely match 

the actual property values. 

 

Figure 10: a) Actual facies profile at well A. b) And c) MAP solution and posterior PDF of litho-

fluid facies provided by the TS algorithm for the synthetic inversion of the seismic data derived 

from well A, respectively. Note the close match between the actual and the predicted profiles.  

 

Figure 11: Comparison of prior and posterior PDFs of litho-fluid facies and petrophysical 

properties, derived by imposing in the SL inversion a likelihood value equal to one. a), b), c) And d) 

represent the PDFs of litho-fluid facies, water saturation, porosity and shaliness, respectively. The 

close match between prior and posterior PDFs proves that the distribution of the proposed models 

exactly follows the prior PDF.  

 

Figure 12: Inversion results provided by the SL algorithms for the synthetic CMP gather 

pertaining to well A. a), b) c) And d) represent the observed CMP gather, and the posterior PDFs 

for the petrophysical properties of water saturation, porosity and shaliness, respectively. The 

continuous black and dashed magenta lines display the logged property values and the MAP 

solution, respectively. Note that, although with a lower vertical resolution, the MAP solutions 

closely match the true property values.  

 



Figure 13: a) Actual facies profile at well A. b) and c) MAP solution and posterior PDF of litho-

fluid facies provided by the SL algorithm for the synthetic inversion of the seismic data derived 

from well A, respectively. Note the close match between the actual and the predicted profiles. 

 

Figure 14: Comparison between the actual petrophysical properties and litho-fluid facies with 

the realizations of the SL algorithm for the inversion of the synthetic seismic data pertaining to well 

A. a), b), c) And d) pertain to the water saturation, porosity, shaliness and litho-fluid facies.  

 

Figure 15: Example of stack section along an in-line direction extracted from the 3D seismic 

volume. The green rectangle delimits the target zone, while the black arrow points toward the top 

reflections of the reservoir. 

 

Figure 16: Inversion results provided by the TS algorithm for a field CMP gather located in 

correspondence of well A. a), b) c) And d) represent the observed CMP gather, and the posterior 

PDFs for the petrophysical properties of water saturation, porosity and shaliness, respectively. The 

continuous black and dashed magenta lines shown the logged properties values and the MAP 

solution, respectively.  

 

Figure 1723: a) Actual facies profile at well A. b) and c) MAP solution and posterior PDF of 

litho-fluid facies provided by the TS algorithm for the inversion of the CMP gather located in 

correspondence of well A, respectively. Note the match between the actual and the predicted 

profiles. 

 

Figure 18: Inversion results provided by the SL algorithm for a field CMP gather located in 

correspondence of well A. a), b) c) and d) represent the observed CMP gather, and the posterior 

PDFs for the petrophysical properties of water saturation, porosity and shaliness, respectively. The 



continuous black and dashed magenta lines show the logged properties values and the MAP 

solution, respectively.  

 

Figure 19: a) Actual facies profile at well A. b) and c) MAP solution and posterior PDF 

provided by the SL algorithm for the inversion of the CMP gather located in correspondence of well 

A, respectively. Note the close match between the actual and the predicted profiles. 

 

Table 1: The coverage probability (0.80) computed by considering the inversion results obtained 

for the inversion of the seismic gathers for which well control was available to validate the results.  

 

Figure 20: MAP solution of the petrophysical properties estimated by the TS algorithms along 

the in-line section and within the green rectangle represented in Figure 15. a), b) And c) refer to 

water saturation, porosity and shaliness, respectively. Note the decrease of water saturation and 

shaliness and the increase of porosity occurring at the target layer located around 0.95 TWT and 

between cross-lines 145-210 (green rectangles).  

 

Figure 21: As in Figure 20 but for the SL algorithm.  

 

Figure 22: MAP solutions for the litho-fluid facies estimated by the TS and SL algorithms (parts 

a) and b), respectively) along the in-line section and within the green rectangle represented in 

Figure 15. Note the fair match between part a) and b) and the prevalence of gas sands in 

correspondence of the target layer located around 0.95 TWT and between cross-lines 145-210 (red 

rectangles).  


