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Small Area Estimation under a Spatially Non-Linear Model 
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Abstract 

We describe a methodology for small area estimation of counts that assumes an area-level 

version of a nonparametric generalized linear mixed model with a mean structure defined using 

spatial splines. The proposed method represents an alternative to other small area estimation 

methods based on area level spatial models that are designed for both spatially stationary and 

spatially non-stationary populations. We develop an estimator for the mean squared error of the 

proposed small area predictor as well as an approach for testing for the presence of spatial 

structure in the data and evaluate both the proposed small area predictor and its mean squared 

error estimator via simulations studies. Our empirical results show that when data are spatially 

non-stationary the proposed small area predictor outperforms other area level estimators in 

common use and that the proposed mean squared error estimator tracks the actual mean squared 

error reasonably well, with confidence intervals based on it achieving close to nominal coverage. 

An application to poverty estimation using household consumer expenditure survey data from 

2011-12 collected by the national sample survey office of India is presented. 
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1. Introduction 

The demand for small area statistics has increased rapidly over the past few years (e.g. 

measurement of social exclusion and social wellbeing at disaggregate level, see Tzavidis et al. 

2008). As a consequence, many small area estimation (SAE) methods based on linear mixed 

models have been proposed in the literature. In many cases, however, the response variable is not 

continuously distributed but is binary valued or a count. Such response variables cannot be 

modelled using standard linear models. When the variable of interest is binary or a count and 

small area estimates are required for these data, use of standard estimation methods based on 

linear mixed models becomes problematic. For example, poverty indicators and many other 

indicators related to socio-economic status and food insecurity usually behave in a non-Gaussian 

manner at small area levels, and so estimation in these cases is typically based on a generalized 

linear mixed model (GLMM); see Manteiga et al. (2007) and Ruppert et al. (2003, chapter 10). 

The most commonly used GLMMs are the logistic-normal mixed model (i.e. GLMMs with 

logistic link function, also referred as the logistic linear mixed model) and the general Poisson-

normal mixed model (i.e. GLMMs with log link function, also referred as the log linear mixed 

model). Unit level predictions generated by a GLMM are generally used to define the empirical 

predictor for small areas for such data. In many applications this is not possible, for example 

poverty mapping where data confidentiality restricts access to unit level survey data with small 

area identifiers, or where the agency carrying out the small area analysis does not have the 

resources to analyse unit level data, as in many developing countries. In such situations, an area 

level version of the GLMM can be used for SAE. In particular, when only area level data are 

available, an area level version of the GLMM is fitted to obtain the plug-in empirical predictor 

for the small areas, see for example, Chandra et al. (2011) and Johnson et al. (2010). Other 

recent work on this topic include Boubeta et al. (2016, 2017) who use area-level Poisson mixed 

models for estimating small area counting indicators. Other authors have developed SAE under a 

GLMM using a Bayesian approach. See Torabi and Shokoohi (2015), Rao and Molina (2015), 

Moura et al. (2006), Datta et al. (1999), and references therein. Mercer et al. (2014), Liu et al. 

(2014) and Franco and Bell (2013) consider the use of survey weights in a Bayesian hierarchical 

model framework when estimating small area proportions. In this context, we note that the 

hierarchical Bayes (HB) approach to SAE offers considerable promise because of it can 

accommodate complex small area models and provide “exact” inferences. Unfortunately, 
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however, the choice of noninformative priors that can provide frequentist validity for the 

Bayesian approach may not be easy in practice, especially when complex sampling designs are 

involved. Also, caution needs to be exercised in the routine use of popular HB model-checking 

methods, see Rao (2011). In this paper we focus on the situation where only aggregated level 

data are available and SAE is carried out under area level small area models. Our development is 

based on a frequentist approach to SAE. This approach is often easier to explain to practitioners, 

can be less time consuming and inferential expressions can typically be written out explicitly. 

For this reason, national statistical offices as well as other Government agencies involved in 

production of statistics often prefer a frequentist approach to estimation and prediction over a 

Bayesian approach.  

 

In economic, environmental and epidemiological applications, estimates for areas that are 

spatially close may be more alike than estimates for areas that are further apart. It is therefore 

reasonable to assume that the effects of neighbouring areas, defined via a contiguity criterion, are 

correlated. Chandra and Salvati (2018) and Saei and Chambers (2003) describe an extension of 

the area level version of GLMM that allows for spatially correlated random effects using a SAR 

model (SGLMM) and define a plug-in empirical predictor (SEP) for the small area proportion 

under this model. This model allows for spatial correlation in the error structure, while keeping 

the fixed effects parameters spatially invariant. Chandra et al. (2017) introduce a spatially 

nonstationary extension of the area level version of GLMM, using an adaptation of the 

geographical weighted regression (GWR) concept to extend the GLMM to incorporate spatial 

nonstationarity (NSGLMM), which they then apply to the SAE problem to define a plug-in 

empirical predictor (NSEP) for small areas. Non-stationary spatial effects can be also modelled 

using a spatially non-linear extension of the GLMM. In the GLMM, the relationship between the 

link function and the covariates is often assumed to be linear. However, when the functional 

form of the relationship between the link function and the covariates is unknown or has a 

complicated functional form, an approach based on the use of a non-linear regression model can 

offer significant advantages compared with one based on a linear model. Torabi and Shokoohi 

(2015) describe a data cloning approach to fitting a GLMM that uses this idea, but which is 

based on a unit level GLMM. When geographically referenced area-level responses play a 

central role in the analysis and need to be converted to maps, we can use bivariate smoothing to 
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fit a spatially heterogeneous GLMM. In particular, we use P­splines that rely on a set of bivariate 

basis functions to handle the spatial structures in the data, while at the same time including small 

area random effects in the model. We denote this nonparametric P-spline-based extension of the 

usual GLMM by SNLGLMM. See Ugarte et al. (2009), Opsomer et al. (2008) and Ruppert et al. 

(2003). We then describe a non-linear version of the plug-in empirical predictor for small areas 

(SNLEP) under an area level version of SNLGLMM. We also develop mean squared error 

estimation for SNLEP using the approach discussed in Chandra et al. (2011), Johnson et al. 

(2010), Opsomer et al. (2008) and Saei and Chambers (2003). 

 

Note that an alternative to computing the plug-in empirical predictor (EP) is to compute the 

empirical best predictor (EBP, Jiang, 2003). Unfortunately, computing the EBP is generally not 

straightforward since it does not have a closed form and usually has to be computed via 

numerical approximation. As a consequence, national statistical agencies tend to favour 

computation of an analytic approximation such as the EP. It is our understanding that an 

approximation closely related to the EP is also used in Lopez-Vizcaino et al. (2013, 2015) and 

Molina et al. (2007). 

 

The rest of this article is organized as follows. Section 2 introduces the area level version of 

GLMM to define the plug-in empirical predictor for small areas and reviews the SGLMM and 

NSGLMM and its corresponding plug-in empirical predictors (SEP and NSEP). In Section 3 we 

describe the spatially non-linear extension of an area level version of GLMM (i.e. the 

SNLGLMM) and subsequently use this model to carry out SAE. We focus on the GLMM with 

logistic link function (i.e. logistic-normal mixed model) for binary data and the GLMM with log 

link function (i.e. general Poisson-normal mixed model) for count data. The development 

reported in this paper can be easily generalized to other variants of GLMMs. Section 4 then 

discusses mean squared error estimation for the proposed small area predictor, and develops a 

corresponding analytic estimator.  Empirical results are provided in Section 5 and application of 

the proposed small area method to poverty mapping is described in Section 6. Finally, Section 7 

summarizes our main conclusions and identifies areas where further research is necessary.  
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2. SAE under a generalized linear mixed model  

Consider a finite population U of size N, and assume that a sample s of size n is drawn from this 

population according to a given sampling design, with the subscripts s and r used to denote 

quantities related to the sampled and non-sampled parts of the population. We assume that 

population is made up of m small domains or small areas (or simply domains or areas) 

( 1,..., )iU i m , where we use a subscript of i to index those quantities associated with area . In 

particular, in  and iN  are used to represent the sample and population sizes in area i, 

respectively. We also assume that the underlying unit level variable of interest y is discrete, and 

in particular is either a binary value or is a non-negative integer, and the aim is to estimate the 

corresponding small area population proportions or population totals (i.e. counts). Let the total of 

y in area i be denoted iy , and let siy  and riy  denote the corresponding sample and non-sample 

counts for area i respectively. We shall assume that area level auxiliary information from 

secondary data sources, e.g., Census and Administrative records, is available. Let ix  be the p-

vector of these covariates for area i from these sources. The area level version of the GLMM is 

then defined as Pr( | )i i iy x , where 

 
( ) T

i i i ig u   x β  (1) 

where ( )g   is a known function, called the link function, 
1( )i ig  ,   is the p-vector of 

regression coefficients, often referred to as the fixed effect parameter of the GLMM, and iu  is an 

area-specific random effect that accounts for between area differences beyond that explained by 

differences in the auxiliary variables included in the fixed part of the model. We assume that 

these area effects are independently and identically distributed as normal with mean zero and 

variance 
2

u . The model (1) can be used to relate the area level direct survey estimates to area 

level covariates. This type of model is often referred to as ‘area-level’ model in SAE, see for 

example, Rao (2003) and Fay and Herriot (1979). Note that estimation of the fixed effect 

parameter   and the area specific random effects iu  as well as the variance component 

parameter 
2

u  uses data from all areas. Collecting the area level models (1), we can write the 

model (1) as 

 

i
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 ( )g   X u   , (2) 

where 1( ,..., )T

m   , 1=( ,...., )T T T

mX x x  is a m p  matrix and 1( ,..., )T

mu uu  is a vector of 

1m  of area random effects which is normally distributed with mean zero and variance  

2

u u m I . Here, mI  is an identity matrix of order m .  

 

When the variable of interest y is binary, and unit level values in area i are independently and 

identically distributed, the sample counts siy  in area i, has a Binomial distribution with 

parameters in  and i , denoted by ~ Binomial( , )si i iy n  , where i  is now the probability of 

occurrence of an event or probability of prevalence in area i, often referred to as the probability 

of a ‘success’. Similarly, the non-sample count riy  in area i is such that 

~ Binomial( , )ri i i iy N n  . That is, the counts siy  and riy  are independent Binomial variables 

with i  then corresponding to a common success probability. In this case, the link function ( )g   

is usually taken to be the logit of the probability i . The model (1) linking i  with the 

covariates ix  is then the GLMM with logistic link function given by 

 1( ) ln (1 ) T

i i i i i ilogit u    x β    ,  

with  
1

exp( ) 1 exp( ) expit( ) expit( )T

i i i i i iu   


    x   and . Here, 

 |  Binomial ,expit( )T

is i i i iy u n u x   and  |  Binomial ,expit( )T

ir i i i i iy u N n u x  . The 

expected values of siy  and riy  given iu  are then 

 | expit( )T

si si i i i iE y u n u   x   and    | expit( )T

ri ri i i i i iE y u N n u    x  .  

Similarly, when the variable of interest y is a count, a similar argument leads to the conclusion 

that y follows a general Poisson-normal mixed model, in which case the function ( )g   is usually 

taken to be the log link function and model (1) takes the form  

( ) T

i i i ilog u   x β , 

with exp( ) exp( )T

i i i iu   x β  and . Here the assumption is that the sample 

count  and the non-sample count  are independent Poisson variables, with siy riy
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 | exp( )T

si si i i i iE y u n u     x β  and    | exp( )T

ri ri i i i i iE y u N n u      x β .  

The population count in area i can be expressed as i si riy y y  , where the first term siy , the 

sample count, is known whereas the second term riy , the non-sample count, is unknown. A plug-

in empirical predictor (EP) of the population count in area i is obtained by replacing riy  by its 

predicted value  ˆˆ |ri ri iE y u   under the model (1) as   

 ˆ ˆ ˆEP EP

i si ri si i i iy y y N n      ,       (3) 

with ˆˆ ˆexpit( )EP T T

i i i  x q u  for binary data and ˆˆ ˆexp( ) EP T T

i i i  x q u for count data, where 

 0,..,1,.,0T

i q  is 1 m  vector with 1 in the i-th position  and 1
ˆ ˆ ˆ( ,..., )T

mu uu . In SAE 

problems, the sample size in  is often negligible relative to the population size iN , then 

ˆ ˆEP EP

i i iy N  . An estimate of the proportion or rate in area i is given by ˆ EP

i . 

 

In many practical situations small areas are unplanned domains, and many have zero sample 

sizes. These small areas are referred to as non-sampled areas. Traditional survey estimation 

approaches do not provide a solution to the small area estimation problem in this case. In 

contrast, model-based SAE methods can be used to derive estimates for such areas. The 

conventional approach for estimating area proportions or counts in this case is synthetic 

estimation (Chandra et al., 2011), based on a suitable GLMM fitted to the data from the sampled 

areas. Let 
,i outx  denote the vector of covariates associated with non-sampled area i. Under (1),  

the synthetic type predictor for the unknown population value iy  of non-sampled area i is then 

 ˆ ˆSYN SYN

i i iy N  ,        (4) 

with ,
ˆˆ expit( )SYN T

i i out  x   for binary data and ,
ˆˆ exp( )SYN T

i i out  x   for count data. Similarly, small 

area proportions or rates are estimated by ˆ SYN

i . 

 

A major difficulty with using the GLMM (1) for SAE is estimation of the unknown model 

parameters   and u , since the likelihood function for GLMM often involves high dimensional 

integrals (computed by integrating a product of discrete and normal densities, which has no 

analytical solution), which are difficult to evaluate numerically. Maximum likelihood estimation 
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(MLE) is usually not a problem if one assumes a generalized linear model (GLM) for the sample 

counts. However, when a random effect is introduced into the model, for example the GLMM 

(1), we can only write down a penalised likelihood. The corresponding solution is then no longer 

maximum likelihood but is known as restricted (or residual) maximum likelihood. The second 

differential of the (penalised) likelihood is calculated and Newton-Raphson iteration performed 

to obtain converged estimates of the parameter values and the area random effect term. The 

standard errors of these parameters estimates are obtained from the inverse of the second 

differential. In particular, an iterative procedure that combines the Penalized Quasi-Likelihood 

(PQL) estimation of   and u  with restricted maximum likelihood estimation (REML) of 
2

u  can 

then be used to estimate these unknown parameters. See Chandra et al. (2011), Manteiga et al. 

(2007) and Saei and Chambers (2003) for a detailed description of this approach. An alternative 

data cloning approach to fitting a GLMM is described in Torabi and Shokoohi (2015).  

 

2.1. SAE under Non-stationary GLMM 

Following Chandra and Salvati (2018) and Saei and Chambers (2003), a spatially stationary 

simultaneous autoregression (SAR) specification for the GLMM (2) can be written as 

( ) sp spg   X     

where the vector of random area effects ( )i  satisfies S= +u   , where   is a spatial 

autoregressive coefficient, S  is a proximity matrix of order  m and 
2(0, )u mN u I . Since then 

1( )m S  I u  , we see that ( )E  0  and 
2 1var( ) [( )( )]T

u m S m s     I I  . In this case 

the matrix S  specifies which random effects from neighbouring areas are related, whereas   

defines the strength of this spatial relationship. It is standard practice to define S  as a contiguity 

matrix, i.e. the elements of S  take non-zero values only for those pairs of areas that share a 

common border. For ease of interpretation, this matrix is generally defined in row-standardized 

form, in which case    is called the spatial autocorrelation parameter (Pratesi and Salvati, 2008). 

Formally, we write ( ; , 1,..., )S jk j k m  , where 1jk   if area j shares an edge with area k 

and 0jk   otherwise. In row-standardised form this becomes 
* 1

jk jq  , if j and k are 

contiguous and 0 otherwise, where q j
 is the total number of areas that share an edge with area j 
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(including area j itself). A two stage iterative procedure combining the maximum penalised 

quasi-likelihood (MPQL) and REML is then used to estimate the parameters of this model. The 

plug-in empirical predictor of the small area count defined under this SAR model (SEP) can be 

written as 

ˆ ˆ( )SEP SEP

i si i i iy y N n    ,        (5) 

with ˆ ˆˆ expit( )SEP T sp

i i i  x  and ˆ ˆˆ exp( )SEP T sp

i i i  x   for binary and count-valued data 

respectively.  

 

The vector of fixed effect parameters   in (2) and the corresponding vector 
sp in (5) are 

spatially invariant. Chandra et al. (2017) define a spatially nonstationary extension of (2) that is 

appropriate when the parameters associated with the model covariates vary spatially. Let 

1( ) ( ,....., )T

i md d d d  denote an m-vector of the coordinates of m spatial locations (longitude and 

latitude, typically of the centroids of the small areas), and let ( )i id  be the probability of 

occurrence of a characteristic of interest in area i, defined relative to the location di
. A model for 

a nonstationary GLMM (NSGLMM) for ( )i id  is then  

( ( )) ( ) ( ) ( )T T T

i i i i i i i i i i ig d d d u d u     x x x    ,    (6) 

where the nonstationarity is characterised by an area-specific vector of fixed effects 

( ) ( )i id d    ; ui
 is the area-specific random effect, assumed to follow a Gaussian 

distribution with zero mean and variance  ; and  is a spatially 

correlated vector-valued random process with ( ( ))iE d  0  and such that 

   
1

cov ( ), ( ) 1 ( , )k i l j kl i jd d c L d d 


  .      (7) 

Here ( , )i jL d d  is the spatial distance between locations li
 and l j

 and ( )jcc  is a p-vector of 

unknown positive constants that satisfies the conditions for the pm pm  matrix ( )T

   cc   

to be a covariance matrix, with  
1

1 ( , )i jL l l
  

  
  defining the matrix of distances between 

the sample areas, and where   denotes Kronecker product. In general, the only constraint on the 

vector c is that ( )T

   cc   is symmetric and non-negative definite. In practice   and c are 
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unknown and have to be estimated from the data. Chandra et al. (2017) restrict their analysis to 

the simple specification 
pc 1  so that    

1

cov ( ), ( ) 1 ( , )k i l j i jd d L d d  


  , where 0  

and 1p
 denotes the unit vector of order p. Given this specification, there are just 2 parameters (

and  ) that need to be estimated. See Chandra et al. (2017) for more detail about the estimation 

procedure. Replacing these unknown parameters by their estimated values ̂  and ĉ , and 

denoting subsequent plug-in estimators by a 'hat', the nonstationary empirical predictor (NSEP) 

of the population count in area i as 

 ˆ ˆ ( )NSEP NSEP

i si i i i iy y N n d   ,       (8) 

with  ˆˆ ( ) expit ( )NSEP

i i i id d 
 

and  ˆˆ ( ) exp ( )NSEP

i i i id d   for binary and count-valued data 

respectively, where . Here si

T  is the i-th row of 

1{ ( ),......., ( )}kdiag diagS x x . For large values of iN , a plug-in nonstationary empirical predictor 

of the proportion (or rate) in area i is ˆ NSEP

i . A nonstationary synthetic predictor (NSSYN) of the 

total or count for area i is of the form ˆ ˆ ( )NSSYN NSSYN

i i i iy N d , with  ˆˆ ( ) expit ( )NSSYN

i i i id d   and 

 ˆˆ ( ) exp ( )NSSYN

i i i id d   for binary and count-valued data respectively, and where now 

.  

 

3. Spatially non-linear generalized mixed model  

We now introduce a spatially non-linear extension of an area level GLMM and describe 

algorithms to fit this model. We refer this model as spatially non-linear generalized linear mixed 

model (SNLGLMM). A test for the presence of a nonlinear spatial relationship is also suggested. 

We start by developing the nonparametric extension of the GLMM, and then suggest a spatial 

extension of this model. Typically, the fixed effect part of a GLMM is assumed to be linear. 

However, in reality the functional form of this relationship may be unknown or it may have a 

complicated functional form. Without loss of generality we restrict our development to the case 

of a single covariate x and use nonparametric regression modelling based on a P-spline 

approximation. The spatially non-linear GLMM (SNLGLMM) is then of the form 

( ) ( )i i i ig f x u    ,         (9) 
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where 
2(0, )i uu N   is the area specific random effect and  ( | , ) ( )i i i i i iE y u x h f x u    . In 

particular, the spatially non-linear logistic-normal mixed model and the spatially non-linear 

Poisson-normal mixed model for binary and count data, respectively, are defined as 

( ) ( )i i i ilogit π = η = f x +u  with  expit ( )i i if x u    and ( ) ( )i i i ilog f x u     with 

 exp ( )i i if x u   . The function  in (9) is unknown, but can be approximated 

sufficiently well by the P-spline approximation 

     (10) 

Here p is the degree of the spline, ( ) p pt t   if    t  0  and is 0 otherwise, l  for 1,....,l L  is a 

set of fixed constants called knots, 0 1( )T

p       is the coefficient vector of the parametric 

portion of the model and  1,...,
T

L   is the vector of spline coefficients, L is the number of 

spline knots, and 
2~ (0, ); 1,....,l N l L   . Provided that the knot locations are sufficiently 

spread out over the range of x and L is sufficiently large, the class of functions defined by (10) 

can approximate most smooth functions. Ruppert et al. (2003, chapter 5) suggest the use of a 

knot for every four observations, up to a maximum of about 40 knots for a univariate application. 

This is usually done by placing these knots at equally spaced quantiles of the distribution of the 

covariate. 

 

Note that the P-spline approximation consists of a linear combination of appropriately chosen 

basis functions. For simplicity, the approximating function ( , , )f x    in (10) uses truncated 

polynomial spline basis functions . Other basis functions, e.g. 

B-splines (Eilers and Marx, 1996) or radial functions, can also be used. Using a large number of 

knots in expression (10) can lead to an unstable fit. In order to overcome this problem, a penalty 

is usually put on the magnitude of the spline parameters  .  See Du et al. (2011) and Wahba and 

Wang (1990) for a discussion about estimation of the penalty term. 

 

 

  
f (x

i
)
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When geographically referenced responses play a central role in the analysis and need to be 

converted to maps, we can use bivariate smoothing,  where 1ix  and 2ix  

are spatial coordinates. This is usually the case with environmental, agricultural, public health 

and poverty mapping applications. Consequently we assume the following model (for further 

details see Opsomer et al., 2008)  

,       (11) 

where iz is the i­th row of the following n L matrix  

   
1/2

1
1

1
i ni l l l l L
l L

C C


    
 

        Z x     ,      (12) 

where 
2

( ) logC t t t  ,  1 2,i i ix xx  and  are knots. Note that the 
   C(t) function 

is defined so that when there is a knot at every observation (that is, the full rank case) this model 

for bivariate smoothing leads to a thin plate spline (Green and Silverman, 1994). The second 

matrix on the right-hand side of (12) applies a linear transformation to the radial basis functions 

defining the first matrix, and was recommended by Ruppert et al. (2003) as a way of making the 

radial spline behave approximately like a thin plate spline. More details on the Z matrix can be 

found in Ruppert et al. (2003, chapter 13) and Kammann and Wand (2003). This type of 

bivariate smoothing will be used in the application in Section 6 in order to take into account the 

spatial information in the data.  

 

As suggested by Ruppert et al. (2003), fitting the approximation (10) can be simplified by 

treating the vector γ as a random-effect vector in a mixed model specification, which allows 

estimation of β and γ by maximum likelihood methods. Following Opsomer et al. (2008), Wand 

(2003) and Ruppert et al. (2003, chapter 4), the spline approximation to (9), and to (11), can be 

written as  

 ( )g    X Z u    . (13) 

If other covariates are available, they can be included in the model as parametric terms, by being 

added to the matrix X. In this model  is assumed to be a Gaussian random vector of dimension 

L. In particular, it is assumed that 
2~ )L LN  0 I    , where   

I
t
 denotes the identity matrix of 


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dimension t. Here u is the m-vector of random area effects. As usual, it is assumed that the area 

effects in u are distributed independently of the spline effects in    with 
2~ ( , )m u u mN u 0 I .  

 

Under (13), a plug-in spatially non-linear empirical predictor (SNLEP) for the total count 
 
y

i
 in 

area i is given by 

  ˆ ˆ
i s

SNLEP SNLE

i i i

P

iy y N n    ,       (14) 

where ˆ ˆˆ ˆexpit( )T T T

i i

SNL

i

EP

i   x z q u   for binary data and ˆ ˆˆ ˆexp( ) TSNL

i

P T

i i

E T

i   x z q u  for 

count data, and ,  and  denote respectively the rows of X, Z and mI  that correspond to 

area i. When  is negligible compared to , the SNLEP (14) is ˆ ˆSNLEP SNLEP

i i iy N  . An estimate 

of the proportion or rate in area i is ˆ P

i

SNLE . For synthetic nonparametric prediction exactly the 

same approach can be taken with the spline-based small area model (13). When geo-referenced 

population location data are available, and spline smoothing is over these locations (e.g. using 

radial basis functions), the nonparametric model (13) is effectively accounting for spatial 

correlation in the population values of y over and above that ‘explained’ by the random area 

effects. In this case, model (13) has the potential to improve conventional synthetic estimation 

for out of sample areas. Under (13), the nonparametric synthetic (SNLSYN) predictor for area i 

is defined as ˆ ˆSNLSYN SNLSYN

i i iy N  . That is, SNLSYN is SNLEP with ˆ 0iu  . Here, 

, ,
ˆ ˆˆ expit( )T T

i i out i

SNL

out

SYN  x z   for binary data and , ,
ˆ ˆˆ exp( )T T

i i o

SNLS

t

Y

u o t

N

i u  x z  for count data, 

and ,

T

i outz  denote the row of Z associated with non-sampled area i.  

 

3.1 Parameter estimation 

Let  1,...,
T

s s smy yy  denotes the  vector of sample counts, with  1 |sf y u,   denoting the 

probability density function of sy  conditional on  u,   and let 2( )f u  and 3( ) f  be the 

probability density functions of u  and  respectively. Here  has a Binomial (or 

Poisson) distribution whereas 2( )f u  and 3( ) f  have normal distributions with zero means and 

variances 
2

u u m I  and 
2

L  I  respectively. The log-likelihood function defined by the 

T

ix
T

iz
  
q

i

T

in
iN

1m

 ; 1,..,siy i m
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vector sy  conditional on fixed  u,   and the logarithm of the probability density functions of u  

and   are  

  
  

 

1

1 1

1

Constant ln 1 exp( )    for  data 

ln |  

Constant exp( )               for Poisson da

Bino

ta 

mial
m

si si i si

i

s m

si si i si

i

y n

l f

y n

 

 






  


 

  





y u,  , 

  2

1
Constant ln | |

2

T

u ul   u u   ,     

 .        

For fixed u  and  , the  ,   and u  values that jointly maximize l = l1 + l2 + l3 (sum of three 

components based on joint distribution of sy , u  and  ) are called the maximum penalised 

quasi-likelihood (MPQL) estimates. See Saei and McGilchrist (1998). The ‘log-likelihood’ l is 

not a likelihood in the conventional sense because it is based on the non-observable u  and  . 

Substituting these estimates into (14) ( ( )logit   or ( )log   for Binomial or Poisson data 

respectively) yields the MPQL estimate of  . In practice the variance components parameters 

defining the matrices u  and   are unknown and have to be estimated from the sample data. It 

is well known that the MPQL estimates of these variance components are biased, and that this 

bias increases with the relative contributions of the associated random effects to overall 

variability. Consequently, this approach is not recommended. Alternative estimates based on 

maximum likelihood (ML) and restricted maximum likelihood (REML) can be defined. In 

particular, the bias in the REML estimates is typically small. These can reduce, but not eliminate, 

the aforementioned bias. Since prediction of small area quantities, rather than parameter 

estimation, is our focus, we continue with this hybrid approach, returning to the issue in Section 

5 where we provide simulation results that provide a perspective on this bias problem. 

 

Under the hybrid approach, parameter estimates for the SNLGLMM are obtained by a two-stage 

iterative process. In the first step (a) MPQL estimates of  , u  and   are obtained based on u

and   (assumed known) and in the second step (b) the estimates of u  
and   are obtained by 

either a ML or REML procedure given these MPQL estimates. This hybrid algorithm combining 
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MPQL with ML and REML for fitting generalized linear mixed models was developed in 

McGilchrist (1994). Below we outline the extension of McGilchrist (1994) to estimation of 

variance components for the small area estimation problem.  

 

The estimation process is repeated with the updated estimates of  , u ,  , u  and   being 

used in step (a) until the required convergence is achieved. The SNLEP estimate of   is 

obtained by substituting the converged values ̂ , û  and ̂  in the right hand side of (14). The 

inverse link function is then used to derive   from . This leads to the SNLEP estimate (14). 

Similar, the ‘log-likelihood’ for the Poisson observation vector sy  conditional on fixed  u,   

and the ‘log-likelihood’ for u  and   are defined. This algorithm for parameter estimation is 

therefore implemented as follows:  

MPQL Stage 

Given u  (or 
2

u ) and  (or 
2

 ), an iterative procedure can be used to obtain the MPQL 

estimates of  , u  and  . This is: 

1. Initialize the iteration. Set 0k   and initial values 0 , 0 and 0u .   

2. Update these values via  

1

1 1 11
1

1
1

T

k k

T

k k k k k

k

mk k u k

l


  






     
     

        
            

X 0

V Z V

Iu u u







 

   




, 

where  

 
2

11

1

    

T

T

k mT

k k

um

l 



   
     

      
      

X 0 0 0

V Z X Z I 0 0

0 0I





 


 


, 

and 
2

1 1 , 
T

k k k

l l 

  η η η
 are the first and second derivatives of  l1 with respect to   and evaluated at 

kη . 

3. Return to step 2. 

4. At convergence, update   X Z u   . 
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ML/REML Stage 

Given the estimates of  , u and  from steps 1 - 3 of the MPQL stage, we use ML or REML to 

estimate the variance components  (or 
2

u ) and  (or 
2

 ). Following Schall (1991), define 

an adjusted variable  

       * *g g g
 

        
 

y y y e e


    
  

with *  
  

 
e e




 as follows * *

m y X Z I u + e   . Here, * *( )iee  
is called an adjusted error 

term. Its variance is  where,  is dispersion parameter and  

. 

Note that for a GLMM based on the Binomial or Poisson models, the variance is a known 

function of the mean and so . We assume that the random variable  has an approximately 

normal marginal distribution with mean  and 
* *( ) T

u eVar     y V Z Z  .
 
Maximising the 

log-likelihood generated by y*  with respect to 
2

uσ  and 
2

γσ  we obtain the solutions 

2 1 ( ) T

u m tr    T u u  

and 
2 1( ) ( ) TL tr    T    

where 

1
2

* 1

2

T
T T

L

e

m m u m




       

       
       

Z Z I 0
T

I I 0 I




 . 

REML estimation of 
2

u  and 
2

  
can be carried out by maximising the restricted log-likelihood 

generated of y* , where we replace  T  by 

* 1 * 1

22 11

T
T T

T

e e

m m

 
   

     
   

Z Z
T T T XT X T

I I
   

with 

1

* 1 * 1 * 1

11

T
T T

T T

e e e

m m



  
     

     
     

Z Z
T X X X T X

I I
   . 

1 
  
y*
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Updated estimates of the variance components are then used as inputs to the MPQL stage. Both 

stages are finally iterated to convergence, which is achieved when the squared difference 

between the estimated model parameters obtained from two successive iterations is less than a 

very small value. R code that implements this algorithm is available from the authors. Note that 

the starting point for 2

  
in the preceding algorithm can be defined based on information about 

the strength of spatial non-linearity in the data. Similarly, the starting point for 
2

u  can be set to 

the estimated value of the variance component defined by the area effects under the model (2). 

Our experience is that good convergence performance is usually achieved by choosing the 

starting points of the hybrid MPQL/REML procedure to be the values 0.5 for 
2

u  and 1.0 for 2

 . 

We also suggest that the values of , ,  all be set equal to 0 as a starting point. These values 

represent a good compromise for fast convergence of the algorithm. We have tested different 

starting points in our simulation experiments, and the hybrid MPQL/REML algorithm with these 

starting points usually converges, on average, after fifteen iterations. 

 

3.2 A diagnostic for spatial nonlinearity 

In the spirit of Chandra et al. (2017) and Opsomer et al. (2008), we develop a bootstrap 

procedure to test the spatial nonlinearity hypothesis, that is, the hypothesis 2

2

0
: 0H




   versus 

the one-sided alternative 2

2

1
: 0H




  . In the proposed procedure, two models are fitted, the first 

without random effects that characterizes the spatial relationship in the data (denoted by 

2

2

0
: 0H




  ), and second with these random effects included (denoted by 2

2

1
: 0H




  ). This 

involves first calculating the value  2 1 02

 l l l , where 

 ℓ 0
 denotes the restricted log-likelihood 

under the null 20
H


 and 

 ℓ 1
 denotes the corresponding value under the alternative 21

H

. The level 

of significance of 2


l  is then calculated via a parametric bootstrap as follows:  

1) Given the sample counts sy , calculate the parameter estimates using model (2). Let 
2ˆ
u  and 

̂    û , denote the resulting estimates. 

 u 
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2) Generate a vector 1


t  whose elements are m independent realisations of a N(0,1) variable. 

Construct the bootstrap vector 1
ˆ

u
 u t . 

3) Calculate the small area bootstrap population parameters 

 * * * *

1
ˆ( , , ) expitT

m   X u   or  * *ˆexp X u    

depending upon whether the data are binary or count valued respectively.  

4) Generate a bootstrap sample of independent bootstrap Binomial realisations 
*( , )i in   or 

Poisson
*( )i  and fit both the null and the alternative models. Calculate the bootstrap value 2



l  

of the 2


l . 

Repeat steps 2 - 4 B times. In the b-th bootstrap replication, let 2

( )b



l  be the value of the difference 

between the restricted log-likelihood under the null 20
H


 and the corresponding value under the 

alternative 21
H


. The significance of the calculated value of 2


l  is then evaluated by comparing 

it with the bootstrap distribution of 2

( )b



l . In Section 5 we provide simulation results that provide 

a perspective on the type I error and power of this test statistic. 

 

4. Mean Squared Error estimation  

The mean squared error (MSE) estimation of the empirical predictor (3) follows from Johnson et 

al. (2010) and Chandra et al. (2011). In this Section we develop an approximation to the MSE of 

the SNLEP (14). Let us denote by ( mG Z,I ) ,  and  as 

covariates matrix of order ( ) ,m L m  vector of random effects of order ( ) 1m L   and 

covariance matrix of order ( ) ( )m L m L    respectively. Here, m and L are number of areas and 

number of spline knots respectively. The variance component parameters in covariance matrix 

v  are 
2 2( , T

u    . From (13), we write ˆˆ ˆ Xβ Gv  as predictor of  Xβ Gv . Let 

1( ,..., )T

my yy , 
1

( ,..., )
m

T

s s sy yy  and 
1

( ,..., )
m

T

r r ry yy denote the vectors of population, sample and 

non-sample counts, respectively. We further decompose the total count as 
T T

s s r r y c y c y  and 

write the SNLEP as ˆ ˆT T

s s

SNLE

r

P  y c y c  . Here   ˆ ˆ; 1,...,i idiag N n i m     with 
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1
ˆ ˆ ˆ( ,..., )SNLE TP EP

m

SNL   and   ; 1,...,i idiag N n i m     with 1
ˆ ˆ( ,..., )T

m   . For binary data, 

 expit   and  ˆˆ expit   and for count data,  exp   and  ˆˆ exp  . Under the area 

level version of model (13), we have 
s r m  c c c I . The prediction error of SNLEP is therefore 

 ˆ ˆ ˆ( ) ( )T T T

r r

SNLEP      y y c c y c y     . The MSE of SNLEP is then approximated as  

ˆ ˆ ˆ ˆ ˆ( ( )( ) ( )( )SNLEP SNLEP SNL T TEP TMSE E E           y y y y y y c c      .       (15) 

The approximation (15) follows from the fact that the cross product term is zero and the 

component ( )( )T

r rE    y y  , which measures the spread of observations about the mean 

while estimating the actual values rather than the expected value, is not required under the area 

level model. Using first order Taylor linearization, we can approximate ˆ
ˆˆ ( ) |T




 




 

η η
η - η

η
. 

Then, from expression (15), we have  

 ˆ ˆˆ ˆ( )( ) ( - )( - )T T T TE E       c c = C C    η η η η , with ˆ| 





H


η η
η

 and C cH .  

We now define    ˆ ˆˆ ˆ ˆˆ ˆ ˆ       C cH C X Z u C X Gv     . This leads to  

 ˆ ˆˆ ˆ( ( ) ( )( )TS TNLEPMSE MSE E        y y C C  η η η η .  

That is, ̂  can be expressed as a linear combination of ̂  and v̂ . Consequently we can use the 

results of Prasad and Rao (1990) to define an estimator of an approximation to the MSE of the 

SNLEP that reflects the true variability associated with this estimator. This approximate MSE of 

the SNLEP is 

   1 2 3
ˆ( ( ) ( ) ( )SNLEPMSE M M M  y     .     (16) 

The components 
1( )M   and 

2 ( )M   constitute the largest part of the MSE (15). These are the 

MSE of the best linear unbiased predictor-type estimator when the variance components in   are 

assumed to be known (Rao, 2003). The third component 
3( )M   is the variability due to 

estimation of the variances of the random effects from the data, see Rao and Molina (2015, 

chapter 5, page 100-101), Saei and Chambers (2003), Manteiga et al. (2007) and references 

therein. Following Das et al. (2004) and Opsomer et al. (2008) we define estimators of the 
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different components of the approximate MSE (16). Let us write 
2

1
ˆ|T

l

  
 B

 
η η

, 

1T

v

G BG +  ,  T T

v G B BG G B G  . In particular,  

  
 

ˆ ˆ1 ; 1,...,   for Binomial data

ˆ ; 1,...,                      for Poisson data

i i i

i

SNLEP SNL

i

EP

SNLEP

diag n i m

diag n i m

 



  
 



B ,  

 

 

ˆ 2

ˆ

ˆ

exp( ) exp( )
| (1 )  for Binomial data

ˆ 1 exp( ) 1 exp( )
|

exp( ) | exp( )                               for Piosson data
ˆ







  
    

    
  
 

 

H

 




η η

η η

η η

η η

η η η

η
η η

η

, 

    ˆ ˆ(1 )= 1 ; 1,...,SN

i i i i

LEP SNLEPdiag N n i m     C c 
 
and  

  ˆ ; 1,...,i i i

SNLEPdiag N n i m   C c  are for binary and count data respectively. Following 

McGilchrist (1994), we define 
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1
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  =

0
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v



     
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and  

1

11 121 1

ˆ ˆ( , )
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ˆ ˆ( )
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F F
Var

F F



 
  

      
   

X BX X BG
V I v

G BX



,  

 and subsequently denote the partitioning of the matrix V  and its inverse 1
V  defined by 

dimension of   and v . Here, sub matrices of 1
V are given by 

 
1

1

11

T TF


  
 
X B BG G B X , and     1 1 1

22 11

T TF F    G BX X BG   .  

Let us define 1 * 1  = CG G   with * G CG  and let 
*

( )kG  be the k-th row of the matrix *
G , 

with its derivative given by 
 

  
* 1

( )( ) * 1 1 1 1

( ) ( )

kk

k k v v



   


    
 

G
G


  

 
. Using these 

expressions together with the results and approximations given in Opsomer et al. (2008), Das et 

al. (2004) and Prasad and Rao (1990), the components of MSE (16) are finally defined as  

   1

1( ) T TM C G G C  ,        

1 1

2 11( ) - -T T T T TM F        C X G G BX X X BG G C   ,     
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   3 ( ) ( )
ˆ( ) ( )T

k lM tr Var 
 

    .         

Here ˆ( )Var   is the asymptotic covariance matrix of the estimates of variance components ̂ , 

which can be evaluated as the inverse of the appropriate Fisher information matrix for . Note 

that this also depends upon whether we are using maximum likelihood or restricted maximum 

likelihood estimates for . Following the results from Opsomer et al. (2008) and Das et al. 

(2004), under model (13) we then have 

  1

1 3 1
ˆ ˆ( ) ( ) ( ) ( )E M M M o m     ,  

  1

2 2
ˆ( ) ( ) ( )E M M o m   and  

  1

3 3
ˆ( ) ( ) ( )E M M o m   .   

That is, the bias of 1
ˆ( )M   is of the same order as 3

ˆ( )M  , see Rao and Molina (2015, chapter 5, 

page 106). Therefore, an approximately model unbiased estimator of the MSE approximation 

(16) is   

  1 2 3
ˆ ˆ ˆˆ( ( ) ( ) 2 ( )SNLEPmse M M M  y     ,      (17) 

where ˆ( ); 1,2,3kM k   are obtained from ( )kM   replacing   by its estimate ̂ . Note that the bias 

of the MSE estimator (17) is of order 
1( )o m

 since both 2
ˆ( )M   and 3

ˆ( )M   have bias of order

1( )o m
. 

 

5. Simulation studies 

This Section presents the results from simulation studies that compare the empirical performance 

of the proposed SNLEP estimator (14) under the SNLGLMM (13) with the SEP under the SAR 

model (5), the NSEP (8) under the NSGLMM (6) and the EP (3) under the GLMM (1). The 

performance of the analytical MSE estimator (17) for the SNLEP is also evaluated. The 

performance criteria used are the percentage Relative Bias (RB) and the percentage Relative 

Root MSE (RRMSE), defined as: 

     
1

1 1

1 1
ˆ 100

T T

i it it itt t
RB T y T y y


 

 
    , 

̂

̂
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    
1 2

1 1

1 1
ˆ 100

T T

i it it itt t
RRMSE T y T y y


 

 

 
   

 
  , 

where 
 
y

it
 is the true value of the parameter for small area i in iteration t, 

  
ŷ

it
 is its predicted 

value and T is the number of simulated samples. In addition, we computed the square root of the 

actual (i.e. Monte Carlo) MSE (TRMSE) and the square root of the average of the estimated 

values of this MSE (ERMSE), i.e. 

 
i iTRMSE TMSE   with  

2
1

1
ˆ

T

i it itt
TMSE T y y


  and 

1

1

T

i itt
ERMSE T mse


  . 

As above, the subscript i indexes the small areas and the subscript t indexes the T Monte Carlo 

simulations, with itmse  denoting the simulation t value of the MSE estimator in area i, and 

iTMSE  denotes the actual MSE in area i. We also calculated performance indicators for the MSE 

estimates (17). The first was based on the fact that in many applications of small area estimation, 

MSE estimators are used to calculate confidence intervals for the small area quantities of 

interest. Consequently it was interesting to evaluate the coverage properties of such intervals. In 

particular, we focused on the ‘two sigma’ (i.e. nominal 95 per cent) intervals based on a 

normality assumption for the prediction error, and calculated the per cent coverage rate for area i 

as 

 1

1

ˆ 2 100
T

i it it it

t

CR T I y y mse



    . 

We also calculated the percentage Relative Bias and the percentage Relative RMSE (denoted by 

RE) of the MSE estimator (17), using the same definitions as above, but replacing the predicted 

value there by the MSE estimate and the true value of the parameter by the true, i.e. Monte 

Carlo, MSE.  

  

The model based simulations were of two scenarios, corresponding to the logistic-normal mixed 

model (binary unit level data, aggregated to area level) and the Poisson-normal mixed model 

(area level counts). We set the number of small areas m = 100 in both and considered two values 

for the area specific sample sizes  and 50 with  and 5000, respectively. We used 

an area level version GLMM to generate data. For the binary case, response values were 

generated from ~ ( , )i i iy Binomial n   and ( ) ( )i i i ilogit f x u      with 

10in  100iN 
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 
1

exp( ) 1 exp( )i i i  


  . For the case of count data, response values were generated from 

~ ( )i i iy Poiss n  where exp( )i i   and  log ( )i i i if x u    . Spatial locations were 

simulated as the values of two independently distributed uniform [0, 1] covariates 
  
x

1 
and 

  
x

2
, and 

the random area effects 
iu  were generated as m independent realizations from a

 20, 0.0625uN    distribution. We considered two different choices of the response function

: 

(i) Plane: 1 2 1 2( , ) 0.5 0.2f x x x x  ,  

(ii) Mountain:

    
         

2 2

1 2

1 2 2 2 2 2

1 2 1 2

40exp 8 0.5 0.5
( , )

exp 8 0.2 0.7 exp 8 0.7 0.2

x x
f x x

x x x x

   
 

         
   

.  

The first case corresponds to a situation in which the GLLM underlying the EP (3) is a good 

representation of the true underlying model while the other predictors may be too complex. The 

second choice corresponds to a more complicated relationship between y and x: the model 

surface in this case has a ridge along the 45° line and we expect that the predictors based on 

spatial models will work better than the EP. A total of T = 1000 data sets were independently 

generated under each of these models and the predicted small area counts for the different 

predictors developed in the previous Sections were calculated. Note that in these simulations the 

SNLGLMM uses the radial basis functions described in Section 3 with 25L   knots, following 

Pratesi et al. (2009). 

 

Table 1 shows the average values of percentage relative bias (RB) and the average values of 

percentage relative root MSE (RRMSE) recorded by the SAE methods investigated in our 

simulations. In particular, Table 1 sets out the average relative biases and the average relative 

RMSEs of the four small area predictors (EP, SNLEP, NSEP and SEP) across the two different 

types of response function 
  
f (x

1
,x

2
) (i.e. plane and mountain) used in SNLGLMM for data 

generation and two types of data (binary and count), allowing one to compare the four predictors 

across different data types. In Table 2 we show the performance of the MSE estimator (17) 

  
f (x

1
,x

2
)
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corresponding to the SNLEP predictor. In all cases (both Tables 1 and 2) the values of the 

performance measures are reported as averages over the areas. 

 

The results in Table 1 are essentially as one would expect. Here we clearly see that the 

performances of EP and SNLEP are on a par when data are generated using the plane function 

for both the binary and count situations. However, two of the alternative predictors, the SEP and 

the NSEP, perform worse than the other predictors especially in terms of relative RMSE. In 

contrast, the simplicity of the EP predictor comes at a price when data are generated using the 

mountain response function. In this case, the SNLEP performs best, with low bias and is more 

efficient than the EP, NSEP and SEP. As expected, these results improve as the sample size 

increases. 

 

Table 1. Percentage relative bias (RB) and the percentage relative root MSE (RRMSE) of the EP, 

SNLEP, NSEP and SEP with 10in   and 50in   under the plane and the mountain response 

functions. Values are averages over the small areas. 

 

 
  f (x)  Predictors 10in   50in   

RB RRMSE RB RRMSE 

Binary data 

Plane 

  

 

  

EP -0.073 12.89 -0.029 9.51 

SNLEP -0.074 13.95 -0.029 9.80 

NSEP -0.075 16.14 -0.030 10.21 

SEP -0.075 17.04 -0.029 10.08 

Mountain 

  

EP 6.320 26.65 1.729 15.96 

SNLEP 1.587 20.61 0.527 13.22 

NSEP 2.386 23.42 0.798 14.35 

SEP 2.284 27.64 1.506 15.91 

Count data 

Plane EP 0.189 20.08 0.048 12.25 

SNLEP 0.183 20.86 0.046 12.39 

NSEP 0.187 20.24 0.047 12.28 

SEP 0.184 21.44 0.047 12.29 

Mountain EP 6.704 33.19 1.987 17.11 

SNLEP 2.165 25.94 0.733 15.41 

NSEP 3.433 29.16 1.127 16.08 

SEP 6.011 33.35 3.983 18.62 
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Figure 1 shows the distribution of area-specific values of Relative Bias and RRMSE for all four 

predictors (all expressed in percentage terms) obtained in simulations where m = 100 and the 

area sample size 50in  , with a Binomial response. These plots confirm the results presented in 

Table 1: the SNLEP dominates the other predictors in terms of efficiency when the spatial 

relationship is non-linear. 

 

Plane Mountain 

  

    
 

Figure 1. Boxplots of area-specific values of actual relative bias (top) and relative RMSE 

(bottom) for EP, SNLEP, NSEP and SEP (all expressed in percentage terms) obtained in 

simulations where m = 100, ni = 50, and with a Binomial response.  
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Figure 2 shows the same set of boxplots as in Figure 1, but this time for a Poisson response. 

Again, the SNLEP outperforms the other predictors in terms of efficiency when there is a strong 

spatial signal in the data, as when the mountain response function underpins these values. 

 

Plane Mountain 

  
 

 

 

 
Figure 2. Boxplots of area-specific values of actual relative bias (top) and relative RMSE 

(bottom) for EP, SNLEP, NSEP and SEP (all expressed in percentage terms) obtained in 

simulations where m = 100, ni = 50, and with a Poisson response.  
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Turning now to the results presented in Table 2, these show the empirical performance of the 

MSE estimator (17) for the SNLEP (14). We see that this MSE estimator performs well, showing 

reasonable bias and good empirical coverage for different types of data except for count data 

with 10in   where both MSE and coverage rates are slightly underestimated. As the sample size 

increases, the bias performance of the MSE estimator improves. Overall, the MSE estimator (17) 

appeared to provide a good approximation to the actual MSE in our simulations, and generated 

confidence intervals close to nominal coverage. 

 

Table 2. The actual (i.e. Monte Carlo) values of the RMSE (TRMSE), the average values of the 

estimated RMSE (ERMSE), the percentage relative bias (RB), the percentage relative RMSE of 

the MSE estimator (RE) and the percentage the coverage rate (CR) of the proposed MSE 

estimator (17) of SNLEP (14). Values are averages over the small areas. 

  f (x) 10in   50in   

TRMSE ERMSE RB RE CR TRMSE ERMSE RB RE CR 

Binary data 

Plane 0.067 0.067 -0.05 7.42 95 0.047 0.048 1.05 11.02 96 

Mountain 0.076 0.072 -6.65 13.60 95 0.048 0.048 0.19 12.84 96 

Count data 

Plane 0.221 0.202 -8.40 32.64 94 0.129 0.128 -0.82 28.45 95 

Mountain 0.179 0.165 -7.91 36.70 94 0.103 0.102 -0.81 30.15 95 

 

Finally, we present simulation results that provide an insight into the behaviour of the hybrid 

MPQL/REML parameter estimation algorithm described in Section 3.1 and the bootstrap test of 

spatial non-linearity described in Section 3.2. In particular, Table 3 shows simulation results for 

parameter estimation using this algorithm under the SNLGLMM with Binomial and Poisson 

responses, with m = 100 and 10in  . For the Binomial case we generated the data under the 

model 1i i i ix u      z  where ~ [ 1,1]ix U  , with random area effects iu  generated as m 

independent realizations from a  20, 0.0625uN    distribution and   generated as 30L   

independent realizations from a  20,N  , with 
2 0   in the non-spatial case and 2 1   in 

spatially non-linear case. Under these scenarios the population count for area i was generated as 

the sum of 
iN  independent binary values ijy , each such that 
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   
1

Pr 1 exp( ) 1 exp( )ij i i iy   


    . The corresponding sample count was then the sum of 

the first in  of these binary values. For Poisson case, we generated data from the model: 

1 0.6i i i ix u      z  with xi
, ui

 and   as previously specified, and with the 
iN  individual 

counts within the area generated as independent realisations of a ( )iPois   random variable, 

where exp( )i i  . Again, the individual sample counts, that were aggregated to the overall 

sample count for the area, were defined by the first in  of these realised counts. 

 

From Table 3 we see that the hybrid MPQL/REML procedure results in small upward biases in 

the estimation of the regression model parameters 0  and small downward biases in the 

estimation of 1 , as well as the variance component  , for the Binomial case with a negative 

bias of around 2% when estimating the variance component 
u . For Poisson data the results are 

similar for 1  and 
u  but now show a downward bias of around 15% for 0  under the spatially 

non-linear scenario, while estimation of   shows a small downward bias. Note that values of 

%Rel Bias and the %RRMSE cannot be computed in case of a non-spatial relationship with 

2 0   because the denominator of these summary measures is 0.  Overall, we conclude that 

although parameter estimation via the MPQL/REML algorithm works reasonably well in the 

case of no spatial relationship 2( 0)   there is room for improvement in the spatial non-linear 

case 2( 1)  . This could be a topic for future research. 

 

The results of the bootstrap-based spatial non-linearity test at significance levels of 

0.10,0.05,0.01   under the null hypothesis are presented in Table 4 for binary data with m=49 

and 100. In all cases when 2 0 
 
and the

 
null hypothesis is true the Type I errors (actual 

rejection probabilities for null in this case) are close to the nominal value  . These probabilities 

increase as we move away from the null and as the small area sample sizes increase. The results 

for Poisson data, which are not presented here for reason of space, show a similar pattern. 
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Table 3. Simulation results for parameter estimation using hybrid MPQL/REML algorithm 

under the SNLGLMM - m = 100, ni = 10, 1000 Monte Carlo simulations. 

 0  1  u    

 Binary data 

True Value -1.000 1.000 0.250 0.000 

Average Estimated Value -0.993 0.998 0.243 0.005 

%Rel Bias  0.671 -0.197 -2.771 NA 

%RRMSE 13.470 15.327 5.353 NA 

True Value -1.000 1.000 0.250 1.000 

Average Estimated Value -0.980 0.980 0.248 0.989 

%Rel Bias  1.967 -2.011 -2.181 -4.589 

%RRMSE 98.076 20.521 3.611 26.607 

 Poisson data 

True Value -1.000 0.600 0.250 0.000 

Average Estimated Value -0.975 0.596 0.244 0.001 

%Rel Bias  2.489 -0.696 -2.190 NA 

%RRMSE 10.692 28.546 2.550 NA 

True Value -1.000 0.600 0.250 1.000 

Average Estimated Value -1.153 0.595 0.246 0.930 

%Rel Bias  -14.33 -0.819 -1.587 -10.162 

%RRMSE 88.492 72.631 6.401 26.039 

 

Table 4. Rejection probabilities for the null hypothesis for the bootstrap test statistic of Section 

3.2 under the SNLGLMM: m=49, 100, ni = 10, 50, 1000 Monte Carlo simulations. Binary data. 

Area 

sample size 

Nominal 

type 1 error 

rate 

  

Actual rejection probability for null 

m=49
 

m=100
 

2 0   2 1   2 0   2 1   

ni = 10 

0.10 0.112 0.581 0.095 0.593 

0.05 0.065 0.552 0.055 0.571 

0.01 0.015 0.523 0.015 0.555 

ni = 50 

0.10 0.092 0.730 0.095 0.745 

0.05 0.044 0.710 0.050 0.735 

0.01 0.012 0.690 0.010 0.700 

 

6. Application to NSSO data  

In this Section we show how two of the estimators (EP and SNLEP) described in this paper can 

be used to obtain estimates of the proportion of poor households at small area levels in the State 

of Uttar Pradesh in India, using 2011-12 data from the Household Consumer Expenditure (HCE) 
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Survey that was carried out by National Sample Survey Office (NSSO) of India and also data 

from the Population Census 2011. In particular, since the underlying variable is binary (poor / 

not poor) we used a Binomial model for the area level counts. Small areas are defined as the 

different districts of the State of Uttar Pradesh in India. Poverty is an important and persistent 

social issue in India. Existing data based on socio-economic surveys produce state and nationally 

representative poverty estimates but these surveys cannot be used directly to generate reliable 

district level estimates. This motivated us to apply the SAE methods developed in this paper to 

poverty estimation in India. However, we also note that the approach we describe is a general 

methodology for small area prediction of count data, and is not limited to poverty estimation 

based on socio-economic survey data. The sampling design used in the NSSO data is stratified 

multi-stage random sampling with districts as strata, villages as first stage units and households 

as the second stage units. A total of 5916 households were surveyed from the 71 districts of the 

Uttar Pradesh. The district-wise sample size ranges from 32 to 128 with average of 83. It is 

evident that district level sample sizes are very small with a very low (0.0002) average sampling 

fraction. As a consequence it is difficult to derive reliable estimates and their standard errors at 

district level, and use of model-based SAE is obvious for such cases. The target variable used for 

the study was an indicator for whether a household is poor or not, defined as monthly per capita 

consumer expenditure below the 2011-12 poverty line (Rs. 768), as specified by the Planning 

Commission, Government of India. Many countries use 60% of median household income in 

order to define a poverty line. However, in India the poverty line is defined as the bare minimum 

income required to provide basic food requirements, and does not account for other essentials 

such as health care and education. It is an economic benchmark used by the government to 

indicate economic disadvantage and to identify individuals and households in need of 

government assistance and aid. It is published by the Government of India, for every state and 

for rural and urban sectors separately. The poverty indicator of interest is then the proportion of 

poor households, often referred to as the head count ratio (HCR), at the district level.  

 

Auxiliary variables (covariates) are drawn from the Population Census 2011. There are around 

50 covariates available from this source to consider for modelling. We use Principal Component 

Analysis (PCA) to derive a composite score for selected groups of variables. In particular, we 

consider three groups for PCA, namely G1, G2 and G3. The first group (G1) is based on gender-
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wise literacy rate and gender-wise worker population. The first principal component for this first 

group (G11) explained 51% of the variability in the dataset, while adding the second component 

(G12) explained 85%. The second group (G2) is based on gender-wise main worker, gender-wise 

main cultivator and gender-wise main agricultural labourers. The first principal component 

(G21) for this second group explained 49% of the variability in the dataset, while adding the 

second component (G22) explained 67%. Finally, the third group (G3) is derived from gender-

wise marginal cultivator and gender-wise marginal agriculture labourers. The first principal 

component (G31) for this third group explained 61% of the variability in the dataset, while 

adding the second component (G22) explained 78%. After fitting a generalized linear model 

using direct survey estimates of proportion of poor households as the response variable and these 

six variables (i.e. G11, G12, G21, G22, G31 and G32) as covariates, only three significant 

covariates namely G11, G21 and G31 were used to generate district level estimates of the HCR. 

Initially, this model was fitted using the glm() function in R and specifying the family as 

“binomial” and the district specific sample sizes as the weight, see R Development Core Team 

(2013). The residual deviance and AIC values for this fitted model were 327.18 and 636.89, 

respectively. The actual model to estimate the HCR in the small areas of interest can be written 

as  

 
1 2 3 4 5( ) ( , ) 11 21 31g f x x G G G       u  ,  

where 
  
(x

1
,x

2
)  are the coordinates (latitude and longitude) of the centroid of the districts of the 

State of Uttar Pradesh and 
  f (×)  is an unknown smooth bivariate function. We estimate this 

function using P­splines. The choice of knots in two dimensions is more challenging than in one. 

Following the advice of Ruppert et al. (2003), and carrying out estimation with a different 

number L of knots, we finally chose L = 30, since we found that the fit of the spline stabilizes 

after this number of knots. The diagnostic procedure to test for spatial nonlinearity (i.e. the 

hypothesis 2

2

0
: 0H




   versus the one-sided alternative
 

2

2

1
: 0H




  ) in the data was also 

applied and with L = 30 it was significant (p value of 0.0001) and so the null hypothesis of lack 

of spatial structure in the data was rejected. 

 

We estimated the district level HCR using the EP and the SNLEP. For the GLMM (1), the 

estimate of the between area variance component was 
2 0 265ˆ .u  , whereas for the SNLGLMM 
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(13) the corresponding estimates of the model variance components were 
2 0 025ˆ .u   and 

2 0 105ˆ .  . We next used diagnostic measures to check model assumptions as well as the 

empirical performance and underlying assumptions of the model-based SAE methods. The 

GLMM and SNLGLMM are based on distributional assumption, i.e. the random effects in both 

models are independently and identically distributes values from a normal distribution with mean 

zero. Standard diagnostics such as histograms and normal probability (q-q) plots were used for 

this purpose. Although these results are not reported here, they indicated that these distribution 

features hold for both the GLMM and the SNLGLMM when fitted to NSSO data. We also 

observed that the district level residuals are randomly distributed, and that their line of best fit 

does not significantly differ from the line y=0 in all cases. Model diagnostics were therefore 

satisfactory for both the GLMM and the SNLGLMM. 

 

To validate the reliability of the small area estimates produced by the EP and SNLEP estimation 

methods we examined bias diagnostics and coefficients of variation (CV). Bias diagnostics are 

used to investigate if the small area estimates are less extreme when compared to the direct 

survey estimates, when these are available. In addition, if the direct estimates are unbiased, their 

regression on the true values should be linear and correspond to the identity line. If the small area 

estimates are also close to the true values the regression of the direct estimates on the model-

based estimates should be similar. We plotted direct estimates on the vertical axis against the 

small area estimates on the horizontal axis and looked for divergence of the fitted regression line 

from y= x by testing for intercept = 0 and slope = 1. See Brown et al. (2001) and Chandra et al. 

(2011).  These bias scatter plots for EP and SNLEP are displayed in Figure 3. 
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Figure 3. Bias diagnostics plots with y = x line (solid) and regression line (dotted) for EP (left) 

and SNLEP (right).  

The plots in Figure 3 reveal that the small area estimates generated by both the EP and the 

SNLEP methods are less extreme when compared to the direct survey estimates, demonstrating 

the typical SAE outcome of shrinking more extreme values towards the average. That is, the 

estimates of poverty incidence generated by both EP and SNLEP methods lie along the line y= x 

for most of the districts which indicates that they are approximately design unbiased. We 

computed the per cent CV to assess the improved precision of the model-based small area 

estimates (EP and SNLEP) compared to the direct survey estimates. The CV shows the sampling 

variability as a percentage of the estimate. Estimates with large CVs are considered unreliable 

(i.e. smaller is better). There are no internationally accepted tables available that allow us to 

judge what is "too large". Figure 4 shows the district-wise values of percentage CV for direct 

(DIR), EP and SNLEP estimation methods. Estimates of proportions of poor households (poverty 

incidence) in Uttar Pradesh by District obtained via the DIR, EP and SNLEP methods along with 

their percentage CVs are set out in Table 5.  
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Figure 4. District-wise percentage coefficient of variation (CV, %) for direct (dotted line, ), EP 

(thin line, ) and SNLEP (solid line, ) method applied to NSSO data. 

 

The results presented in Table 5 and displayed in Figure 4 clearly show that direct survey 

estimates of poverty incidence are unstable, with CVs varying from 10.64 to 99.22 % with an 

average of 27.03 %. Further, the CVs of these direct estimates are greater than 20% and 40% in 

39 and 11 (out of 71) districts respectively. In contrast, the two model-based small area 

predictors (EP and SNLEP) perform better than the direct estimate. The average CV values for 

EP and SNLEP are 21.30 % and 20.18 % respectively. Furthermore, the CV of the SNLEP is 

smaller than that of the EP in 62 out of the 71 districts.  We therefore conclude that the SNLEP is 

the best performing estimation method of the three that we investigated for this application. 



35 

 

Although the relevant results are not presented here, we also note that the SNLEP had narrower 

confidence intervals than the EP. 

 

Finally, in Figure 5 we present the poverty map produced by the SNLEP estimation method 

which shows the estimated proportions of poor households in different districts of Uttar Pradesh. 

In Figure 6 we present the corresponding map of the percentage coefficients of variation of the 

SNLEP in the different districts. In Figure 5, districts with light colouring are estimated to have a 

low proportion of poor households. Similarly, in Figure 6 a light colour corresponds to districts 

with smaller values of percentage coefficient of variation.  For example, in the western part of 

Uttar Pradesh there are many districts with low poverty incidence (light colour), such as 

Saharanpur, Hathras, Meerut, Baghpat, Muzaffarnagar, Bulandshahar etc (Figure 5). Values of 

percentage coefficient of variation are large (dark colouring) for these districts (Figure 6). In 

eastern region and in the Bundelkhand region (north-east part of map) there are number of 

districts (for example, Azamgarh, Sitapur, Chitrakoot, Bahraich, Siddharthnagar, Banda, 

Fatehpur, Basti and Kaushambi etc) with high (dark colour) levels poverty incidence and with 

corresponding smaller values of coefficients of variation. In general, we note that districts with 

high poverty incidence tend to have higher precision (i.e. lower coefficient of variation) 

compared to the districts with low poverty incidence. Overall, poverty maps like that displayed 

in Figure 5 are very useful for policy planners and administrators who require accurate 

information for effective financial and administrative decisions. 
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Figure 5. District-wise distribution of poverty incidence in the state of Uttar Pradesh: SNLEP 

estimates. 
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Figure 6. District-wise distribution of percent coefficients of variation in the state of Uttar 

Pradesh: SNLEP estimates. 
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Table 5. District wise sample size, direct estimate (DIR), EP and SNLEP, percentage coefficient 

of variation of DIR, EP and SNLEP for the poverty incidence in 2011-12 obtained from NSSO 

data.  

District Sample size Estimated poverty incidence Coefficient of variation, % 

DIR EP SNLEP DIR EP SNLEP 

Saharanpur 96 0.05 0.08 0.07 43.54 29.51 32.73 

Muzaffarnagar 128 0.06 0.08 0.08 34.23 26.08 25.38 

Bijnor 96 0.19 0.19 0.18 21.25 19.71 19.35 

Moradabad 128 0.19 0.19 0.18 18.40 17.39 17.19 

Rampur 64 0.23 0.23 0.21 22.59 21.11 20.68 

Jyotiba Phule Nagar 64 0.19 0.19 0.17 26.02 22.92 23.91 

Meerut 64 0.02 0.07 0.06 99.22 36.32 32.12 

Baghpat 32 0.09 0.14 0.09 54.96 34.60 36.65 

Ghaziabad 64 0.05 0.09 0.07 56.37 33.01 31.74 

Gautam B Nagar 32 0.03 0.10 0.08 98.43 38.62 34.93 

Bulandshahr 96 0.08 0.11 0.10 33.85 26.38 24.82 

Aligarh 95 0.14 0.15 0.15 25.77 22.71 21.46 

Mahamaya Nagar 64 0.03 0.08 0.07 69.60 35.23 31.43 

Mathura 64 0.13 0.14 0.11 33.07 26.70 27.88 

Agra 96 0.13 0.14 0.12 27.00 23.12 23.21 

Firozabad 64 0.22 0.22 0.18 23.62 21.52 22.04 

Etah 64 0.09 0.12 0.11 38.86 28.79 27.05 

Mainpuri 64 0.30 0.28 0.24 19.24 18.40 18.73 

Budaun 96 0.17 0.17 0.16 22.82 20.61 19.98 

Bareilly 95 0.05 0.08 0.10 43.53 29.53 25.27 

Pilibhit 64 0.13 0.14 0.15 33.07 27.07 24.19 

Shahjahanpur 96 0.19 0.19 0.19 21.25 19.65 18.39 

Kheri 128 0.28 0.27 0.28 14.13 13.86 13.29 

Sitapur 128 0.31 0.30 0.30 13.11 12.96 12.58 

Hardoi 128 0.30 0.29 0.28 13.60 13.40 13.10 

Unnao 96 0.40 0.37 0.36 12.61 12.59 12.31 

Lucknow 64 0.19 0.19 0.21 26.02 23.02 19.93 

Rae Bareli 128 0.33 0.31 0.32 12.65 12.55 12.10 

Farrukhabad 64 0.17 0.18 0.17 27.44 23.85 22.12 

Kannauj 64 0.19 0.19 0.19 26.02 23.03 21.05 

Etawah 64 0.09 0.12 0.11 38.86 29.50 26.99 

Auraiya 64 0.16 0.17 0.17 29.05 24.75 22.21 

Kanpur Dehat 64 0.11 0.13 0.16 35.67 27.76 22.81 

Kanpur Nagar 64 0.19 0.19 0.21 26.02 23.02 20.29 

Jalaun 64 0.11 0.13 0.14 35.67 27.72 25.00 

Jhansi 64 0.09 0.12 0.11 38.86 28.93 28.35 

Lalitpur 32 0.13 0.15 0.12 46.77 33.93 42.64 

Hamirpur 32 0.22 0.21 0.23 33.41 28.04 24.22 

Maharajganj 32 0.13 0.15 0.17 46.77 32.77 27.99 

Banda 64 0.41 0.37 0.35 15.11 15.20 15.10 

Chitrakoot 32 0.28 0.25 0.27 28.26 25.86 22.39 

Fatehpur 96 0.40 0.37 0.36 12.61 12.66 12.34 

Pratapgarh 128 0.38 0.36 0.36 11.41 11.36 10.91 

Kaushambi 63 0.46 0.42 0.32 13.64 13.80 16.36 

Allahabad 128 0.27 0.26 0.27 14.70 14.23 13.49 

Bara Banki 96 0.30 0.29 0.30 15.51 15.10 14.18 

Faizabad 64 0.27 0.25 0.28 20.78 19.55 17.22 

Ambedkar Nagar 96 0.31 0.30 0.31 15.14 14.78 13.87 

Sultanpur 128 0.21 0.21 0.23 17.10 16.24 14.79 
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Bahraich 96 0.30 0.29 0.30 15.51 15.09 14.15 

Shrawasti 64 0.31 0.29 0.31 18.54 17.87 16.61 

Balrampur 63 0.19 0.19 0.22 25.97 23.26 20.15 

Gonda 128 0.29 0.28 0.29 13.86 13.54 12.78 

Siddharth Nagar 96 0.31 0.30 0.31 15.14 14.78 13.77 

Basti 96 0.48 0.45 0.44 10.64 10.82 10.49 

Sant Kabir Nagar 64 0.30 0.28 0.31 19.24 18.70 16.69 

Mahoba 96 0.38 0.36 0.36 13.18 13.08 12.58 

Gorakhpur 128 0.27 0.26 0.27 14.70 14.26 13.34 

Kushinagar 128 0.23 0.22 0.23 16.33 15.62 15.29 

Deoria 96 0.27 0.26 0.27 16.75 16.12 15.05 

Azamgarh 128 0.30 0.30 0.30 13.35 13.07 12.50 

Mau 64 0.19 0.20 0.21 26.02 23.01 20.34 

Ballia 96 0.27 0.26 0.26 16.75 16.10 15.86 

Jaunpur 128 0.19 0.19 0.21 18.40 17.20 15.69 

Ghazipur 128 0.23 0.23 0.23 16.33 15.58 14.78 

Chandauli 64 0.19 0.19 0.20 26.02 23.22 21.39 

Varanasi 96 0.19 0.19 0.21 21.25 19.52 17.77 

Sant Ravi Das Nagar 64 0.41 0.37 0.36 15.11 15.09 14.41 

Mirzapur 96 0.26 0.25 0.26 17.20 16.48 15.54 

Sonbhadra 64 0.28 0.27 0.27 19.98 18.89 17.87 

Kansiram Nagar 32 0.16 0.17 0.15 41.08 31.78 29.13 

Mean     27.03 21.30 20.18 

 

7. Concluding remarks 

This paper describes a spatially non-linear (or nonparametric) extension of the area level version 

of the generalized linear mixed model (SNLGLMM) and considers SAE under this model. The 

corresponding estimator is referred to as the spatially non-linear empirical predictor (SNLEP) for 

small areas. This estimator can accommodate situations where the functional form of the spatial 

relationship between the variable of interest and the covariates is unknown. A bootstrap based 

procedure for testing for spatial nonlinearity in the data is also described. An analytical MSE 

estimator is also proposed for the SNLEP. Empirical evaluations based on simulation studies 

indicate that the proposed SNLEP method is more efficient than other model-based SAE 

methods developed under the area level generalized linear mixed model when there is a spatial 

relationship between the variable of interest and the covariates. The proposed analytic MSE 

estimator also performed reasonably well, with good coverage performance for nominal 

confidence intervals based on it. We also applied the SNLEP to real survey data to estimate the 

Head Count Rate (HCR) poverty indicator values for the districts of the State of Uttar Pradesh in 

India and produced a poverty map of these districts based on these HCR estimates. These 

estimates and their spatial distribution will be useful for various Departments and Ministries in 

Government of India as well as International organizations for their policy research and strategic 
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planning. They are also useful for budget allocation and intervention of targeted welfare for 

below poverty line (BPL) households. Furthermore, the methodology developed in this paper and 

demonstrated in the application presented in this paper can be used generally for calculating 

reliable area level estimates of counts and rates. Further extension of this work could be a 

comparison of the MSE estimator proposed in this paper with alternative bootstrap-based MSE 

estimators, since the latter may offer a better and more stable approximation to the actual MSE. 

MSE estimators based on block bootstrapping methods, e.g. the random effects block bootstrap 

of Chambers and Chandra (2013), are worth considering in this regard. 
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