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Incrementality and Hierarchies in the Enrollment of
Multiple Synergies for Grasp Planning

Giuseppe Averta ”, Franco Angelini

Abstract—Postural hand synergies or eigenpostures are joint an-
gle covariation patterns observed in common grasping tasks. A typ-
ical definition associates the geometry of synergy vectors and their
hierarchy (relative statistical weight) with the principal component
analysis of an experimental covariance matrix. In a reduced com-
plexity representation, the accuracy of hand posture reconstruction
is incrementally improved as the number of synergies is increased
according to the hierarchy. In this work, we explore whether and
how hierarchy and incrementality extend from posture descrip-
tion to grasp force distribution. To do so, we study the problem of
optimizing grasps w.r.t. hand/object relative pose and force appli-
cation, using hand models with an increasing number of synergies,
ordered according to a widely used postural basis. The optimiza-
tion is performed numerically, on a data set of simulated grasps of
four objects with a 19-DoF anthropomorphic hand. Results show
that the hand/object relative poses that minimize (possibly locally)
the grasp optimality index remain roughly the same as more syn-
ergies are considered. This suggests that an incremental learning
algorithm could be conceived, leveraging on the solution of lower
dimensionality problems to progressively address more complex
cases as more synergies are added. Second, we investigate whether
the adopted hierarchy of postural synergies is indeed the best also
for force distribution. Results show that this is not the case.

Index Terms—Grasping,
joint/mechanism.

multifingered hands, compliant

I. INTRODUCTION

HE human hand is an extremely complex system, com-
posed by many joints, muscles and sensory receptors,
which constitute a highly sophisticated and dexterous appa-
ratus of our body. Such an abundance, classically referred to
as Bernsteins problem [1], would require a remarkable calculat-
ing capacity for its control. Nevertheless, several neuroscientific
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studies suggested that the human nervous system is able to cope
with such complexity and organize it in a simple environment -
as it happens for other natural phenomena according to the Sim-
plexity concept [2] - leveraging on a control space of reduced
dimensionality [3]-[6], usually defined as synergistic control
space.

This synergistic behavior seems to be used by the Central
Nervous System to generate coordinated movements, simulta-
neously activating different Degrees of Freedom (DoFs), instead
of acting separately on each joint or muscle. The existence of
these patterns (aka synergies) was observed in different motor
tasks and at different levels of the motor control architecture,
i.e., neural ([7]), muscular ([8], [9]), kinematic ([10]-[12]). For
a review on these topics see e.g., [13].

Considering the kinematic level, such observations supported
the idea that few combinations of the hand DoFs, e.g., described
in terms of main principal components (PCs, i.e., postural syn-
ergies) of hand joint angles recorded in grasping tasks, can take
into account large part of hand pose variability. Higher order
PCs are likely involved to describe more complex tasks such as
haptic exploration [14], or manipulation with the environment
[15]. In geometrical terms, synergies can be regarded as a basis
of hand principal movements: the more the elements are used
(or “enrolled”), the more complex tasks can be executed [10].

While postural synergies provide a geometrical description
of hand control in the kinematic space, such a model cannot be
directly applied to explain force control, generation and distribu-
tion in grasping and manipulation tasks. To this goal, we need to
consider also the mechanical compliance of the hand musculo-
tendinous system, as introduced in the soft synergy model [16],
inspired by the Equilibrium Point Hypotesis [17]. More specifi-
cally, according to this model, postural synergies are considered
as a reference configuration and the hand is in equilibrium be-
tween the reference attraction and the repulsion forces exerted
by the object. In [18], authors numerically demonstrated that for
a paradigmatic human hand the same postural synergies that are
important for pose generation are also involved in the optimal
distribution of contact forces during the grasp. The study of opti-
mal contact forces distribution for robotic hands has been tacked
in licterature, as for example in [19], where the authors presented
an algorithm for the evaluation of optimal contact forces distri-
bution from tactile measurements, and [20], in which the authors
faced the problem using dual theorem of non-linear program-
ming. However, to the best of authors’ knowledge, there are no
works that investigate the role that postural synergies play for
the improvement of the grasp quality in terms of optimal contact
force distribution.
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Taking inspiration from the observation that the human de-
velopment seems to progressively increase the hand control ca-
pabilities [21], [22] - which could be read as an increment of the
available synergies - in this work, we pursue this investigation
by analyzing through numerical simulations, the effect of an
incremental enrollment of postural synergies for the execution
of successful grasping strategies.

The proposed analysis takes also into account, for the first
time, hand/object relative configuration. This investigation aims,
firstly, at verifying that hand/object relative poses minimizing
the force distribution are approximately invariant w.r.t. an in-
cremental enrollment of synergies, and, secondly, at providing
evidence on the existence of a correspondence between the hi-
erarchy of hand posture synergies and the one of synergies con-
trolling contact forces. An exhaustive inspection of these aspects
requires an analysis that spans several hand grasp configurations.
For this reason, to include a large part of of the main graping
hand configurations (e.g., referring to [23]), we simulated the
grasp of four different objects with cubic and parallelepiped-
like shape of variable dimensions. Two cubic objects are used
to drive the hand shape for power and precision circular grasps,
while two prismatic objects let the hand assume power and pre-
cision prismatic configurations. The simulations we performed
resulted in a large dataset, which allows a thorough analysis of
the contact forces applied to the considered objects, varying the
number and the types of the enrolled synergies. In particular, we
focused on the grasp success rate and the value of contact forces
to assess the quality and the effectiveness of the grasp w.r.t. the
modification of the hand/object configuration.

For illustration of the general results of our study, we provide
a worked-out example of a instantiation of a multifingered hand.
The model used as example has the kinematic parameters and
the CAD model of the anthropomorphic PISA/IIT SoftHand
(SH) [24]. However, it differs in that all 19 articular joints are
assumed to be independently controlled here (thus generalizing
the results by ignoring the specific under-actuation scheme of
the SH).

In this work we aim at evaluating if incrementality in the
choice of the synergies to be enrolled - and eventually imple-
mented in a robotic device - could be the right path toward a
novel generation of robotic hands in which the implementation
of the first postural synergy preserves the grasp simplicity, while
other PCs are used to enhance the grasp quality and, potentially,
the manipulation skills. Furthermore, we believe that our study
could have an impact for the development of planning algo-
rithms for highly actuated hands. Indeed, these robotic systems
dramatically increase the grasping and manipulations capabil-
ities but decrease the planning and control simplicity. In these
cases, we believe that our analysis could be used to justify a
first rough evaluation of a good grasping strategy in a lower
dimensionality, which could be refined in a second step.

II. BACKGROUND

A. Modeling a Compliant Hand With Synergies

The problem of grasping with a compliant hand is broadly
modelized through balance and congruence equations for hand
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and object. For a hand with n DoFs, which contacts an object in
¢p points, we have that

r=JVf, & =Jd, (1)

where J € R°*" is the hand Jacobian matrix, ¢ = 3¢, is the
dimension of the contact force/torque vector, 7 € R" is the joint
torque vector, f € R is the contact force vector, {; € R¢ is the
twist of the contact points on the fingers and ¢ € R" are the
joint angles. Similarly, the balance and congruence equations
for the object are

We = Gfa fo = GT&H 2)

where G € R*¢ is the grasp matrix, w. € R is the object
wrench, £, € R¢ is the twist of the contact points on the object
and ¢, € RY is object twist. The hand elasticity K is defined as

K= (C,+JC,J") ", 3)

where Cs = (1/kgyry )5 € RE*€ is the structural compliance
matrix and C; = (1/kss) 1, x, € R™*" is the joint compliance
matrix. K relates the contact forces with the displacement be-
tween the twist on the contact points on the fingers and on object
as §f = K (0§, — 0&;) enabling to solve force indeterminacies
in the rigid-body system and allowing to implement the soft
synergy paradigm introduced in [16].

In neuroscience there are many studies suggesting that the
control of the human hand can be simplified with a lower
dimensionality description, usually implemented through Prin-
cipal Component Analysis (PCA) [13]. Given a set of obser-
vations of a specific stochastic phenomenon, PCA calculates
the orthonormal transformation that converts the original, pos-
sibly correlated, variables into a set of linearly uncorrelated and
orthogonal variables called PCs or, in case of joint angles or-
ganized in a dataset of hand grasps, postural synergies. These
components are usually obtained through Singular Value De-
composition (SVD) of the covariance matrix of the dataset. The
eigenvectors (i.e., PCs) hence represent the uncorrelated vari-
ables that describe the considered dataset, while the eigenvalues
associated to the PCs quantify the importance of each eigenvec-
tor in terms of explanation of dataset variability. The mapping
between the synergistic displacement input do € R® and the
joint reference positions d¢, can be formalized as

8g, = Sdo, )

where S arranges s PCs per-column, with s < n. Finally, the
soft synergy paradigm relates the reference joint position dq,
with the actual joint position d¢q through

0q = dq, — Cy0T. 5)

Of note, numerical results depends on the dataset used to cal-
culate S. There are several studies in literature focusing on
different task-dependent datasets, ([15], [25]-[28]). One of
the most popular also for robotic applications is [10], where
the authors demonstrated that just two PCs account for 80%
of the grasp dataset variance, while the first one alone explains
more than 50% of pose variability. Findings reported in [10]
were also used for the design of robotic devices, as for the
Pisa/IIT SH, which embeds the first synergy as single DoA. For



2688

10TV

299NN
L AR R RN
kAN NE
NN
9%

M1

0 1
1 1
1 T

g

Fig. 1.  Different hand shapes using the first 7 synergies introduced in [10] for
pose generation. For each row, the central figure shows the mean pose of the
hand, while the others report the effect of a specific synergy (from the first to
the seventh) modulated by a coefficient o € [—1,1].

the reader’s convenience, we report in Fig. 1 the hand shapes
generated using the first seven synergies.

B. Optimization of Grasping Force Distribution

Hand control through dimensionality reduction as suggested
by hand synergies requires new approaches to analyze con-
tact forces and grasp quality in terms of force-closure. A grasp
has force closure if arbitrary large external wrenches applied
to the grasped object can be compensated by the contact forces
that the hand is able to apply on the object, see e.g., [29]. Adopt-
ing the notation introduced in Table I, we briefly recall here the
solution of the force closure problem, with no claim of being
exhaustive and specifically targeting grasping through postural
synergies and under-actuation. For a more detailed analysis refer
to [18], [29], [30].

Given a general synergistic grasping problem of an under-
actuated compiant hand, the solution of the force distribution
problem is given by

f = 5fp + 5fh7'5 + 5fhos, (6)

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 3, JULY 2018

TABLE I
NOTATION FOR GRASP ANALYSIS WITH POSTURAL SYNERGIES

Notation | Definition

n € R | number of hand joints
c¢p € R | number of the contact points
c € R | dimension of the contact force/torque vector
7 € R™ | joint torques
q € R™ | joint angles
qr € R™ | joint reference angles
f € R¢ | contact force/torque vector
we € RO object wrench
& € RO | object twist
&y € R | twists of the contact points on the fingers
& € R® | twists of the contact points on the object
J € R¢*™ | hand Jacobian matrix
G € R6*¢ | grasp matrix
kstru € R | structural stiffness
kss € R | joint stiffness
Cs € Rexe structural compliance matrix
Cq € R™ ™ | joint compliance matrix
K € Re*¢ | stiffness matrix
Gf; € Re*6 | K —weighted pseudo-inverse of G
s € R | number of enrolled postural synergies
6o € R% | synergistic displacement
S € R™X5 | synergy matrix
St € R™ | synergy vector (i—th column of S)
dfp € R® | particular solution
6 fnr, € R® | active internal forces
0fho, € R® | passive (preload) internal forces
Fs € R°*% | map of do into active internal forces 6 fp,,
es € R | rank of Fy
Es € R¢%¢s | basis of the range space of Fs
y € R® | parameterizing vector of the active internal forces
p € R | Coulomb friction coefficient
JF | composite friction cone
P € R¢*¢ | friction limit constraints matrix
fn € R | normal components of the contact force
fmin € R | minimum value of fy,

where the three terms of the contact force vector f € R¢ are
the particular solution 0 f,,, the active internal forces 6 f;,, and
the passive (or preload) internal forces 0 f3,,, . The latter are here
omitted with no loss of generality since they are assumed null
(the intersted reader could refer to [30] for a detailed discussion).
The particular solution is given by

5fy = Grwe, 7

where GE = KGT(GKGT)™' e RS is the K-weighted
pseudoinverse of G, and w, € RY is the wrench applied to the
object. The active internal forces are

O fhr, = Fdo, ®)

where Fy = (I.x, — GRG)KJS € R** and rank(F}) = e;.
Given a basis F; € R*“ for the range space of the matrix Fj,
(8) can be rephrased as

5fhrs = Esya (9)

where y € R is a vector parameterizing the active internal
forces. Thus, the optimal force distribution can be evaluated by
minimizing a cost function w.r.t. y. For a complete overview of
this problem the reader could refer to [18]. We adopt here the
definition of force-closure given in [30].



AVERTA et al.: INCREMENTALITY AND HIERARCHIES IN THE ENROLLMENT OF MULTIPLE SYNERGIES FOR GRASP PLANNING

Definition I (Force-Closure): A grasp is defined Force-
Closure if and only if the following conditions are satisfied:

1. forces in arbitrary directions are resistible, i.e.,
rank(G) = 6;

2. the hand configuration is prehensile, i.e., 3y € R such
that f(y) € Int(F).

Int(F) denotes the internal part of the composite friction cone
F. The satisfaction of this friction limit constraint is equivalent
to the positive definiteness of the matrix P € R“*¢, defined as in
[31], which contains contact wrenches and friction coefficients.

The problem of finding the optimal distribution of contact
forces f in the grasp of an object subject to the external load w,
with regard to the minimization of a suitable cost function W (y)
can be formalized as

Definition 2 (Grasping Force Optimization): Given a grasp
characterized by Gf} , Es,and P, and an object wrench w, € RS,
find ¥* in (6), such that f(y*) € Int(F), and the cost function
U(f(y*)) is minimized.

We assume here zero preload at the beginning of the grasp
and an auxiliary constraint on the minimum value f;, for all
the normal components f, of the contact force. Under these
hypotheses, the grasping force optimization problem is set
up as

y" = argmin ¥(y)
st. f=GRw, +Esy, P(f) =0, fu > fuin

where f € R¢ are the contact forces and ¥ (y) = ||f(v) |-

In this work, we study such a force optimization problem
varying the number of enrolled postural synergies and for dif-
ferent hand-object relative poses.

(10)

III. MATERIALS AND METHODS

Given the hand kinematics and the synergy dataset, the anal-
ysis described in the previous section does not depend on the
particular shape of the object. In fact, the optimization proce-
dure depends only on the joint angles, the position of the contact
points, i.e., the 3D points in which the fingers are in contact with
the object, and the direction of the contact normals. In this work,
we assume that the directions of the contact normals are per-
pendicular to the object local tangent plane. We obtain these
grasp-related quantities through the simulator described in [32],
which allows simulating the whole kinematics and dynamics of
a generic fully-actuated compliant robotic hand. In this work,
we used the kinematic model of the SH [24], which has 19 joints,
four for each long finger, and three for the thumb. The synergy
set used is the one reported in [10]. The kinematic model of
the SH has a good mapping with the human hand model con-
sidered in [10] allowing a direct mapping of the postural grasp
synergies.

We simulated the grasp of four objects: two cubes (obj #1:
30 x 30 x 30 mm and obj #3: 60 x 60 x 60 mm) and two rect-
angular bars (obj #2: 30 x 60 x 60 mm and obj #4: 100 x 60 x
100 mm). The shapes and the dimensions of the objects are
suitably chosen to include in the analysis several grasp config-
urations, in accordance with [23]. Indeed, the objects #1 and #2
suggest a precision grip while the objects #3 and #4 a power
configuration. The size of the objects allows to generate both
circular shaped grasps and prismatic configurations. Further-
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Fig.2.  The particular selection of objects dimensions, in conjunction with the

large variation of hand/object relative configuration, allow to simulate a wide
set of grasp typologies.
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Fig. 3. Block scheme of the simulation and optimization procedure. Simula-
tions take as input the synergy dataset, the hand kinematic model, geometrical
properties of the object and the hand/object relative pose. The simulator outputs,
i.e., joint angles and contact points, are used as argument of the optimization
problem which - given a set of synergies - calculate the optimal distribution of
contact forces.

more, objects #1 and #2 in conjunction with hand/object relative
pose variations allow to generate other grasp approaches, such
as lateral pinch. Fig. 2 shows some meaningful grasp strategies
simulated. The weightis equal to 1 Kg for all the objects. Finally,
we assume a modeling of the contacts as Point Contact With
Friction (PCWF) with a friction coefficient ¢ = 1.5, minimal
normal force fi,i, = 0.1 N, structural stiffness kg, = 1 N/mm
and admissible joint stiffness kg, = 200 Nmm/rad, in accor-
dance to [18]. The simulation is intended as a free exploration
of the space: the hand shape follows the closure path imposed
by the first synergy and adapts around the object according to
the soft synergies paradigm. The hand completes its movement
when all the fingers are in contact with the object or fully closed.
The information about joint angles and the position of the con-
tact points are then stored and passed to the optimization tool for
the evaluation of the optimal force distribution. A schematics of
the whole procedure is reported in Fig. 3.

Finding a valuable strategy for grasp success and quality in
terms of contact force by changing the hand/object relative con-
figuration represents a key topic for planning and control of
robotic hands. This is particularly true considering soft adapt-
able robotic hands where the importance of hand/object relative
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pose is crucial to fully take advantage from end-effector adapt-
ability in shaping around different items [33]. This motivates
our investigation for different hand poses.

However, the problem of evaluating the best hand configu-
ration is not trivial at all and computationally expensive. The
principal parameters that make this issue time-consuming are:
(i) the range of the evaluated relative poses, and (ii) the num-
ber of DoA enrolled for the analysis. While for (i) the best
choice could be a trade-off between a reduced number of sam-
ples and an adequate span of the whole workspace, for the
number of synergies considered the solution is not obvious. In-
deed, the quality of the grasp generally varies w.r.t. the number
of enrolled synergies. Relying on that, simulations were per-
formed varying hand/object relative pose, in particular we con-
sidered rotations around the axis normal to the palm (abduction-
adduction) and rotations around the axis along the long fingers
(pronation-supination). The first DoF is spanned in the range
A = [—180, 180]deg with resolution of 5 deg, while the second
DoF is spanned in the range B = [—60, 60]deg with resolution
of 5 deg. The total number of simulated hand/object poses is
1800 for each object.

In order to clarify the whole optimization procedure, we
summarize it in Algorithm 1. First, an initialization proce-
dure is required to load the object geometries, a hand kine-
matic model, a synergy dataset S € R”*" mapped on that
model and the hand/object relative configurations, i.e., vec-
tors A € R? (abduction-adduction) and B € R® (pronation-
supination). Then, if the focus is the incrementality analysis we
run Algorithm 2. This is composed of two iterative loops. In the
external one we iterate on the hand/object relative configura-
tions, simulating each pose («, 3); to obtain the contact points
and hand joint angle values. In the internal loop we incremen-
tally consider the columns of the synergy dataset S e RV,
Indeed, at each step we compute the synergy enrollment set
S cR"™ as § = S(:,1: ) (4). We then solve the optimiza-
tion problem (10) for the considered hand pose («, 3); and the
considered synergy enrollment set S. Otherwise, if we focus on
the hierarchy analysis, we run Algorithm 3. This cycles over
several permutations of the columns of the synergy dataset S,
running Algorithm 2 at each step. It is worth noting that the
whole procedure is completely independent on the particular
hand model, synergy dataset and object geometry.

IV. RESULTS AND DISCUSSION

In this section, we evaluate the grasp performances in terms
of contact forces. In particular, we analyze the norm of con-
tact forces w.r.t. the hand/object relative poses incrementally
enrolling the grasp synergies and focusing on the inspection of
local minima (Analysis Type = Incrementality in Algorithm 1).
Secondly, we question the role that each synergy plays in suc-
cess rate and grasping performances identifying the synergies
that give the more dominant contribution (Analysis Type =
Hierarchy in Algorithm 1).

A. Synergy Incrementality and Optimal Hand Configuration

In this first analysis, we evaluate the optimal contact forces
w.r.t. the hand/object relative configurations in the case of the

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 3, JULY 2018

Algorithm 1: Grasp Analysis.
1: procedure INITIALIZATION
2: Load Object Geometries
3 Load Hand Kinematic Model
4: Load Synergy Dataset Matrix S € R"*"
5: Define A € R?®and B € R® >>Grasp Poses Sets
6.
7
8

: Choose Analysis Type
: procedure GRASP ANALYSIS
switch Analysis Type do

9: case Incrementality
10: Compute S € R"*" = §
11: Run Incrementality Procedure > Algorithm 2
12: case Hierarchy
13: Z = perms([1 : n])
14: Run Hierarchy Procedure > Algorithm 3

Algorithm 2: Incrementality Procedure.
1: procedure INCREMENTALITY PROCEDURE

2 i=0

3 do

4: Set (o, 3); € {A,B} >Sample of Hand Pose
5: Simulate the Grasp, i.e., Compute Contacts

6: s=0

7 do

8 s=s+1

9 S=5(G,1:5) e R"*s >(4)
10: Solve Optimization Problem >(10)
11: while s #£ n

12: 1=1+1

13: while i # a - b

Algorithm 3: Hierarchy Procedure.

1: procedure HIERARCHY PROCEDURE
j=0
do
j=Jj+1
Compute S € R"*" = §(:, Z(j,:))
Run Incrementality Procedure > Algorithm 2
while j # size(Z,1)

A A R

enrollment of one or more synergistic DoAs. In particular, we
sequentially enroll the synergies from S; to S5 and evalu-
ate the variations of the optimal grasping forces distribution.
Fig. 4 shows the results for the case of object #4 (for the
sake of space only cases {S1}, {S1,S52}, {S1,52,53} and
{51,55,855,...515} are reported). On the left, we report the
force values w.r.t. the relative hand/object pose as colormap. As
expected, reading the figure from top to bottom (i.e., increasing
the number of enrolled synergies), the value of the contact forces
decreases and the grasping success rate increases. Furthermore,
results reveal that the local minima are preserved increasing the
number of enrolled synergies. To clarify the latter point, we re-
ported on the right - as an example - an exploded view of a local
minimum neighborhood.
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Fig. 4.

Norm of the contact forces w.r.t. the hand/object relative abduction and pronation for the case of object #4. On the left, a colormap is used to report the

log of contact force values for each 2D hand/object pose. From top to bottom, the analysis reports on an incremental enrollment of synergies. Empty cells refer to
poses, which do not provide force closure with the specific synergy set. On the right, we report the exploded view of a local minimum neighborhood. Top figure
shows the contact force values w.r.t. variations of hand pronation for a fixed exemplary value of abduction equal to —30 deg (corresponding to a local minimum).
Bottom figure shows the contact force values w.r.t. variations of hand abduction for a fixed value of pronation equal to O deg. Conclusions that can be drawn are:
i) increasing the number of enrolled synergies decreases the contact force values and increases the grasping success rate; ii) the exploded view shows that the local

minimum is preserved in a neighborhood for different sets of enrolled synergies.

This could suggest that the poses which represent local min-
ima for the case of a reduced set of enrolled synergies seem
to maintain their role increasing the number of DoA, hence re-
marking a local minimum also for the full actuated hand case. In
order to generalize this analysis and to evaluate if this behavior
is maintained for all the local minima and for all the objects, we
evaluated - for all the objects - the local minima obtained with
the set {5} }, then we incremented the number of enrolled syn-
ergies, i.e., the set {51, S5}, and evaluated if a local minimum
of this second case exists in a neighborhood of [—10, 4 10]deg
both for abduction and pronation axis. This procedure can be
iterated sequentially increasing the cardinality of the synergy
set and evaluating the permanences between {Si,...S;} and
{S1,...,Sk,Sk+1}, until the case {S,..., Si5}. Considering
that the data analyzed present missing values - which correspond
to no-force closure conditions - we decided to evaluate the local
minima using the following policy. Given a synergy set and the
correspondent contact force values w.r.t. the relative hand/object
pose, we consider as local minimum candidates all the values
lower than the median value. Then, for each local minimum
candidate, we consider different cases: i) if none of the poses
in the considered neighborhood produces force closure, then it
is assumed as a local minimum; ii) if in the considered neigh-
borhood there are other relative configurations for which there
is force closure but the value of the candidate is lower than the

other, then it is assumed as a local minimum; iii) if none of the
previous conditions is satisfied, then the candidate is discarded.
Numerical results show that the minimum preservation condi-
tion is verified in the 96% of the cases, with a minimum of 92%
for the object #1 and a maximum of 99% for object #4.

B. The Role of Synergy Hierarchy

The conclusions drawn in the previous section assume an in-
cremental enrollment of synergies following the order suggested
by their importance for the control of hand shape described in
[10]. Notwithstanding, this particular selection results in an ar-
bitrary choice, considering that the control of the hand posture is
regulated independently from the control of the contact forces.
To evaluate, hence, if there is a one-to-one mapping between the
importance of synergies for hand shape and for the control of
contact forces, we repeated the optimizations while randomizing
the order and the number of the enrolled synergies.

1) A Reduced Set of Synergies: For each hand/object relative
configuration the number of combinations to be tested is equal
to the sum of the the binomial coefficients 22:1 (]I:) . For high
values of NV, analysis workload would be too high, then to
reduce computational complexity, we evaluated the minimum
value of N that enables to approximate the grasp capacity of the
full synergy set case. For the objects considered in this work, we
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Fig. 5.

A: Grasping percentage, averaged for the four objects, while enrolling a 3—permutation of 7 synergies w.r.t. the hand/object relative configurations. Each

7 x 7 matrix labeled as S}, represents the set of 3—permutations starting with the synergy .Sy . The element (¢, j) of the Sj matrix contains the round percentage
of the successful grasps for the synergies triplet {Sj;, S;, S; }. These values are also depicted with a gray scale representation, where black represents 0% and
white 100%. Note that, in the 7 x 7 matrix associated to Sy, the element (k, k) represents the percentage of successful grasps for the case of k as single DoA.
The elements on the k—row, on the k—column and on the diagonal represent the percentage of successful grasps considering two synergies, i.e., S; and one of
the other six respectively. Finally, all the other elements contain the percentage of successful grasps enrolling three synergies (including Sy, ). B: Optimal contact
forces averaged w.r.t. all the hand/object relative configurations and the object considered. The data presentation follows the same paradigm of Fig. 5-A. Note that

the matrices are symmetrical.

TABLE II
NORMALIZED PERCENTAGE OF SUCCESSFUL GRASPS PER-OBJECT WITH THE
FIRST & SYNERGIES

1 2 3 4 5 6 7 8
#1 87.16 99.80 100 100 100 100 100 100
#2 62.88 93.51 99.82 100 100 100 100 100
#3 55.67 87.42 97.52 99.38 99.79 99.79 100 100
#4 50.29 83.05 97.41 100 100 100 100 100

obtained that with the first seven PCs the hand is able to produce
force closure in all the configurations in which also the full set
of synergies does (see Table II). Leveraging on this result, from
now on N = 7 will be the upper extremity of the dimension of
the synergy set considered.

2) The Importance of Synergies in Optimal Contact Forces
Distribution: To analyze the actual role that each grasp syn-
ergy plays in the minimization of contact forces we evaluated
their optimal distribution while randomizing the number and
the order of synergies that are incrementally enrolled. To face
this problem, leveraging on the result of the previous section,
we take into consideration the first 7 synergies, which are se-
lected in randomized sub-sets of one, two and three elements,
for a total number of combination equal to 63 and, hence, a
maximum number of optimization per-object equal to 113400.
For each sub-set and for each object, we calculate the number
of successful grasps performed and the optimal distribution of
contact forces w.r.t. the hand/object relative configuration. We
report the results of this analysis - in a compact form - in Fig. 5.
In particular, in Fig. 5-A we show the percentage of successful
grasps (normalized w.r.t. the case of the full synergy set), aver-
aged w.r.t. the four object considered. These values are depicted
as a confusion matrix in which the white color is associated to
100% and the black to 0%. Each cell of the matrix contains the
percentage of successful grasps of a specific triplet. The first
index (k) of the triplet is identified by the index reported on the
top of the matrix (S, So, . .., Sk, - - ., S7), which is in common

for all the cells under the label .S}, . Fixed the matrix associated
to the first index of the triplet, the element (i, j) of the matrix
contains the round percentage of the successful grasps for the
synergies triplet {Si, S;,S;}. Note that, in the 7 x 7 matrix
associated to Sy, the element (k, k) represents the percentage
of successful grasps for the case of Sj as single DoA. The el-
ements on the k—row, on the k—column and on the diagonal
represent the percentage of successful grasps considering two
synergies, S and one of the other six respectively. Finally, all
the other elements contain the percentage of successful grasps
enrolling three synergies (including Sj). In Fig. 5-B, the same
representation of Fig. 5-A is used to report the optimal contact
forces distribution averaged w.r.t. all the possible hand/object
relative configurations and all the object considered. Note that
the matrices are symmetrical.

These results show that, in the case of single DoA, S; is the
PC which produces force closure with the highest probability,
i.e., in the 65% of the cases. Besides S}, the PCs with the highest
percentages of successful grasps are Sy (34%) and S5 (48%).
What is also noticeable is that, for the case of two DoAs, the
highest percentage of successful grasps is achieved enrolling .Sy
and S5. These values show that S;, S, and S5 are the compo-
nents more related to the increasing of the percentage of grasp
successful. This observation - as expected - is still true when
these synergies are enrolled as second DoA of a pair or triplet.
For example, for the triplets starting with S5, it can be shown
that, even if the sub-set containing only S5 produce force clo-
sure only in the 13% of the cases, the pairs {53, .51 }, {S3, S4}
and {S3, S5} produce force closure in the 90%, 75% and 78%
of the cases.

Besides the fundamental role that .S; plays for the control
of contact forces distribution, which was an expected result,
we demonstrated that also S; and S; have a relevant role in
increasing the probability to perform force closure. These roles
are confirmed by the analysis of the actual optimal contact forces
that the hand exert when actuated following the randomized
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triplets. In fact - with reference to Fig. 5-B - it can be shown
that in the case of single DoA the synergies that exert a mean
lower value of contact force are, in order, Sy, S5 and S;. This
confirms the role of S, and Sj in the control of contact forces
also under the point of view of forces minimization. Moreover,
what can be also shown is that S; and S5 are the components
which minimize the averaged value of the contact forces of the
couple of synergies in conjunction with .S .

V. CONCLUSION

In this work, we have investigated whether an incrementality
or a hierarchy for synergy enrollment exist for optimal force dis-
tribution at different hand/object relative poses. To achieve this
goal we performed simulations where the model of a synergy
inspired compliant hand was used to grasp different objects, and
we evaluated successful grasp rate and force distribution. This
analysis has been performed while testing several hand/object
relative poses and synergistic pattern combinations. Main find-
ings of this work are: (i) the minima of contact forces are invari-
ant w.r.t. an incremental enrollment of synergies within the vari-
ation of hand/object relative configurations, and, (ii) a hierarchy
exists on eigenposture selection. Indeed, the first synergy seems
to play the most important role to achieve successful grasps and
optimized force distribution and, together with the fourth and
fifth, are those mainly devoted to producing compression move-
ments, which are coherent with force closure requirements. This
suggests that hierarchy of pre-grasp related synergies can not be
directly mapped to contact force distribution. This could be a
springboard towards the implementation of novel analysis tech-
niques which can take into consideration different grasp-related
quantities.

Note that an experimental validation of these results could be
performed employing a highly actuated robotic hand controlled
using postural synergies. The control strategy should also im-
plement the hand compliance. Moreover, tactile sensors may be
used to estimate the contact forces.

We believe that, taking inspiration from the Uncontrolled
Manifold Hypothesis [34], these results could pave the path
towards a new generation of soft hands, embedding synergy
inspiration, compliance and a minimalistic usage of resources,
for more effective robotic grasp strategies. Future works will be
devoted to 1) extending this analysis to more complex manipu-
lation tasks, and ii) involving a larger set of objects, e.g., taking
inspiration from datasets available in literature.
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