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Abstract

The Electric Solar Wind Sail is an innovative propulsion system concept that gains propulsive acceleration from
the interaction with charged particles released by the Sun. The aim of this paper is to obtain analytical expressions
for the thrust and torque vectors of a spinning sail of given shape. Under the only assumption that each tether
belongs to a plane containing the spacecraft spin axis, a general analytical relation is found for the thrust and
torque vectors as a function of the spacecraft attitude relative to an orbital reference frame. The results are then
applied to the noteworthy situation of a Sun-facing sail, that is, when the spacecraft spin axis is aligned with
the Sun-spacecraft line, which approximatively coincides with the solar wind direction. In that case, the paper
discusses the equilibrium shape of the generic conducting tether as a function of the sail geometry and the spin
rate, using both a numerical and an analytical (approximate) approach. As a result, the structural characteristics
of the conducting tether are related to the spacecraft geometric parameters.
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Nomenclature

A, B, C, D = components of the total force, see Eq. (23), [N]
b = dimensionless (shape) coefficient
d = position vector of ds, [m]
E , F , G = components of the total torque, see Eq. (32), [ N m]
f = distance of ds from (x, y) plane, [m]

F = total force, with ||F || , F , [N]
h = dimensionless abscissa

î = unit vector of x-axis

îk = unit vector of xk-axis

ĵ = unit vector of y-axis

k̂ = unit vector of z-axis
K = dimensionless shaping parameter, see Eq. (58)
L = tether length, [m]
mp = proton mass, [kg]
n = solar wind number density, [ m−3]
n̂ = spin velocity unit vector
N = number of tethers
r̂ = Sun-spacecraft unit vector
s = curvilinear abscissa, [m]
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S = spacecraft center-of-mass
ŝ = unit vector tangent to the tether
T = total torque, [ N m]

u = solar wind relative velocity vector, with ||u|| , u, [ m s−1]
V = tether electric potential [V]
Vw = solar wind ions electric potential, [V]
(x, y, z) = axes of the body reference frame
αn = pitch angle, [rad]
β = aperture angle of the right circular cone, [rad]
δn = clock angle, [rad]
ε0 = vacuum permittivity, [ F m−1]

ζk = angle between planes (̂ik, n̂) and (̂i, n̂), [rad]
ρ = tether linear mass density, [ kg m−1]
σ = constant, see Eq. (10), [ kg m−1 s−1]
τ = tether tension force, [N]

ω = spacecraft spin velocity, with ||ω|| , ω, [ s−1]

Subscripts

c = conic
k = generic tether
l = logarithmic
max = maximum
p = parabolic
r = root
s = due to solar wind flux
t = tip
ω = centrifugal

Superscripts

′ = derivative with respect to x

1. Introduction

The Electric Solar Wind Sail (E-sail) is an innovative propulsion system that exploits the solar wind
particle momentum to generate a propulsive acceleration in the interplanetary space [1]. The incoming ions
interact with an artificial electric field generated on board by means of an electron emitter, which charges a
grid of long tethers at a high voltage level, on the order of some tens of kilovolts [2]. The tethers are deployed
and maintained stretched by spinning the spacecraft and, in a simplified model, they can be assumed to
belong to the same plane orthogonal to the spin axis [3, 4], see Fig. 1. Along with the more classical solar
sail, the E-Sail is one of the most promising propellantless propulsion systems, even though it needs electric
power to produce the required electric field. Unlike a solar sail, whose propulsive force varies as the inverse
square distance from the Sun, a very interesting property of an E-sail is that its maximum thrust modulus
is inversely proportional to the heliocentric distance [5].

A non-negligible portion of the current research is intended for investigating how the geometric features
of such a propulsion system may affect its in-flight performance in terms of thrust and torque vectors [6, 7, 8].
However, the E-sail propulsive characteristics are quite complex to model, as the thrust (or torque) vector and
the sail shape are mutually affected by each other. To get preliminary simulation results, the thrust vector
is often modelled through the simplified assumption of a sail shape resembling that of a rigid disc of given
radius [9, 10, 11, 12, 13]. In some cases such an approximation may be inaccurate, as the actual shape of each
tether depends on the combined effects of the centrifugal force and the solar wind dynamic pressure acting on
it. Moreover, it is known that the actual geometric characteristics of the sail shape may significantly affect
the performance of an E-sail-based spacecraft. Nevertheless, in a preliminary phase of mission design the
mathematical model adopted to describe the sail shape must be simple enough to be successfully implemented
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Figure 1: Spinning E-sail conceptual sketch.

within a simulation code, especially when optimal trajectories are investigated [14, 15]. Indeed, in the latter
case, a number of transfer trajectories need to be simulated to minimize a scalar performance index, such
as the flight time [16, 17, 18, 19].

In this context, Toivanen and Janhunen [8] have studied the shape of a rotating E-sail using a numerical
approach, stating that the tether arrangement forms a cone near the spacecraft, while each tether is flattened
near the tip by the centrifugal force. More recently, Huo et al. [20] have obtained a compact and analytical
description of the E-sail thrust vector using a geometric approach and assuming an axisymmetric grid of
tethers belonging to the same plane (the so-called“flat case”). The aim of this paper is to obtain an analytical
expression of both thrust and torque vectors generated by a spinning E-sail of a given (three-dimensional)
shape, under the main assumption that each tether belongs to a plane containing the spacecraft spin axis.
The analytical results are then applied to the noteworthy case of a Sun-facing spinning E-sail [21, 22], thus
obtaining a set of analytical (compact) relations.

The problem of describing the actual E-sail equilibrium shape has indeed a substantial simplification when
the spacecraft spin axis is aligned with the solar wind velocity vector, the latter being nearly parallel to the
Sun-spacecraft direction, see Fig. 2. In that case each tether can be thought of as being aligned with the
force field and belonging to a plane containing the spacecraft spin axis. In particular, this paper shows that
an approximate, analytical, solution to the E-sail equilibrium shape may be found under the assumption of
cylindrical symmetry, that is, when all tethers are the same angle apart from each other. The corresponding
tether equilibrium shape is accurately described by a logarithmic arc whose geometric characteristics are
related (in an analytical form) to the combined effects of centrifugal and solar wind-induced forces. This
result is consistent with the numerical simulations discussed by Toivanen and Janhunen [8]. As such, the new
mathematical relations represent an useful improvement over existing models, as they allow the influence
of tether arrangement on the propulsion system performance to be quantified without the use of numerical
algorithms.

The paper is organized as follows. The resultant force and torque vectors acting on an E-sail of given
shape are firstly analyzed in analytical form, starting from the mathematical model discussed in Ref. [2].
The obtained equations are then applied to the important case of a Sun-facing, axially symmetric, E-sail.
The approximate form of the tether equilibrium shape is then analytically derived, and the resultant root
force is calculated as a function of the tether geometric characteristics and the spacecraft spin rate. Finally,
some concluding remarks are given in the last section.

2. Mathematical description of E-sail thrust and torque

Consider an E-sail-based spacecraft that spins about a body-fixed axis with unit vector n̂ at an angular
velocity ω = ω n̂ of constant modulus ω. The E-sail propulsion system consists of N ≥ 2 tethers, each one
being modelled as a planar cable belonging to the plane (̂ik, n̂), where îk (with k ∈ {0, 1, . . . , N − 1}) is a
unit vector orthogonal to n̂, see Fig. 3.
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Figure 2: Electric solar wind sail artistic impression. Courtesy of Alexandre Szames, Antigravite (Paris).
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Figure 3: E-sail geometric arrangement.

The displacement of the generic tether with respect to the spacecraft main body can be evaluated by
introducing a body reference frame T (S; x, y, z) with origin S at the spacecraft center-of-mass, and unit
vectors {̂i, ĵ, k̂} defined as

k̂ , n̂ , î , î0 , ĵ , n̂× î0 (1)

Note that the plane (̂i, k̂) contains the first tether, labelled with k = 0, whereas the unit vector îk can be
written as

îk = cos ζk î + sin ζk ĵ (2)

where ζk is the angle, measured counterclockwise from the direction of î, between the x-axis and the xk-axis
with unit vector îk, see Fig. 3. In other words, ζk is the angle between planes (̂i, k̂) and (̂ik, k̂), that is, the
planes that contain the first and the (k + 1)-th tether, respectively.

2.1. E-sail shape model

Assume that the shape of the generic tether can be described, in the plane (̂ik, k̂), through a continuously
differentiable function fk = fk(xk) : [xrk , xtk ] → R, where xrk ≥ 0 (or xtk) is the distance of the tether
root (or tip) from the spacecraft spin axis z, see Fig. 4. The position vector dk of a generic infinitesimal
arc-length dsk of the conducting tether is given by

dk = xk îk + fk k̂ (3)
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Figure 4: Generic tether displacement.

with

dsk =
√

1 + (f ′k)2 dxk (4)

where f ′k , dfk/dxk. From Eqs. (3)-(4), the expression of the (local) unit vector ŝk tangent to the generic
tether at point (xk, fk) is

ŝk ,
ddk

dsk
=

dxk îk + dfk k̂√
1 + (f ′k)2 dxk

≡ îk + f ′k k̂√
1 + (f ′k)2

(5)

which can be rewritten, using Eq. (2), as a function of {̂i, ĵ, k̂} as

ŝk =
cos ζk î + sin ζk ĵ + f ′k k̂√

1 + (f ′k)2
(6)

2.2. Force acting on tethers

The total force dF k acting on the infinitesimal arc-length dsk is the sum of the centrifugal force dF ωk
,

and that arising from the solar wind dynamic pressure dF sk , viz.

dF k = dF ωk
+ dF sk (7)

Recalling that xk is the distance of dsk from the spacecraft spin axis z, the term dF ωk
can be written as

dF ωk
= ρdsk xk ω

2 îk ≡ ρdsk xk ω
2
(

cos ζk î + sin ζk ĵ
)

(8)

where ρ is the tether (linear) uniform mass density, and îk is given by Eq. (2) as a function of {̂i, ĵ}. Also,
according to the recent works of Janhunen and Toivanen [3, 6, 8], the thrust dF sk gained by dsk, when the
Sun-spacecraft distance is on the order of 1 au, is given by

dF sk = σk u⊥k dsk (9)

with
σk , 0.18 max(0, Vk − Vw)

√
ε0mp n (10)

where Vk is the tether voltage (on the order of 20–40 kV), Vw is the electric potential corresponding to the
kinetic energy of the solar wind ions (with a typical value of about 1 kV), ε0 is the vacuum permittivity, mp

is the solar wind ion (proton) mass, n is the local solar wind number density, and u⊥k is the component of
the solar wind velocity u perpendicular to the direction of ŝk given by Eq. (5).

Assuming a purely radial solar wind stream, that is, u = u r̂ where r̂ is the Sun-spacecraft unit vector
and u is the solar wind velocity modulus, the term u⊥k in Eq. (9) is given by

u⊥k = u (ŝk × r̂)× ŝk ≡ u [r̂ − (r̂ · ŝk) ŝk] (11)
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In particular, according to Fig. 5, the Sun-spacecraft unit vector r̂ can be written as a function of {̂i, ĵ, k̂}
as

r̂ = sinαn cos δn î + sinαn sin δn ĵ + cosαnk̂ (12)

where δn ∈ [0, 2π] rad is the clock angle, measured counterclockwise from the direction of î, between the
x-axis and the projection of r̂ on the plane (x, y), while αn ∈ [0, π] rad is the sail pitch angle, defined as the
angle between r̂ and k̂ ≡ n̂, viz.

αn , arccos(r̂ · k̂) (13)
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Figure 5: Sail pitch angle αn.

Taking into account Eqs. (6) and (12), the dot product r̂ · ŝk in Eq. (11) becomes

r̂ · ŝk =
r̂ · îk + f ′k r̂ · k̂√

1 + (f ′k)2
=

cos(δn − ζk) sinαn + f ′k cosαn√
1 + (f ′k)2

(14)

Therefore, with the aid of Eqs. (6), (11) and (14), the thrust dF sk given by Eq. (9) can be rewritten as

dF sk = σk udsk

[
r̂ − cos(δn − ζk) sinαn + f ′k cosαn

1 + (f ′k)2

(
cos ζk î + sin ζk ĵ + f ′k k̂

)]
(15)

Substituting Eqs. (8) and (15) into Eq. (7), and bearing in mind Eq. (4), the compact form of the total
force dF k acting on the infinitesimal arc-length dsk of the generic tether is

dF k = dAk r̂ + dBk î + dCk ĵ + dDk k̂ (16)

where

dAk , σk u
√

1 + (f ′k)2 dxk (17)

dBk ,

(
ρ xk ω

2 − σk u
cos(δn − ζk) sinαn + f ′k cosαn

1 + (f ′k)2

)
cos ζk

√
1 + (f ′k)2 dxk (18)

dCk ,

(
ρ xk ω

2 − σk u
cos(δn − ζk) sinαn + f ′k cosαn

1 + (f ′k)2

)
sin ζk

√
1 + (f ′k)2 dxk (19)

dDk , −σk u f ′k
cos(δn − ζk) sinαn + f ′k cosαn√

1 + (f ′k)2
dxk (20)
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Note that such a decomposition is not unique. Finally, the force F k acting on the conducting tether is

F k =

∫ xtk

xrk

dF k = Ak r̂ + Bk î + Ck ĵ +Dk k̂ (21)

with

Ak =

∫ xtk

xrk

dAk , Bk =

∫ xtk

xrk

dBk , Ck =

∫ xtk

xrk

dCk , Dk =

∫ xtk

xrk

dDk (22)

whereas the total force F acting on the E-sail (composed of N ≥ 2 tethers) is given by

F =

N−1∑
k=0

F k ≡ A r̂ + B î + C ĵ +D k̂ (23)

where

A ,
N−1∑
k=0

Ak , B ,
N−1∑
k=0

Bk , C ,
N−1∑
k=0

Ck , D ,
N−1∑
k=0

Dk (24)

2.3. Propulsive torque

The torque dT k given by an infinitesimal arc-length dsk of the generic tether is

dT k = dk × dF k (25)

where the symbol × denotes the cross product. Taking into account the expressions of dk and dF k given
by Eqs. (3) and (16), respectively, and using Eq. (12), dT k may be written in a compact form, as a function
of {̂i, ĵ, k̂}, as

dT k = dEk î + dFk ĵ + dGk k̂ (26)

where

dEk ,

{
xk sin ζk

[
σk u cosαn −

f ′k σk u (sinαn cos(δn − ζk) + f ′k cosαn)

1 + (f ′k)
2

]
+

−fk sin ζk

[
ρ xk ω

2 − σk u (sinαn cos(δn − ζk) + f ′k cosαn)

1 + (f ′k)
2

]
− fk σk u sinαn sin δn

} √
1 + (f ′k)

2
dxk

(27)

dFk ,

{
−xk cos ζk

[
σk u cosαn −

f ′k σk u (sinαn cos(δn − ζk) + f ′k cosαn)

1 + (f ′k)
2

]
+

+fk cos ζk

[
ρ xk ω

2 − σk u (sinαn cos(δn − ζk) + f ′k cosαn)

1 + (f ′k)
2

]
+ fk σk u sinαn cos δn

} √
1 + (f ′k)

2
dxk

(28)

dGk , σk uxk sinαn sin(δn − ζk)

√
1 + (f ′k)

2
dxk (29)

The torque T k acting on the generic tether is

T k =

∫ xtk

xrk

dT k = Ek î + Fk ĵ + Gk k̂ (30)

with

Ek =

∫ xtk

xrk

dEk , Fk =

∫ xtk

xrk

dFk , Gk =

∫ xtk

xrk

dGk (31)
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whereas the total torque T acting on the E-sail is

T =

N−1∑
k=0

T k ≡ E î + F ĵ + G k̂ (32)

where

E ,
N−1∑
k=0

Ek , F ,
N−1∑
k=0

Fk , G ,
N−1∑
k=0

Gk (33)

Equations (21) and (32) are the expressions of the total force and torque acting on the E-sail with a given
tether shape, length, and angular separation between tethers. However, some simplifying assumptions need
to be introduced to get a more tractable form of both F and T , as is thoroughly discussed in the next
section.

3. Case of a Sun-facing E-sail

The previous general results are now specialized to the noteworthy case of a Sun-facing E-sail [21, 22],
which corresponds to when the spacecraft spin axis z coincides with the Sun-spacecraft line (i.e., k̂ ≡ r̂). In
this case the pitch angle αn is zero by construction, whereas δn can be set to zero without loss of generality,
because r̂ is orthogonal to the plane (x, y), viz.

αn = 0 , δn = 0 (34)

Assuming all tethers to have the same length L and the same voltage Vk (that is, the same value of σk,
see Eq. (10)), the E-sail may reasonably be assumed to have a cylindrical symmetry around the z-axis.
The notation can be therefore simplified by dropping the subscript k in the variables {xk, fk, xrk , xtk , σk}.
Accordingly, all tethers have the same shape (i.e., they are described via the same mathematical function
f = f(x)), and are arranged at the same angle apart from each other, viz.

ζk =
2π

N
k (35)

with k = 0, 1, . . . , (N − 1).
Taking into account Eqs. (34)–(35), and bearing in mind that k̂ ≡ r̂, from Eq. (23) the total force F

becomes

F =

(
σ uN

∫ xt

xr

1√
1 + (f ′)2

dx

)
r̂+

+

(
ρω2

∫ xt

xr

x
√

1 + (f ′)2 dx− σ u
∫ xt

xr

f ′√
1 + (f ′)2

dx

) [
î

N−1∑
k=0

cos

(
2π

N
k

)
+ ĵ

N−1∑
k=0

sin

(
2π

N
k

)]
(36)

and the total torque (32) is

T = î

[∫ xt

xr

σ ux− ρω2 x f [1 + (f ′)2] + σ u f f ′√
1 + (f ′)2

dx

]
N−1∑
k=0

sin

(
2π

N
k

)
+

− ĵ

[∫ xt

xr

σ ux− ρω2 x f [1 + (f ′)2] + σ u f f ′√
1 + (f ′)2

dx

]
N−1∑
k=0

cos

(
2π

N
k

)
(37)

whereas the single tether length L can be written, as a function of {xr, xt, f ′}, as

L =

∫ xt

xr

√
1 + (f ′)2 dx (38)
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According to Ref. [20], when N ≥ 2 the summations in Eqs. (36)-(37) are

N−1∑
k=0

sin

(
2π

N
k

)
=

N−1∑
k=0

cos

(
2π

N
k

)
= 0 (39)

and the final form of the total force and torque given by a Sun-facing E-sail reduces to

F =

(
σ uN

∫ xt

xr

1√
1 + (f ′)2

dx

)
r̂ , T = 0 (40)

Note that the result T = 0 is consistent with the assumption of an E-sail with cylindrical symmetry with
respect to the spin axis, whereas the actual expression of the total force F (that is, the E-sail propulsive
thrust) depends on the tether shape via the analytical function f ′ = df/dx. Some noteworthy cases are
now discussed to better investigate the impact of the tether shape f = f(x) on the E-sail total force F .

3.1. Flat shape

When all the tethers are arranged on a flat surface that, in this case, coincides with the E-sail nominal
plane, the condition f ′ = 0 is to be enforced in the first of Eqs. (40). The total force becomes

F = σ uN L r̂ (41)

where L = (xt − xr), see Eq. (38). In particular, Eq. (41) is consistent with the result discussed in Ref. [20]
for a Sun-facing E-sail (i.e., when αn = 0).

Actually, the case of a purely flat E-sail is only a first approximation of the real sail shape. In fact, all
tethers tend to move away from the E-sail nominal plane (x, y) and to take a three-dimensional arrangement,
while keeping, according to the previous assumptions, a cylindrical symmetry.

3.2. Conic shape

An interesting approximation of the actual E-sail three-dimensional arrangement is given by a conic
shape. In that case, each tether may be analytically described as

f(x) = bc xr

(
x

xr
− 1

)
with x ∈ [xr, xt] (42)

where bc > 0 is a (constant) dimensionless coefficient, whose value depends on the aperture angle β of the
right circular cone that approximates the E-sail shape through the formula

β = π − 2 arctan(bc) (43)

Since f ′(x) = bc, from the first of Eqs. (40) the total force results

F =
σ uN L√

1 + b2c
r̂ (44)

where L = (xt − xr)
√

1 + b2c is the tether length. Equation (44) is similar to Eq. (41), where a sort

of “effective” tether length (equal to L/
√

1 + b2c) is considered in place of the actual length. Note that

L/
√

1 + b2c is the tether length when projected on the E-sail nominal plane (x, y).

3.3. Parabolic shape

A simple way to take the tether curvature into account is to consider a parabolic shape. Each tether is
modelled as

f(x) = bp xr

(
x

xr
− 1

)2

with x ∈ [xr, xt] (45)
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where the (constant) dimensionless coefficient bp > 0 depends on the tether curvature. In this case

f ′(x) = 2 bp

(
x

xr
− 1

)
(46)

and, bearing in mind the first of Eqs. (40), the total force becomes

F = σ uN
xr
2 bp

arcsinh

[
2 bp

(
xt
xr
− 1

)]
r̂ (47)

where {xr, xt, bp} are related to the tether length L according to

L =
xr
4 bp

arcsinh

[
2 bp

(
xt
xr
− 1

)]
+ bp xr

(
xt
xr
− 1

) √(
xt
xr
− 1

)2

+
1

4 b2p
(48)

3.4. Logarithmic shape

An interesting case is obtained when the tether shape f(x) is described through a logarithmic function
of the distance x. Indeed, as will be shown in the next section, the tether equilibrium shape of a Sun-facing
E-sail under the action of the external forces just follows a logarithmic function provided the spin rate ω is
sufficiently large.

Therefore, let the shape function be

f(x) = bl xt ln

(
x+ xt
xr + xt

)
with x ∈ [xr, xt] (49)

from which

f ′(x) =
bl

1 +
x

xt

(50)

where the dimensionless coefficient bl > 0 is a given parameter. Substituting Eq. (50) into the first of
Eqs. (40), the resultant force vector becomes

F = σ uN xt

[√
4 + b2l −

√
b2l + (xr/xt + 1)

2

]
r̂ (51)

where {xr, xt, bl} are related to the tether length L through the equation

L = xt

[√
4 + b2l − bl arcsinh

(
bl
2

)
−
√
b2l + (xr/xt + 1)

2
+ bl arcsinh

(
bl

xr/xt + 1

)]
(52)

The expression (51) is very useful from a practical viewpoint, as is now thoroughly discussed.

4. Tether equilibrium shape of a Sun-facing E-sail

The analytical, approximate, equilibrium shape of a generic tether of a Sun-facing E-sail can be obtained
using the approach discussed in Ref. [8]. Assuming a rotating E-sail, Toivanen and Janhunen [8] describe
the equilibrium tether shape with an integral equation, which is solved numerically. In particular, using an
analytical approximation of the tether shape, Toivanen and Janhunen [8] also obtain closed-form expressions
for both the thrust and torque arising from the solar wind momentum transfer to the E-sail. Their results
essentially state that the tethers form a cone near the spacecraft, while they are (substantially) flattened
around the tip region by the centrifugal force. Note that Toivanen and Janhunen [8] consider a mass at the
tether tip (that is, a mass that models the presence of a remote unit), whereas this work considers the tether
only, without any tip mass.

It will be shown now that the exact tether slope at the tip can be found analytically. An accurate
approximation of the tether equilibrium shape can also be obtained, using the model discussed in the last
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section. To that end, enforcing the Sun-facing conditions αn = 0 and δn = 0 into Eqs. (16)–(20), the total
force dF k acting on the infinitesimal arc-length dsk becomes

dF k =

[(
ρω2 xk
σk u

− f ′k
1 + (f ′k)2

)
îk +

1

1 + (f ′k)2
k̂

]
σk u

√
1 + (f ′k)2 dxk (53)

where îk, given by Eq. (2), is the unit vector obtained from the projection of dF k on the E-sail nominal
plane (x, y).

Without loss of generality, the notation may be simplified by dropping the subscript k in the variables
{xk, f ′k, σk, îk} of Eq. (53). Assume the generic tether to have no bending stiffness, so that only an internal
tension acts tangential to its neutral axis. In this case, according to Toivanen and Janhunen [8], the direction
of the vector tangent to the tether at the generic point P of abscissa x ∈ [xr, xt] is parallel to the direction
of the integral of dF from x to xt (i.e., the integral of the total force from P to the tether tip). Therefore,
from Eq. (53), the tether slope f ′ at point P is the solution of the following integro-differential equation

f ′(x) =

σ u

∫ xt

x

dy√
1 + (f ′)2

ρω2

∫ xt

x

y
√

1 + (f ′)2 dy − σ u

∫ xt

x

f ′ dy√
1 + (f ′)2

(54)

where the numerator (denominator) in the right-hand side is the component along the z-axis (x-axis) of the
resultant force acting on the tether arc between P and the tip, that is

Fx(x) , ρω2

∫ xt

x

y
√

1 + (f ′)2 dy − σ u

∫ xt

x

f ′ dy√
1 + (f ′)2

(55)

Fz(x) , σ u

∫ xt

x

dy√
1 + (f ′)2

(56)

Introduce the dimensionless abscissa h , x/xt, with h ∈ [hr, 1], where hr , xr/xt ≥ 0 is the value at
the root section. Equation (54) can be conveniently rewritten as

f ′(h) =

∫ 1

h

dy√
1 + (f ′)2

K

∫ 1

h

y
√

1 + (f ′)2 dy −

∫ 1

h

f ′ dy√
1 + (f ′)2

(57)

where K > 0 is a dimensionless “shaping parameter” defined as

K ,
ρω2 xt
σ u

(58)

which relates the tether equilibrium shape of a Sun-facing E-sail to the ratio of electric (σ u) to centrifugal
(ρω2 xt) effects.

The tether slope at the tip, that is, the exact value of f ′(h = 1) , f ′t can be obtained from Eq. (57)
using a limit procedure, viz.

f ′t = lim
h→1

f ′(h) =
1

K [1 + (f ′t)
2]− f ′t

(59)

which can be rewritten as (
f ′t −

1

K

) [
(f ′t)

2 + 1
]

= 0 (60)
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whose only real solution is

f ′t =
1

K
≡ σ u

ρω2 xt
(61)

As expected, the tether slope at the tip sharply reduces as the E-sail spin rate increases. The variation of
f ′t with {xt, ω}, when σ = 9.3 × 10−13 kg/m/s, ρ = 10−5 kg/m and u = 400 km/s, is shown in Fig. 6. In
particular, f ′t ≤ 0.1 (or K ≥ 10) when ω ≥ 5 rph and xt ≥ 5 km, which implies a tether slope at the tip less
than 6 deg. Having obtained the exact value of f ′t , it is now possible to calculate the function f ′(x) (or f ′(h)).
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Figure 6: Tip slope f ′t as a function of the spin rate ω and the spin axis-tip distance xt, see Eq. (61).

To that end a recursive procedure is necessary, which, starting from the tether tip and backward proceeding
toward the root, numerically solves Eq. (57) for a given value of K. The results of such a procedure are
summarized in Fig. 7 for some values of the shaping parameter K. The figure shows that f ′t = 1/K, in
agreement with Eq. (61). Also note that in the ideal case hr = 0, which amounts neglecting the main body
width and assuming the tether to be attached to the z-axis, the tether slope at root is f ′(0) ' 2 f ′t ≡ 2/K
when the shaping parameter is sufficiently large, that is, when K ≥ 5. In that case 1/K ≤ f ′ ≤ 2/K, or

K2 + 1

K2
≤ 1 + (f ′)2 ≤ K2 + 4

K2
(62)

which implies
1 + (f ′)2 ' 1 (63)

The tether shape may be obtained by means of a numerical integration, and the results are summarized in
Fig. 8 assuming hr = 0. Notably, an accurate analytical approximation may also be obtained, as is discussed
in the next section.

4.1. Tether shape analytical approximation

An accurate analytical approximation of the tether shape can be obtained for a sufficiently large value
of the shaping parameter, for example when K ≥ 5. In that case, substituting Eq. (63) into Eq. (57), the
result is

f ′(h) '

∫ 1

h

dy

K

∫ 1

h

y dy −
∫ 1

h

f ′ dy

=
2 (1− h)/K

1− h2 − 2
[ft − f(h)]

K xt

(64)
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Figure 7: Tether slope f ′ as a function of the dimensionless abscissa h = x/xt and the shaping parameter K, see Eq. (58).
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Figure 8: Tether shape as a function of h = x/xt and K obtained through numerical integration.

Since max{2 [ft − f(h)]/(K xt)} ' 0.11, see Fig. 8, the last relation may be further simplified as

f ′(h) ' 2

K (1 + h)
(65)
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Notably, the approximation of Eq. (65) gives the exact value at tether tip, f ′t = 1/K, and also it captures
the approximate value at tether root, f ′(0) = 2/K, in agreement with the estimate obtained in the last
section.

Figure 9 compares the analytic approximation given by Eq. (65) (dash line) with the numerical solution
(solid line) and shows that the two results are nearly coincident when K ≥ 5. Accordingly, an accurate
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Figure 9: Tether slope f ′ as a function of h and K: numerical (solid line) vs. analytical approximation (dash line).

analytical solution of the tether shape can be found from Eq. (65). Indeed, using a variable separation and
integrating both sides, it may be verified that

f(h) =
2xt
K

ln

(
1 + h

1 + hr

)
with h ∈ [hr, 1] (66)

or, using Eq. (58)

f(x) =
2σ u

ρω2
ln

(
x+ xt
xr + xt

)
with x ∈ [xr, xt] (67)

The latter coincides with Eq. (49) when

bl =
2σ u

ρω2 xt
≡ 2

K
(68)

Equation (67) proofs the importance of a logarithmic shape for describing the equilibrium configuration of
a Sun-facing E-sail. Its actual accuracy is better appreciated with the aid of Fig. 10, which plots Eq. (66)
with hr = 0.01. The obtained results are nearly coincident with those reported in Fig. 8, which correspond
to a numerical integration of the actual tether slope.
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Figure 10: Tether approximate shape as a function of the dimensionless abscissa h = x/xt and K when hr = 0.01, see Eq. (66).

5. Tether root force

Due to the E-sail rotation, each tether experiences a tension force τ with a maximum value τr, which
occurs at the root section, that is, when x = xr (or h = hr). The value of τr is obtained by imposing
the equilibrium condition of all forces acting on the tether at the root, that is τr =

√
F 2
xr

+ F 2
zr , where

Fxr
, Fx(xr) and Fzr , Fz(xr), see Eqs. (55)-(56). The tension at the root section is therefore

τr =

√
1 + (f ′r)2

f ′r
Fzr (69)

where

Fzr = σ u

∫ xt

xr

dy√
1 + (f ′)2

(70)

and f ′r ≡ f ′(xr) = Fzr/Fxr is the tether slope at the root section. Equation (69) can be rewritten in a
dimensionless form as

τr
σ uxt

=

√
1 + (f ′r)2

f ′r

∫ 1

hr

dy√
1 + (f ′)2

(71)

whose numerical solution is obtained, for a given value of K, using the function f ′ = f ′(h) calculated through
the iterative procedure described in the last section. For example, assuming hr = 0, the dimensionless value
of τr is shown in Fig. 11 as a function of K. Note that τr/(σ uxt) has a nearly linear variation with K, with
an angular coefficient equal to 1/2. This same result will now be confirmed by an analytical approximation.

5.1. Analytical approximation of τr
Assuming a shaping parameter K ≥ 5, the tether slope is well approximated by Eq. (65), therefore∫ 1

hr

dy√
1 + (f ′)2

=
2
√
K2 + 1−

√
K2 (1 + hr)

2
+ 4

K
(72)
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Figure 11: Dimensionless tension at tether root as a function of K when hr = 0, see Eq. (66).

Substituting this last relation into Eq. (71) in which f ′r ' 2/K/(1 + hr), the result is

τr
σ uxt

=

√
K2 (1 + hr)

2
+ 4

2K

[
2
√
K2 + 1−

√
K2 (1 + hr)

2
+ 4

]
(73)

In the limit as hr → 0, the last relation may be further simplified taking into account that K2 � 1. The
compact and elegant solution is

τr
σ uxt

=
K

2
≡ ρω2 xt

2σ u
(74)

which is in agreement with the plot shown in Fig. 11. This last relation allows the value of τr to be related
with the tether length L, when its equilibrium shape is a logarithmic function. In fact, assuming xr = 0 and
substituting Eq. (74) into Eq. (68) and then into Eq. (52), it may be verified that

L

xt
=

√
4 +

(
σ uxt
τr

)2

−

√
1 +

(
σ uxt
τr

)2

+

(
σ uxt
τr

) [
arcsinh

(
σ uxt
τr

)
− arcsinh

(
σ uxt
2 τr

)]
(75)

which is drawn in Fig. 12 when K ∈ [5, 100]. The tension at the root can be expressed as a function of
the pair of design parameters {ω, L} by combining Eqs. (74) and (75). Its maximum value cannot exceed
the tether yield strength, which is about 0.1275 N for a µm-diameter aluminum tether, with a linear mass
density ρ approximately equal to 10 grams per kilometer [23].

For example, assuming V = 20 kV [23], Fig. 13 shows how the tension τr varies with the tether length
L and spin rate ω when xr = 0. Note that each level curve breaks down when the yield strength τmax is
achieved (i.e., when τr = τmax). According to Fig. 13, the tension τr roughly exhibits a parabolic behaviour
with the spacecraft spin rate ω for a given value of L. In particular, the figure shows that the maximum
allowable spin rate for a baseline tether length of 20 km is about ω = 4.57 rph, whereas the value of xt is
19.983 km. In this case, K ' 34 and the dimensionless root tether is τmax/(σ uxt) ' 17, in agreement with
the numerical results shown in Fig. 11.

6. Conclusions

The thrust and torque vectors provided by a spinning electric solar wind sail of given shape have been
calculated in a fully analytical form as a function of the spacecraft attitude. This analysis is based on
the hypothesis that each tether is deformed by the external forces such that its shape belongs to a plane
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Figure 13: Root tension τr as a function of L and ω when ρ = 10 g/km, xr = 0, and τmax = 0.1275 N. Data adapted from
Ref. [23].

passing through the E-sail spin axis. The general expressions of the thrust and torque vectors have been
then specialized to the case of a Sun-facing sail, with a tether arrangement assumed to be axially symmetric
with respect to the spacecraft spin axis.

The results have been applied to some noteworthy tether shapes, including the flat and the logarithmic
cases. In particular, the equilibrium shape of any tether, when the electric sail axis is parallel to the Sun-
spacecraft direction, is close to a logarithmic arc, in agreement with the numerical results of the recent
literature. The discussed mathematical model allows the geometry of an axially-symmetric Sun-facing sail
to be related to the yield strength of the cable. The problem is that the generation of a high thrust level
requires the tethers to be maintained stretched, but the spin rate must account for the tether structural
load resulting from the centrifugal force.

A natural extension of this work consists in the analysis of the effects of a pitch angle different from zero,
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that is, when the sail produces an off-axis thrust. The latter assumption breaks the axial-symmetry condition
and, therefore, requires a different approach to analyze the coupling effects between the sail geometry and
the spacecraft attitude. In particular, the actual tether shape can only be checked by simulation through a
finite element analysis, which is left to future analysis.
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