Effects of petting before a brief separation from the owner on dog behavior and physiology: a pilot study.

Chiara Mariti¹², Beatrice Carlone¹, Massimiliano Protti¹, Silvana Diverio³, Angelo Gazzano¹²

¹ Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
² ETOVET – Group of Research in Veterinary Ethology and Physiology, Pisa, Italy
³ Dipartimento di Medicina Veterinaria, Università di Perugia, Italy

* Corresponding author: chiara.mariti@unipi.it

Doi: 10.1016/j.jveb.2018.07.003
Highlights

- Human physical contact can induce positive effects on dogs’ behavior and physiology
- The effects of petting before a brief separation from the owner were evaluated
- During separation dogs who had been petted displayed calmer behavior
Abstract

Human physical contact is known to be effective in decreasing dogs’ level of stress, assessed through endocrine, physiological and behavioral parameters. Gentle touching has been found to be beneficial for dogs while experiencing or after having experienced a stressful event. The aim of the current study was to assess if dog behavior and physiology during a brief separation from the owner were modified by being petted before owner’s departure. Ten dogs, not affected by separation-related problems, were tested twice while separated for three minutes from the owner: before separation, dogs once were petted for 1 minute and once were not petted. During each test, dog behavior was measured by focal animal sampling and saliva collected 15 min after separation for cortisol determination. Findings show that, during both procedures, dogs spent a long time seeking for the owner (median 84.5 and 87.5) and did not seem highly stressed by separation (low salivary cortisol levels and relatively low stress signals). When dogs were petted before separation displayed behaviors indicative of calmness for a longer period of time while waiting for the owner’s return (Z = -1.955; P = 0.049), and their heart rate showed a marked decrease after the test (Z = -1.682; P = 0.073). This pilot study suggests that petting a dog before a brief separation from the owner may have a positive effect, making the dog calmer during the separation itself. Further studies are needed to analyze more in depth its effectiveness, especially in dogs affected by separation anxiety.

Key words: behavior, dog, gentle touching, separation, owner.

Introduction

The dog is a highly social species whose individuals have a pronounced need for social contact with conspecifics (Tuber et al., 1996), as well as with heterospecifics (vonHoldt et al., 2017). An important characteristic of dogs’ sociability is the ability to form an attachment bond towards their owners (Mariti et al., 2013). Attachment behaviors are part of the normal repertoire of social species, and they are particularly displayed when the attachment system is activated, e.g. in case of separation from the attachment figure in an unfamiliar environment. In fact, this kind of condition is artificially created in the Ainsworth’s Strange
Situation Test (ASST), a validated test used to assess the attachment bond (Ainsworth and Bell, 1970). Not only young animals, but also adult domestic dogs (Mariti et al., 2013; Topál, Miklósi, Csányi, & Dóka, 1998), during separation from the caregiver in an unfamiliar environment, usually show behaviors indicative of discomfort and attempt to regain proximity. Although adult dogs showed distress even when separated from other dogs living in the same household, their behavior in other episodes of the ASST indicates that the bond with the owner is stronger than the relationship with any other dog, including their own mother (Mariti et al., 2017).

The display of distress at separation in adult dogs during ASST is not necessarily related to separation anxiety or other separation-related problems (Parthaasarathy and Crowell-Davis, 2006). However, traditionally, owners whose dogs suffered from separation anxiety were advised to reduce affiliative behaviors towards their dog (called detachment) and to desensitize dogs to the rituals related to departure (Pageat, 1999; Horwitz, 2009). This kind of behavior modification protocol has been called into question in recent years, as it may be in contradiction with the current understanding of the importance of predictability in the stress response (Overall, 2013; Amat, Camps, Le Brech, & Manteca, 2014). A scientific assessment of the common practices in behavioral medicine is in fact required, considering the strong impact they have on dog welfare.

Dogs’ sociability is also reflected in the positive effects of human physical contact and interaction in decreasing dogs’ level of stress, assessed through endocrine (Coppola et al., 2006; Hennessy et al., 1998) and behavioral parameters (Shiverdecker et al., 2013). Human physical contact also affect dogs’ heart rate and heart rate variability, and its influence depends on the familiarity and on the area petted (Kuhne et al., 2014). Until now it has been studied the effect of gentle touching on dogs while experiencing or after having experienced a stressful event. However, its potential preventative effect has not been investigated yet.

The aim of the current study was to assess if dog behavior and physiology during a brief separation from the owner were affected by being petted before owner’s departure.

Materials and methods
Participants

The inclusion criteria for dogs involved in this study were:

✓ Being more than 1 year old

✓ Not displaying behavioral problems, especially those related to separation (excluded with an interview performed by a veterinary behaviorist)

✓ Being generally healthy and not suffering from travel-related problems

✓ Having been lived in the current family for at least 6 months

✓ Being used to be stroked daily by the owners

✓ Not used to be petted by owners before being left alone.

The sample was formed by 10 dogs, 6 females (3 spayed) and 4 males (3 neutered), 1-11 years old (5.4 ± 3.4), 7 mixed-breeds, 1 Labrador Retriever, 1 Hovawart, and 1 Chihuahua.

Each dog was accompanied by the owner, i.e. one member of the family in which the dog lived. Such person was required to be widely involved in the management of the dog and, according to the family, he/she was a person to which the dog was particularly bonded. Owners involved in the test were 4 women and 2 men, 27.3 ± 5.4 years old, all volunteers recruited by personal contacts.

Together with the owner, some experimenters were involved in the execution of the tests. Test leader 1 was a person unfamiliar to the dogs; that role was always played by 25-35 years old women. Test leader 2 was instead a person that dogs had the opportunity to meet before, and he was in charge of measuring heart rate. A further unfamiliar person was occasionally involved in assisting the owner in taking saliva samples from the dog.

Behavioral test

Each dog was tested twice, using two slightly modified versions of the same behavioral test, whose detailed description is reported below. All the test was executed outdoor, in a dog training center in Pisa (Italy) that was unfamiliar to the dogs. The setting is shown in figure 1. Two video cameras were used to record the whole tests, and videos were then observed to analyze dog behavior (see section below).
Phase 1: Introductory episode. Owners were asked to maintain their dog on the leash and to slowly walk for 5 minutes in a street just out of the dog training center, in which dogs could explore the environment and evacuate if necessary. The owner changed the leash of the dog, using a 1.5-meter leash provided by the experimenters. The same leash was used for all tests.

Phase 2: Pre-separation. The owner entered the field through gate 1, holding the dog on the leash, and reached test leader 1 and test leader 2 in point A (two meters far from the fence). Test leader 2 measured heart rate through a phonendoscope, then went away passing through gate 1. Dog and owner remained in point A, one meter far from test leader 1. The first minute spent in this condition represented the difference between the two modified versions of the test. In the NGT test (No Gentle Touch), the owner spent one minute talking with test leader 1, without touching the dog nor giving him/her any specific attention, and maintaining a relaxed, neutral attitude. In the WGT test (With Gentle Touch), the owner spent one minute petting the dog, 30 seconds per part, from the head to the tail; in the meanwhile, the owner was chatting with test leader 1.

Phase 3: Separation. In order to attract dogs’ attention on their departure, owners were asked to say a neutral word, a word that dogs usually do not know, while the use of specific commands or signs was not allowed. So, in this phase, the owner gave the leash to the test leader 1, said the chosen word, and walked to gate 2 and then to point B. The latter was located behind a wood shed, so that the owner was not visible to the dog. The owner spent 3 minutes in point B and then he/she was called by the test leader 1. Test leader 1 had to maintain a neutral attitude, standing still and leaving the dog the opportunity to move within the distance allowed by the length of the leash. Test leader 1 could not draw dog’s attention; whether the dog was attempting to socialize with test leader 1, she could not move the dog away and then go back to a neutral, detached state.

Phase 4: Reunion. The owner went back from point B to point A, and took the leash from the test leader 1. At the reunion with the dog, owners were asked not to seek for dog’s attention with words nor gestures; in case the dog greeted the owner, the latter could calmly greet the dog. Then the owner held the dog on the
leash for one minute, maintaining a neutral, relaxed attitude, one meter far from test leader 1 and chatting with her. After that, the test leader 2 came back and measured again the heart rate of the dog.

Phase 5: Post-test. Owner and dog went out of the field. Dogs were leashed in order to avoid excessive locomotion, eating and drinking.

Half of the sample underwent test NGT first, while the other half underwent the WGT first, in order to reduce a possible order effect. The two tests were carried out 5-9 days apart (8.0 ± 2.7 days), during springtime (8th April-6th May 2014) and in the time range 3:00-6:00 p.m. with a maximum deviation, for each individual dog, of 30 minutes between the two tests.

Physiological and behavioral parameters

Fifteen minutes after the end of separation (Mongillo et al., 2013), owners were asked to take a saliva sample from the dog using Salivette® cortisol. In case of need, owners were helped by an assistant who showed the owners how to use it. The swab was gently put under the dog's tongue and in the cheek pouches for 60 s. Then the cotton roll was placed back in the labelled Salivette tube, placed on ice and brought to the laboratory within 1 h from the collection. In the ETOVET laboratory at the University of Pisa (Italy), the Salivette® samples were centrifuged at 3000 rpm for 25 minutes and the saliva obtained was stocked at -20°C. Once thawed, saliva cortisol was measured using a Diametra® Cortisol Enzyme Immunoassay Kit according to the manufacturer's instructions. Due to possible interferences with the procedure, dogs were not allowed to get any food in the 3 hours preceding the tests, and they could not drink in the 20 minutes preceding the procedure.

The behavior of dogs during the 3-minute separation episode (phase 3) was analyzed through a continuous sampling method. Videos were analyzed using Adobe Premiere Pro CC®, in order to measure the duration (in seconds) of each behavior reported in the synopsis (table 1). According to their meaning, behaviors were grouped into behavioral categories.

Statistical analysis
The values of saliva cortisol and the duration of behavioral categories in the two tests were compared using the Wilcoxon test (P < 0.05) on SPSS®17.0. The same statistical test was used to compare heart rate before and after each behavioral test.

Results

Results are summarized in table 2.

Heart rate did not show any changes when comparing before and after NGT test, whilst it showed a marked decrease after WGT test. Saliva cortisol after the two tests did not differ.

Dogs showed behaviors indicative of calm for statistically longer durations during WGT test. The other behavioral categories were not displayed for statistically different durations during the WGT and NGT versions of the test.

Discussion

The aim of this study was to investigate the possible preventative effect of gentle touching in reducing stress in dogs undergoing a brief separation from the owner. Although findings cannot be considered definitive, and their interpretation should be cautious due to the novelty of the study and to the limited number of dogs involved, the strict inclusion criteria and the use of dogs as their own control allow us to provide some tentative explanations.

Social isolation has been shown to be one of the most reliable and potent stimuli for producing a stress response, and it is widely used as an experimental model for inducing stress, e.g. in the Ainsworth Strange Situation Test. The protocol of this study can be regarded as a simplified version of this test. As expected from previous research, in the current study dogs displayed some stress signals and vocalizations, confirming that being separated from the owner represented a mildly stressful event. In addition, dogs showed a clear preferential attention towards their owner, spending most of the time during separation oriented towards the place where they saw the owner leaving (Mariti et al., 2013; Mongillo et al., 2010). Dogs instead spent short time oriented to the stranger (similarly to Mongillo, Bono, Regolin, & Marinelli,
However, none of these behaviors resulted to be differently displayed by dogs when tested in the gentle touching versus no gentle touching condition. In the same way, salivary cortisol levels after separation did not differ according to the treatment received before the owner left. However, it must be noted that in both cases dogs showed low levels of cortisol (Cobb et al., 2016), suggesting that separation from the owner did not result in a high activation of the hypothalamus-pituitary-adrenal cortex system, as expected during a brief separation from the owner in dogs not affected by separation anxiety. This is not in contrast with studies measuring cortisol after ASST, in which salivary cortisol levels were increased (Mongillo et al., 2013), because the ASST consists in a more active (play) and stressful (two separations) procedure. It is, therefore, possible that a longer period of separation would have led to different results.

As for the display of stress-related behaviors during separation, the number seems to be relatively low. However, a valid evaluation of their intensity is hard, as no data are available on a possible range of normality. A comparison with other studies that investigated the display of some of the stress signals analyzed in the current study reveals that their frequency was comparable to that of dogs before and after a session of animal-assisted intervention (Pirrone et al., 2017), lower than that of rescue dogs during a search operation (Diverio et al., 2016) and apparently higher than that of dogs left home alone (Scaglia et al., 2013), although in the latter fewer behaviors were analyzed and for a longer time.

The most remarkable finding of the current study is represented by the longer time spent by dogs in calm behaviors if petted before being separated from the owner. This result was confirmed by a marked decrease in heart rate in such experimental condition, although the trend did not reach a statistically significant difference. Such findings are in agreement with previous studies showing that positive social interactions, through oxytocin release, may dampen stress responses and increase relaxation (DeVries et al., 2003; Uvnäs-Moberg, 1998).

Most studies using behavioral and physiological measures have investigated the effects on dogs of stressful situations. A lower number of studies have focused on pleasant conditions. For instance, endogenous oxytocin levels increase in dogs after they engage in affiliation with conspecific partners, indicating a stimulation of the oxytocin system during social interactions (Romero et al., 2014). In domestic dogs, the
same stimulation seems to be the result of affiliative interactions with people; e.g. it has been found that a
calm and positive interaction, such as the dog being stroked by a human, induces a decrease in cortisol levels
(Tuber et al., 1996) and blood pressure (Odendaal and Meintjes, 2003), while oxytocin is increased (Handlin
et al., 2011; Odendaal and Meintjes, 2003). Rehn et al., 2014 found that the mere return of a familiar person
after separation had a positive effect on oxytocin levels and induced contact-seeking behavior in dogs,
whereas physical contact was necessary in order to induce a sustained increase in oxytocin levels and to
decrease cortisol levels in the period following reunion. The two findings are strongly linked one to the
other, since the excretion of oxytocin can inhibit HPA responses and hence lower cortisol release (Neumann
et al., 2000). In the current study the dogs' cortisol levels after the two treatments, being or not being gently
touched before separation, did not differ. The discrepancy with the findings of (Rehn et al., 2014) may be
due to the lower length of the physical contact (one versus four minutes), as well as to other factors, e.g. the
different experimental conditions (reunion versus before separation).

Rehn et al., (2014) also found that dogs who were touched by their owners at reunion showed elevated levels
of oxytocin even after the interaction had ended and a decreasing curve of cortisol levels throughout the test.
However, this decrease was most pronounced if, at the reunion, owners greeted the dog with a combination
of physical and verbal contact in a calm and friendly way. The owner attentional state involved in petting the
dog may also play a role, since it has been shown to promote successful coping styles in dogs (Diverio et al.,
2017). Future studies should assess whether a longer time spent stroking the dog before separation and/or
the combination of gentle physical, verbal and gazing contact before separation have a higher calming effect
on dogs.

Summarizing, based on the findings of the current study, it seems that dogs during the procedure were
waiting for the owner return (long time spent seeking for the owner), they were not highly stressed by
separation (low salivary cortisol levels and relatively low stress signals), and being petted before separation
made them calmer while waiting for the owner’s return.

The restricted number of dogs assessed in the current study limits the possibility to generalize the findings to
the whole canine population. For instance, dogs with specific characteristics, such as old age, are likely to
show a physiological and behavioral response to separation that differs from the response of younger individuals (Mongillo et al., 2013). At the same time, the inclusion of dogs with separation-related problems, especially separation anxiety, may have led to very different results. However, gently touching dogs with separation anxiety before being left alone may be taken into account in a behavior modification protocol that attempts to put the dog in a positive emotional state. In addition, if petting would become part of a departure ritual (positive discriminative stimulus), it may increase the predictability and therefore the dog’s perceived control over the environment that, as suggested by Amat et al. (2014), is crucial when treating an anxious subject. Finally, stroking the dog may be regarded as a feature of owners’ warmth, which is known to have beneficial effects on the dog-owner relationship in threatening situations (Cimarelli et al., 2016). The use of petting should therefore be encouraged both in preventative and therapeutic conditions.

Conclusions

This pilot study suggests that petting a dog before a brief separation from the owner may have a positive effect, making the dog calmer during the separation itself. Further studies are needed to analyze more in depth its effectiveness, especially in dogs affected by separation anxiety.

Acknowledgments

The authors wish to thank all the owners and their dogs who participated at the study, and the dog training center “A metà strada” in Pisa (Italy).

Authorship statement

The idea for the article was conceived by C. Mariti and B. Carlone. The experiments were designed by C. Mariti and A. Gazzano. The experiments were performed by C. Mariti, M. Protti and B. Carlone. The data were analyzed by C. Mariti and A. Gazzano. The article was written by C. Mariti and S. Diverio. All authors have worked in the interpretation of data and have approved the final article.
Conflict of interest

The authors declare that they have no conflict of interest.

Ethical considerations

All procedures were performed in full accordance with the Directive 2010/63/EU of the European Parliament and of the Council of 22/09/2010 on the protection of animals used for scientific purposes and conformed to the “Guidelines for the treatment of animals in behavioral research and teaching” (Behaviour, 2016). No special permission for this study was needed, being observational and non-invasive in nature.

References

adult domestic dogs (Canis familiaris) living in the same household: A comparison of the relationship
with the mother and an unrelated older female dog. Appl. Anim. Behav. Sci. https://doi.org/10.1016/j.applanim.2017.05.014

150, 1275–1294. https://doi.org/10.1163/1568539X-00003095

Mongillo, P., Bono, G., Regolin, L., Marinelli, L., 2010. Selective attention to humans in companion dogs,

Mongillo, P., Pitteri, E., Carnier, P., Gabai, G., Adamelli, S., Marinelli, L., 2013. Does the attachment

stress-induced activity of the hypothalamo-pituitary-adrenal axis in male and female rats: Partial action
within the paraventricular nucleus. J. Neuroendocrinol. https://doi.org/10.1046/j.1365-2826.2000.00442.x

Parthasarathy, V., Crowell-Davis, S.L., 2006. Relationship between attachment to owners and separation

Pirrone, F., Ripamonti, A., Garoni, E.C., Stradiotti, S., Albertini, M., 2017. Measuring social synchrony and

at reunion are affected by how the human initiates contact. Physiol. Behav. 124, 45–53.
https://doi.org/10.1016/j.physbeh.2013.10.009

https://doi.org/10.1037/0735-7036.112.3.219

https://doi.org/10.1037/0735-7036.110.1.103

Tab. 1: Dog behaviors analyzed by focal animal sampling during separation from the owner and their categorization.

<table>
<thead>
<tr>
<th>Behavioral categories</th>
<th>Behaviors</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress signals</td>
<td>Nose licking</td>
<td>Beerda et al., 1998; 1997</td>
</tr>
<tr>
<td></td>
<td>Body shaking</td>
<td>Beerda et al., 1999</td>
</tr>
<tr>
<td></td>
<td>Yawning</td>
<td>Beerda et al., 1998</td>
</tr>
<tr>
<td></td>
<td>Nosing sniffing the ground for <3 sec</td>
<td>Beerda et al., 1998</td>
</tr>
<tr>
<td></td>
<td>Paw lifting</td>
<td>Beerda et al., 1998, 1997</td>
</tr>
<tr>
<td>Calmness</td>
<td>Lying down</td>
<td>Beerda et al., 1999</td>
</tr>
<tr>
<td></td>
<td>Exploration sniffing the ground for \geq 3 sec</td>
<td>Modified from Mariti et al., 2013</td>
</tr>
<tr>
<td>Vocalizations</td>
<td>Yelping</td>
<td>Beerda et al., 1997</td>
</tr>
<tr>
<td></td>
<td>Barking</td>
<td>Beerda et al., 1998</td>
</tr>
<tr>
<td>Social behaviors</td>
<td>Contact seeking</td>
<td>Mariti et al., 2017</td>
</tr>
<tr>
<td>towards the stranger</td>
<td>Sniffing the stranger</td>
<td>Mongillo et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Looking at the stranger</td>
<td></td>
</tr>
<tr>
<td>Social behaviors</td>
<td>Sniffing in the direction where the owner left</td>
<td>Modified from Mongillo et al., 2010</td>
</tr>
<tr>
<td>towards the owner</td>
<td>Looking at the direction where the owner left</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sniffing where the owner was hidden</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Looking where the owner was hidden</td>
<td></td>
</tr>
</tbody>
</table>
Tab. 2: Data of the physiological and behavioral parameters analyzed in both tests (NGT = No Gentle Touch test; WGT = With Gentle Touch test) and statistical results (*: $P < 0.05$; +: $P < 0.10$).

<table>
<thead>
<tr>
<th>Variables (Units)</th>
<th>Min-max</th>
<th>Median</th>
<th>Statistical values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate (Bpm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>before NGT</td>
<td>95-130</td>
<td>99.5</td>
<td>$Z = -0.314; P = 0.753$</td>
</tr>
<tr>
<td>after NGT</td>
<td>96-115</td>
<td>105.0</td>
<td></td>
</tr>
<tr>
<td>before WGT</td>
<td>90-133</td>
<td>115.5</td>
<td></td>
</tr>
<tr>
<td>after WGT</td>
<td>82-126</td>
<td>110.0</td>
<td>$Z = -1.682; P = 0.073^+$</td>
</tr>
<tr>
<td>Cortisol (µg/dL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>after NGT</td>
<td>0.2-2.7</td>
<td>1.0</td>
<td>$Z = -1.125; P = 0.260$</td>
</tr>
<tr>
<td>after WGT</td>
<td>0.4-0.8</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Stress signals (sec)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>during NGT</td>
<td>0-26</td>
<td>10.0</td>
<td>$Z = -0.665; P = 0.506$</td>
</tr>
<tr>
<td>during WGT</td>
<td>1-20</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>Calmness (sec)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>during NGT</td>
<td>0-79</td>
<td>11.5</td>
<td>$Z = -1.955; P = 0.049^*$</td>
</tr>
<tr>
<td>during WGT</td>
<td>0-149</td>
<td>38.0</td>
<td></td>
</tr>
<tr>
<td>Vocalizations (sec)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>during NGT</td>
<td>0-121</td>
<td>18.0</td>
<td>$Z = -0.676; P = 0.499$</td>
</tr>
<tr>
<td>during WGT</td>
<td>0-111</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td>Behaviors to stranger (sec)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>during NGT</td>
<td>0-14</td>
<td>3.0</td>
<td>$Z = -1.174; P = 0.241$</td>
</tr>
<tr>
<td>during WGT</td>
<td>0-19</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>Seeking owner (sec)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>during NGT</td>
<td>0-142</td>
<td>87.5</td>
<td>$Z = -0.510; P = 0.610$</td>
</tr>
<tr>
<td>during WGT</td>
<td>5-122</td>
<td>84.5</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1: Setting of the test. Fig. 1a shows the disposition of dog, owner and test leader 1 in the pre-separation and upon reunion episode. In fig. 2b the dashed line represents the path covered by the owner passing from point A (where the dog was left with test leader 1) to point B (where the owner was hidden behind a shed and not visible by the dog) and back.