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Abstract. Positron Emission Tomography (PET) iterative 3D reconstruction is

a very computational demanding task. One of the main issues of the iterative

reconstruction concerns the management of the System Response Matrix (SRM).

The SRM models the relationship between the projection and the voxel space and

its memory footprint can easily exceed hundreds of GB. Moreover, in order to make

the reconstruction fast enough not to hinder its practical application, the SRM must

be stored in the Random Access Memory (RAM) of the workstation used for the

reconstruction. This issue is normally solved by implementing efficient storage schemes

and by reducing the number of redundant patterns in the SRM through symmetries.

However, finding a sufficient number of symmetries is often non-trivial and is typically

performed using dedicated solutions that cannot be exported to different detectors and

geometries. In this paper, an automatic approach to reduce the memory footprint of a

pre-computed SRM is described. The proposed approach was named Symmetry Search

Algorithm (SSA) and consists in an algorithm that searches for some of the redundant

patterns present in the SRM, leading to its lossy compression. This approach was built

to detect translations, reflections and coordinates swap in voxel space. Therefore, it is

particularly well suited for those scanners where some of the rotational symmetries are

broken, e.g., small animal scanner where the modules are arranged in a polygonal ring

made of few elements, and dual head planar PET systems. In order to validate this

approach, the SSA is applied to the SRM of a preclinical scanner (the IRIS PET/CT).

The data acquired by the scanner were reconstructed with a dedicated Maximum

Likelihood Estimation Maximization (MLEM) algorithm with both the uncompressed

and the compressed SRMs. The results achieved show that the information lost due

to the SSA compression is negligible. Compression factors up to 52 when using the

SSA together with manually inserted symmetries and up to 204 when using the SSA

alone, can be obtained for the IRIS SRM. These results come without significant

differences in the values and in the main quality metrics of the reconstructed images, i.e.

spatial resolution and noise. Although the compression factors depend on the system

considered, the SSA is applicable to any SRM and therefore it can be considered a

general tool to reduce the footprint of a pre-computed SRM.
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1. Introduction

Iterative image reconstruction methods can lead to improved performance over analytic

methods, when a system model that reproduces accurately the PET physics is used [1, 2].

However, due to their computation burden, they have been gaining popularity only in the

last decades, thanks to the computational resources available nowadays. Reconstruction

algorithms can be roughly divided into three different categories [2]: algorithms making

use of a pre-computed SRM, algorithms that compute the SRM “on-the-fly” during the

reconstruction process and hybrid approaches. The pre-computed approach is typically

implemented on ordinary multi-cores and clusters architectures [3, 4, 5, 6] whereas “on

the fly” SRM calculation is usually performed on many-cores architectures [7, 8]. An

SRM can be implemented either by a semi-analytic algorithm [9, 5], by using a Monte

Carlo simulation [10, 11, 3], by experimental measurements [12] or by a combination of

these methods [13]. A comprehensive review of the methods used to evaluate the SRM

can be found in [2]. All the methods using a pre-computed SRM need to deal with

its size, that can easily exceed hundreds of Gigabytes [5, 6, 3, 12]. Moreover, in order

to make the reconstruction fast enough for clinical applications, a pre-computed SRM

must be “memory resident”, i.e., it must be stored entirely in the random access memory

(RAM) of the workstation [5]. Due to these constraints, a pre-computed SRM can be

stored on RAM either using a workstation that supports the needed amount of memory

or reducing its footprint by using efficient storage schemes and symmetries. The first

approach is straightforward but can be implemented only if a dedicated workstation for

the reconstruction is available. The second, is more flexible and suitable for a research

environment and was pursued by many authors [3, 4, 11, 6, 14]. Currently, most of

the approaches in literature use dedicated implementations that assume, a-priori, the

existence of exact symmetry classes such as translations and reflections. In general,

finding a sufficient number of symmetries to reduce the SRM footprint is often non-

trivial and is typically performed in a way that cannot be exported to different detectors

and geometries. The problem of compressing the SRM using manually implemented

symmetries has been addressed by several authors using different strategies, including

the implementation of quasi-symmetries [3], a-priori symmetries tailored to a specific

scanner geometry [4, 11, 3] and implementing polar coordinate system [5, 6]. Moreover,

symmetries were used to speed-up the reconstruction on graphics processing unit

(GPU) [15] and on multicore architectures [6, 16].

Even if the size of SRM and the compression factors depend on many factors, e.g. the

number of the LORs of the scanner, the physics implemented in the SRM, and the

FOV sampling, it is useful to review the typical compression factor achieved with other

methods. In [3], an exploitation of the symmetries of the eXplore Vista-DR (GE) small

animal PET scanner is described. The eXplore Vista-DR is made of 36 modules arranged

in two rings where each module is made of 13×13 crystals coupled to a position sensitive

PhotoMultiplier Tube (PMT). A compression factor of 40 was obtained, assuming exact

axial translation and reflection symmetries. An additional factor 10 was obtained
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using quasi-symmetries. In [4], the exploitation of the YAP-PET small animal scanner

was reported. The YAP-PET consists of two pairs of modules each made of YAP

20×20 crystal matrix coupled to a PMT. A tailored implementation of translations and

reflections was used. The compression factor obtained was greater than 80. In [5], the

exploitation of the symmetries of the Siemens BrainPET is described. The BrainPET

is made of 192 detector blocks arranged in 6 rings of 32 block each. Each block consists

of 12×12 LSO crystals couple to Avalanche PhotoDiodes (APD). A compression factor

of 320 was obtained using polar voxels and generic cylinder modeling. The performance

obtained by all the mentioned approaches refer to different situations and therefore they

are not directly comparable. In this paper, an automatic general purpose method to

reduce the memory footprint of a disk stored SRM through symmetries is proposed.

The algorithm was named SSA (Symmetry Search Algorithm). The SSA method

substantially differs from the others, as the symmetries are extracted a-posteriori. No

assumption on the SRM, the scanner geometry, and the detector arrangement is done.

The proposed approach is applicable to all the geometries and to any SRM stored in

Cartesian voxels, requiring little adjustment on a per-case basis. The SSA was built to

detect translations, reflections and coordinates swap in voxel space and to provide, at

the same time, a very accurate approximation of the original SRM, thus relieving the

user from the task of figuring out the symmetries of the system manually. This method

is particularly well suited for those scanners where some of the rotational symmetries

are broken, e.g., small animal scanner where the modules are arranged in a polygonal

ring made of few elements [17, 18] and dual head planar PET systems [19, 20]. In those

scanners where a high degree of rotational symmetries is found, e.g. human clinical

scanners, the SSA can be used in a semi-automatic way to further reduce the memory

footprint of the model part that was actually computed.

2. Materials and Methods

2.1. MLEM Iterative reconstruction and system response matrix representation

Maximum Likelihood Estimation Maximization (MLEM) [21] is one of the most popular

algorithms used in iterative PET reconstruction. In its simplest form, the MLEM can

be written for a system with N Lines of Response (LOR) and a Field Of View (FOV)

of V voxels as

Xq+1 =
Xq

Mᵀ · 1
Mᵀ ·

(
P

M ·Xq

)
(1)

where Xq ∈RV is a vector containing the image at the q-th iteration, M ∈RN×V is the

SRM, P ∈RN is a vector containing the coincidences detected in each LOR. The element

a, b of the SRM contains the probability that a photon pair emitted from the bth voxel of

the FOV is detected in the ath LOR of the system [22]. The set of values associated with

the LOR a, Ma,1,Ma,2, ..,Ma,V , is often referred to as the Tube Of Response (TOR) Ta.

Since the number of nonnull element in each TOR is limited, the size of the SRM can be
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Figure 1. Representation of a Tube Of Response (TOR) with i non-null elements.

reduced exploiting its sparseness, i.e. storing only TOR’s non-null elements. In order

to exploit symmetries, it is more convenient to represent each voxel of the FOV using a

coordinate triplet (bx, by, bz) rather than the linear index b. A single entry T i of a TOR

can be stored as a probability T i
0 value followed by three voxel coordinates (T i

x, T
i
y, T

i
z)

(see Figure 1). Using this representation, the theoretical SRM memory footprint is

≈ N0 · (3 · Sindex + Svalue) bytes where N0 is the number of non-null elements in the

whole matrix, Sindex is the size of the variable representing each index of the triplet and

Svalue is the size of the variable representing the probability. In this work, Sindex and

Svalue are set to 1 byte (unsigned char) and four bytes (float) respectively. Due to this

choice, the size of the FOV is limited to 255 voxels per direction. The generalization of

the SSA to other cases is trivial.

2.2. SSA description

Intuitively, two TORs can be considered symmetric if they are equal up to a geometric

transformation. This means that their probability values are exactly equal and they can

be mapped one into the other with a geometric transformation. However, in practice,

due to small differences in their probabilities, the number of TORs that are exactly

symmetric, according to this definition, is very limited. Therefore, a less strict condition

has to be implemented in order to improve the compression efficacy of the SSA. In this

work, two TORs l and m are said to be symmetric within a threshold t if:

(i) It is possible to transform the coordinates of all the elements of l into those of the

m using a voxel space transformation.

(ii) All the probability values of the so-obtained TOR lie within a relative threshold t

with respect to the original.

When a threshold t=0 is applied, the strict def for the IRIS SRMinition of symmetry

is obtained. Only combinations of reflections, translations, and coordinates swap in

the voxels space are exploited in this work. Using these hypotheses, the existence of a

symmetry between two TORs can be reduced to three sufficient conditions:

A The number of non-null TOR elements n0 of l and m is the same.
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B Sorting the elements of the TORs l and m according to their probabilities, the

following relation holds for each element i=1 . . . n0

d(li0,m
i
0) =

∣∣li0 −mi
0

∣∣ /min (li0,m
i
0) ≤ t.

C It is possible to sort l and m and to find ~A = (Ax, Ay, Az) and ~k = (kx, ky, kz) and

z such that the following relation is true for each TOR entry i

~li + ~A� Sz( ~mi) = ~k (2)

with Ax, Ay, Az = ±1, ~k a constant vector not depending on i, the � is the element-

wise product between vectors and Sz is the ”swap operator”. Sz transforms a vector

into another containing its components permuted. Condition C is a convenient formula

to characterize reflections, translations, and coordinate swap. For example, a pair of

TORs symmetric up to a reflection along x axis can be described by a transformation

with A = (1,−1,−1), ~k = (0, 0, 0) and no coordinate swap (Sz equal to identity). A

90 degree rotation with respect to the z-axis can be implemented swapping x, y, i.e.,

using Sz such as (x, y, z) → (y, x, z), and setting A = (−1,−1,−1) and ~k = (0, 0, 0).

Since each component of ~A can assume only two values, i.e., = ±1 and the number of

permutations of 3 indices is 6, 48 different symmetry classes are possible.

2.3. SSA implementation

A näıve implementation of the SSA would require checking all the possible TOR pairs

in the SRM against the conditions A,B,C. However, this would lead to a computational

complexity of ∼ N2, with N equal to the number of TORs contained in the SRM. To

reduce the computational burden of the SSA, the TORs are first grouped according to

the number of non-null entries, i.e., voxels that had a non-null probability during the

model computation, and then each group is stored in a separate file on disk. This reduce

the memory demand of the SSA since each TOR group can be analyzed independently

and allows for a straightforward multi-core implementation, where each thread searches

the symmetries within a group. Using this method, condition A is automatically satisfied

within the same group (see algorithm (1)) and the complexity of the SSA is reduced to

∼ G · J2, where G is the number of groups and J is the average number of TOR per

group, with both G and J � N . To check a pair of TORs against condition B, both

Algorithm 1 Implementation of condition A

Given the TORs l,m each with nl, nm non-null entries

1: if nl 6= nm then

2: No symmetry between l and m

3: end if

4: Check condition B

the TORs are first sorted according to their probability values. This way, condition

B can be checked element-wise (see algorithm (2)). Finally, any TOR pair that meets
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condition B is validated against condition C. An algorithm to reduce the complexity of

condition C is implemented. This solution allows to validate the condition pixel-wise,

therefore reducing its complexity to the number of non-null elements of the involved

TORs. The problem of checking condition C is that the values of ~k are not known

a-priori. A necessary condition to find ~k can be extracted by summing over the non-null

entries on both sides of eq.(2). This yields to eq. (3), which leads to eq. (4).

(
∑

i=1..n0

~li) + ~A� Sz(
∑

i=j..n0

~mj) = n0 · ~k (3)

~k =

(
∑

i=1..n0

~li) + ~A� Sz(
∑

j=1..n0

~mj)

n0

. (4)

Equation (4) gives a necessary but not sufficient condition for (z, ~A,~k) to be a symmetry

between two TORs l and m. For a given pair of TORs, 48 values of ~k are found, one for

each combination of ~A and z. Some of the values found can be excluded by discarding

those transformations that do not correspond to a ~k vector made of integer components.

For all the other values, a direct test is needed. The direct test is performed transforming

m according to (z, ~A,~k) and then sorting l and m according to their coordinates. Since

no tolerance is allowed in the coordinates of two symmetrical TORs, it is possible

to check condition C pixel-wise as described in algorithm (3). If (z, ~A,~k) transforms

TOR l into TOR m within the threshold, then a symmetry is found. The result of

the compression is a new SRM containing only the fundamental TORs (FT) and the

transformations (z, ~A,~k) to obtain those that are not fundamental. A non-fundamental

TOR m can be retrieved by knowing the (z, ~A,~k) values and the fundamental TOR l,

by using the formula

~mi = S−1
z ( ~A� (~k − ~li)). (5)

It is worth noticing that the storage saved depends on the TOR size but not on the

symmetry detected.

Algorithm 2 Implementation of condition B

Given the TORs l,m fulfilling condition A

1: Sort all entries of l,m according to their probability values

2: for i in 1, n0 do

3: if d(li0,m
i
0) > t then

4: No symmetry between l and m

5: end if

6: end for

7: Check condition C

The IRIS PET/CT is a novel pre-clinical system for mice and rats featuring a full

ring PET and a high resolution CT system [17]. The PET component of the scanner
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Algorithm 3 Implementation of condition C

Given the TORs l,m fulfilling condition A,B

1: for Z∗ in Z1..Z6 do

2: for A∗ in A1..A8 do

3: Compute ~K∗ using (4)

4: if All ~K∗ components are integer then

5: Transform all mi using (5)

6: Sort l and m TORs according to the pixel index

7: for i in 1..n0 do

8: if li1,2,3 6= mi
1,2,3 or d(li0,m

i
0) > t then

9: (Z∗, A∗, K∗) is not a symmetry of l,m

10: end if

11: end for

12: Symmetry (Z∗, A∗, K∗) found between l,m

13: end if

14: end for

15: end for

consists of 8 heads arranged in an octagonal ring. Each head comprises two modules,

each based on a LYSO matrix of 702 crystals of 1.6 mm × 1.6 mm × 12 mm directly

coupled to a 64 anodes PMT (Hamamatsu H8500). Each head can acquire coincidences

with the three heads facing it, therefore the scanner can acquire coincidences from 12

head pairs and features (702 · 2)2 · 12 = 23 654 592 LORs. The detector implements a

component based normalization procedure [17].

2.4. SSA validation methods

To show that the SSA can be operated both in an automatic and in a semi-automatic

way, two types of experiments were performed in this study. In the first experiment,

an SRM, named hereafter SRMO (Original), including only the TORs corresponding

to the head pairs shown in Figure 2 was used. In this configuration, the other TORs

are obtained by rotating the image, e.g., the TORs belonging to the pair 3-7 can be

obtained by rotating the image by 90◦ and using the corresponding TORs of the pair 1-5.

In this work, a 3rd order b-spline interpolation is used to implement the image rotation.

The manual exploitation of this set of rotational symmetries, allows to reduce the SRM

computation time and its storage by a factor 6. SRMO is used in this work as a ’gold

standard’, i.e. all the reconstructed images are compared to those obtained with SRMO.

In the second experiment, an SRM, named hereafter SRMC (Complete), that contains

all the TORs of the scanner was used. In both cases, the two models were the result of a

multi-ray Siddon with 4×4 integration points on the crystal surface and 8 in the crystal

depth [9], with the FOV sampled into pixels of 0.855 mm×0.855 mm×1.71 mm. This

setup differs considerably from the size of the standard reconstructed image used in pre-
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(a) (b)

Figure 2. TORs included in SRMO: the head pairs for which the TOR evaluation

was actually performed are shown in gray.

clinical routine (0.42 mm×0.42 mm×0.855 mm). The large pixel size was necessary in

order to limit the size of SRMO and being able to run reconstruction without using

the symmetries on the 64 GB RAM workstation available for this work. To show

that the SSA does not affect the quality of the reconstructed images, a 18FDG filled

NEMA Image Quality (IQ) phantom [23], with an initial activity of 37 MBq (100 µCi),

was acquired for 20 minutes with the IRIS PET scanner. The IQ was reconstructed

performing 100 MLEM iterations, using the models mentioned above and correcting

for decay time, dead-time and using detector normalization [17]. Two analysis were

performed on the reconstructed images of the IQ: first, the absolute values of the

images reconstructed with the compressed models and those obtained with SRMO were

compared. The differences between the images reconstructed with different models were

evaluated using a relative difference metric: for each voxel i and iteration q the following

value was computed

∆Iqi =
Cq

i −O
q
i

Oq
i

(6)

where Oq
i and Cq

i are the values of the i-th voxel at the q-th iteration obtained with

SRMO and with one of the compressed models (C), respectively. All the relative values

reported in this paper are expressed in decimal representation rather than in percentages,

e.g., 0.01 instead of 1%. The results of this analysis were resumed in three figures of

merit: the maximum relative difference between two images Mq = maxi(|∆Iq|), the

average relative difference Aq = avgi(|∆Iq|) and the standard deviation of the relative

difference Sq = stdi(|∆Iq|). As a second analysis, an evaluation of the image quality

according to the NEMA standard NU-2008 for small animal was performed [23]. In

order to assess the image quality, the NEMA prescribes to investigate two figures of

merit: the recovery coefficients and the image uniformity. For studying the uniformity,

a cylindrical region of interest of diameter 22.5 mm and height 10 mm (VOI) was drawn
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Threshold SRMO size Compression Factor # of Fundamental TORs

- 52 GB - 3942432

0.01 2.4 GB 22 141468

0.05 1.3 GB 40 72786

0.5 1.1 GB 47 57945

1 1.0 GB 52 56975

2 1.0 GB 52 56344

∞ 984 MB 54 55449

Table 1. Size and Compression Factors (CF) of SRMO as obtained at different

thresholds.

in the uniform region of the phantom. The image uniformity was then evaluated as

IU =
std(VOI)

mean(VOI)
(7)

where std(VOI) and mean(VOI) are the standard deviation and mean of the VOI region,

respectively. The Recovery Coefficient (RC) of the n-th rod was evaluated as

RCn =
max(RODn)

mean(VOI)
(8)

where RODn is a cylindrical region centered on the n-th rod, with two times the

diameter of the rod and with a height of 10 mm. The idea behind this analysis is

that RCs are correlated with the spatial resolution of the system, whereas the image

uniformity, is intended to quantify the spatial noise perceived in an individual image.

3. Results

3.1. Compression factors

The sizes of SRMO and SRMC are respectively 52 GB and 346 GB. SRMO and SRMC

were compressed using different thresholds ranging from 0.01 to 2 and discarding

condition B, which is equivalent to set t = ∞. Each model produced by the SSA

was named according to the model compressed and the threshold used, e.g., the name

of the model obtained compressing SRMO with t = 0.01 is SRMO0.01 . The results

achieved in terms of compression factors and number of fundamental TORs at different

thresholds are shown in Table 1 and 2.

3.2. Computational performance

The SSA was implemented in C++ and was run on an Intel(R) Xeon(R) @ 3.50GHz.

The time needed to compress a SRM depends on the threshold used and reaches a

maximum when t =∞ is used. The maximum compression time was found to be 3000 s

for SRMO and 15000 s for SRMC. These numbers have to be compared with the time
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Threshold SRMC size Compression Factor # of Fundamental TORs

- 346 GB - 23654592

0.01 11 GB 31 605957

0.05 3.6 GB 96 194819

0.5 1.9 GB 182 106745

1 1.8 GB 192 101090

2 1.8 GB 192 98145

∞ 1.7 GB 204 94015

Table 2. Size and Compression Factors (CF) of SRMC as obtained at different

thresholds.

needed to compute SRMO and SRMC, which are 42000 s and 250000 s, respectively.

All these results refer to single core implementations of the SSA. To quantify the

overhead due to the implementation of the symmetries detected by the SSA in the

reconstruction software, two multi-core MLEM algorithms were implemented: the first

does not make use of the SSA detected symmetries, the second implements equation (5)

before projection and retro-projection operations. The reconstructions were run on the

same workstation used for the compression tests. The time needed to perform a single

MLEM iteration using any of the models compressed with the SSA was 67 s, regardless

of the threshold used to produce the model. The time needed to perform the a single

MLEM iteration using SRMO, i.e. without the use of SSA detected symmetries, was 56

s.

3.3. Image reconstruction results

The plots of Mq, Aq, Sq vs the number of iterations (q) for some of the models

produced by compressing SRMO and SRMC are reported in Figure 3. As an example,

the distribution of values of ∆I100 are shown in Figure 4 for four models obtained

compressing SRMO.

3.4. NEMA Image quality

The Maximum Recovery Coefficients MRC obtained within the first 100 iterations and

the iteration where the maximum was obtained are reported in Table 3. The results of

all the models compressed using a finite threshold are not reported as they were exactly

the same as those obtained with SRMO. An IU of 6.75 % at the 100th MLEM iteration

was measured for all the models.

3.5. Compression of the YAP-PET small animal scanner model

An experiment using the model of the YAP-PET small animal scanner was performed.

The model of the YAP-PET was computed as described in [4] and its size was 5.9 GB

with the FOV segmented into 128×128×80 voxels of 0.375×0.375×0.5 mm3. The
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(a) max ∆I SRMO (b) max ∆I SRMC

(c) avg ∆I SRMO (d) avg ∆I SRMC

(e) std ∆I SRMO (f) std ∆I SRMC

Figure 3. Plot of Mq (top) and Aq (center) and Sq (bottom) vs the number of

iterations with the models obtained compressing SRMO (left column) and SRMC (right

column).

Rod / MRC SRMO (iteration) SRMO∞ SRMC∞ (iteration)

1 mm 0.21±0.03 (100) 0.21±0.03 (100) 0.21±0.03 (100)

2 mm 0.50±0.07 (100) 0.50 ±0.07 (100) 0.51±0.07 (100)

3 mm 0.81±0.06 (47) 0.80 ±0.06 (47) 0.81±0.06 (46)

4 mm 0.93±0.05 (25) 0.92±0.05 (25) 0.93±0.05 (25)

5 mm 0.91±0.05 (19) 0.91±0.05 (19) 0.91±0.05 (18)

Table 3. Maximum recovery coefficients of the NEMA IQ phantom obtained using

SRMO, SRMO∞ and SRMC∞ .
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(a) t=0.01 (b) t=0.05

(c) t=1 (d) t=∞

Figure 4. Histograms of the pixel-wise relative difference at the 100th iteration

(∆I100) for SRMO0.01 , SRMO0.05 , SRMO1 , SRMO∞ .

maximum compression obtained with the SSA using t = ∞ is 92. This compression

factor is comparable with that provided by the authors using manual implementation

of reflections and translations (∼80).

4. Discussion

The data contained in Table 1 and Table 2 show that by varying the SSA threshold it

is possible to control the size of the compressed models. A reduction of the size of a

compressed model corresponds to a reduction of the number of its fundamental TORs.

The compression factors obtained using t = ∞ represent the highest achievable by the

SSA using a specific configuration, e.g. projector model, geometry and FOV sampling.

Thanks to the strategies described in Sec. 2.3, the time needed to perform an SRM

compression is negligible with respect to its computation time, e.g. 3000 s vs 42000

s for SRMO. Moreover, the time needed to compress SRMC, which has 6 times the

TORSs of SRMO, increases linearly with number TORs involved. This suggests that

performing compressions of larger models is feasible. Therefore, this aspect does not

limit the applicability of the SSA.

In principle, the number of symmetries found by the SSA could have an impact on the

MLEM iteration time, since equation 5 needs to be implemented before projection and
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retro-projection operations in order to obtain the non-fundamental TORs. However,

the experiments show that the time needed to perform an MLEM iteration is roughly

independent from the compressed model used and each iteration is 11 sec slower when

using a model compressed with the SSA.

The models compressed with the SSA were also characterized in terms of the image

quality. For this aim, experiments using several thresholds were carried out. Figure 3

shows the maximum relative difference (Mq), the average (Aq) and the standard

deviation (Sq) of the relative difference with respect to the images reconstructed with

SRMO. Both Mq, Aq and Sq were found to increase with the number of iterations.

The value of Mq at the 100th iteration is, in general, non-negligible. However, despite

the maximum difference found, both the Aq and Sq are relatively small. This shows

that large deviations from the original model take place only in a limited number of

voxels. This is also confirmed by the results of NEMA IQ analysis: the Maximum

Recovery Coefficients (MRC) obtained for each rod, together with the iteration where

the maximum value is obtained, are reported in Table 3. The MRC of the 4th and 5th

rod obtained with SRMO∞ are instead slightly worse than those obtained with SRMO

but still within the error. A similar behavior is found for SRMC∞ . No appreciable

differences were found comparing the results obtained with SRMO and all the models

obtained with a finite threshold. These experiments show that the image quality is

not compromised by the compression performed with the SSA. In particular, with the

IRIS small animal PET scanner configuration, a maximum compression factor of 54 was

obtained when using a combination of manual symmetries and the SSA. A maximum

compression factor of 204 was found when using fully automatic SSA compression. It

is worth to notice, that the SSA is designed to detect symmetries in SRM components

that are not object-dependent. This aspect does not represent a limitation as the object

dependent corrections, e.g. attenuation, scatter and positron range, can be accounted

for into the reconstruction through other mechanisms: attenuation can be factored out

in a diagonal matrix, an estimation of the scatter counts can be inserted directly into

the MLEM algorithm [24] and positron range can be modeled directly in the image

space [25].

5. Conclusions

In this paper, an algorithm that automatically detects the symmetries encoded in the

SRM is proposed. This algorithm was named Symmetry Search Algorithm (SSA) and

provides, at the same time, a very accurate approximation of the original model and

relieves the user from the task of figuring out the symmetries of the system manually.

Even if the algorithm is not able, by design, to detect all the symmetries present in the

SRM, i.e. it works for translations, reflections, and coordinate swap symmetries, it could

provide enough compression to allow for storing the SRM on RAM. The experiments

described in this paper were performed using an SRM with a rather big pixel size with

respect to that used in pre-clinical routine. Nonetheless, similar compression factors
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and a similar image metrics are observed regardless of the SRM pixel size.
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