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Abstract

The subject of the present paper is the design of an innovative fuselage mounted main landing gear, developed for
a PrandtlPlane architecture civil transport aircraft with a capacity of about 300 passengers. The paper presents the
conceptual design and a preliminary sizing of landing gear structural components and actuation systems, in order to

get an estimation of weight and of the required stowage.

The adopted design methodology makes use of dynamic

modelling and multibody simulation from the very first design stages, with the aim of providing efficient and flexible
tools for a preliminary evaluation of performances, as well as enabling to easily update and adapt the design to further
modifications. To develop the activity, the multibody dynamics of the landing gear (modelled using Simpack software)
has been integrated via co-simulation with dynamic models developed in the Matlab/Simulink environment.

1. Introduction

The case study analyzed in the paper is an innova-
tive PrandtlPlane civil transport aircraft, based on an
intuition of L. Prandtl, who postulated the box wing as
the lifting system with minimum induced drag. Aero-
dynamic features have been firstly investigated in [1],
and a number of studies followed in recent years [3].
The reference aircraft, in particular, is the subject of
the European project PARSIFAL (Prandtlplane AR-
chitecture for the Sustainable Improvement of Future
AirpLanes). The conceptual design stage has led to
the definition of a baseline aircraft configuration (Fig.
1 and Tab. 1). The lifting system is a box wing with
the positively swept front wing positioned on the lower
fuselage and the rear wing on top of two fins. Thus,
the main landing gear must be centrally positioned on
the bottom fuselage.

Many solutions of fuselage-mounted landing gear ex-
ist both for civil and military transport aircraft with
high wing configurations.

In military aircraft, landing gear is often stowed in ex-
ternal pods in order to maximize cargo capacity, and
the gear is designed to operate on rough unpaved run-
ways (solutions are deeply dependent on this require-
ment).

In civil aircraft, some examples exist for small-medium
sized vehicles, and the main landing gear is usually
stowed inside a fuselage bay.

In the present case, a solution is designed taking
into account constraints imposed by the aircraft archi-
tecture; the main driving concepts are dynamic per-

Figure 1. PARSIFAL aircraft.

formance, to limit impact loads and enhance comfort,
and minimum frontal section, for reducing aerody-
namic drag. The influence of landing gear pods shape
is considered in detail in the aircraft aerodynamic
design.

2. Landing gear requirements

The primary functions of the landing gear system,
from which general requirements arise, are listed in [4],
[5], [6]. The unconventional architecture of Parsifal
leads to the definition of additional constraints:
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Table 1

Aircraft data.
Overall length (m) 44
Wing span (m) 36
Maximum Take-Off Weight (kg) 121000
Maximum Landing Weight (kg) 95000
Seats, single class 310

Ground clearance The ground clearance of the
fuselage is set 800mm in order to facilitate
loading and unloading operations with on-board
airstairs.

Stowage The main landing gear must be located into
lateral pods outside the fuselage cross section,
Fig. 2, in order to avoid the interruption of the
cargo deck and provide enough cargo capacity
for LD3-45 containers.

Figure 2. Fuselage cross section and gear stowage.

Actuation Conventional gears use hydraulic actua-
tion for the required functions (retraction/ex-
tension, door actuation, locking/unlocking in
up or down positions, wheel braking, steering).
Within Parsifal project, “more electric” types of
actuation are considered; as a matter of fact, in
the next decades the only primary power avail-
able on board could be the electric one, following
the great effort done to move towards the “all
electric” aircraft [9] [10] [11].

3. General layout

3.1. Geometrical constraints

Landing gear location is determined for the reference
configuration according to [6], [7].

Fig. 3 shows the principal parameters regarding
landing gear longitudinal position; recommended lim-
its for the nose gear static load are 6 —20% of aircraft

weight.

Concerning the lateral requirements, the horizontally
enlarged fuselage cross section of Parsifal leads to a
satisfactory wheel track, related to turnover angle.
The other constraint is wing tip clearance, since there
are no wing-mounted engines.
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Figure 3. Longitudinal requirements on gear location.

3.2. Wheels

The number and layout of wheels is primarily deter-
mined from flotation considerations, i.e. the runway
ability to support the aircraft weight; the main pa-
rameters influencing flotation are the load per tyre,
tyre diameter, tyre inflation pressure, but also airfield
surface characteristics.

The required number of wheels can be readily ob-
tained from an overview of existing commercial air-
craft; in the present case four wheels per main gear
are adopted, having a dual tandem configuration, with
two wheels per axle due to safety considerations in case
of a flat tyre.

Flotation performance can be then assessed using
Aircraft Classification Number (ACN) method, devel-
oped by ICAO and expressing the relative effect of an
aircraft on the runway pavement. The selected wheel
layout results in better flotation performance than
A320 and B737-800, even though Parsifal MTOW is
about 50% higher.

Airworthiness regulations [8] prescribe load rating
requirements for aircraft tyres (CS 25.733). Suitable
tyres for main and nose gear are reported in Tab. 2;
modern radial tubeless tyres are chosen.

4. Main landing gear design

Some significant fuselage-mounted conceptual solu-

tions have been examined, e.g. C-130, C-27J, C-141,
A400M. A discussion of the advantages and drawbacks
of the different solutions can be found in [12].
Among the concepts examined, the final choice is a
single telescopic suspension and bogie; the resulting
main gear is shown in Fig. 4 (refer to [12] for a de-
tailed description).

Each gear is equipped with an oleo-pneumatic shock
strut and carries a bogie with two axles and four
wheels. A structural framework supports the landing



Table 2
Tyre data.
Main LG Nose LG
Number of tyres 8(4x2) 2

H40x14.5 R19 36x11 R16
[dia.xwidth—rim dia. (in)]

Tyre model

Max. static load (kg) 14605 9525
Ply rating 24 20
Inflation  pressure, 13.8 12.8

unloaded (bar)
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Figure 4. Main landing gear.

gear assembly and is connected to two main frames,
transferring ground loads to the fuselage. The gear re-
tracts forward in pods at the sides of the fuselage (Fig.
2) in such a way to minimize the frontal area during
flight.

4.1. Shock absorber

A two-stage oleo-pneumatic shock strut is used in
the proposed design [7]. The high pressure cham-
ber is in the inner cylinder and it is delimited by a
floating piston, while the outer cylinder forms the low
pressure chamber, in which the gas is mixed with oil.
This configuration allows a large stroke with limited
overall length. To achieve high efficiency the orifice
cross-section is varied over the stroke by means of a
metering pin; some other orifices are made different for
compression and recoil, in order to limit the rebound.
The shock strut is connected to the airframe structure
by a trunnion and it is held in down position by the
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Figure 5. Aircraft with landing gear extended.

Table 3

Shock absorber sizing results.
First stage initial pressure (bar) 55
Second stage initial pressure (bar) 110
Maximum stroke (mm) 550
Static stroke @MU TOW (% max. stroke)  85%
Static gas pressure @MTOW (bar) 170
Maximum (endstroke) gas pressure (bar) 220

drag brace, Fig. 4.

The driving condition for shock absorber sizing is
the landing impact. The approximate vertical wheel
stroke required can be estimated according to [7], by
considering the work done by vertical forces during
touchdown and applying the work-energy theorem.
The present design features a maximum stroke
of 550 mm; the resulting reaction factor N, such
that NW is the maximum ground reaction dur-
ing touchdown, is N = 0.9 at the limit sink speed
Visink = 3.05m/s (10ft/s).

The relevant shock absorber design parameters are
reported in Tab. 3; gas pressures are chosen according
to guidelines from literature [7], however static val-
ues are slightly increased in order to limit shock strut
weight and section width. Sizing of the orifices cross
sections and metering pin is done considering results
from drop test simulations (section 6.7).

4.2. Brakes
A preliminary brake sizing is made in a system per-
spective, in order to estimate weights and sizes to be
used in the landing gear design.
The method is based on simple models and statistical
data, starting from requirements [8] considering only
the design landing stop condition (CS 25.735).
Carbon-carbon composite multidisk brakes are con-
sidered in the proposed design, as standard equipment
for modern aircraft; typical material characteristics are
shown in Tab. 4.
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Table 4

Brake disk material characteristics [7] [13].
Density (kg/m?) 1700
Sp. thermal capacity @300°C (J/kg/K) 1400

Max. pressure at friction surface (MPa) 1.5
Max. long duration temperature (°C) 700 — 1000
Coeff. of friction of one disk on another 0.35 — 0.45

Each brake absorbs an amount of energy equal to

2
o YWV
29Ny,

where N,, is the number of braked wheels, V' is the ini-
tial speed (V = V,.r/1.3 for the design landing stop)
and + is the fraction of the initial aircraft kinetic en-
ergy converted into brake internal energy.

A required heat pack mass of 35kg is obtained
assuming v = 0.9 (in a conservative manner) and con-
sidering a temperature increment of 500 °C (standard
operation). A 9-disk arrangement is chosen, and brake
housing and actuation are added to the brake assem-
bly (Fig. 7); the total weight is estimated according
to similar existing solutions.

In aircraft landing gears involving multi-axle bo-
gies, the brake stator assemblies (carrying the stator
disks and the brake actuation system) are mounted
freely on the axles and the braking torque is reacted
against rods connecting to the shock strut, called
brake equalizing rods. This prevents bogie pitching
during braking, equalizing brake effectiveness on all
the wheels.

4.3. Extension/retraction system

The gear retracts forward and up into the fuselage
pod; retraction kinematics are designed to correctly
position the wheels when extended, while minimizing
stowage when retracted. An actuator causes the shock
strut to rotate about the trunnion, while a bogie posi-
tioning mechanism ensures correct positioning of the
wheels during retraction/extension (Fig. 6).

A folding drag brace stabilizes the shock strut in the
longitudinal direction while it is in down position. An
irreversible mechanism located between the two seg-
ments of the drag brace automatically locks the gear in
down position. An uplock mechanism is also present,
consisting of a hook assembly on the airframe attach-
ment, engaging a roller located on the aft side of the
shock strut. Additional actuating systems provide for
the locks release.

Regulations require an emergency “free-fall” mode
which assures gear extension by gravity in case of a
complete loss of power on board. For this reason, the
uplock include a manual release device in case of failure

of the primary system. In the present case, retracting
the gear forward is an advantage as aerodynamic drag
helps in case of a free-fall extension.

4.3.1. Bogie positioning

Landing gear multi-axle bogies are usually set at
a certain incidence in down position, so that one
wheelset touches down before the other, extending the
total compression stroke of the gear (useful for raising
the tail clearance) and improving shock absorption
capacity. A damper is connected to the bogie beam in
order to limit its pitching oscillations, while the cor-
rect position for retraction is mantained by a spring
or adjusted by a more complex actuation system.

The designed bogie positioning mechanism is shown
in Fig. 6, and consists of a triangular bellcrank, bogie
pitch damper, and a positioning link which runs down
to a fixed point in the airframe structure. This par-
ticular mechanism allows to position the bogie beam
so that it is horizontal in the retracted position and at
an angle of 70 degrees with shock strut in the down
standby position. The tilting action is supplied di-
rectly by the rotation of the shock strut about the
trunnion.

The damper allows bogie pitching during touch-
down, while its preload returns the bogie in the correct
position for retraction after liftoff.

It can be noted that the large bogie tilting angle
during retraction requires specific positioning of hinges
and brake rods in order to avoid interference while
achieving the right kinematic operation and brake rods
effectiveness.

4.3.2. Actuation

Electrically powered (power-by-wire) actuators, in
particular Electro-Mechanical Actuators (EMA), are
chosen. EMAs are already used in brakes, and sev-
eral research programs have focused on electromechan-
ical steering and retract actuators [14] [15]. However,
difficulties are still present, for example in providing
a damped free-fall backup mode in case of actuator
screw jamming. Reliability issues are a primary con-
cern for EMAs in aircraft applications [16]; health
monitoring and fault isolation are necessary for safe
operation [17] [18].

At the present stage only a preliminary sizing of

the actuator is performed, reserving study of fail-safe
devices to future work.
Retraction and extension of the gear is provided by
a linear EMA, as it offers the possibility of easily
achieving a high reduction ratio and allows the use of
a smaller and lighter electric motor.

The actuator is mounted in a closed kinematic struc-
ture, Fig. 8: the retract actuator and the so-called
walking beam are both pinned to the shock strut at
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Figure 6. MLG retraction kinematics and bogie positioning mechanism.

one end and to the same bolt at the other, forming a
closed system of forces in which retraction load goes
back to the trunnion. A third element, here called
hanger, acts as a pendulum and transfers to the air-
frame only the component of the resultant force on the
common pin parallel to the hanger itself. This solution
has the advantage of minimizing the reaction force ap-
plied to the airframe, and also reduces the required
actuation force.

The considered requirements on gear extension/re-
traction actuation are the following:

o vertical load factor up to 1.5;
o airspeed up to 113m/s (220 knots);

e maximum time of 10s to complete retraction.

Retraction loads are calculated with reference to a
simplified schematics (Fig. 10), where loading is quasi-
static and forces deriving from door actuation are dis-
regarded. Aerodynamic forces are considered by tak-
ing into account only a drag component parallel to
the fuselage axis, and the variation of drag during re-
traction is approximated with a parabolic function of
the retraction angle, Fig. 9. Maximum drag Fj,q. is
estimated considering results from literature [19] and
statistical data on gear drag.

Fig. 11 shows forces acting on actuator, walking
beam and aeroplane structure; the actuator force in
case of direct actuation (without walking beam) is also
included, highlighting the beneficial effect of the mech-
anism on actuator and airframe loads.

The designed actuator is composed of a DC
permanent-magnet brushless motor and a planetary
roller screw; parallel-axis configuration is chosen, with
a spur gear reducer linking the motor shaft with the
screw. Actuator preliminary sizing considers two basic
requirements, stall load and no-load speed; results are
given in Tab. 5.

5. Structural sizing

Finite Element linear stress analyses of the main
landing gear components and the airframe attachment
structure are conducted in order to perform a prelim-
inary sizing and get an estimation of the structural
weight, under ultimate load cases derived from air-
worthiness regulations [8], section Ground Loads; dy-
namic loads are obtained from simulations of landing
gear operation in these conditions.

A first evaluation of fatigue life is also performed
using safe-life design methodology. This approach is
based on: estimation of load spectrum, elastic stress
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analysis, use of S-N curves, use of a cumulative dam-
age rule (Miner). The target life of main landing gear
components is set to 75000 flight cycles. Then a safety
factor of 5 is chosen for taking scatter in material prop-
erties and in load spectrum into account. In order to
get a preliminary estimation of the load history during
standard operations, a reference landing condition is
considered, with a sink speed equal to 0.9m/s (3 ft/s),
and 1.8m/s? (6ft/s?) constant deceleration braking;
minor load cycles are disregarded.

Traditional materials for landing gears are high-
strength steels; however, according to recent tenden-
cies, titanium alloy Ti6Al4V is used in this work for
all main structural parts.
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Figure 9. Variation of aerodynamic load with retrac-
tion angle 8 (8 = 0 — gear extended).
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Figure 10. Main gear retraction loads schematic.

5.1. Landing gear weight estimation

Considering results of the preliminary sizing, the
main landing gear weight breakdown is reported in
Tab. 6. The total mass of the resulting landing gear
system, composed of nose and main gears, including
the airframe attachment structure, is equal to 4270 kg,
corresponding to 3.5% of MTOW, which accords with
statistical data [6] [7].

6. Modelling and simulation

6.1. Co-simulation technique

The assessment of dynamic loads acting on the land-
ing gear and on the surrounding structure is a funda-
mental aspect of the design process of both the gear
and the airframe; this task is conveniently performed
using multibody simulation (MBS), a well-estabilished
method for studying aircraft ground dynamics. An
introduction to multibody dynamics can be found in
[20]. Many MBS softwares are available and allow to
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Figure 11. Main gear retraction loads.

Table 5

Main landing gear retraction actuator data.
Max. force (kN) 100
Total stroke (mm) 470
Max. speed (mm/s) 70
Screw diameterxlead (mm) 39 x 5
Screw efficiency 0.75
Gear ratio 3.0
Gearbox efficiency 0.97
Max. motor torque (N m) 36
Max. motor speed (rpm) 2500
Max. motor power (kW) 9.6
Linear unit weight (kg) 46
Motor+gearbox weight (kg) 25
Electronics weight (kg) 18
Total weight (kg) 89

easily set up complex dynamic models; simulation can
be conveniently used from the very first stages of the
design, when it enables to evaluate dynamic behaviour,
to analyse more configurations, and to correct prob-
lems as early as possible, which is especially useful in
case of a new concept of aircraft.

The present analyses are carried out by means of
Simpack multibody code and Matlab/Simulink soft-
ware, used in co-simulation!. This approach offers the
advantages of multibody simulation and also easily
integrates models developed in Matlab/Simulink en-
vironment, which allows more flexible dynamic mod-

1The two models run simultaneously and exchange information
at a fixed sample rate, called communication interval; each one
solves its own set of equations, including as inputs the data
received from the other at the previous step.
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Table 6

Main landing gear weight breakdown.
Component Mass (kg)
Tyre 58 (x4)
Rim 36 (x4)
Brake 75 (x4)
Brake rods 6 (x4)
Bogie beam & Axles 210
Shock absorber 475
Positioning mechanism 70
Retract actuator 89
Retraction mechanism 75
Airframe attachment 280
Total weight 1900

elling and control design.

A fixed-step Runge-Kutta method is chosen in
Simulink, with a step size of 107*s, equal to the com-
munication interval. Variable-step solver SODASRT?2
is used in Simpack.

6.2. Multibody models

Once landing gear kinematics has been defined, Sim-
pack multibody models are set up to simulate the rel-
evant load cases; set up and verification of the models
is done gradually starting from very simple cases.

An introduction to Simpack and its modelling ele-
ments is given in [21]. A feature called Substructure
allows to reuse a model inserting it one or more times
into a bigger model; for drop tests a Body representing
the test mass is connected to the main gear Substruc-
ture, while for landing simulations both main and nose
gears are connected to a Body representing the air-
frame.

The main gear is modelled with rigid bodies con-
nected by ideal joints. The shock strut outer cylinder
is supported by a rigid joint: once the forces and mo-
ments acting on it are known, the transmission of loads
to the trunnion and drag brace is statically determined
and it is calculated in the post-processing phase; fur-
thermore, brake rods kinematics is not modelled as the
main focus is studying the landing impact. The main
gear model topology diagram is shown in Fig. 12.

Sensor elements are added to measure the following
quantities, then transmitted to Simulink via the co-
simulation interface:,

e velocity of the aircraft CG expressed in body
axes;

e aircraft angular rates expressed in body axes;

e shock absorber strokes and their time deriva-

tives.

The inputs received from Simulink are:
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Figure 12. Main landing gear multibody model diagram.

e aerodynamic forces and moments acting on the
aircraft CG, expressed in body axes;

o forces acting on shock struts;

these inputs are introduced into the multibody model
by Force/Torque by u(t) elements.
Other used Force Elements are:

e Spring-damper parallel, used in the bogie pitch
damper;

Bump Stop, i.e. a high stiffness unilateral spring-
damper, used for endstroke representation;

Stick-slip, used for modelling the shock strut seal
friction;

MF-Tyre, used for modelling tyre-runway inter-
action.

6.3. Tyre-runway interaction

Tyre forces and moments are introduced into the
multibody model by MF-Tyre force elements, acting
between each wheel and a specific Road element repre-
senting the runway surface. The force element requires
a Tire parameter file containing the relevant physi-
cal and empirical coefficients; it implements Pacejka’s
Magic Formula tyre model [22] for steady-state con-
tact forces and moments, and is capable of simulating
also tyre transient behaviour [23]. In the present case,
steady-state Magic Formula is used, and only longitu-
dinal tyre behaviour is considered, since simulations
are restricted to symmetrical manoeuvres. A reduced
set of vertical and longitudinal parameters is defined,
with typical values for aircraft tyres of similar size.

6.4. Shock absorber model

The main landing gear oleo-pneumatic shock ab-
sorber is described in section 4.1; a section view and
the relative schematic diagram are shown in Fig. 13.

A simplified analytical model of the shock absorber
is developed and implemented in Simulink; this allows
rapid assessment of the influence of the design param-
eters (gas pressures, orifice areas) on dynamic perfor-
mance. The following assumptions are made:

e incompressible oil;

e polytropic transformation of the gas
PV™ = P)Vy*, with n = 1.3;

o friction of seals neglected in this model.

With these hypotheses, we can determine the gas vol-
ume and pressure in the two chambers as a function
of the stroke (z) only: Pr(z), Py (x). Hydraulic flows
@1, Qr depend on & and determine the pressure drop
across the orifices

AP = %phk’s(Q/As)ZSgn<Q)

given the oil density pp, orifice cross section A and
pressure drop coefficient k.

From equilibrium considerations we can calculate
the total force acting on the strut:

Fotrut = PL(AL—Ar)+(Pu+AP;)A;—(PL+APg)Ag.

The system of equations is implemented in Simulink,
resulting in a simulation block that calculates the force
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Figure 13. Shock strut section and schematic diagram.

applied to the strut as a function of the stroke x and
its time derivative .

6.5. Aerodynamic forces

When simulating the landing impact of the full aero-
plane it is necessary to consider the actual aerody-
namic forces acting on the airframe. In particular,
lift should be approximately equal to aircraft weight
upon landing and might be heavily decreased by the
activation of ground spoilers after touchdown. These
effects are complex and difficult to describe in detail in
a preliminary design phase, when accurate low-speed
aerodynamic data are not yet available.

A linearised model is used for the description of
aerodynamic forces; additional terms are added to the
force perturbations in order to obtain a simple rep-
resentation of lift dumping effect caused by ground
spoiler deployment. Approximate values of the stabil-
ity derivatives are obtained from preliminary aerody-
namic analyses of the aircraft in landing configuration.
The model is implemented as a Matlab function and
included via Simulink co-simulation.

6.6. Test cases

The following limit load cases are defined by regu-
lations [8], CS 25.473:

o MTOW, sink speed 1.83m/s (6 ft/s);

o MLW, sink speed 3.05m/s (10{t/s).

This is a pre-print version of: Nuti, A., Bertini, F., Cipolla, V. et al. Design of a Fuselage-Mounted Main Landing Gear of a
Medium-Size Civil Transport Aircraft. Aerotec. Missili Spaz. 97, 85-95 (2018). https://doi.org/10.1007/BF03405803

A. Nuti, F. Bertini, V. Cipolla, G. Di Rito

6.6.1. Drop test conditions

Drop tests are simulated under the limit load cases;
in addition, a reserve energy condition (MLW, sink
speed 3.7m/s) is considered, under which the shock
absorber must not fail (CS 25.723).

The effect of lift is considered by using an equivalent
reduced test mass, such as the test mass W, moving by
distance d (tyre deflection plus shock absorber stroke)
does the same work of the entire aircraft weight W but
with lift L doing opposite work during that displace-
ment

Weh +Wed =Wh+W(1—-L/W)d.

This imposes that the shock absorber in the test
must dissipate approximately an equal amount of en-
ergy than in the real case. The free drop height
h=VZ2  /2g is determined in order to obtain the de-
sired sink speed; a value of L/W =1 is assumed.

6.6.2. Landing conditions

Regulations require to consider a number of atti-
tudes and speeds for landing loads evaluation. How-
ever, for the sake of simplicity, the analysis in the case
of a reference symmetric landing manoeuvre is pre-
sented.

The aircraft is initially trimmed; the flight path an-
gle is set to obtain the specified sink speed. No pilot
commands are applied to counteract the pitching ac-
celeration generated by ground reaction forces when
the aircraft contacts the runway with the main gears.
For each landing case a simulation is performed with
and without activation of ground spoilers. Landings
in the limit conditions are simulated; also, a “normal”
condition (MLW, sink speed 0.9m/s) is considered.

6.7. Simulation results

Dynamic loads acting on gear components are ob-

tained from simulations, as they can be read as joint
forces in Simpack.
Data from drop test simulations are used for landing
gear structural verification, since they represent the
limit impact loads. Fig. 14 shows an example of shock
absorber vertical load vs. stroke curve, obtained from
the drop test; we can note that steady-state load is
lower than the real static one because of the reduced
test mass.

Drop tests with both still and rotating wheels have
been simulated, and sensitivity studies have been per-
formed by varying the bogie pitch damping, shock
strut seal friction and orifice areas. Dynamic simula-
tion turned out to be a powerful design tool, in this
case especially useful for shock absorber dynamic tun-
ing, and for sizing the bogie positioning mechanism.
Fig. 15 shows that damping of the bogie pitch damper
heavily influences the loads applied to the mechanism.
The damping value is therefore adjusted to improve
dynamic behaviour, while limiting forces, in order to
reduce weight of the connected components.
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Figure 14. Shock absorber load-stroke curve (Drop
test, MLW, sink speed 3.05 m/s).

An example of landing simulation results is shown
in Fig. 16. It may be noted that lift dumping have a
pronounced effect on the final equilibrium stroke and
load on wheels, while it has small influence on peak
impact loads, because the effect becomes substantial
after the first compression of the shock strut.

The maximum vertical ground reaction is reached
in static conditions except for extremely hard land-
ings. In fact, ground reaction factor N is often less
than one during impact, according to preliminary en-
ergy considerations (section 4.1), while it is N = 1
in static conditions. However, landing impact might
be a critical condition for the airframe, and structural
dynamics must be investigated.

It is worth noting that landing loads are generally
about 10% lower than those obtained in the relative
drop test case, showing that in this case the represen-
tation of lift by means of an equivalent reduced mass
leads to a conservative drop test condition.

Spin-up force in the landing simulation is similar
to the spinning wheels drop test, and the peak value
is within 25% of the vertical load, which is the limit
value considered by regulations.

Conclusions

The present work has led to the definition of a
fuselage-mounted main landing gear configuration,
satisfying specific requirements imposed by the uncon-
ventional aircraft layout of PARSIFAL project.

The obtained landing gear can be adapted to future
modifications of the aircraft, and to possible changes
in requirements, such as ground clearance and longi-
tudinal gear location.

The use of a co-simulation approach, integrating a
multibody software with Matlab/Simulink, has been
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Figure 15. Effect of bogie pitch damping (Drop test,
MLW, sink speed 3.05 m/s).

shown to be a reliable and effective tool for preliminary
landing gear design; complexity of the models has been
gradually increased and the effect of key parameters
has been investigated.

Simulations of drop tests and landing conditions
have been performed; loads obtained have been used
as inputs for Finite Element analyses and prelimi-
nary structural sizing. Resulting landing gear system
weight is in accordance with statistical data.

Simulation models can be further refined and

adapted to future developments of the aircraft design;
the effects of flexibility of both airframe and land-
ing gear components could be investigated, as well as
more realistic landing manoeuvres; a dynamic braking
model could be added.
Multibody simulation models of the entire aircraft
could be used to study flight mechanics during takeoff
and landing, and to investigate the influence of land-
ing gear design parameters on overall aircraft perfor-
mance.
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Figure 16. Landing, MLW, sink speed 3.05 m/s.
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