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Abstract—Despite the classic nature of the problem, trajectory
tracking for soft robots, i.e., robots with compliant elements delib-
erately introduced in their design, still presents several challenges.
One of these is to design controllers which can obtain sufficiently
high performance while preserving the physical characteristics in-
trinsic to soft robots. Indeed, classic control schemes using high-
gain feedback actions fundamentally alter the natural compliance
of soft robots effectively stiffening them, thus de facto defeating
their main design purpose. As an alternative approach, we con-
sider here using a low-gain feedback, while exploiting feedforward
components. In order to cope with the complexity and uncertainty
of the dynamics, we adopt a decentralized, iteratively learned feed-
forward action, combined with a locally optimal feedback control.
The relative authority of the feedback and feedforward control
actions adapts with the degree of uncertainty of the learned com-
ponent. The effectiveness of the method is experimentally verified
on several robotic structures and working conditions, including
unexpected interactions with the environment, where preservation
of softness is critical for safety and robustness.

Index Terms—Articulated soft robots, iterative learning control
(ILC), motion control.
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I. INTRODUCTION

HUMAN beings are able to effectively and safely perform a
large variety of tasks, ranging from grasping to manipula-

tion, from balancing on uneven terrain to running. They are also
remarkably resilient to highly dynamic, unexpected events such
as impacts with the environment. One of the enabling factors to
achieve such performance is the compliant nature of the muscle-
skeletal system. In recent decades, biologic actuation inspired
the robotic research community, leading to the development
of a new generation of robots embedding soft elements within
their design, with either fixed or variable mechanical character-
istics. Such approaches generated a fast-growing literature on
“soft robotics.” In the broad family of soft robots, two main
subgroups can be distinguished: 1) robots that take inspiration
mostly from invertebrate animals [1] and are accordingly built
with continuously deformable elements and 2) robots inspired
by the muscle-skeletal system of vertebrates, with compliance
concentrated in the robot joints [2], [3]. This paper focuses on
the control of the latter class of “articulated” soft robots, which
are amenable to simpler and more uniform modelization. How-
ever, some lessons learned in this context may also prove useful
in the control of “continuum” soft robots.

In the literature, several trajectory tracking solutions were
proposed for soft robots. Feedback linearization was profitably
employed in [4] and [5] to design feedback control laws. In [6],
a backstepping-based algorithm was proposed.

However, all these techniques share two common drawbacks.
First of all, they need an accurate model of the system. Second,
feedback control laws have some fundamental limitations when
they are applied to soft robots. Indeed, Della Santina et al. [7]
argued that standard control methods fight against, or even com-
pletely cancel the physical dynamics of the soft robot to achieve
good performances. This typically results in a stiffening of the
robot, defeating the original purpose of building robots with
physical compliance in their structure. In [7], it is suggested to
employ low-gain control techniques to have the original softness
of the robot minimally perturbed by the control algorithm. This
leads to the exploitation of controllers relying mostly on the
anticipatory (i.e., feedforward) action in such a way to recover
from the typically lower performance of a low-gain controller.
It is also observed that direct use of model-based inverse inputs
is rarely applicable to a robotic system, especially if interacting
with its environment. Thus, it is considered the use of learning
approaches to feedforward control.
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Iterative learning control (ILC) [8] has a relatively long his-
tory in robotics (see, e.g., [9] and [10]), where it was applied
mostly for rigid robots. In [7], an ILC technique was briefly in-
troduced as a possible approach to learn the necessary anticipa-
tory action in uncertain conditions. However, neither systematic
design nor analysis tools were provided to actually synthesize
an iteratively learned feedforward control with convergence and
stability guarantees.

In this paper, we build upon the intuition provided in [7], a full
fledged ILC-based control architecture able to track a desired
trajectory with a soft robot with generic, unknown kinematics.
The presence of unexpected interactions with an unstructured
environment is considered in the analysis, and the convergence is
assured. The controller is shown to achieve the desired tracking
performance without substantially altering the effective stiffness
of the robot.

To validate the ability of the algorithm to robustly work in
various experimental conditions, we designed a series of exper-
iments employing soft robots with different serial and parallel
kinematic structures and with increasing level of interaction
with the external environment. In all experiments, the algorithm
had only an a priori knowledge of the number of joints and
of the physical characteristics of the elastic robot joints. The
algorithm is able to learn the correct control action to precisely
track the desired trajectory in all the considered scenarios.

This paper is organized as follows. In Section II, we introduce
the control problem and the soft robot dynamical model in use;
in Section III, we derive the control architecture, and show how
all the introduced issues can be addressed. Finally, in Section IV,
the controller effectiveness and robustness is shown.

II. PROBLEM STATEMENT

We refer to the model of anN -joint articulated soft robot with
Nm ≥ N motors introduced in [11] as{
M(q)q̈ + C(q, q̇)q̇ +G(q) + ∂V (q ,θ)T

∂ q = Text(q, q̇) (1)

Jθ̈ + ∂V (q ,θ)T

∂ θ = Fm (2)

where q, q̇, q̈ ∈ RN are the vectors of generalized joint positions,
velocities, and accelerations, respectively, whereas θ, θ̇, θ̈ ∈
RNm are the vectors of motor positions, velocities, and acceler-
ations, respectively, M(q) ∈ RN×N is the robot inertia matrix,
C(q, q̇) ∈ RN×N collects the centrifugal, Coriolis, and damp-
ing terms, G(q) ∈ RN collects gravity effects, J ∈ RNm ×Nm

is the motor inertia matrix, and Text(q, q̇) ∈ RN collects the
interaction forces with the external environment and model un-
certainties. V (q, θ) is the potential of the elastic energy stored
in the system, while Fm ∈ RNm are the motor torques.

In this paper, we use a simplified model, introducing the
following further assumptions.

1) Motor dynamics (1) is negligible, or equivalently, it is
perfectly compensated by a low-level control, so that θ
can be considered to be effectively a control input.

2) Interactions with the environment can be modeled with a
suitable smooth force field [12].

3) There exists a change of coordinates between the mo-
tor positions θ and two set of variables r ∈ RN and

d ∈ RNm −N such that ∂V (q ,θ)T

∂ q = T (q − r, d). Here, r
can be regarded as a joint reference position, whereas d
models parameters used to adjust the stiffness. The elastic
torque vector T (q − r, d) ∈ RN models the elastic char-
acteristic of the soft robot. This model depends on the
actuator physical implementation and is typically known
from the actuator data sheet [13]. The role of d depends on
the considered actuator design, e.g., in the case of series
elastic actuators [14], d is not present (Nm = N ), whereas
for a variable stiffness actuator (VSA) [15], d indicates the
joint cocontraction level (Nm = 2N ).

Hence, the considered model of an N -joint articulated soft
robot is

M(q)q̈ + C(q, q̇)q̇ +G(q) + T (q − r, d) = Text(q, q̇). (3)

In this paper, we will consider the design of the control input
r ∈ RN , i.e., the reference position, so as to achieve prescribed
specifications, whereas the stiffness adjusting variables d are
considered as given, possibly time varying, parameters.

It is instrumental for the problem definition and for the control
derivation to rewrite, without loss of generality, the system (3)
in a decoupled form, according to, e.g. [16],[
q̇i
q̈i

]
=
[

0 1
0 −βiIi

][
qi
q̇i

]
−
[

0
1
Ii

]
τi(qi − ri, di) +

[
0

Di(q, q̇)

]
(4)

where i = 1, . . . , N ,
[
qi q̇i

]T
is the state vector composed by

the angle and the velocity of a single joint, τi is the ith element
of the elastic torque vector T , ri is the ith element of the control
input r, di is the ith element of d, and Ii and βi are, respectively,
the inertia and the damping seen from the ith joint. Di(q, q̇)
collects the terms acting on the ith joint, i.e., the effects of the
dynamic coupling and external forces.

Given a reference trajectory q̂ : [0, tf )→ RN, with all its time
derivatives, and a stiffness adjusting variables d, the control
objective is to derive an opportune control action r : [0, tf )→
RN able to regulate system (3) on q̂ in the whole control interval
[0, tf ). Other goals that we set out for our control design are as
follows.

i) The controller should not alter the physical mechanical
stiffness more than a given amount. Given a δ ≥ 0, it has
to be assured that the closed-loop stiffness of the system
remains in a neighborhood of radius δ of the open-loop
stiffness (as underlined in [7]), i.e.,∥∥∥∥∥ ∂T (q − r, d)

∂q

∣∣∣∣
q≡r
− ∂T (q − ψ(q), d)

∂q

∣∣∣∣
q≡q∗

∥∥∥∥∥ ≤ δ
(5)

where ψ(q) is a feedback control law, q∗ is such that
ψ(q∗) = q∗, and Euclidean norm is used.

ii) Independence from the robot kinematic structure. The
controller design can be based only on the knowledge
of individual joint dynamic parameters [Ii, βi , and τi in
(4)], while the terms Di(q, q̇) are completely unknown.
In other terms, the controller is completely decentralized
at joint level, and can be applied to robots of different
kinematic and dynamic structure without modifications.
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Fig. 1. Schematic representation of the control architecture. [q q̇] are the
Lagrangian variables and q̂, ˙̂q, ¨̂q their desired evolutions. [e ė] is the tracking
error. M , C , and G are the inertia, centrifugal, and potential field terms, T
is the spring torques vector, Text is the environmental external forces vector,
d and r are the stiffness and reference inputs. rfb is the feedback action, and
rff is the feedforward action, which is the sum of a precomputed term and an
estimated one.

iii) Robustness to environmental uncertainties, i.e., the algo-
rithm convergence has to be assured for every unknown
smooth Text(q, q̇).

Note that requiring ii) and iii) implies a robust behavior to
system uncertainties too.

III. CONTROL ARCHITECTURE

In this section, we present the general control architecture
and its derivation. In particular, we show how the goals defined
in Section II can be achieved. Note that all the proofs of the
propositions and lemmas stated in this section are reported in
the Appendix.

Fig. 1 shows the general scheme of the proposed control al-
gorithm, merging a low-gain feedback action with an opportune
feedforward. The theory of ILC [8] provides a suitable frame-
work to synthesize controllers in which a pure feedback loop and
an iterative loop jointly contribute to determine the input evolu-
tion. The term “iterative loop” means that the task is repeated,
and the knowledge acquired in past trials (i.e., iterations) is ex-
ploited to increase the performances of future ones. A generic
ILC control law has the form1 [8]

rk (t) = rk−1(t) + c(ek , ek−1 , t) (6)

where k is the iteration index, rk : [0, tf )→ RN is the input
vector at kth iteration, and hence rk−1 is the knowledge acquired
from past trials. r0(t) is the feedforward action at the first it-
eration. ek : [0, tf )→ RN is the error vector at kth iteration

1Note that some ILC control laws have the form rk = αrk−1 + c, where
α ∈ (0, 1] is a forgetting factor. In this paper, we will use α = 1 to match the
chosen convergence condition.

defined as

ek (t) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q̂1(t)− qk1 (t)
˙̂q1(t)− q̇k1 (t)

...

q̂N (t)− qkN (t)
˙̂qN (t)− q̇kN (t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7)

and c(ek , ek−1 , t) is the updating law (note that e0 is assumed
null). In this paper, we consider an iterative update and linear
time-variant state feedback

c(ek , ek−1 , t) = Kon(t)ek (t) +Koff (t)ek−1(t) (8)

whereKon(t) ∈ RN×2N andKoff (t) ∈ RN×2N collect the con-
trol gains. Note that the subscripts “on” and “off” in (8) stand
for “online” and “offline,” respectively. Thus, the “online” term
is the one computed during the trial execution (feedback compo-
nent), whereas the “offline” term is the one computed between
two consecutive trials (updating component).

The goals listed in Section II can be achieved with a proper
choice of the control gains Kon(t) and Koff (t). In partic-
ular, goal i) will translate into a choice of feedback gains
Kon that are sufficiently small (see Section III-A). Goal ii)
is achieved considering decentralized gains (see Section III-B),
i.e., Koff (t) := diag(Koff ,i(t)) and Kon(t) := diag(Kon,i(t)),
where Koff ,i := [Kpoff ,i Kdoff ,i ] ∈ R1×2 are the feedforward
gains, and Kon,i := [Kpon,i Kdon,i ] ∈ R1×2 are the feedback
gains proportional to the position and velocity error of the ith
joint. In Section III-B, it is shown how goal iii) is achieved with a
proper choice of the control gains such that the ILC convergence
laws (12) and (13) are satisfied.

In the following, we describe the details of the proposed con-
troller components and their derivation. For the sake of readabil-
ity, we will omit the suffixes k and k−1 (indicating the iteration)
when they are not necessary.

A. Constraint on Feedback

The goal i) imposes a restriction in using a high feedback
action, as stated by the following proposition (note that this
proposition was previously stated without proof in [7]).

Proposition 1: If

∥∥∥∥∥ ∂ψ∂q
∣∣∣∣
q≡q∗

∥∥∥∥∥ ≤ δ
∥∥∥∥∥ ∂T (q − ψ, d)

∂q

∣∣∣∣
q≡q∗

∥∥∥∥∥
−1

(9)

then (5) holds.
It is worth noting that feedforward action does not affect this

condition, since it does not depend on q. This suggests favoring
low-gain feedback techniques rather than high-gain ones when
working with soft robots.

In case of decentralized control condition, (9) can be simpli-
fied as follows.
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Lemma 1: If the control algorithm is decentralized, i.e., ∂ψ
∂q

is diagonal, and if∥∥∥∥∥ ∂ψi∂qi

∣∣∣∣
q≡q∗

∥∥∥∥∥ ≤ δ
∥∥∥∥∥ ∂T (q − ψ, d)

∂q

∣∣∣∣
q≡q∗

∥∥∥∥∥
−1

∀ i (10)

where ∂ψi

∂ qi
is the ith diagonal element, then (5) holds.

Thus, employing a low-gain controller, it is possible to pre-
serve the mechanical behavior of an articulated soft robot. At
this point, the main issue is to design a low-gain controller able
to achieve good tracking performance.

B. Control Design

In this section, we describe the derivation of the three com-
ponents of the proposed control algorithm, i.e., blocks initial
guess, feedback controller, and iterative update in Fig. 1.

The first step is to evaluate the feedforward action at the first
iteration r0

i (t) (initial guess). This is computed solving

−τi(q̂i , r0
i , di) = Ii ¨̂q

i
+ βi ˙̂qi + Δi (11)

where Δi is the torque needed to arrange the robot in the initial
condition (known by hypothesis), and q̂i(t), ˙̂qi(t), ¨̂qi (t) is the
desired trajectory.

To achieve goal iii), we consider convergence rules assuring
convergence of the learning process in the presence of unknown
state-dependent force fields. This includes in (3) coupling terms
and interactions with the external environment [i.e., Di in (4)].
We use here conditions introduced in [17] and [18], where the
sufficient conditions are imposed separately for the online and
offline terms. Given a system in the form ẋ(t) = f(x(t), t) +
H(t)ν(t) + μ(t), where x, ν, and μ are the state, control input,
and uncertainties vectors, f is the system function, andH is the
input matrix, the ILC convergence conditions are as follows:∥∥(I +Kon(t)H(t))−1

∥∥ < 1 ∀t ∈ [0, tf ) (12)

‖I −Koff (t)H(t)‖ < 1 ∀t ∈ [0, tf ) . (13)

Thus, we proceed designing the control gains Kon and Koff
such that (12) and (13) are fulfilled. Given the first iteration
control action r0

i (t), computed as in (11), we linearize the dy-
namics of the decoupled system (4) around the desired trajectory
(q̂i(t), ˙̂qi(t), r0

i (t)), obtaining

ėi(t) = Ai(t)ei(t) +Bi(t)ui(t) + ηi(q, q̇) ∀i = 1, . . . , N
(14)

where ei =
[
q̂i − qi ˙̂qi − q̇i

]T
is the vector containing the

2i−1th and 2ith elements of (7), ui(t) = r0
i (t)− ri(t) is the

control variation, σi(t) = ∂τi
∂ qi

(t) is the stiffness, ηi collects all
the uncertainties, and

Ai(t) =
[

0 1
−σi (t)
Ii

−βi
Ii

]
, Bi(t) =

[
0

σi (t)
Ii

]
. (15)

The convergence condition (12) applied to the decoupled sys-
tem (14) is rephrased as∣∣∣∣ 1

1 +Kon,i(t)Bi(t)

∣∣∣∣ < 1 ∀t ∈ [0, tf ) (16)

where Kon,i(t) are the feedback control gains, and Bi is the
input matrix [H in (12)]. This inequality is always verified
when the termKon,i(t)Bi(t) is positive. Among all the possible
local feedback actions, we propose the choice of the feedback
control gain Kon,i(t) as locally optimal. In particular, Kon,i(t)
is the solution of the time-varying linear quadratic optimization
problem (see, e.g., [19, Ch. 5])∫ t f

0
eTi Qei +Ru2

i dt (17)

where Q ∈ R2×2 is a diagonal positive definite matrix and R ∈
R+ .

The ith feedback gain vector is given by

Kon,i(t) =
Bi(t)T Si(t)

R
(18)

where Si(t) comes from the solution of the time-varying differ-
ential matrix Riccati equation

Ṡi = −Si Ai −AT
i Si + Si Bi R

−1 BT
i Si −Q (19)

with the boundary constraint Si(tf ) = ∅. Hence, feedback con-
trol gains are automatically tuned by the algorithm, leaving to
the user only the choice of Q and R, which do not depend on i
and are the only free parameters of the whole algorithm.

The choice of R directly affects the control authority, i.e.,
by increasing R the use of feedback control is penalized, and
the gains Kon,i are reduced. This is assured by the following
proposition.

Proposition 2: If Kon,i is as in (18), then

∀γ ≥ 0 ∃R > 0 s.t. ||Kon,i || ≤ γ. (20)

Thus, condition (9) can always be fulfilled by choosing γ =
δ‖ ∂T (q−ψ ,d)

∂q |q≡q∗‖−1 , achieving goal i).
Finally, the following proposition assures that the proposed

feedback action is compatible with a convergent learning pro-
cess.

Proposition 3: The feedback rule in (18) fulfills the ILC con-
vergence condition (16) for all R > 0.

Condition (13) applied to the decoupled system (14) is

|1−Koff ,i(t)Bi(t)| < 1 ∀t ∈ [0, tf ) (21)

where Koff ,i(t) are the iterative control gains.
The following proposition, if fulfilled together with Proposi-

tion 3, assures the convergence of the learning process.
Proposition 4: The convergence condition (21) is fulfilled by

the following decentralized ILC gain ∀ε ∈ [0 , 1) and ∀ ΓTi (t) ∈
ker{BT

i (t)}
Koff ,i(t) = (1 + ε)Bi(t)† + Γi(t) (22)

whereBi(t)† is the Moore–Penrose pseudoinverse of the matrix
Bi(t) in (14).

Increasing the value of the parameter εmakes the convergence
rate of the algorithm higher. The reason is that the control gains
Koff ,i are linear w.r.t. ε. Performing some experimental tests
(not reported here), we found ε = 0.9 to provide a good tradeoff
between ILC convergence rate and stability.



928 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 4, AUGUST 2018

Because of (15) and ΓTi (t) ∈ ker{BT
i (t)}, it follows that

Γi(t) = [Kpoff ,i(t) 0], whereKpoff ,i(t) ∈ R. We heuristically
choose Γi(t) to maintain the same balance between proportional
and derivative components of the feedback gains Kon,i

Kpoff ,i(t) =
||Kpon,i ||
||Kdon,i ||Kdoff ,i(t) . (23)

C. Overall Control Action

Combining (6), (8), (18), (22), and (23), the overall control
action applied on the kth iteration at the ith joint results⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rki (t) = rk−1
i (t) +Kon,i(t) eki (t) +Koff ,i(t) ek−1

i (t)

Kon,i(t) = σi (t)
Ii R

[S(2,1)
i (t) S

(2,2)
i (t)]

Koff ,i(t) =
(

(1+ε) Ii
σi (t)

)[ ||S ( 2 , 1 )
i (t)||

||S ( 2 , 2 )
i (t)|| 1

] (24)

where rki (t) is the control input of the ith joint, Kon,i(t) and
Koff ,i(t) are the feedback and iterative control gains of the ith
joint defined in (18), (22), and (23), eki and ek−1

i are the current
and previous iteration tracking errors of the ith joint defined
as (7), Ii is the inertia seen by the ith joint, −σi = ∂τi

∂ ri
, τi

is torque model of the ith joint [13], S(2,1)
i (t) and S

(2,2)
i (t)

are the elements 2,1 and 2,2 of Si(t), solution of the Riccati
equation (19). We impose ε = 0.9. Q ∈ R2×2 and R ∈ R+ are
the weight in the time-variant linear quadratic regulator (17).
It is worth noting that this control action can be derived in a
completely autonomous manner and that Q and R are the only
free parameters left to be tuned by the user.

The control rule (24) achieves all the goals in Section II. Goal
i) is achieved by Lemma 1 and Proposition 2. Goal ii) is achieved
by the decentralized structure of the controller. Finally, goal iii)
is achieved by Propositions 3 and 4.

Algorithm 1 briefly summarizes the automatic procedure to
learn an appropriate control action to achieve good tracking
performance (i.e., low tracking error), given a desired trajectory
q̂(t) and a desired stiffness input profile d(t). It is worth noting
that changing q̂(t) or d(t) makes worthless for the new task
the learned control action rk (t). This is probably the major
limitation of ILC-based control techniques. Future works will
address this point.

Finally, it is worth remarking that through the problem state-
ment and control analysis, we made some very basic assump-
tions. First of all, we assumed that motor dynamics is negligible,
and that the VSA low-level controller perfectly tracks the motor
position references. Then, we assumed that the desired trajec-
tory q̂(t), ˙̂q(t), ¨̂q(t) is feasible, i.e., there are not any hindrances
(neither kinematic nor dynamic nor environmental) to the tra-
jectory tracking. Furthermore, a basic assumption in ILC is that
the robot is in q̂(0), ˙̂q(0), ¨̂q(0) at the beginning of every itera-
tion. Additionally, we assumed that the system state q(t), q̇(t)
measurements are accurate. Finally, we hypothesized to have an
accurate model of the VSA elastic transmission τi and to know
the value of Ii, βi , and Δi . In Section IV, we will show through
experiments that most of these assumptions can be relaxed with-
out compromising the algorithm convergence and performance.

Algorithm 1: Control Procedure Pseudo-Code.
1: procedure Initialization
2: Set(q̂(t), ˙̂q(t), ¨̂q(t)) � Desired trajectory
3: Set(d(t)) � Stiffness input parameter
4: Set(Q,R) � Control weight parameter
5: Compute(r0(t)) �(11)
6: Evaluate(Kon(t)) �(18), (19)
7: Evaluate(Koff (t)) �(22), (23)
8: procedure Learning
9: k ← 1

10: ek−1(t)← 0
11: do
12: Run Trial(rk−1) � Note: rk is computed on-line
13: Store(ek , rk )
14: Update(rk ) � Off-line update: rk +Koff e

k

15: k ← k + 1
16: while ek−1 > threshold

IV. EXPERIMENTAL RESULTS

To test the effectiveness of the proposed method in different
experimental conditions, we developed an assortment of soft
robotic structures, spanning from serial to parallel robots. All
these robots are built using the VSA qbmove maker pro [3]. This
is an actuator implementing the antagonistic principle both to
move the output shaft and to vary its stiffness. The antagonistic
mechanism is realized via two motors connected to the output
shaft through a nonlinear elastic transmission. The position of
each motor and of the output shaft is measured with a AS5045
magnetic encoder. This sensor has a resolution of 12 b. The
qbmove spring characteristic τi in (4) is{

τi = 2k cosh(adi) sinh(a(qi − ri)) +m(qi − ri)
σi = 2 a k cosh(adi) cosh(a(qi − ri)) +m

(25)

where τi , di , ri , and qi are the ith component of T , d, r, and
q, respectively (defined in Section II), whereas a = 6.7328 1

rad ,
k = 0.0222 N·m, and m = 0.5N·m

rad are model parameters.
The four experiments are designed to test the algorithm in var-

ious working conditions and to show its ability to achieve all the
goals in Section II. The experiments are presented in increasing
order of complexity. Experiment 1 aims to show the dependence
(once Q is fixed) of the algorithm on the parameter R and to
show the ability of the proposed method to preserve the robot
mechanical behavior. In Experiment 2, the algorithm is tested
in learning how to invert the system dynamics, with limited
external interactions, whereas in Experiment 3, a change in the
sign of the gravity torque is considered. Finally, in Experiment 4
we test the algorithm on a parallel structure and in presence of
several abrupt and unexpected contacts with the environment.
In order to remain as independent as possible from a given sys-
tem architecture, the quantities βi and Ii are estimated through
step response in the first phase of each experiment, whereas Δi

is estimated as the torque needed to arrange the robot in the
initial condition. In all the experiments, Q is set with diagonal
elements 1 and 0.01.
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Fig. 2. Experimental setups and reference frames. (a) 1-dof planar configuration (Experiment 1; Section IV-A). (b) After the learning phase, a bar (with a six-axis
force/torque ATI mini 45 mounted on it) is placed next to the robot. 1-dof configuration (Experiments 2 and 3; Sections IV-B and IV-C). (c) 2-dof configuration
(Experiment 2; Section IV-B). (d) 3-dof configuration (Experiment 2; Section IV-B): A parallel spring is included in this setup to avoid that the torque required for
the base actuator exceeds its torque limit. Note that for the success of the experiment, the knowledge of the exact elastic constant of the spring is not required.

In the next sections, we will employ

E(k) �
N∑
i=1

∫ t f
0

∣∣q̂i(t)− qki (t)∣∣ dt
N tf

(26)

as definition of the evolution of the tracking error over itera-
tions. Indeed, q̂i(t) is the ith joint reference trajectory (provided
for every experiment), whereas qki (t) is the ith joint position
measured by the encoder placed at the ith output shaft at the
kth iteration. This error definition is exploited to give a quan-
titative measure of variation of the tracking performance over
iterations. Furthermore, it is worth noting that the error used to
refine the control action every iteration is (7). The used actua-
tor does not have any sensor to measure the velocity q̇ki (t), so
it is estimated through an high-pass filtering of the measured
position qki (t). Despite the imprecise velocity measurement, the
algorithm is able to converge, proving the robustness of the
proposed method.

Finally, the time required for the algorithm convergence
strictly depends on the performed experiment. In more detail,
the needed time will be (ta + tf + toff )× nk , where nk is the
number of performed iterations, tf is the task terminal time, ta is
the time needed to arrange the robot in the initial condition, and
toff is the time needed to compute (offline) the control action
between two trials. Note that the only value that does not depend
on the experiment is toff , which is usually negligible.

A. Experiment 1

Experimental setup: The objective of this experiment is to
evaluate the behavior of the system for different values of the
parameter R, given Q = diag([1, 0.01]). In detail, we analyze
the algorithm convergence rate and its softness preservation
capability. To lower R values correspond higher feedback and
feedforward gains Kon and Koff [see (24)]. This translates into
a faster convergence rate for lowerR values. On the other hand,
higher feedback gains (i.e., lower R values) tend to stiffen the
robot (as theoretically described in Section III-A).

The experimental setup is composed of a planar 1-dof (degree
of freedom) soft robot and a force sensor (six-axis force/torque
ATI mini 45) mounted on a bar fixed to the frame [see Fig. 2(a)].
The experiment is divided in two steps. First of all, we apply the
algorithm to the robot (in this phase, the bar with the sensor is
absent) using as reference trajectory

q̂1(t) = 0.074t5 − 0.393t4 + 0.589t3 , t ∈ [0, 2). (27)

This is a smoothed ramp spanning from 0 to 0.7854 rad in
tf = 2 s. This step is repeated three times, each one test-
ing the algorithm with a different value of the parameter R:
R = 1, R = 3, and R = 5. The maximum stiffness variation
δ in (9) increases lowering R. In detail, to R = 1 corresponds
δ = 0.33N·m

rad , toR = 3 corresponds δ = 0.12N·m
rad , and toR = 5

corresponds δ = 0.08N·m
rad . Afterward, in the second step, we

place the bar with the force sensor next to the robot, in such a
way that an impact will occur during the trajectory tracking [see
Fig. 2(a)]. We measure the force applied by the robot using the
three different control action obtained at the end of the learn-
ing phase of the previous step. Furthermore, a simple purely
feedback controller is also considered in such a way to evaluate
the ability of the proposed method to preserve the robot soft
behavior w.r.t. a different control law. The employed feedback
controller is defined as follows:

r(t) =
∫ t f

0

(∫ t f

0
0.3ξ(t) dt+ 2ξ(t)

)
dt+ 2ξ(t), t ∈ [0, 2)

(28)
where ξ(t) = q̂(t)− q(t). To achieve performance comparable
to the proposed algorithm, the proportional integral integral
(PII) is heuristically tuned, resulting in high gains. Indeed, the
maximum stiffness variation δ in (9) is 1.61N·m

rad , that is much
bigger w.r.t. the ILC ones. The stiffness input d1 is equal to
0 rad (minimum stiffness) for all the cases. The time required to
converge was approximately 0.2 h for each R value.

Results: The results of the first step are reported in Fig. 3.
This shows the evolution of the error over iterations [computed
as (26)] for the three R values. Lowering R, the convergence
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Fig. 3. Experiment 1: evolution of the error over iterations [computed as (26)]
for the three R values. Lower R values correspond to lower initial error and
faster convergence rate. The orange horizontal line is the error with the PII
controller.

Fig. 4. Experiment 1: root mean square of the feedback action over iterations
for the three R values. The feedback contribution decreases over the iterations
in each trials. The rms in the purely feedback controller is 0.5372 rad.

rate increases. Indeed, Fig. 3 shows that from iterations 1 to
100, the error decreases are of 73%, 54%, and 44% for R =
1, R = 3, and R = 5, respectively. Furthermore, it is worth
noting that lower R values correspond to lower error values at
the first iteration, even though r0(t) is equal for the three R
values. This is caused by the higher feedback gainsKon . On the
other hand, Fig. 4 shows the root mean square of the feedback
action exerted by the proposed controller at each iteration for
the threeR values. As expected, in the caseR = 1, the feedback
contribution is bigger w.r.t. the other two cases. Fig. 4 shows
that the norm of the feedback control action decreases over
the iterations (whereas the feedforward contribution increases).
The results of the second step of the experiment are reported
in Fig. 5. This shows the evolution of the norm of the force
measured by the sensor during and after the impact. Note that the
impact occurs approximately at 1.4 s. As expected, the applied
forces are lower when the feedback gains are lower (i.e., higher
R). In particular, the purely feedback controller presents the
higher applied forces, and it is the only controller presenting a
force peak during the impact. This means that a high feedback

Fig. 5. Experiment 1: evolution of the norm of the forces during and after the
impact with the bar. The impact occurs approximately at 1.4 s. The only control
action that presents a force peak during the impact is the feedback one. In the
ILC cases, lower R values correspond to higher applied forces.

Fig. 6. Experiment 2: stiffness input (di ) evolution over time for the three
different setups. Evolution “a” is the one of the first qbmove for 1-dof case
[see Fig. 2(b)], of the second qbmove for 2-dof case [see Fig. 2(c)], and of the
third qbmove for 3-dof case [see Fig. 2(d)]. Evolution “b” is the one of the first
qbmove for the 2-dof case and of the second qbmove for 3-dof case. Evolution
“c” is the one of the first qbmove for the 3-dof case.

controller should be carefully employed when a soft robot is
involved, because it hinders the desired soft behavior.

B. Experiment 2

Experimental setup: Three different setups are considered,
consisting of serial chains of one, two, and three qbmoves, as
shown in Fig. 2. In the 3-dof case, a spring is added in parallel
to cope with torque limitation issues. The spring is not included
in the model, and thus it takes the role of an external disturbance
for the algorithm. The reference trajectory for each joint is

q̂i(t) = (−1)i
π

12
cos(2t), t ∈ [0, 20). (29)

The stiffness input d for these experiments is time varying and
different for each qbmoves. This is done to show the ability
of the algorithm to cope with time-varying inputs d. Fig. 6
shows the stiffness input di for each joint for the three setups.
The maximum stiffness variation δ in (9) is imposed here as
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Fig. 7. Experiment 2: evolution of the error over iterations [computed as (26)]
for the three setups.

Fig. 8. Experiment 2: root mean square of the feedback action over iterations
for the three setups. The feedback contribution decreases over the iterations in
each trials.

Fig. 9. Experiment 3: evolution of the error over iterations [computed as (26)]
for three different constant input stiffness values: d1 = 0 rad, d1 = 0.17 rad,
d1 = 0.44 rad, for the low, medium, and high stiffness case, respectively.

0.6N·m
rad , resulting in R = 3. The time required to converge was

approximately 1 h for each setup.
Results: Fig. 7 shows the evolution of error over iterations

[computed as (26)] for the three setups. The proposed choice
of r0(t) allows us to achieve a rather small error already at the
first execution. The learning process refines the control action
further reducing error of more than 60% for all the considered

Fig. 10. Experiment 3: trajectory evolution over iterations for the low stiffness
case. The algorithm is able to compensate for the strong variation of external
torque caused by gravity.

Fig. 11. Experiment 4: Delta robot used for the rest-to-rest experiment from
T1 (Target 1) to T2 (Target 2). The red dots represent the target spots, whereas
the aluminum columns represent the obstacles (O1 Obstacle 1,O2 Obstacle 2).
The robot has to move its end-effector between the columns of the Obstacle 1
and has to jump over Obstacle 2. A1 , A2 , and A3 are the three actuators.

setups. The minimum error can be observed for the 3-dof case,
since unmodeled effects as static friction and hysteresis become
negligible for higher deflections of the spring. Fig. 8 shows
the root mean square of the feedback action exerted by the
proposed controller at each iteration for the three setups. The
feedback contribution decreases over the iterations, whereas the
feedforward contribution remains approximately constant.

C. Experiment 3

Experimental setup: The term ηi(q, q̇) in (14) collects system
uncertainties not taken into account in the initial control action.
This experiment aims to test the effectiveness of the ILC al-
gorithm also in case of a major change in ηi(q, q̇), caused by a
relevant variation in the gravity torque. To test this condition, we
impose the following reference trajectory for the robot depicted
in Fig. 2(b):

q̂1(t) = −π
4

cos
(

4π
30
t

)
+
π

4
, t ∈ [0, 30) (30)

around the dashed line depicted in Fig. 2(b). Note that along
that trajectory, the gravity torque changes sign. Three values of
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Fig. 12. First and last iteration photo sequence of the Delta experiment. (a), (g): The robot should stand over the red dot (Target 1). (b), (h): The robot has to
pass through the two columns of Obstacle 1. In the first iteration, it cannot do it and it collides with one of the columns. (c), (i): The robot prepares itself to jump
over Obstacle 2. (d), (j): The robot has to jump over the obstacle. In the first iteration, the jump is too small and the robot fails. (e), (k): The robot should position
itself over the second target. In the first iteration, since it failed the jump, the robot stops against the obstacle. (f), (l): The robot returns to the starting position. (a)
1st iteration: starting point. (b) 1st iteration: first obstacle passing. (c) 1st iteration: positioning for the jump. (d) 1st iteration: jump phase. (e) 1st iteration: place
phase. (f) 1st iteration: returning phase. (g) 400th iteration: starting point. (h) 400th iteration: first obstacle passing. (i) 400th iteration: positioning for the jump.
(j) 400th iteration: jump phase. (k) 400th iteration: place phase. (l) 400th iteration: returning phase.

Fig. 13. Experiment 4: evolution of the error over iterations for the three joints
(note that it is not the error mean value between the joints) of the Delta robot.
At iterations 87 and 106, there are two drops of the error since the robot learned
how to pass Obstacles 2 and 1, respectively.

constant stiffness input are also considered here, i.e., d1 = 0 rad,
d1 = 0.17 rad, and d1 = 0.44 rad. In this experiment, we impose
R = 1, corresponding to a maximum stiffness variation δ in (9)
of 0.33N·m

rad in the low stiffness case, 0.43N·m
rad in the medium

stiffness case, and 1.46N·m
rad in the high stiffness case. The time

required to converge was approximately 1.4 h for each stiffness
case.

Results: Fig. 9 shows the evolution of the error over itera-
tions [computed as (26)] with low, medium, and high constant
stiffness input d. It is worth noting that the error at first iteration
in this experiment is considerably bigger w.r.t. to the error at
first iteration in Experiments 1 and 2. This is due to the fact that
in Experiment 3, the gravity torque has a considerable change
during the robot motion. Fig. 10 shows the time evolution of the
link trajectory in four meaningful iterations for the low stiffness
case, which exhibits the largest initial error. Results show that

in 150 iterations, the desired trajectory is tracked with an error
reduction greater than 90% w.r.t. the initial error for all the cases.

D. Experiment 4

Experimental setup: The goal of this experiment is twofold.
First of all, we evaluate the ability of the algorithm to cope with
a parallel structure where coupling terms are typically stronger
w.r.t. a serial one: the robot is a 3-dof Delta (see Fig. 11) com-
posed of three actuators connected to the end-effector through
a parallel structure. Furthermore, we test the ability of the al-
gorithm to converge in presence of impacts with the environ-
ment during the learning phase. We consider here a trajectory
at the level of the end-effector (demonstrated to the robot by
manually moving the end-effector along the desired trajectory):
a rest-to-rest task through two obstacles, each consisting of
two aluminum columns (O1 and O2 in Fig. 11). The demon-
strated end-effector trajectory is to pass through Obstacle 1 and
to jump over Obstacle 2 (as shown in Fig. 12, and in the at-
tached video footage). In the replay phase, a standard (rigid)
robot would follow the recorded path accurately under suit-
ably high gain, but if the environment includes a human, or is
changing, or we have a soft robot, high gain cannot be used.
Thus, we set the input stiffness profile time varying: the robot
is stiff during the positioning over the target points (T1 and
T2 , marked as red dots in Fig. 11), so that the precision is im-
proved, and it is soft during the obstacles passing phases to
be adaptable to the external environment. In this experiment,
we use R = 3, corresponding to a maximum stiffness varia-
tion δ in (9) of 0.55N·m

rad . The time required to converge was
approximately 2.1 h.

Result: Fig. 12 shows the trajectory tracking improvement
between the first and the last iteration. Initially, the robot
can neither pass through the columns nor jump over the
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barricade, failing to fulfill the task. At the end of the learn-
ing process, the robot is able to successfully accomplish the
task. Fig. 13 shows the error evolution over iterations. It is
worth noting that at the 87th iteration, the error drops signif-
icantly. This is due to the fact that the algorithm refines the
control action on a level that allows the robot to pass through
Obstacle 2, significantly improving the trajectory tracking
performance.

V. CONCLUSION AND FUTURE WORKS

In this paper, we presented a trajectory tracking controller
for articulated soft robots that combines a low-gain feedback
component, a rough initial estimation of the feedforward action,
and a learned refinement of that action. The proposed algorithm
is designed to be independent from the kinematic structure of
the robot, to maintain the robot soft behavior, and to be ro-
bust to external uncertainties as unexpected interactions with
the environment. Various experimental setups were built to test
the effectiveness of the controller in many working conditions,
i.e., serial and parallel structure, different degrees of interac-
tion with the external environment, and different number of
joints.

One of the goals of soft robotics is to design robots that
are resilient, energy efficient, and safe when interacting with
the environment or any human beings. The proposed control
technique, thanks to all its described features, allows exploiting
the compliant behavior of any articulated soft robot, achieving
simultaneously good performance. Unfortunately, any learned
control action will be suited only for the given desired trajectory
q̂(t) and stiffness parameter profile d(t). A variation of any of
these two will lower the tracking performance. Therefore, a new
learning phase will be needed for every new task. This issue will
be addressed in future works.

This paper focused on articulated soft robots, where the sys-
tem compliance is embedded in the robot joints. However,
we believe that the issues discussed and faced in this paper
could be useful also for continuously deformable soft robots. In
first approximation, the presented results could be applied to a
finite element approximation of the continuously deformable
soft robots. However, some limitations have to be considered,
thus future works will be devoted to expanding our analysis
to such class of robots, testing and potentially extending the
proposed algorithm.

APPENDIX

PROOFS OF PROPOSITIONS

In this section, we prove all the propositions stated in
Section III.

Proposition 1: If

∥∥∥∥∥ ∂ψ∂q
∣∣∣∣
q≡q∗

∥∥∥∥∥ ≤ δ
∥∥∥∥∥ ∂T (q − ψ, d)

∂q

∣∣∣∣
q≡q∗

∥∥∥∥∥
−1

(31)

then (5) holds.

Proof: By using the chain rule, it is possible to rewrite the
first term of (5) as∥∥∥∥∥ dT (q − r, d)

dq

∣∣∣∣
q≡r
− dT (q − ψ, d)

dq

∣∣∣∣
q≡q∗

∥∥∥∥∥ =

∥∥∥∥∥ ∂T (q − r, d)
∂q

∣∣∣∣
q≡r
− ∂T (q − ψ, d)

∂q

∣∣∣∣
q≡q∗

(
1− ∂ψ

∂q

∣∣∣∣
q≡q∗

)∥∥∥∥∥ .
(32)

Note that from the definition of q∗ and r, the following equation
holds:

∂T (q − r, d)
∂q

∣∣∣∣
q≡r

=
∂T (q − ψ, d)

∂q

∣∣∣∣
q≡q∗

(33)

that, together with the Cauchy–Schwarz matrix axiom, yields to∥∥∥∥∥ ∂T (q − r, d)
∂q

∣∣∣∣
q≡r
− ∂T (q − ψ, d)

∂q

∣∣∣∣
q≡q∗

(
1− ∂ψ

∂q

∣∣∣∣
q≡q∗

)∥∥∥∥∥
=

∥∥∥∥∥ ∂T (q − ψ, d)
∂q

∣∣∣∣
q≡q∗

∂ψ

∂q

∣∣∣∣
q≡q∗

∥∥∥∥∥
≤
∥∥∥∥∥ ∂T (q − ψ, d)

∂q

∣∣∣∣
q≡q∗

∥∥∥∥∥
∥∥∥∥∥ ∂ψ∂q

∣∣∣∣
q≡q∗

∥∥∥∥∥ (34)

that brings to the thesis by directly applying the hypothesis. �
Lemma 1: If the control algorithm is decentralized, i.e., ∂ψ

∂q
is diagonal, and if∥∥∥∥∥ ∂ψi∂qi

∣∣∣∣
q≡q∗

∥∥∥∥∥ ≤ δ
∥∥∥∥∥ ∂T (q − ψ, d)

∂q

∣∣∣∣
q≡q∗

∥∥∥∥∥
−1

∀ i (35)

where ∂ψi

∂ qi
is the ith diagonal element, then (5) holds.

Proof: By hypothesis ∂ψ
∂q is diagonal, thus (see, e.g., [20])∥∥∥∥∂ψ∂q
∥∥∥∥ = max

i

∣∣∣∣∂ψi∂qi

∣∣∣∣ . (36)

Combining (34) and (36) yields∥∥∥∥∥ dT (q − r, d)
dq

∣∣∣∣
q≡r
− dT (q − ψ, d)

dq

∣∣∣∣
q≡q∗

∥∥∥∥∥
≤
∥∥∥∥∥ ∂T (q − ψ, d)

∂q

∣∣∣∣
q≡q∗

∥∥∥∥∥ max
i

∥∥∥∥∥ ∂ψi∂qi

∣∣∣∣
q≡q∗

∥∥∥∥∥ (37)

which implies the thesis. �
Proposition 2: If Kon,i is as in (18), then

∀γ ≥ 0 ∃R > 0 s.t. ||Kon,i || ≤ γ. (38)

Proof: For the sake of readability, in this proof we omit the
index i. We start noting that if S(t) is solution of (19), with the
boundary constraint S(tf ) = ∅, then S(t) is bounded in norm
∀ t ∈ [0, tf ), ∀R > 0. This derives from many classic results
in optimal control theory (see, e.g., [21] and [22]). Thus, it is
always possible to bound ||S|| with a sufficiently large constant
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Σ > 0. Hence, from (18)

||Kon || =
∥∥∥∥B(t)T S(t)

R

∥∥∥∥ ≤ 1
R
||B(t)T || · ||S(t)|| ≤ 1

R
(BmaxΣ)

(39)
where, from (15),Bmax = maxt∈[0,t f )

σ (t)
I for the 2-norm. Note

that Σ is known by the evaluation of S in (19). Thus, ||Kon || is
always upper bounded by an hyperbolic function of R, which
implies the thesis by choosing R = Bm a x Σ

γ . �
Proposition 3: The feedback rule in (18) fulfills the ILC con-

vergence condition (16) for all R > 0.
Proof: Rewriting (16) for the considered feedback control

yields∣∣∣∣ R

R+Bi(t)T Si(t)Bi(t)

∣∣∣∣ < 1 ∀t ∈ [0, tf ) ∀i (40)

which is always true if Bi(t)T Si(t)Bi(t) ∈ R is positive. This
is true if Si(t) is positive definite, which is the case since Q is
positive definite in t ∈ [0, tf ) [23]. �

Proposition 4: The convergence condition (21) is fulfilled
by the following decentralized ILC gain ∀ε ∈ [0 , 1) and
∀ ΓTi (t) ∈ ker{BT

i (t)}:
Koff ,i(t) = (1 + ε)Bi(t)† + Γi(t) (41)

whereBi(t)† is the Moore–Penrose pseudoinverse of the matrix
Bi(t) in (14).

Proof: The thesis follows directly by substitution

Koff ,i(t)Bi(t) = ((1 + ε)Bi(t)† + Γi(t))Bi(t) = 1 + ε.
(42)

Substituting (42) in (21) yields to |ε| < 1, which is always true
as assumed by hypothesis. �
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