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In this work, we investigate the temporal evolution of the jet-driven scour depth in a 

pothole lying on a cohesionless granular bed, by using diverse approaches. First, we 

present new experiments which encompass cases with jet angles ranging from 45 to 90° 

from the horizontal, several initial water depths, and different particle sizes, 

supplementing experiments developed recently by the last two authors. In particular, we 

address relatively-large angles, mostly absent in previous analyses. Our results first 

confirm the existence of two very different stages in the scour process, essentially 

overlooked in datasets used to obtain the traditional formulas – developing and developed 

phases; they then provide unprecedented evidence of the very distinct behavior at 90°, 

characterized by a step-wise behavior. Second, after revisiting the rationale of a theory 
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for the equilibrium condition developed elsewhere by the first author and collaborator, 

we employ the existing and new datasets to determine the multiplicative constants 

embedded in the equilibrium scour formulas. Third, we present a novel theory for the 

temporal evolution of the scour depth of the pothole in the developed phase (but with 

good prediction capabilities in the developing phase as well). By invoking the 

conservation of mass of sediment in the pothole, in addition to the energy conservation 

within the pothole and the phenomenological theory of turbulence, we obtain ordinary 

differential equations which we solve by numerical means. We validate the theory using 

our new, and other datasets. Finally, we provide interesting interpretations of the scour 

process by using the results of the theory.   

 

Key words: equilibrium scour depth, granular bed, phenomenological theory of 

turbulence, scour pothole. 

 

I. INTRODUCTION 

There are multiple practical situations addressed in the fields of hydrology, 

geomorphology, and planetary science which concern a jet plunging into a pool of water 

with a bottom constituted by a cohesionless granular material, and deal with the 

associated scour of such beds (Graf and Altinakar 1998). These situations include 

common potholes which occur downstream of hydraulic structures (Graf and Altinakar 

1998), lead to crevasse lakes (USGS), are driven by head-cuts in drainage network 

evolution (Stein et al. 1993), form on consolidated deposits of nuclear waste (Hunter et 

al. 2013), take part during cleansing of gravel bars (Minh 1989), and were created on 
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Mars during Amazonian times (Wilson et al. 2004). Under those conditions, a turbulent 

cauldron initially appears within the pool of water; this cauldron then grows as it scours 

the pothole. The process continues until a dynamic equilibrium condition is attained 

between the flow and the granular bed (Fig. 1(a)). In spite of its pervasive appearance on 

Earth and other moons and planets, this phenomenon of scour still remains as one of the 

unsolved, classic topics of fluid mechanics (see Lee et al. 2016; Aamir and Ahmad 2016; 

Bates et al. 2016), since the times of Leonardo da Vinci and his famous drawings and 

sketches (Capra 2008). 

Scour potholes may lead to severe practical consequences. For instance, in the 

streambed below an overflowing gate, or downstream of an outflow from a pipe, the 

evolving pothole may compromise the stability of the gate or the pipe (Graf and Altinakar 

1998; Abt et al. 1984). Based on such risks and for almost one hundred years now, 

researchers from around the world have proposed a number of widely-used, important 

empirical formulas for the equilibrium depth of the pothole (see, for instance, Schoklitsch 

1932; Mason and Arumugam 1985; Bormann and Julien 1991; Hoffmans and Verheij 

1997). Formulations have been purportedly provided for a so-called “cylindrical,” two-

dimensional (2D) case, and for an “axisymmetric,” three-dimensional (3D) counterpart. 

Most of these formulas have been obtained on grounds of dimensional analysis and 

heuristic arguments; they contain numerous free exponents that have been determined by 

fitting experimental results. In a few cases, one or more of those exponents has/have been 

determined semi-theoretically, as it is the case of, for example, the expressions of 

Ivanisevich Machado (1980), Bormann and Julien (1991), Stein et al. (1993), and 

Hoffmans (2009). To describe the state of the art regarding the formulas, Hoffmans 
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(2009) indicated the following:“…many of the existing scour relations are not 

universally applicable but dependent on the data that were used in the regression 

analyses. It is believed that a relation based on fundamental principles of physics, 

calibrated by using measured scour data, could overcome this problem…”   

Mason and Arumugam (1985), Breusers and Raudkivi (1991), Hoffmans and Verheij 

(1997), and Hoffmans (2009) among others, have presented exhaustive compilations of 

formulas for the equilibrium depth of the pothole; we refer the reader to such 

compilations to avoid using space herein. It is apparent from those compilations that the 

formulas proposed so far are but special cases of the following generalized expression: 

ܴ = ௘೜ݍ ܭ  ℎ௘೓  ݃௘೒  ݀௘೏  ቀ ఘ
ఘೞ  ି  ఘ 

ቁ
௘ഐ

     (1) 

where R is the sum of the scour depth, , and the initial depth of the pool of water, D, R = 

 + D (see Fig. 1(a)); K is a multiplicative constant; q is the volumetric flow rate of the 

jet per unit thickness in a 2D set up (measured in the direction perpendicular to the paper 

in Fig. 1(a)) or the total discharge in a 3D condition; h is the head of the jet; g is the 

gravitational acceleration; d is the diameter of the grains of the bed;  is the density of 

water; s is the density of the grains of the bed; and eq, eh, eg, ed and e are exponents. In 

Table 1, we list the values of such exponents, either determined empirically by fitting 

different experimental results, obtained through semi-theoretical approaches, or set to 

zero from the start, by different researchers. From Table 1 it becomes evident that in 

some cases diverse researchers obtained widely dissimilar values of a given exponent. 

A careful analysis of the available empirical and semi-empirical formulas for the 

equilibrium scour depth leads to the following observations (modified and extended from 

Bombardelli and Gioia 2005): 
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1) The formulas often lack dimensional homogeneity. 

2) The formulas have often been predicated on limited experimental data in terms of 

number of jet angles and particle sizes explored. 

3) The formulas have sometimes disregarded important parameters such as the 

diameter of the grains of the bed (see Hoffmans 1998, for d90 > 0.0125 m; 

Veronese 1937; and INCYTH 1982), which should in principle appear in the 

equations, at least in case of cohesionless granular beds. It is also clear that most 

formulas disregard the ratio of densities, with the exception of the expressions by 

Eggenberger and Muller (1944), and Bormann and Julien (1991). The acceleration 

of gravity does not appear explicitly either in most formulas; it could be argued 

that these variables are embedded in the multiplicative constant. 

4) Most of the formulas do not provide much physical insight into the interaction 

between the granular bed and the turbulent cauldron. 

5) The formulas do not specifically distinguish between 2D or 3D configurations. 

They might have had effects of lateral walls as well as scale issues.   

To provide a fully-theoretical foundation to the scour phenomena, and in particular to 

offer insight into the interplay between production and dissipation of turbulence and the 

scour process, Bombardelli and Gioia (2005, 2006) and Gioia and Bombardelli (2005) 

pioneered a method based on the phenomenological theory of turbulence (hereafter 

denoted as PTT; Frisch 1995), thus predicting the equilibrium scour depth for 2D and 3D 

geometries. Their final formulas contain a multiplicative constant which cannot be 

determined from theoretical considerations; they are valid asymptotically under 
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conditions that are amply met in applications. In both cases, the formulas were validated 

through comparison of values of the exponents of the most widely-known expressions.  

In addition to the analyses of the equilibrium scour depth, several works have been 

devoted to providing expressions for the time evolution of the scour process. These 

studies have similar characteristics of those related to the equilibrium depth in terms of 

reliance on experimental studies or semi-theoretical approaches (Stein et al. 1993). It was 

arguably Rouse (1940) the first who proposed that the scour depth induced by a jet grows 

with the logarithm of time. Although such statement would clearly lead to unbounded 

scour depths for very large times (which contradicts the empirical evidence and the 

verified notion of asymptotic equilibrium scour depth), this approach was followed by 

several renowned researchers (Stein et al. 1993). Laursen (1952), on the other hand, 

emphasized the existence of a “limiting extent of scour,” and the decrease of the rate of 

scour as the turbulent cauldron is enlarged (Blaisdell et al. 1981). Blaisdell et al. (1981) 

discussed the very notion of equilibrium depth, and compared several formulations for 

the scour “velocity by which the scour depth increases” against data. They found that a 

hyperbolic function better describes the empirical evidence. Stein et al. (1993) developed 

further tests regarding the time evolution of the scour from overfall jets. They employed 

bed particle sizes in the range of coarse and fine sands, as well as cohesive sediment, and 

jets varying between 28 and 59° from the horizontal. Stein et al. (1993) concluded that 

both cohesive and non-cohesive sediment can be represented with a unique equation 

which they themselves developed by using the conservation of mass of sediment and an 

experimental expression for the jet-induced shear stress. Dey and Raikar (2007) 

undertook experiments with particle sizes in the range of sands and gravels, and validated 
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an exponential law with a particular time scale. More recently, Pagliara et al. (2008a, b), 

and Pagliara and Palermo (2008) conducted a series of experimental tests in order to 

analyze both the scour process evolution and the equilibrium scour morphology due to 

plunging jets. Based on the results obtained by Pagliara et al. (2006), Pagliara et al.’s 

experimental tests from 2008 focused on 3D scour geometries. In particular, Pagliara et 

al. (2008a) confirmed that the scour depth induced by a jet grows with the logarithm of 

time, but tends to an equilibrium value asymptotically. Pagliara et al. (2008b) very 

importantly introduced a quantitative criterion to distinguish among 2D and 3D cases. 

The criterion is as follows: 3D plunge pool scour involves the width parameter =bm/b, in 

which bm is the maximum extrapolated scour width, and b the channel width. For  < 1.5 

the scour plan shape is 3D, whereas it is nearly 2D for  > 3. An intermediate behaviour 

should be expected for 1.5 < < 3. Finally, Pagliara and Palermo (2008) investigated the 

2D scour mechanism due to plunging jets in the presence of protection structures, testing 

empirical relations for the main geometric dimensions of the scour hole and ridge. Very 

importantly, Pagliara et al. (2006, 2008a) found that there is a negligible effect of the jet 

condition (submerged/unsubmerged) on the maximum equilibrium scour depth and on the 

features of the scour pothole. Further, they showed that there is a slight dependence on 

the jet nozzle geometry regarding that maximum depth. 

A vast literature on the scour at bridge piers presents similar features as the cases of 

jet-induced scour. Very recently, Guo (2014) published a semi-theoretical solution to the 

problem employing the conservation of mass and an expression for the solid volumetric 

transport rate; numerous references therein describe the state of the art. Manes and 
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Brocchini (2015) in turn developed a theory by using the techniques introduced by 

Bombardelli and Gioia, which focuses only on the equilibrium condition. 

Unlike the case of the equilibrium scour depth (Bombardelli and Gioia 2005, 2006; 

Gioia and Bombardelli 2006), there is no theory solely based on conservation laws and 

the PTT for the evolving scour depth induced by jets. After presenting novel experiments, 

we discuss the different elements of a new theory. Similar techniques to those developed 

herein can be applied to address the scour process of granular material surrounding 

abutments, as well as the cases of aerated jets, and scour of beds constituted by cohesive 

sediments.  

  

II. EXPERIMENTAL INVESTIGATION OF TIME SCOUR EVOLUTION 

A. Experimental setup, tests, and procedures 

Experimental tests were developed at the Hydraulics Laboratory of the University of 

Pisa, Pisa, Italy. In Tables 2 and 3, we detail all tests used in this work, including those 

undertaken in 2006, 2008, and those especially obtained for this paper. These new tests 

were designed to provide a comprehensive picture of the scour phenomenon, including 

equilibrium and time-dependent tests.  

Several of the new tests were conducted in order to simulate the cylindrical (2D) 

scour geometry at the equilibrium condition for jet angles (α, Fig. 1(a)) of 45, 60, 75 and 

85°, and volumetric flow rates between 0.0025 m3/s and 0.0045 m3/s (line 5 in Table 2). 

These tests were performed in the same channel of Pagliara and Palermo (2008) (a 0.2-m 

wide and 6-m long channel) and used the same base granular material (d90=11.1 mm, 

d50=9.5 mm, and s=2,453 kg/m3). Water was supplied through a movable circular pipe to 
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vary the location and angle (see Fig. 1(b)). This setup of using jets to obtain 2D scour 

configurations is a relatively-recent alternative as compared to old-fashion cylindrical 

tests, and contribute to reducing the overall model size (Pagliara et al., 2006).  

For the 3D configuration, scour-evolution tests were undertaken involving a different 

cohesionless material; these tests were developed with a so-called “half model,” in which 

a symmetry glassed plane was introduced in the flume to simulate half of the jet (line 6 in 

Table 2). Considering that a half-model arrangement was applied, the equivalent jet 

diameter for the full-model is D* =20.5Dtest=0.0382 m (see also Pagliara et al. 2008a), 

resulting in the same jet velocity in both the half- and full-models. In addition, the jet was 

issued about 2-3 mm from the glass wall, with minimal effect of such plane. In Pagliara 

et al. (2008a), a sketch of the “half-model” experimental set-up is presented. The jet 

angle was in this case of 90°, and the channel width was of 0.8 m. The channel bed 

material was characterized by the following properties: d50=0.00745 m, d90=0.0088 m, 

and s=2,468 kg/m3. Test were conducted by varying water discharge from 0.00235 m3/s 

to 0.00345 m3/s.  In Table 4, we report the scour depth evolution for tests with vertical jet 

arrangement (90°).  

Prior to each test, the channel bed was carefully levelled and a transparent sheet with 

cell sizes of 0.5 cm x 0.5 cm was glued on the channel glass to help observe the evolution 

of the scour depth. Three different tailwater levels, D (Fig. 1(a)), ranging between 2.7 cm 

and 18.9 cm above the original channel bed level (set to ±1 mm), were tested, and they 

were kept constant during the experiments by adjusting a downstream sluice gate. 

Duration of all tests was of approximately one hour. After the equilibrium condition was 

attained, the main geometric features of the scour hole were measured by using a special 
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point gauge, including the maximum scour depth, , the scour width, the pothole 

geometry, and the dune characteristics (Fig. 1(a)). This special point gauge, used 

previously by the authors, was equipped with a 40 mm circular plate at its lower end; 

therefore, the scour surface readings could be also taken in the presence of suspended 

particles and air bubbles in the scour hole. The overall accuracy of such point gauge is 

±0.5 d50, where d50 is the sediment size for which 50% of material is finer. The 

longitudinal scour profiles were also determined from images and videos obtained by a 

fixed, high-resolution camera located in front of the channel (see also Pagliara et al. 

2008a). The analysis of images and videos allowed for a careful estimation of bed profile 

at each instant, resulting in estimation errors ranging between two and three millimeters 

(i.e., almost equal to half mesh dimension). 

In Fig. 2(a), we show a snapshot of an experimental test for α=60° (2D case) whereas 

in Fig. 2(b) we present the contour map and the 3D view of the equilibrium configuration 

for a test with a jet with α=60° (3D case). 

 

B. Description of the physics of the scour time evolution for both 2D and 3D 

cases 

The scour time evolution for all tests is characterized by two phases (Pagliara et al 

2008a, b): an initial one, termed developing stage; and then the developed counterpart. 

The developing phase is very rapid; the scour process starts when the jet diffuses and 

impacts on the sediment surface (Stein et al. 1993; Hoffmans 2009), and afterwards a 

downstream (eventually surrounding) ridge starts to form. The so-called developed phase 

is characterized by an almost homothetic (i.e., proportional) expansion of both the scour 
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hole and the ridge. In Fig. 3, we include a schematic depicting the different steps 

pertaining to each phase. Snapshots of the developing and developed phases for a 3D 

configuration corresponding to a coarse bed, are presented in Figs. 4 and 5, respectively, 

for a jet angle of 45° (test especially developed for this work). Results of tests with fine 

material present similar features, albeit with a significant amount of sediment in 

suspension (see Pagliara et al. 2008a). 

3D case. For the 3D case, in the first few seconds – less than 10 s for fine material and 

less than 5 s for the coarser tested material, when the ridge and dunes begin to form – the 

sediment transport is directed both longitudinally (x-direction) and laterally (y-direction). 

Then, sediment transport mostly occurs in the longitudinal direction for jet angles other 

than 90°. (The time difference stated above between coarse and fine material is due to the 

presence of more sediment in suspension in the latter case, which delays the formation of 

the pothole dunes (Dey and Sarkar 2006)). At this stage, the flow energy is not sufficient 

to transport all the scoured material, and therefore the accumulation in the ridge is 

enhanced. The process for the ridge evolves subsequently; in particular, the upstream 

ridge surface develops relatively fast (in less than 60 s for fine materials and less than 15 

s for coarser materials), whereas the downstream part of the ridge requires a longer time 

to be shaped (up to approximately 90 s for fine materials and 25 s for coarser materials). 

It is worth noting that during the phase of ridge formation, a substantial increase of the 

scour pothole dimension takes place, and sediment particles are mainly transported 

downstream. 

Once both the upstream and downstream surfaces are completely formed, the 

developing phase can be considered completed. Then, the developed phase takes place, 
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resulting in essentially proportional enlargements of the scour hole and dune (see Fig. 5 

for coarser material). In particular, the dune starts shifting downstream and the scour hole 

surface expands both transversally and longitudinally, by increasing its depth. According 

to the jet angle and tailwater level (e.g., lower jet angles and high tailwaters; see Pagliara 

et al., 2008b) the scour pothole extension can be more prominent longitudinally than 

transversally. In any case, the upstream scour origin does not shift significantly during 

the developed phase. 

Regarding the time evolution of the scour hole for larger angles in 3D, we 

corroborated that the larger the angle, the shorter the developing phase is, in agreement 

with the observations of Pagliara et al. (2008a). When the angle is relatively small, the 

average bed shear stress is naturally higher, and therefore the dune formation takes longer 

time because the transport of sediment dominates over depositional effects, especially in 

the very first instants of the scour process. In other words, during the developing phase, 

the downstream sediment deposit is partially flattened by the higher bed shear stress, 

resulting in a delayed dune developing process. It is worth noting that this mechanism is 

valid for both fine and coarse sediments; however, in the latter case, its effect is less 

prominent as coarser particles require higher shear stresses to be put into motion (Julien 

2010). For higher jet angles, experimental evidence indicates that the scour depth after 

the first 3 seconds can reach about 30% of the final equilibrium depth. 

3D case and jet angle of 90°. For α=90°, the phenomenology of the scour process is 

radically different than for other angles. Experimental tests showed that the amount of 

scour occurring in the very first seconds comprises more than 50% of the final, 

equilibrium depth. The developing phase in this case can last less than 20 s. As a 
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distinctive feature with respect to other jet angles, it was found that for 90° the scour 

depth evolution is characterized by the fact that sediment particles kept in suspension 

inside the scour pothole are removed from it in a non-monotonic fashion, thus resulting 

in a scour depth evolution by steps. This is shown in Fig. 6, which presents several 

snapshots of the evolution of the scour pothole for the 90° case, separated by only one 

second. It can be seen that whereas the same scour depth occurs at 4 and 5 seconds, there 

is a sudden increase at 6 seconds; then, the depth remains approximately constant from 6 

to 7 seconds, suggesting that sediment particles abandon the pothole in a discontinuous 

way. This step-wise behavior becomes apparent in Fig. 7, in which the time evolution of 

the scour depths for all 90°-tests is presented. The length of the steps varies with the test. 

In Fig. 7, we have made the scour depth non-dimensional by the equivalent pipe diameter 

and we have used the same time scale of Pagliara et al. (2008a), i.e., we adopted the non-

dimensional time (݃ᇱ ݀ଽ଴)ଵ/ଶ ݐ ⁄∗ܦ , with ௥ܶ =  ଵ/ଶ , where g’ denotes the(ᇱ ݀ଽ଴݃)/∗ܦ 

“reduced gravitational acceleration,” equal to the product of gravity, the difference of the 

density of the sediment and water divided by the latter; and t is the time from the 

beginning of the test. 

In Figs. 8 and 9, we present snapshots of the developing and developed phases, 

respectively, for a jet with and inclination of 90°, pertaining to tests with coarse material. 

The difference in the shape of the dune (and ridge), anticipated by Fig. 6, is striking. In 

this case, the symmetry of the scour process with the vertical axis is characteristic, 

fulfilling the canonical shape of vertical jets. It is also evident that the developed phase 

shows very modest increases of the scour depth, and a totally different shape for the ridge 

dunes. 
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2D case. For the 2D case (Figs. 10 and 11), the scour dynamics can be slightly different 

during the developing phase as opposed to the 3D case. In fact, the ridge only forms 

downstream of the scour hole; therefore, the evolution process can be slightly faster than 

for the 3D case, especially in the very first moments due to the absence of lateral 

sediment transport. This feature is evidenced in Fig. 10. During the first 2 s, after the jet 

impacts on the sediment bed, a rapid and generally symmetrical enlargement of the scour 

hole takes place up to the point in which the pothole reaches the channel walls (see Fig. 

10(a)). This very initial phase is followed by a stage where the sediment transport is 

mainly directed downstream, as shown in Fig. 10(b). As for the 3D case, at this stage the 

jet energy is partially invested in lifting and keeping the bed sediment in suspension, 

resulting in the beginning of the downstream ridge formation. The upstream ridge surface 

is shaped in a very short time, in general slightly smaller than the 3D counterpart (see 

Fig. 10(c)). The dune formation limits the downstream sediment transport, causing an 

accumulation of sediment in correspondence with the ridge, and a reduction in the 

dynamics of the downstream dune surface shaping. At the same time, the scour-hole 

depth substantially increases and its longitudinal profile becomes more asymmetric. The 

developing phase ends when the downstream dune surface angle with respect to the 

horizontal becomes approximately equal to the wet angle of repose of the sediment 

material (generally for t < 85 s; see Fig. 10(d)). As a consequence, the total duration of 

the developing phase is comparable with that occurring for the 3D case under the same 

hydraulic conditions and jet configurations, even though the very initial phase of the 

process seems to be slightly faster for the 2D case (Pagliara et al. 2008a). The developed 

phase for the 2D case (Figs. 11) is characterized by a qualitative scour evolution behavior 
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which is rather similar to that of the 3D case, i.e., there exists a proportional expansion of 

both the scour hole and the downstream ridge, whereas the scour origin location does not 

shift significantly (Figs. 11(a)-(c)). 

 

C. Transition time between developing and developed phases  

We addressed the transition time between the developing and developed phases for 

the 3D case, as anticipated in Fig. 7. Therein, it can be seen that the transition time 

decreases for larger angles. The transition time was estimated by analyzing the time 

evolution and identifying the break in behavior in a semi-log plot (Pagliara et al., 2006). 

We were able to obtain an expression for such a variation as follows: log ்߬ =

+ ߙ 0.02−   3.62, with an R2 value (defined in the Appendix) of 0.95, where τT is the 

transition time, and α is the jet angle. In Fig. 12, the time evolution of the scour process 

for diverse tests pertaining to different angles is presented in a semi-logarithmic scale. 

The differences in the behavior for distinct angles are apparent. The nomenclature of tests 

in Fig. 12 corresponds to that of Pagliara et al. (2008a), developed in Zurich, Switzerland: 

Its meaning is explained in the figure caption. 

 

III. THEORETICAL EXPRESSION FOR THE EQUILIBRIUM SCOUR 

DEPTH 

In this section, and for the sake of completeness, we briefly review the developments 

presented in Bombardelli and Gioia (2005, 2006), and Gioia and Bombardelli (2005) for 

the equilibrium conditions. 
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A. Use of the phenomenological theory of turbulence and jet energetics 

Based on the two tenets of the PTT regarding the steady production of turbulent 

kinetic energy (TKE; Frisch 1995), it is possible to derive an expression for the rate of 

dissipation of turbulent energy per unit mass (denoted herein as ε) in terms of the 

velocity of the largest eddies (denoted by V) and of the size of the largest eddies (scaling 

with R); see Fig. 13(a) for its application to the scour problem. Those two tenets are as 

follows: (i) the TKE per unit mass is dictated by scales associated with the largest 

(energy-containing) eddies, being independent of viscosity; (ii) such TKE, introduced at a 

rate ε , transfers (“cascades”) from large to small scales at the same rate ε until dissipation 

into internal energy takes place at the sufficiently-small scales. At the large scales, it 

holds from dimensional arguments that ߝ ~  ܸଷ ܴ⁄  (Lohse 1994), where the symbol “~” 

indicates “scales with;” for a generation of eddies of size l and velocity ul, the eddy 

splitting and the transferring of TKE must be that ݑ  ~ ߝ௟
ଷ ݈⁄ , which together with 

ଷܸ  ~ ߝ ܴ⁄  leads to the Kolmogorov scaling in the inertial sub-range (Pope 2000): 

௟ݑ   ~  ܸ  ቀ ௟
ோ

ቁ
ଵ/ଷ

     (2) 

This relation is valid for ݈ ⁄ߟ ≫  1, where the η is the Kolmogorov length-scale (ߟ =

 ଵ/ସ, with ν being the kinematic viscosity of water). The phenomenology aboveିߝ  ଷ/ସߥ

has been corroborated to occur at the inertial sub-range for a wide variety of flows 

(Saddoughi and Veeravalli 1994), but in the case of wall turbulence it requires further 

justification (Ali and Dey 2017). In spite of some theoretical inconsistencies presented 

elsewhere, Ali and Dey (2017, 2018) concluded that the PTT (i.e., the scaling presented 

in Eq. (2)) still provides satisfactory results in wall-bounded flows. Ali and Dey (2018) 

discussed numerous flows in which the PTT has allowed for predictions with accuracy, 
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such as the estimation of the equilibrium scour depth, the identification of the physical 

mechanisms which explain Nikuradse’s diagram (Gioia and Chakraborty 2006), the link 

of the spectrum with the mean velocity profile (Gioia et al. 2010), the determination of 

scaling laws in sediment transport in water courses (Ali and Dey 2017), etc. By pointing 

out some limitations of alternative theories and the lack of a better, universal one, Ali and 

Dey (2018) highlighted the advantages of the PTT; thus, we follow Eq. (2) in our 

analysis.     

The energetics of the turbulent cauldron dictates that the production of TKE is driven 

by the jet, whose power per unit thickness is P in 2D, or its power (also P) in 3D. This 

must equal the rate of dissipation of turbulent energy within the cauldron; we can thus 

write ܲ = = ℎ  ݃  ݍ  ߩ    valid for 2D and 3D under the use of the dual meaning of ,ܯ  ߝ  

P explained above, and recalling that q represents the discharge per unit width in 2D, and 

the total discharge in 3D. ߩ  ~ ܯ ܴଶ is the mass per unit thickness of cauldron in 2D, and 

 ℎ/ܴଶ and  ݃  ݍ  ~  ߝ ଷ is the mass of the cauldron in 3D. It follows thatܴ ߩ  ~ ܯ

ଷܸ  ~ ߝ ℎ/ܴଷ for the 2D and 3D configurations, respectively. Using  ݃  ݍ  ~  ߝ ܴ⁄ , it is 

possible to find for the two conditions:  

ܸ ~  ቀ௤  ௚  ௛
ோ

ቁ
ଵ/ଷ

; ܸ ~  ቀ௤  ௚  ௛
ோమ ቁ

ଵ/ଷ
    (3a, b) 

Further, we surmise that the clouds of suspended sediment appearing in the experiments 

do not affect the energy transfer embedded in Eqs. (3). 

  

B. Determination of the shear stress at the interface of the granular material 

Next, we consider the surface of the pothole and seek to obtain a scaling expression 

for the shear stress exerted by the flow on that surface. We adopt a simple structure: We 
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assume that there exists a single turbulent layer governed by the phenomenological 

spectrum discussed above. From momentum-transfer and geometric considerations, it 

was shown in Gioia and Bombardelli (2002; see also Gioia and Chakraborty 2006 and 

Gioia et al. 2010) that the shear stress acting on a wetted surface tangent to the peaks of 

the grains at the surface of the pothole, S , is given by (Fig. 13(a)):  

߬ =  ௗ  ܸ       (4)ݑ  ߩ  ~  |௧തതതതതതതݒ  ௡ݒ|  ߩ  

where vn and vt are the fluctuating velocities normal and tangent to S, respectively, the 

overbar denotes time average, and ud is the velocity scale of the eddy harbored within the 

roughness coves (Fig. 13(a)). Further, we assume that the lengthscale d is within the 

inertial subrange; thus, d follows the Kolmogorov scaling. Now, we may substitute V by 

Eqs. (3) and ݑௗ  ~  ܸ  ቀௗ
ோ

ቁ
ଵ/ଷ

 in Eq. (4) to obtain:  

మ/య  ௗభ/య(௤  ௚  ௛)  ߩ  ~  ߬

ோ
మ/య  ௗభ/య(௤  ௚  ௛)  ߩ  ~  ߬ ; 

ோఱ/య    (5a, b) 

which is valid for ߟ ≪ ݀ ≪  ܴ. The results arrived at herein, derived from the use of the 

PTT and the jet energetics up to a multiplicative constant, do not employ empirical 

expressions to represent the bed shear stress.  

 

C. Enforcement of the equilibrium condition 

As the depth of the cauldron grows, the shear stress varies with 1/R, and 1/R5/3, for 2D 

and 3D configurations, respectively; it decreases until it reaches a critical value τc, when 

the scour process ceases. Thus, the condition of equilibrium between the turbulent 

cauldron and the granular bed is τ=τc (Yalin 1977; Raudkivi 1998). To obtain a scaling 

expression for the critical stress τc, we follow the experimental results by Shields on 

incipient motion of sediment for relatively large particle sizes (small to coarse sands; 
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Shields 1936; Yalin 1977; Julien 2010) and therefore establish that ߬௖  ~  (ߩ௦  −

 Imposing the equilibrium condition, and rearranging, the following scaling .݀  ݃  (ߩ  

expressions for R are obtained: 

 ܴ = ଴ܭ     ቀ ఘ
ఘೞ ି ఘ

ቁ  (ݍ  ℎ)ଶ/ଷ  ݀ିଶ/ଷ݃ିଵ/ଷ    (6a) 

ܴ = ସܭ     ቀ ఘ
ఘೞ ି ఘ

ቁ
ଷ/ହ

 ଶ/ହ  ݀ିଶ/ହ݃ିଵ/ହ    (6b)(ℎ  ݍ)  

One of the interesting aspects of this theory is that it predicts the same values for the 

exponents of h and q (see Bombardelli and Jha 2011). 

   

IV. THEORETICAL/NUMERICAL MODELS FOR THE TIME 

EVOLUTION OF THE SCOUR DEPTH IN THE DEVELOPED STAGE 

In this section, we present an unprecedented theory for the temporal evolution of 

scour. We assume that Eqs. (5) for the shear stress, and the momentum transfer 

mechanism explained in Fig. 13(a), hold true at all times in the scour process. 

We start the analysis for a 2D configuration. As a consequence of the action of the 

shear stress, grains abandon the cohesionless bed at a rate qs per unit width of pothole. 

We follow our empirical evidence in the developed phase and argue that the evolution of 

the pothole can be approximated as homothetic through a circumference whose center is 

always located at the free surface, and whose distance from the initial bed elevation is  

(Fig. 13(b)). Naturally, this assumption does not allow for the representation of the 

sediment which is removed from the pothole and is deposited at both sides, as it is 

observed in the experiments (see for instance Figs. 10 and 11); this assumption ensures 

that the problem is mathematically tractable. The area of the scoured material scales with 

the product of the scour depth , and of the length r, i.e., A ~  r (recall that the area of 
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an ellipse is π times the product of the two axes of the ellipse). In order to obtain an 

expression for r, we can write that ݎଶ ଶܦ +   =  ܴଶ ܦ) =  +  Δ)ଶ. From this, it is possible 

to obtain that ݎଶ  =  2 Δ ܦ + Δଶ. Further, we assume that the first term of last expression 

dominates or, equivalently, that ୼
஽

≪   1. This assumption is accurate during the initial 

stages of the scour process and becomes less so close to its end; however, we believe that 

it constitutes a good scaling approximation which is of the same order of magnitude than 

neglecting the details of the geometry of the scour pothole. Therefore, it is possible to 

find that ݎ ~ √Δ ܦ and ܣ ~ Δଷ/ଶ√ ܦ. 

In addition, the rate of material removal from the bed (per unit width; [m2/s]) scales 

as: ݍ௦ ~  ௗ஺
ௗ௧

 ~  ௗ (୼
య
మ   ஽

భ
మ)

ௗ௧
 = ଵ/ଶܦ     ௗ (୼

య
మ)

ௗ௧
 =   ଷ

ଶ
ଵ/ଶ  Δଵ/ଶܦ    ௗ୼

ௗ௧
, where we have made use 

of the fact that the initial water depth remains constant in time. In other words, 

ଵ/ଶ  Δଵ/ଶܦ ~ ௦ݍ  ௗ୼
ௗ௧

. (In this last result, we considered that the difference in density 

between the sediment in the bed and that transported downstream can be included in the 

multiplicative constant; see Guo 2014.)  

On the other hand, the amount of scoured material has to scale with the excess of 

shear stress over the critical shear stress, following usual formulas of sediment transport 

(Yalin 1977; Julien 2010; Parker 2004; García 2008; Foster et al. 1977; Stein et al. 1993): 

௤ೞ

ට(ഐೞష ഐ)
ഐ   ௚ ௗయ

 ~  ቀ ఛ
ఛ೎

 −   1ቁ
௠భ

      (7)  

We accept that exponent m1 varies from 1 for cohesive sediment (not the scope of this 

work), to the range 1.5-2 for non-cohesive sediment (Yalin 1977; Julien 2010; Parker 

2004; García 2008). Considering the factors in Eq. (7), the expression for the shear stress 

is taken from Eq. (5a) and the critical shear stress is provided by Shields work; therefore:  
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஽భ/మ  ୼భ/మ ೏౴
೏೟

ට(ഐೞష ഐ)
ഐ   ௚ ௗయ

 ~  ൭
௄భ  ఘ  (೜  ೒  ೓)మ/య  ೏భ/య

ೃ
௄మ  (ఘೞି ఘ)  ௚  ௗ

 −   1൱
௠భ

    (8) 

or: 

ௗ୼
ௗ௧

= ଷ ට(ఘೞି ఘ) ௚ ௗయܭ  

ఘ  ஽
 ଵ
୼భ/మ 

   ൭
௄భ  ఘ  (೜  ೒  ೓)మ/య  ೏భ/య

ೃ
௄మ  (ఘೞି ఘ)  ௚  ௗ

 −   1൱
௠భ

   (9) 

where K1 and K2 are multiplicative constants for the shear stress and for the critical shear 

stress, respectively. K3 is the constant for the rate of change of the scour depth. Under 

equilibrium conditions, the two shear stresses embedded in (9) become equal, giving a 

null rate of change, and ܴ௘௤  = + ܦ     Δ௘௤. For that condition: 

ଶ/ଷ  ݀ଵ/ଷ(ℎ  ݃  ݍ)  ߩ  =   ௄మ
௄భ

 ܴ௘௤ (ߩ௦ −  (10)   ݀  ݃  (ߩ 

Thus, replacing in (9):  

ௗ୼
ௗ௧

= ଷ ට(ఘೞି ఘ) ௚ ௗయܭ  

ఘ  ஽
 ଵ
୼భ/మ 

  ቀோ೐೜

ோ
 −   1ቁ

௠భ
      (11) 

For a 3D configuration, the procedure is very similar. We start by considering the rate 

of volumetric transport of sediment out of the pothole, with the scoured volume given by 

Vol ~ A r ~   r2 ~ 2 D. It is immediate to write for qs ([m3/s]) that 

௦ ~  ௗ௏௢௟ݍ
ௗ௧

 ~  ௗ ൫୼మ   ஽൯
ௗ௧

 = Δ ௗ୼  ܦ  2  
ௗ௧

  and: 

௤ೞ

ට(ഐೞష ഐ)
ഐ   ௚ ௗఱ

 ~  ቀ ఛ
ఛ೎

 −   1ቁ
௠మ

     (12)  

Following the same steps and using Eq. (5b), we can obtain:  

ௗ୼
ௗ௧

= ଻ ට(ఘೞି ఘ) ௚ ௗఱܭ  

ఘ  ஽మ  ଵ
୼ 

   ൭
௄ఱ  ఘ  (೜  ೒  ೓)మ/య  ೏భ/య

ೃఱ/య

௄ల  (ఘೞି ఘ)  ௚  ௗ
 −   1൱

௠మ

   (13) 

After imposing equilibrium conditions:  
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ௗ୼
ௗ௧

= ଻ ට(ఘೞି ఘ) ௚ ௗఱܭ  

ఘ  ஽మ  ଵ
୼ 

  ൤ቀோ೐೜

ோ
ቁ

ହ/ଷ
 −   1൨

௠మ

   (14) 

Eqs. (11) and (14) constitute the ordinary differential equations (ODEs) of the time-

dependent problem for the developed stage, represented mathematically as an initial 

value problem (IVP). The initial condition can be extracted from the experimental data, 

at the transition point between the two phases, following the hypothesis included in the 

model development.  

Very importantly, Eq. (11) is a function solely of the exponent ݉ଵ and the 

multiplicative constant K3; Eq. (14) depends on the exponent ݉ଶ and the constant K7. In 

other words, if the exponents are fixed, the ODEs depend on just the multiplicative 

constants! The remaining variables in the equations are readily available from the tests. 

Constants K1, K2 and K5, K6 are auxiliary variables, which do not need to be determined 

to solve the ODEs. The solutions to the ODEs were implemented in numerical codes in 

Matlab, by using a simple Euler method. Grid-independence tests were developed to 

ensure numerical accuracy. Verification of the codes were developed using other 

languages as well.  

 

V. THEORY VALIDATION 

A. Determination of the multiplicative constants for the equilibrium conditions 

Datasets included in Tables 2 to 4 were employed to obtain constants ܭ଴ and  ܭସ of 

Eqs. (6). In Fig. 14, we graphically compared the measured values of the scour depth 

versus the calculated scour depths by using a value of the corresponding ܭ equal to one 

in Eqs. (6); the slope of the regression line (obtained with the Least Squares Method) 

gives the values of multiplicative constants for the equilibrium condition, for 2D and 3D 
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configurations. From our new experiments, the velocity of the jet, vjet, is available; 

therefore, the head of the jet was obtained as ℎ =
௩ೕ೐೟

మ

ଶ ௚
. In the 2D case, when the 

symmetrical configuration was used, the discharge per unit width was determined as ݍ =

2 ܳ௝௘௧/ܦ∗ (half model) and ݍ = ܳ௝௘௧/ܦ∗ for the full model. For the 3D configuration, the 

values of 2 ܳ௝௘௧ and ܳ௝௘௧, under the two conditions, were employed, respectively. 

The results of the analysis indicate that the corresponding constants are 0.29 and 0.49 

for the 2D and 3D configurations, respectively. These values were rounded to 0.3 and 

0.5, with minimal loss of accuracy. 

 

B. Validation of the formula for the equilibrium conditions with other 

laboratory and field datasets        

Once their respective constants have been determined, we employed several datasets 

published elsewhere in order to validate our expressions for the equilibrium scour depth. 

In Fig. 15, we show comparisons of experimental data points of Veronese (1937), with 

computations obtained with Eq. (6b), corresponding to a 3D configuration and a value of 

the constant equal to 0.5; in addition, a 30% variation interval was included. It can be 

seen that the equation for a 3D configuration predicts very closely the data, with a value 

of the proportionality constant determined from our tests (i.e., it was not calibrated). 

We also validated the 3D equilibrium formula with some field cases, obtaining 

important success without tuning any coefficient (not shown herein). More work is 

needed in this regard, and this issue of potential scale effects will be discussed in a future 

paper. 
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C. Validation of the expressions for the time-dependent scour process 

Inspired by the work by Stein et al. (1993), we checked that model solutions 

resembled the typical “S curve” of their Fig. 2; our solutions did not use any ad-hoc, 

empirical formulations for the shear stress; only conservation laws and the PTT. The 

behavior of our curves is in qualitative agreement with that of Stein et al. (1993), with the 

same variations of the curves with respect to the multiplicative constants and the 

exponents. 

The next step was to compare the prediction of the models against measurements 

developed by Pagliara et al. (2008a) in Zurich; we started with the developed phase, 

where the model strictly holds. We set both exponents m1 and m2 to 1.5, following Foster 

et al. (1977); then, we developed a calibration of the multiplicative constants for 2D and 

3D, beginning for 45°, using some of those datasets. Initial conditions were taken at the 

beginning of the developed phase. Then, we validated the selections of the multiplicative 

constants by comparing against others of those Zurich datasets. It is worth mentioning 

here that after the calibration-validation process undertaken for 45°, the same 

multiplicative constants were used for 60 and 90°, in order to have a solid predictive 

tool. Finally, we validated our models for the entire scour process.  

Results for the 2D configuration are presented on Figs. 16: Whereas the calibration 

results for 45° are introduced in tile (a), those of the validation for the same angle are 

depicted in tile (b). It can be seen that the theoretical/numerical model predicts the first 

selected tests with good accuracy (root mean square error, RMSE, values smaller than 

0.0192 in the relative scour depth, which is very good within the scour and sediment-

transport fields) with a determined multiplicative constant, K3=8 and m1=1.5. (After 
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applying a Least Square Error algorithm, we rounded the final value.) Error bars of 2% of 

the dimensionless scour depth (estimated from the experimental results) have been 

included in the comparisons. Furthermore, the predictions agree with data for both 

submerged/unsubmerged jets. When the model results are compared against other Zurich 

tests in tile (b), it is possible to see that the model performs satisfactorily (RMSE=0.0643 

for Test 59 and 0.173 for Test 56) for the same constant and exponent. Scour-depth 

values obtained for Test 56 show a sudden variation in the rate of change of the scour 

process; we do not have a clear explanation for this behavior. The predictions of the scour 

depth in tile b) are larger than those observed, showing faster scour rates; we suggest 

herein that this could be explained by the fact that the theory does not incorporate in its 

current version the effects of the cloud of suspended sediment seen in many experiments. 

Thus, the theory does not account for the energy invested in keeping the sediment in 

suspension, and therefore the larger scour depth is the result of a larger shear stress (in 

the model) which becomes important in a few tests. Further, this occurrence was 

experimentally suggested by conducting special tests in which the suspended material 

was removed during the scour process from the pothole: A general enlargement was 

noticed with respect to the case in which the granular material was left rotating within the 

scour hole. This effect might be exacerbated by the volumetric flow rate of the test.        

In Fig. 17, computations for 60° for the 2D arrangement are compared against data. 

The same parameters determined in the calibration phase for 45° (i.e., K3=8 and m1=1.5) 

were used herein. It can be seen that the model predicts the experimental tests with good 

accuracy (RMSE values smaller than 0.0291).  
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Results for the 3D configuration are presented in Figs. 18, for 45°; again, we 

separated between calibration and validation. The obtained multiplicative constant for 3D 

cases in tile (a), after the application of the Least Square Method and rounding, is K7=80, 

for m2=1.5. The model again predicts the experimental data for the developed phase with 

good accuracy (RMSE values smaller than 0.0579). In tile (b), we used the same values 

of K7 and m2 above, and the comparisons indicate good agreement as well, with RMSE 

values smaller than 0.0529, except Test 20 (RMSE=0.105). Very interestingly, for the 

validation tests (Fig. 18(b)), the model predictions are below the observed values of scour 

depth, which is opposite to what was observed for 2D cases. We suggest that this is the 

result of the flow physics in the 3D configuration. As stated above, in the 3D scour 

evolution the sediment is also transported in the transverse direction, forming a dune 

which occupies the entire ridge. This effect is not considered in the theory, and thus there 

is no limitation for the homothetic growth. Thus, the dune in the laboratory experiment 

offers a confinement which is not present in the theory, leading to larger laboratory 

values of the shear stress and of the scour depth. This effect, again, seems to be important 

only in some tests.  

For tests with 60° in a 3D configuration, we developed simulations with the same 

values of the multiplicative constant and exponent (i.e., K7=80, for m2=1.5). The 

agreement was found to be very satisfactory (not shown herein) with RMSE values 

smaller than 0.053. 

In Fig. 19, the calculations for tests pertaining to 90° in a 3D configuration, are 

shown. Again, we conducted them with the same values of the multiplicative constant 

and exponent (i.e., K7=80, for m2=1.5). Although the theoretical model was not intended 
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in the current form to capture the step-wise behavior described in the previous sections of 

the paper, the solutions are able to predict well the general evolution of the data. In some 

tests, the model over-predicts the rate of change of the scour depth. Indeed, further tests 

will provide insight into the details of the behavior, but the level of prediction is 

remarkable given that the same values of the model parameters have been used. 

Although the comparisons against data this far have been obtained with 4 to 7 data 

points per test, when all points are included a single plot predicted scour depth versus 

measured scour depth, it is possible to see that the vast majority of points is within 10% 

of variation, and all are within 30%, indicating a very good agreement (Fig. 20). 

The models can in principle offer insight for the entire scour evolution – i.e., for both 

developing and developed phases. In Fig. 21, we provide a quick comparison against 

experimental results by Stein et al. (1993), via the use of the same multiplicative 

constant, and m1=1.5 of the 2D configuration. The comparison with the experiments of 

Stein et al. (1993) is rather difficult because the authors do not specify the original water 

depth. In our simulations, we performed an estimation of such water depth, obtaining 

accurate results in the model predictions for tests presented in their paper. The model is 

able to produce the shape of the experimental data.  

   

 

    

VI. CONCLUSIONS 

In this paper, we addressed the time-dependent scour depth induced by jets over non-

cohesive, granular material, having the equilibrium condition as a particular case. In first 
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place, we presented careful experimental tests regarding the scour evolution under a 

considerable range of jet angles (from the horizontal) including the much less frequent 

case of 90°. From those tests, our results corroborated the classification recently put 

forward elsewhere regarding the existence of two clear phases: Developing and 

developed phases, and highlighted the homothetic nature of the latter. This last piece of 

information proved to be crucial for the validation process of the theory. Further, new 

evidence regarding the unique dynamics pertaining to an angle of 90° was provided, 

indicating a step-wise progression of the scour depth, and a very fast dynamics in the 

initial stages of the process. The dynamics for 90° thus differ substantially from that of 

other angles. The transition time between the two stages was characterized with a linear 

relation of the logarithm of the transition time and the jet angle.  

Second, for the first time to the best of our knowledge, the subject has been fully 

approached via the PTT and conservation laws in a novel theory, up to a multiplicative 

constant. In spite of purported shortcomings highlighted elsewhere, the 

phenomenological theory appears once again as a very useful tool for understanding 

diverse aspects of hydraulics, as remarked by a recent review, until more sophisticated 

theories become available. Data from our and others’ work allowed us to obtain the 

multiplicative constant for the equilibrium scour depth. For the time evolution, a simple 

mass balance was used in addition to the PTT and a simplified pothole shape, to provide 

an unprecedented, unified picture conducive to the theoretical analysis of the problem for 

2D and axi-symmetrical geometries. The models are rigorously valid during the 

developed phase, where the homothetic behavior and the adopted shape strictly hold. A 

couple of ODEs was obtained, which can be solved numerically with standard methods. 
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Each ODE very nicely depends on a multiplicative constant and an exponent; the 

exponent was fixed at 1.5, and each constant was obtained via comparison against our 

own experiments for 2D and 3D. Since our experimental results correspond to rather 

small sizes, the validity of the developed equations for diverse (large) scales is left for 

future work. 

It was shown that the theoretical/numerical models predict closely the experimental 

data with both submerged and unsubmerged conditions, for the developed phase of our 

experimental data. Further, the models successfully provide insight for all stages of the 

scour process. 
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APPENDIX: MESURES OF ERROR FOR MODEL VALIDATION   

The quantification of error was undertaken using well known metrics, as described 

here. R2 is the coefficient of determination, defined as:  

 ܴଶ  = 1 −  ∑ (ை೔ି ெ೔)మಿ
೔సభ

∑ (ை೔ି ைത)మಿ
೔సభ

       (A1) 
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where O and M indicate the observed and modeled values, respectively; the overbar 

represents the averaged values; and N is the number of points used. In turn, the RMSE is 

defined as:  

= ܧܵܯܴ  ൜ൣ∑ (ை೔ି ெ೔)మಿ
೔సభ ൧

ே
ൠ

ଵ/ଶ
     (A2) 
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Table captions 
 

Table 1: Sets of values of the exponents of Eq. (1) empirically determined (or set to zero) 
by different researchers. Partially adapted from Mason and Arumugam (1985) and 
Hoffmans and Verheij (1997). Also shown are the theoretical values of the exponents 
determined from the equilibrium theory detailed in the text and published elsewhere. 

 
Table 2: Laboratory tests analyzed in this paper, both taken from previous research by 
the authors and especially developed for this work. 

 
Table 3: Laboratory tests especially conducted for this work. 
 
Table 4: Scour depth time evolution for tests with vertical jet (90°). 
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Table 1: Sets of values of the exponents of Eq. (1) empirically determined (or set to zero) 

by different researchers. Partially adapted from Mason and Arumugam (1985) and 
Hoffmans and Verheij (1997). Also shown are the theoretical values of the exponents 
determined from the equilibrium theory detailed in the text and published elsewhere. 

 

  Exponent 
  Reference eq eh eg ed e 

2D
 

Schoklitsch (1932) 0.57 0.2 0 -0.32 0 
Veronese (1937) 0.54 0.225 0 -0.42 0 
Muller and Eggenberger (1944) 0.6 0.5 -0.3 -0.4 4/9 
Hartung (1959) 0.64 0.36 0 -0.32 0 
Franke (1960) 0.67 0.5 0 -0.5 0 
Kotoulas (1967) 0.7 0.35 -0.35 -0.4 0 
Chee and Padiyar (1969) 0.67 0.18 0 -0.063 0 
Chee and Kung (1974) 0.6 0.2 0 -0.1 0 
Machado (1980) 0.5 0.3145 0 -0.0645 0 
Bormann and Julien (1991) 0.6 0.5 -0.3 -0.4 0.8 
Hoffmans (1998) (for d90>0.0125 m) 0.5 0.25 -0.25 0 0 
Theory (Bombardelli and Gioia, 2005; 
Gioia and Bombardelli, 2005) 2/3 2/3 -1/3 -2/3 1 

3D
 Aderibigbe and Rajaratnam (1996) 0.5 0.25 -0.25 -0.5 0.5 

Abt et al. (1984) 0.345 0.1425 -0.17 0 0 
Theory (Bombardelli and Gioia, 2006) 0.4 0.4 -0.2 -0.4 0.6 
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Table 2: Laboratory tests analyzed in this paper, both taken from previous research by 
the authors and especially developed for this work. 

 
                
  

Authors Configuration 
Width of 
channel 

[m] 

Sediment 
size, d50 
[mm] 

Jet 
angles 

Number 
of tests 

  

    

 

Pagliara et al. 
(2006) 

Nearly 3D. 
Equilibrium 0.5 6.5 

45°, 
60°, 
90° 

37 
 

  

Pagliara et al. 
(2008a) 

2D* and 
**/3D**. 
Evolution 

0.5 1.15 45°, 
60° 22 

  

  
Pagliara et al. 
(2008b) 

3D. 
Equilibrium 0.8 10.3 

45°, 
60° 89   

  

Pagliara and 
Palermo (2008) 

2D. 
Equilibrium 0.2 9.5 

45°, 
60°, 
75°, 
85° 

16 

  

  

Present study 2D. 
Equilibrium 0.2 9.5 

45°, 
60°, 
75°, 
85° 

12 

  

  
Present study 3D**. 

Evolution 0.8 7.45 90° 6   
 
Note: *“full model”; **half model “Half model” refers a flow condition in which a 
symmetry plane was used to simplify the model, and a smaller jet nozzle was employed. 
In the “full model,” i.e., the full jet, no simplification was used. 
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Table 3: Laboratory tests especially conducted for this work. 
 

Test Q 
[l/s] 

 D 
[cm] 

max  
[cm] 

vjet 
[m/s] 

Dtest 

[m] 
α 

[deg] 
d50 

[mm] 
ρs 

[kg/m3] Config. 

1** 3.45 18.9 17 6.03 

0.027 

90 7.45 2468 3D    
Evolution 

2** 3.45 9.45 16 6.03 
3** 3.45 2.7 15.5 6.03 
4** 2.35 18.9 11 4.11 
5** 2.38 9.45 11 4.16 
6** 2.4 2.7 11 4.19 
7* 2.5 14.3 8.5 4.37 

45 9.50 2453 2D Equil. 8* 4.4 14.3 17.3 7.69 
9* 2.5 2.7 8.6 4.37 
10* 2.5 2.8 6.7 4.37 

60 9.50 2453 2D Equil. 11* 2.5 18.9 9.7 4.37 
12* 3.5 2.6 13 6.12 
13* 3.5 18.9 16.7 6.12 

75 9.50 2453 2D Equil. 14* 4.4 18.9 23.3 7.69 
15* 2.5 13.5 11.1 4.37 
16* 2.5 13.5 9.5 4.37 

85 9.50 2453 2D Equil. 17* 3.5 13.5 16.2 6.12 
18* 4.4 13.5 24.9 7.69 

          
Note: The duration of all tests was of approximately one hour. *“full model;” and **“half 
model.” 
All tests were developed for unsubmerged conditions and no aeration of the jet was 
included. 
Dtest = D* for “full model.” 
Dtest = D*/√2 for “half model.” 
Q indicates the discharge of the test.  
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Table 4: Scour depth time evolution for tests with vertical jet (90°). 
 

Test 1** 2** 3** 4** 5** 6** 

time    
[s] 

t       
[m] 

t       
[m] 

t       
[m] 

t       
[m] 

t       
[m] 

t       
[m] 

0 0 0 0 0 0 0 
1 0.070 0.110 0.110 0.040 0.050 0.070 
2 0.100 0.130 0.130 0.050 0.055 0.075 
3 0.105 0.130 0.135 0.060 0.070 0.080 
4 0.110 0.130 0.140 0.065 0.080 0.085 
5 0.130 0.135 0.140 0.070 0.080 0.095 
6 0.135 0.130 0.145 0.075 0.085 0.095 
7 0.140 0.135 0.145 0.075 0.085 0.100 
8 0.145 0.135 0.150 0.075 0.085 0.100 
9 0.145 0.135 0.150 0.075 0.085 0.100 

10 0.145 0.135 0.150 0.075 0.095 0.100 
20 0.160 0.140 0.145 0.075 0.100 0.100 
30 0.160 0.140 0.145 0.080 0.105 0.100 
40 0.160 0.145 0.145 0.095 0.110 0.100 
50 0.165 0.145 0.145 0.100 0.110 0.105 
60 0.160 0.145 0.145 0.100 0.110 0.105 
120 0.170 0.145 0.145 0.100 0.110 0.105 
240 0.170 0.150 0.150 0.105 0.110 0.105 
480 0.170 0.150 0.150 0.105 0.110 0.105 
600 0.170 0.155 0.155 0.105 0.110 0.110 
900 0.170 0.155 0.155 0.105 0.110 0.110 

1200 0.170 0.155 0.155 0.105 0.110 0.110 
1500 0.170 0.155 0.155 0.105 0.110 0.110 
1800 0.170 0.160 0.155 0.110 0.110 0.110 
2100 0.170 0.160 0.155 0.110 0.110 0.110 
2400 0.170 0.160 0.155 0.110 0.110 0.110 
3000 0.170 0.160 0.155 0.110 0.110 0.110 
3600 0.170 0.160 0.155 0.110 0.110 0.110 

 
Note: **half model 
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Figure captions 
 

FIG. 1. (a) Sketch of the jet-driven configuration detailing the main hydraulic and 
geometric parameters.  is the time-dependent scour depth; D is the uniform water depth 
before the scour starts; q indicates the volumetric flow rate in a three-dimensional (3D) 
set-up (Qjet), or the volumetric flow rate per unit width in a two-dimensional (2D) set-up; 
α is the jet angle; D* is the equivalent pipe diameter; and R =  + D. Whereas the 2D 
configuration is “cylindrical,” the 3D counterpart is axisymmetric. (b) Picture of the 
experimental set-up for a 3D configuration. 
 
 
FIG. 2. (a) Snapshot of the scour evolution process for a test pertaining to a 2D case, a jet 
angle of 60° and unsubmerged conditions. Solid line indicates the location of the initial 
granular bed, and flow is from right to left. (b) Detail of the equilibrium scour pothole 
obtained with a 3D configuration (contours in centimeters with respect to the initial bed 
elevation) and a jet angle of 60°. Upper tile: Contour map; lower tile: three-dimensional 
view. 
 
 
FIG. 3. Schematic of the time evolution of the scour process for the developing ((a)-(c)) 
and developed ((d)-(f)) phases. Arrow indicates the direction of the jet, and dots indicate 
sediment particles in suspension. The inclination of the downstream dune follows the 
angle of repose. 
 
 
FIG. 4. Developing phase of the scour process for coarser material (flow from right to 
left). The jet angle is 45° and the configuration is 3D. (a) t=1 s (impact of the jet on the 
bed material); (b) t=4 s (sediment transport directed both longitudinally and laterally); (c) 
t=14 s (upstream ridge surface is fully developed); (d) t=25 s, end of the developing 
phase (both upstream and downstream surfaces of the ridge are fully developed). Test 
undertaken for this work. 
 
 
FIG. 5. Developed phase of the scour process for coarser material (flow from left to 
right). The jet angle is 60° and the configuration is 3D. In (a) and (b), the expansion of 
the scour hole is depicted (t=300 s and t=600 s, respectively) and in (c) the dynamic 
equilibrium configuration is shown (t=3600 s); (d) static equilibrium configuration. Test 
undertaken for this work. 
 
 
FIG. 6. Pothole behavior during the developing phase for 90°. Scour evolution for Test 5 
(see Table 4) at: (a) t=4 s, (b) t=5 s (scour hole enlargement with almost the same scour 
depth of t=4 s); t=6 s (increase of the scour depth), (d) t=7 (scour hole enlargement with 
almost the same scour depth of t=6 s). 
 
 



 

 43

FIG. 7. Time evolution of the scour depth for 3D tests with jet angle  equal to 90°, along 
with the plots of the lines indicating the transition between developing and developed 
phases for 90° (this study) and 45° and 60° (derived from Pagliara et al. 2008a). The 
scour depth has been made non-dimensional with the equivalent jet diameter.  
 
 
FIG. 8. Developing phase of the scour process for coarser material and a jet angle of 90° 
in 3D (Test 1 undertaken for this paper): (a) t=1 s (impact of the jet on the bed material); 
(b) t=3 s (development of both upstream and downstream surface of the ridge); (c) t=9 s 
(further development of both upstream and downstream surface of the ridge); (d) t=12 s, 
end of the developing phase (both upstream and downstream surface of the ridge are fully 
developed). 
 
 
FIG. 9. Developed phase of the scour process for coarser material and a jet angle of 90° 
in 3D (Test 1 undertaken for this paper): (a), (b) and (c) slight expansion of the scour hole 
(t=60 s, 120 s, and t=180 s, respectively); (d) static configuration. 
 
 
FIG. 10. Developing phase of the scour process for fine material, a jet angle of 45° and a 
2D configuration (flow from left to right). (a) t=1.5 s (impact of the jet on the bed 
material); (b) t=3 s (sediment transport directed longitudinally); (c) t=40 s (upstream 
ridge surface fully developed); (d) t=75 s, end of the developing phase (both upstream 
and downstream surface of the ridge are fully developed). Test undertaken in 2008; 
unpublished papers. 
 
 
FIG. 11. Developed phase of the scour process for fine material, a jet angle of 45° and a 
2D configuration (flow from left to right). (a) and (b) expansion of the scour hole (t=3200 
s and t=3900 s, respectively); (c) dynamic equilibrium configuration (t=7000 s); (d) static 
equilibrium configuration. Test undertaken in 2008; unpublished papers. 
 
 
FIG. 12. Time evolution of the scour process for different jet angles: (a) α=30°; (b) 
α=45°; (c) α=60° (data from Pagliara et al. 2008a); and (d) α=90° (present study). The 
vertical dotted line represents the transition developing/developed phase. The 
nomenclature of the tests, developed in Zurich, follows that of Pagliara et al. (2008a). 
The first number indicates the test number; after the A, the angle is indicated; finally “S” 
or “U” indicates submerged or unsubmerged conditions. 
 
 
FIG. 13. (a) Sketch of the turbulent cauldron with its largest eddies of characteristic 
velocity V (left side), three grains of diameter d lying on the surface of the pothole, along 
with the fluctuating velocities normal and tangent to the wetted surface S (vn and vt, 
respectively), and ud indicating the velocity scale of eddies of size d (adapted from 
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Bombardelli and Gioia 2006) (right side); (b) sketch of the adopted pothole geometry for 
the evolution of the scour process at any given time. 
 
 
FIG. 14. Determination of the multiplicative constants in Eqs. (6). In 2D, for the tests of 
Pagliara and Palermo (2008), the width of the channel was used to compute the discharge 
per unit width, whereas the equivalent pipe diameter was used to that end for tests by 
Pagliara et al. (2008a). This decision was made based on images and videos of the tests.   
 
 
FIG. 15. Comparison among measured and predicted values (Eq. 6b) for all data from 
Veronese (1937). Depths are expressed in meters. 
 
 
FIG. 16. Numerical solutions of Eq. (11) for the 2D configuration and a jet angle of 45°, 
and comparison against experimental data. (a) Calibration (data from Pagliara et al. 
2008a). (b) Validation (data from Pagliara et al. 2008a). 
 
 
FIG. 17. Numerical solutions of Eq. (11) for the 2D configuration and a jet angle of 60°, 
and comparison against experimental data from Pagliara et al. (2008a).  
 
 
FIG. 18. Numerical solutions of Eq. (14) for the 3D configuration and a jet angle of 45°, 
and comparison against experimental data. (a) Calibration (data from Pagliara et al. 
2008a). (b) Validation (data from Pagliara et al. 2008a). 
 
 
FIG. 19. Numerical solutions of Eq. (14) for the 3D configuration and a jet angle of 90°, 
and comparison against experimental data from present study. 
 
 
FIG. 20. Comparison among measured and predicted values (Eqs. (11) and (14)) for the 
time evolution of the scour depth. Depths are expressed in meters. 
 
 
FIG. 21. Validation of model predictions against data pertaining to the case of Run 22 of 
Stein et al. (1993). 
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FIG. 1. (a) Sketch of the jet-driven configuration detailing the main hydraulic and 
geometric parameters.  is the time-dependent scour depth; D is the uniform water depth 
before the scour starts; q indicates the volumetric flow rate in a three-dimensional (3D) 
set-up (Qjet), or the volumetric flow rate per unit width in a two-dimensional (2D) set-up; 
α is the jet angle; D* is the equivalent pipe diameter; and R =  + D. Whereas the 2D 
configuration is “cylindrical,” the 3D counterpart is axisymmetric. (b) Picture of the 
experimental set-up for a 3D configuration. 
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FIG. 2. (a) Snapshot of the scour evolution process for a test pertaining to a 2D case, a jet 
angle of 60° and unsubmerged conditions. Solid line indicates the location of the initial 
granular bed, and flow is from right to left. (b) Detail of the equilibrium scour pothole 
obtained with a 3D configuration (contours in centimeters with respect to the initial bed 
elevation) and a jet angle of 60°. Upper tile: Contour map; lower tile: three-dimensional 
view. 
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FIG. 3. Schematic of the time evolution of the scour process for the developing ((a)-(c)) 
and developed ((d)-(f)) phases. Arrow indicates the direction of the jet, and dots indicate 
sediment particles in suspension. The inclination of the downstream dune follows the 
angle of repose. 
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FIG. 4. Developing phase of the scour process for coarser material (flow from right to 
left). The jet angle is 45° and the configuration is 3D. (a) t=1 s (impact of the jet on the 
bed material); (b) t=4 s (sediment transport directed both longitudinally and laterally); (c) 
t=14 s (upstream ridge surface is fully developed); (d) t=25 s, end of the developing 
phase (both upstream and downstream surfaces of the ridge are fully developed). Test 
undertaken for this work. 
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FIG. 5. Developed phase of the scour process for coarser material (flow from left to 
right). The jet angle is 60° and the configuration is 3D. In (a) and (b), the expansion of 
the scour hole is depicted (t=300 s and t=600 s, respectively) and in (c) the dynamic 
equilibrium configuration is shown (t=3600 s); (d) static equilibrium configuration. Test 
undertaken for this work. 
  



 

 50

 

FIG. 6. Pothole behavior during the developing phase for 90°. Scour evolution for Test 5 
(see Table 4) at: (a) t=4 s, (b) t=5 s (scour hole enlargement with almost the same scour 
depth of t=4 s); t=6 s (increase of the scour depth), (d) t=7 (scour hole enlargement with 
almost the same scour depth of t=6 s). 
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FIG. 7. Time evolution of the scour depth for 3D tests with jet angle equal to 90°, along 
with the plots of the lines indicating the transition between developing and developed 
phases for 90° (this study) and 45° and 60° (derived from Pagliara et al. 2008a). The 
scour depth has been made non-dimensional with the equivalent jet diameter. 
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FIG. 8. Developing phase of the scour process for coarser material and a jet angle of 90° 
in 3D (Test 1 undertaken for this paper): (a) t=1 s (impact of the jet on the bed material); 
(b) t=3 s (development of both upstream and downstream surface of the ridge); (c) t=9 s 
(further development of both upstream and downstream surface of the ridge); (d) t=12 s, 
end of the developing phase (both upstream and downstream surface of the ridge are fully 
developed). 

 
 
 

  



 

 53

 

 
FIG. 9. Developed phase of the scour process for coarser material and a jet angle of 90° 
in 3D (Test 1 undertaken for this paper): (a), (b) and (c) slight expansion of the scour hole 
(t=60 s, 120 s, and t=180 s, respectively); (d) static configuration. 
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FIG. 10. Developing phase of the scour process for fine material, a jet angle of 45° and a 
2D configuration (flow from left to right). (a) t=1.5 s (impact of the jet on the bed 
material); (b) t=3 s (sediment transport directed longitudinally); (c) t=40 s (upstream 
ridge surface fully developed); (d) t=75 s, end of the developing phase (both upstream 
and downstream surface of the ridge are fully developed). Test undertaken in 2008; 
unpublished papers. 
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FIG. 11. Developed phase of the scour process for fine material, a jet angle of 45° and a 
2D configuration (flow from left to right). (a) and (b) expansion of the scour hole (t=3200 
s and t=3900 s, respectively); (c) dynamic equilibrium configuration (t=7000 s); (d) static 
equilibrium configuration. Test undertaken in 2008; unpublished papers. 
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FIG. 12. Time evolution of the scour process for different jet angles: (a) α=30°; (b) 
α=45°; (c) α=60° (data from Pagliara et al. 2008a); and (d) α=90° (present study). The 
vertical dotted line represents the transition developing/developed phase. The 
nomenclature of the tests, developed in Zurich, follows that of Pagliara et al. (2008a). 
The first number indicates the test number; after the A, the angle is indicated; finally “S” 
or “U” indicates submerged or unsubmerged conditions.  
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FIG. 13. (a) Sketch of the turbulent cauldron with its largest eddies of characteristic 
velocity V (left side), three grains of diameter d lying on the surface of the pothole, along 
with the fluctuating velocities normal and tangent to the wetted surface S (vn and vt, 
respectively), and ud indicating the velocity scale of eddies of size d (adapted from 
Bombardelli and Gioia 2006) (right side); (b) sketch of the adopted pothole geometry for 
the evolution of the scour process at any given time. 
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FIG. 14. Determination of the multiplicative constants in Eqs. (6). In 2D, for the tests of 
Pagliara and Palermo (2008), the width of the channel was used to compute the discharge 
per unit width, whereas the equivalent pipe diameter was used to that end for tests by 
Pagliara et al. (2008a). This decision was made based on images and videos of the tests. 
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FIG. 15. Comparison among measured and predicted values (Eq. 6b) for all data from 
Veronese (1937). Depths are expressed in meters. 
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FIG. 16. Numerical solutions of Eq. (11) for the 2D configuration and a jet angle of 45°, 
and comparison against experimental data. (a) Calibration (data from Pagliara et al. 
2008a). (b) Validation (data from Pagliara et al. 2008a). 
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FIG. 17. Numerical solutions of Eq. (11) for the 2D configuration and a jet angle of 60°, 
and comparison against experimental data from Pagliara et al. (2008a).   
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FIG. 18. Numerical solutions of Eq. (14) for the 3D configuration and a jet angle of 45°, 
and comparison against experimental data. (a) Calibration (data from Pagliara et al. 
2008a). (b) Validation (data from Pagliara et al. 2008a). 
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FIG. 19. Numerical solutions of Eq. (14) for the 3D configuration and a jet angle of 90°, 
and comparison against experimental data from present study. 
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FIG. 20. Comparison among measured and predicted values (Eqs. (11) and (14)) for the 
time evolution of the scour depth. Depths are expressed in meters.   
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FIG. 21. Validation of model predictions against data pertaining to the case of Run 22 of 
Stein et al. (1993). 

 
 

 


