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Abstract

In this paper we investigate the transition from the vortex to the engulfment regime in a T-

mixer when the two entering flows have different viscosity. In particular we consider as working

fluid water entering the two inlet channels of the mixer at two different temperatures. Contrary

to the isothermal case, at low Reynolds numbers the vortex regime shows only a single reflectional

symmetry, due to the non-homogeneous distribution of the viscosity. Increasing the Reynolds

number, a symmetry-breaking bifurcation drives the system to a new steady flow configuration,

usually called engulfment regime, similar to what it is possible to observe in an isothermal case.

This flow regime is associated with an increase of the mixing between the two inlet streams. It is

shown by Direct Numerical Simulation (DNS) and by stability analysis that the engulfment regime

is promoted by the temperature difference.

Starting from the DNS simulations, the resulting flow fields are analysed in detail considering

different temperature jumps between the two inlet boundaries. Furthermore, dedicated linear

stability analyses are carried out to investigate the instability mechanism associated with the

occurrence of the engulfment regime. In particular, similarly to the case without temperature

differences, the onset of engulfment is driven by the momentum equation and the temperature field

does not lead to any additional instability mechanism. However, the existence of a temperature

field leads to quantitative changes of the stability characteristics and of the resulting flow fields via

a variation of the viscosity coefficient.
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I. INTRODUCTION

Promoting mixing in a small volume is a pursued goal in many fluid dynamics applica-

tions. Recently large attention has been paid to the process intensification in micro-devices

for reactions of interest in the field of fine chemistry and for pharmaceutical processes. Small

reaction volumes, well controlled residence times and large heat transfer rates (due to the

large surface to volume ratio) enable reactions to be carried out under less dilute and ex-

tremely controlled conditions, resulting in higher yields than those that can be obtained

with conventional batch reactors. Indeed, it has been shown that micro-reactors may be

particularly advantageous for several reactions of pharmaceutical [? ] and fine chemistry

processes [? ? ], as well as for green chemistry [? ], due to their potential of reducing

waste of material and energy. For instance, Roberge et al [? ] showed how about 50% of

the chemical reactions involved in pharmaceutical process could benefit of micro-reaction

technologies. Finally, scaling to large productions is trivial when using micro-devices as it

can be obtained by increasing their number while working in parallel. Logically in case

of chemical reactions the mixing between the reactants is fundamental (see e.g. [? ]), so

that the Reynolds number should be high enough to promote convective contribution to

the mixing while the flow must remain laminar for a fine control of the residence time. In

this respect the onset of the engulfment regime is important since it leads to substantial

convective mixing while, before its onset, the two streams entering the mixer remain se-

gregated and mix only due to weak diffusive effects. In particular, we focus on T-shaped

micro-mixers which are often employed due to the simplicity of their geometry. For this

reason, mixing capabilities of T-mixers have been largely investigated in the literature, in

particular in connection with the different flow regimes that can be occured in T-mixers

as the Reynolds number is increased. These flow regimes have been largely investigated

experimentally (see, for example, [? ? ? ]) and by numerical simulations (see [? ? ? ? ? ?

? ? ? ]), considering rectangular or square cross sections of the inlet and outlet channels.

Despite the quantitative differences related to the geometry (see for instance [? ? ]), it is

shown that, at very low values of Re, the inlet streams remain completely segregated, while

increasing the Reynolds number the so-called “vortex regime” occurs, i.e. a double pair of

counter-rotating vortical structures are originated at the confluence region. Since the flow in

the vortical regime preserves the geometrical reflectional symmetries, the two inlet streams
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remain segregated. As Re exceeds a critical value (Recr), the flow undergoes a pitchfork

bifurcation which breaks the reflectional symmetries and leads to a new steady state, usually

called “engulfment regime”. The velocity field in the engulfment regime has a central point

symmetry with respect to the axis of the outflow channel, and it is characterised by two

co-rotating vortices in the outflow channel. This flow regime is associated with a significant

enhancement of mixing in comparison with the vortex regime. Because of the increase in

mixing, many efforts have been made to predict the critical Re at which the transition to

the engulfment regime occurs and to understand its dependence on geometric parameters

([? ? ? ]). Stability analysis has been used in [10] to investigate in detail the physical

mechanisms causing the onset of the engulfment regime. By further increasing the value of

Re the flow becomes first periodic in time through an Hopf bifurcation (see [? ? ]), and

eventually chaotic (see [? ? ? ? ? ]).

In applications involving mixing, T-mixers are always used for mixing two flows with

different physical properties, which can be the case of two flows of the same fluid at different

conditions or two flows of different fluids. However, all the studies mentioned above on

the characterisation of the flow in T-mixers are focused on the case of one homogeneous

working fluid, while different operative conditions can have important effects on the identified

flow regimes, on the physical mechanisms causing their onset and on the related mixing

properties. However, in the practical use of T-mixers, e.g. in pharmaceutical and fine

chemistry industry, the two inlet streams have often different physical properties (e.g. two

different entering fluids or the same fluid in different conditions).

A few studies in the literature explore this aspect. For instance, [? ] considers the case in

which water and ethanol enter a T-mixer, showing that the onset of engulfment is delayed

in terms of Recr from Recr ' 140 when water-water is used to Recr ' 230 for water-ethanol.

Indeed, although water and ethanol have similar viscosity and density, their mixture has a

viscosity which is about 3 times larger than that of the single components. The case of a

mixtures with strongly varying viscosity has been investigated numerically in [? ], showing

that Recr increases with the fluidity of the mixture. Lastly, in [? ] a systematic study

is proposed about the effect of several mixing laws for viscosity in binary mixtures on the

flow regimes in a T-mixer. Effect of viscosity ratios between the two entering fluids on

the flow regimes in T-mixers is also studied numerically in [? ]. In [? ] the same authors

investigate the effect of variable density and viscosity, including the case of water at different
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temperatures similarly to what considered here.

In this paper we focus on the engulfment regime and we investigate using Direct Numerical

Simulations (DNS) and dedicated stability analyses, how the onset of the engulfment regime

is affected by significant variations of viscosity between the two flows entering the mixer. In

order to deal with a realistic case, but still with the aim to deduce general conclusions, we

consider water entering the mixer at different temperatures, as viscosity of water is strongly

affected by temperature. The objective of the investigation is to explore the role played

by the temperature field and by the associated viscosity field on the physical mechanisms

which are responsible for the onset of the engulfment steady regime. Moreover, differences

in the velocity and vorticity fields inside the mixer and in the associated mixing properties

are also investigated in detail by DNS and compared with the case of one homogeneous

working fluid. We consider here the same geometrical configuration already investigated in

[? ], where the onset of engulfment regime was studied by the synergic use of DNS and

stability analysis, as in the present work.

Accurate numerical simulations are carried out using the spectral element method imple-

mented in the code Nek5000, which is used for the 3D simulations of the different cases here

considered. Stability analyses have been carried out using ad-hoc 3D tools developed by

FreeFem++ using Taylor-Hood finite elements. We underline that this kind of 3D stability

analysis is at the state-of-the-art from a computational viewpoint. Examples of previous

stability and sensitivity analysis of incompressible flows in mixers are documented in [? ?

? ? ] and have been carried out considering only one homogeneous working fluid. The

theoretical tools used here are similar, with the difference that since we consider water at

different temperatures, the equations governing the flow include the energy equation, which

is two-way coupled with the momentum equation as the viscosity and thermal diffusivity are

functions of the temperature. Examples of stability and sensitivity analysis including the

energy equation can be found in the literature (see for instance [? ? ? ] where compressible

flows in subsonic regime are considered). In [? ] the stability analysis of a cold incompress-

ible jet impinging on a confined flat plate is carried out considering the temperature as a

passive scalar, i.e. with the energy equation which is coupled to the momentum equations

only in one way.

This paper clearly demonstrates that stability analysis is able to identify the bifurcation

which is responsible for the onset of the engulfment regime, as for the case with no tem-
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perature difference between the two inlet fluids. Moreover, stability analysis is used here so

as to highlight the role of the temperature and viscosity variations in physical mechanisms

leading to the engulfment instability.

II. FLOW CONFIGURATION, FLUID PROPERTIES AND GOVERNING EQUA-

TIONS

We consider the T-mixer sketched in Figure ??a. The mixer is made by two symmetric

inflow and one outflow channels, measuring li and lo in length, respectively. The cross-

sections of the channels are rectangular, with w/h = 0.75 for the inflow channels and

w0/h = 1.5 for the outflow one, the width of the outflow channel being twice that of the

inflow ones, i.e w0 = 2w. The same geometry has been investigated in [? ? ], focusing

on the flow regimes that occur when one incompressible and Newtonian working fluid is

employed.

The velocity profile of the flow is assumed to have a fully developed laminar velocity profile

when entering the mixer (see for instance [? ]). Moreover, we assume that the working fluid,

specifically water, enters the mixer from the two inlet channels at two different temperatures.

One of the two temperatures is fixed to T1 = 10oC, while the other one is varied in the range

10oC ≤ T2 ≤ 50oC. In this range of temperatures water is modeled as a Newtonian fluid

with a viscosity µ that depends on temperature T . The behaviour of µ(T ) as T is varied,

taken from [? ? ], is sketched in figure ??a in red dots. Here we approximate the law µ(T )

as follows (details are provided in the two references cited above):

µ(T ) = µ1

[
1 + a1 (T − T1) + a2 (T − T1)2]−1

(1)

where for water µ1 = µ(T1) ' 1.307 · 10−3 Ns/m2 and the coefficients, a1 ' 2.935 · 10−2 K−1,

a2 ' 1.302 · 10−3 K−2, are tuned so as to replicate the experimental behaviour of µ(T ) in

the considered range of temperatures, as shown in figure ??a with a blue line. Relative

variations of density, which are less than 1.18% for the maximum temperature difference

T2 − T1 = 40oC considered here, are neglected in the flow model, assuming a constant

density ρ. Also, buoyancy force deriving from density variations is not taken into account,

thus excluding the action of gravity forces on the fluid. This assumption has been verified

to have negligible effects on the results by means of dedicated numerical simulations, not
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Figure 1. Flow configuration. (a) Computational domain used for DNSs; (b) Computational

domain used for stability analysis.

documented here for the sake of brevity.

Finally, the specific heat at constant pressure cp for water is also considered constant with

temperature, its relative variations being approximately equal to 0.17% for the maximum

temperature difference considered. Thus, water is modelled here as a Newtonian incom-

pressible fluid with viscosity µ and thermal conductivity k which vary with temperature.

The behaviour of k(T ) is given indirectly by specifying the Prandtl number Pr = (cp µ)/k

as a function of temperature, this term entering directly in the normalised flow equations

shown in the following. The behaviour of Pr with the temperature is plotted in Figure ??b,

together with its analytical approximation used in the present simulations, which is of the

following form:

Pr(T ) = Pr1

[
1 + b1 (T − T1) + b2 (T − T1)2]−1

(2)

where for water Pr1 = Pr(T1) ' 9.47 and b1 ' 3.357 · 10−2 K−1 and b2 ' 1.884 · 10−3 K−2.

The resulting flow equations in dimensional form write as follows:

∇ · v = 0 (3a)

∂v

∂t
+ v · ∇v = −∇

(
p

ρ

)
+∇ ·

[
µ (T )

ρ

(
∇v +∇Tv

)]
(3b)

∂T

∂t
+ v · ∇T = ∇ ·

(
k (T )

cp ρ
∇T
)

+
Φ

cp ρ
(3c)

where p is the pressure and Φ = 2µ(T ) S : S is the dissipation function (we remind that

∇ · v = 0) and S the strain rate tensor. Following [? ] (see Sec. 7.2 of the referenced book)

it is possible to show that, for the problem at issue, we can neglect without any appreciable
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effect on the results the contribution of frictional dissipation in the equations governing

the dynamics of temperature, i.e. Equation (??). Indeed, indicating with U and d typical

velocity and length scales of the flow and with ∆T a typical temperature difference, we have:

Φ

cp ρ
DT
D t

∼ µ

ρcp

U

∆T d
(4)

As an example, for water at T = 20oC we have µ/ρcp ' 2.4 · 10−10s K, and in general for

liquids we have µ/ρcp ' 10−9s K. Consequently, the contribution of Φ to Equation (??) be-

comes significant only when the term U/(∆T d) is very large when considered in compatible

dimensional units, which is not the case here. For this reason, from now on we will neglect

the dissipation function Φ in Equation (??).

Equations (??) are made non-dimensional using the hydraulic diameter of the outflow

channel, Lr = 2w0h/(w0 + h), as the reference length, the bulk velocity Ub in the inlet

channels as the reference velocity (which is equal to that in the outflow channel for mass

conservation) and the temperature T1 as the reference temperature. Indicating with the

subscript ∗ the non-dimensional quantities, Equations (??) write as:

∇∗ · v∗ = 0 (5a)

∂v∗

∂t∗
+ v∗ · ∇∗v∗ = −∇∗p∗ +∇∗ ·

fR(T1, T∗)

<1︸ ︷︷ ︸
α(T∗)

(
∇∗v∗ +∇T

∗ v∗
)
 (5b)

∂T∗
∂t∗

+ v∗ · ∇∗T∗ = ∇∗ ·

fR(T1, T∗)fP (T1, T∗)

<1 Pr1︸ ︷︷ ︸
β(T∗)

∇∗T∗

 (5c)

where <1 and Pr1 are the Reynolds and Prandtl numbers based on the the flow properties

at temperature T = T1 and, with reference to Equations (??) and (??):

fR(T1, T∗) =
[
1 + T1a1 (T∗ − 1) + T 2

1 a2 (T∗ − 1)2] (6a)

fP (T1, T∗) =
[
1 + T1b1 (T∗ − 1) + T 2

1 b2 (T∗ − 1)2] (6b)

For the sake of simplicity, in the following we will concisely use the terms α (T∗) and β (T∗)

so as to replace more complex expressions, as indicated by underbraces in equations (??)
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(a) (b)

Figure 2. Effect of the variations of temperature on the (a) dynamic viscosity and (b) Prandtl

number. Red dots extracted from [? ? ] and corresponding analytical approximation used here

(the dependence of viscosity and diffusivity coefficients on T1 is implicitly assumed in the

following).

As concerns the boundary conditions for the governing equations (??), at the inflow

boundaries both the velocity and the temperature fields are imposed as a Dirichlet boundary

condition. The velocity is assumed to have the unidirectional fully developed profile which

depends only on the cross section of the inflow channels (see [? ]), while temperature is

assumed constant but different on the two inlet channels (equal to T∗ = 1 and T∗ = T2/T1,

respectively). On the walls homogeneous Dirichlet boundary conditions are imposed for the

velocity (v∗ = 0) and homogeneous Neumann conditions are imposed on the temperature

(∇∗T∗ · n = 0). This last condition, combined with assuming null velocity on the walls,

is equivalent to model the walls as adiabatic. Finally, on the outflow boundary we impose

stress-free conditions in the momentum equations (
[
p∗I −∇∗ ·

(
α (T∗)

(
∇∗v∗ +∇T

∗ v∗
))]
·n =

0) and homogeneous Neumann conditions for the temperature field, (∇∗T∗ · n = 0).

III. STABILITY AND SENSITIVITY ANALYSIS

Equations (??) are the starting point for the derivation of the stability equations. The

stability analysis is applied to a baseflow, (Vb∗, Pb∗, Tb∗) which is a steady solution of equa-

tions (??). To this purpose a generic perturbation of the baseflow is searched in modal form
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as follows:

v∗ (x∗, t∗) = Vb∗ (x∗) + ε v̂∗ (x∗) exp (σ t∗) (7a)

p∗ (x∗, t∗) = Pb∗ (x∗) + ε p̂∗ (x∗) exp (σ t∗) (7b)

T∗ (x∗, t∗) = Tb∗ (x∗) + ε T̂∗ (x∗) exp (σ t∗) (7c)

When the modal form in Equations (??) is substituted in the governing equations (??) and

terms are collected depending on the amplitude variable ε, at order ε0 we find the equations

for the baseflow:

∇∗ ·Vb∗ = 0 (8a)

Vb∗ · ∇∗Vb∗ = −∇∗Pb∗ +∇∗ ·
[
α (Tb∗)

(
∇∗Vb∗ +∇T

∗ Vb∗
)]

(8b)

Vb∗ · ∇∗Tb∗ = ∇∗ · (β (Tb∗)∇∗Tb∗) (8c)

At order ε, we find the equations governing the linearised dynamics of the flow perturbations

superimposed to the baseflow:

∇∗ · v̂∗ = 0 (9a)

σv̂∗ + Vb∗ · ∇∗v̂∗ + v̂∗ · ∇∗Vb∗ =−∇∗p̂∗ +∇∗ ·
[
α (Tb∗)

(
∇∗v̂∗ +∇T

∗ v̂∗
)]

+

∇∗ ·

[
∂α (y)

∂y

∣∣∣∣
y=Tb∗

(
∇∗Vb∗ +∇T

∗ Vb∗
)]
T̂∗

(9b)

T̂∗

σ T̂∗ + Vb∗ · ∇∗T̂∗ + v̂∗ · ∇∗Tb∗ =∇∗ ·
(
β (Tb∗)∇∗T̂∗

)
+

∇∗ ·

(
∂β (y)

∂y

∣∣∣∣
y=Tb∗

∇∗Tb∗

)
T̂∗

(9c)

As concerns the boundary conditions for the perturbation, at the inflow boundary both the

velocity and the temperature fields are null (v̂∗ = 0, T̂∗ = 0). On the walls v̂∗ = 0 and

∇∗T̂∗ · n = 0. On the outflow boundary the following condition applies for the momentum

equation:[
p̂∗I −∇∗ ·

(
α (Tb∗)

(
∇∗v̂∗ +∇T

∗ v̂∗
))
−∇∗ ·

(
∂α (y)

∂y

∣∣∣∣
y=Tb∗

(
∇∗Vb∗ +∇T

∗ Vb∗
))

T̂∗

]
·n = 0

and, for the temperature equation, we have ∇∗T̂∗ · n = 0.
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Equations (??), together with the boundary conditions discussed above, form an eigen-

function problem with generally complex eigenvalues σ = λ+iω. The baseflow (Vb∗, Pb∗, Tb∗)

is stable if all eigenvalues σ have negative real part. Conversely, an unstable mode is iden-

tified if the associated eigenvalue has a postive real part (λ > 0).

Let us suppose that one particular unstable eigenmode is identified, (v̂∗, p̂∗, T̂∗), associated

to the eigenvalue σ. Generalizing the work in [? ], we want to investigate the sensitivity

of the eigenvalue σ to a generic structural perturbation of the linearised equations (??). In

particular, we consider two localised types of perturbations, acting on the momentum and

energy equations, respectively. As concerns the momentum equation, we assume a localised

velocity-force feedback of the following form:

δf(x∗) = [M0 · v̂∗(x∗)] δ(x∗ − x∗0) (10)

where M0 is a constant generic feedback matrix, δ(·) is the Dirac delta function and x∗0 is

the generic point of application of the local forcing. Analogously, we investigate a structural

perturbation of the temperature equation of the following form:

δg(x∗) =
[
K0 T̂∗(x∗)

]
δ(x∗ − x∗0) (11)

where K0 is a generic feedback constant. A conceptually similar structural perturbation has

been considered in [? ] for quantifying the effect of a localised heat source in a compressible

flow. In order to investigate the effect of the two structural perturbations introduced above

on the eigenvalue σ, so as to derive the resulting eigenvalue perturbation δσ, it is convenient

to derive the adjoint equations of the system (??). The derivation is a classical application

of calculus of variations (see Appendix ?? for details), and the resulting system of equations

in terms of the adjoint variables (ṽ∗(x∗), p̃∗(x∗), T̃∗(x∗)) writes as follows:

∇∗ · ṽ∗ = 0 (12a)

σ∗ṽ∗ −Vb∗ · ∇∗ṽ∗ + ṽ∗ · ∇∗Vb∗ =−∇∗p̃∗ +∇∗ ·
[
α (Tb∗)

(
∇∗ṽ∗ +∇T

∗ ṽ∗
)]
−

(∇∗Tb∗) T̃∗
(12b)

σ∗ T̃∗ −Vb∗ · ∇∗T̃∗ +
1

2

(
∇∗ṽ∗ +∇T

∗ ṽ∗
)

:
(
∇∗Vb∗ +∇T

∗ Vb∗
) ∂α (y)

∂y

∣∣∣∣
y=Tb∗

=

= − ∂β (y)

∂y

∣∣∣∣
y=Tb∗

∇∗T̃∗ · ∇∗Tb∗ +∇∗ ·
(
β (Tb∗) T̃∗

) (12c)
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As for the boundary conditions, at the inflow we have ṽ∗ = 0 and T̃∗ = 0, at the walls

ṽ∗ = 0 and ∇∗T̃∗ ·n = 0. Finally, on the outflow boundary for the momentum equations we

have:

−p̃∗n + (Vb∗ · n) ṽ∗ + α (Tb∗)
(
∇∗ṽ∗ +∇T

∗ ṽ∗
)
· n = 0

and for the energy equation we have:

(Vb∗ · n) T̃∗ + β (Tb∗)∇∗T̃∗ · n = 0

The direct and adjoint modes obtained from equations (??) and equations (??) are success-

ively normalised as follows:

〈v̂∗, ṽ∗〉 =

∫
Ω

(v̂∗
∗ · ṽ∗) dΩ = 1 (13a)

〈T̂∗, T̃∗〉 =

∫
Ω

(
T̂ ∗
∗ T̃∗

)
dΩ = 1, (13b)

denoting with the symbol ∗ the conjugate of a complex quantity. Using the same variational

approach leading to the adjoint equations, it is possible to show that the variation δσ of

the eigenvalue σ caused by the structural perturbations δf and δg (see equation (??) and

equation (??), respectively) is given by the following equation

δσ = 〈ṽ∗, δf(x∗) v̂∗〉+ 〈T̃∗, δg(x∗) T̂∗〉 (14)

Using the properties of the Dirac function and the triangular inequality, the variation δσ

can be bounded as follows:

|δσ| ≤ ‖M0‖ ‖ṽ∗(x∗)‖ ‖v̂∗(x∗)‖︸ ︷︷ ︸
SM (x∗)

+ |K0|
∣∣∣T̂∗(x∗)

∣∣∣ ∣∣∣T̃∗(x∗)
∣∣∣︸ ︷︷ ︸

ST (x∗)

(15)

where ‖·‖ is a generic vector norm and the corresponding induced matrix norm and |·| is the

absolute value. Looking at the inequality (??) it is possible to deduce that the scalar maps

SM (x∗) and ST (x∗) are positive-definite sensitivity maps for the structural perturbation of

the momentum and temperature equations, respectively. The maps, depending on space

x∗, are proportional to the effect on δσ consequent to introducing locally at position x∗

the considered structural perturbations δf and δg. In particular, following [? ], regions

where the sensitivity map is not negligibly small indicate the zone where the considered

structural perturbation has a significant influence on the considered eigenvalue. When this
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region is bounded and localised in space, it can be identified as the core of the instability

(see [? ] and [? ] for more details). Here, at difference with the classical case of the

Navier Stokes equations for an incompressible flow with constant fluid properties, we have

two kind of sensitivities associated to the structural perturbation of the momentum and

temperature equations, respectively. Their shape in space for the engulfment instability and

the discussion of the related properties is postponed in section ??.

IV. NUMERICAL METHODS AND CONVERGENCE TESTS

A. Direct numerical simulations

The DNSs are carried out by discretizing Eqs. (??) using the open-source code Nek5000

(https://nek5000.mcs.anl.gov). It is a massively parallel code based on a spectral-

element method (SEM), where the spatial discretisation of the domain is carried out using

hexahedral elements. The unknown variables are spanned by Nth-order Lagrange polynomial

interpolants, based on tensor-product arrays of Gauss-Lobatto-Legendre (GLL) quadrature

points in each spectral element, where typically N ≥ 6. The time discretisation of the sys-

tem (??) is obtained employing a third-order backward differentiation formula (BDF3). As

concerns the spatial discretisation, the diffusive terms are treated implicitly, while a third

order explicit extrapolation formula (EXT3) is considered for the convective terms. The

explicit extrapolations for the convective terms in the BDF3-EXT3 scheme impose a restric-

tion of the time-step, ∆t, (see for instance [? ]) for iterative stability. For this reason ∆t is

chosen here so as to have a Courant number equal to CFL ≈ 0.5.

The computational domain adopted for the DNSs has the same characteristics as the one

validated and used in [? ]. With reference to figure ??, Li = 6.25 Lr and Lo = 25 Lr are

chosen as length of the inlet and outlet channels, respectively. This domain is discretised

through a structured multi-block grid having 15680 spectral elements; the grid used herein

is the same as the one in [? ], to which we refer for more details. After a number of p-

refinement tests (not shown here for sake of brevity), the polynomial order for the velocity

components and for the temperature is fixed at N = 7, while order 5 is selected for the

pressure, using the PN − PN−2 approach for the elimination of spurious pressure modes.
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B. Global stability analysis

The three-dimensional global stability analysis is performed using the finite element code

FreeFem++ (http://www.freefem.org). First, the baseflow is interpolated on a structured

grid suitable for the finite element solver (see ??b) and, successively, the global eigenvalue

problem (??) is solved using the parallel iterative solver HIPS ( Hierarchical Iterative Parallel

Solver, http://hips.gforge.inria.fr). This scientific library is suitable for large sparse

problems and implements a type of multilevel ILU as preconditioner (see [? ]). In order to

study how the dimensions of the computational domain and the mesh refinement affect the

results of the global stability analysis, different grids have been tested. We remind that these

grids are used only for the stability analysis, while flow simulation providing the baseflow is

carried out on a independent grid using Nek5000. The results of this convergence test are

reported for the case at ∆T = 40oC and Re = 105 in table ??. In particular, with reference

to figure ??b, the table details the characteristics of the considered grids and computational

domains together with the corresponding leading eigenvalues obtained by stability analysis.

The stability analysis performed on the meshes C1 and C2 shows that the position of the

outlet boundary (defined by the y−coordinate y1) has a negligible impact on the evaluated

leading eigenvalue, at least for the two lengths of the outlet channel considered. Conversely,

the position of the inlet boundaries (defined by the coordinate x2) has a strong influence on

the evaluation of the global eigenfrequency, as it is clear comparing the results on the grid

C1 and C3. Finally, starting from C2, progressively refined grids have been tested for the

same computational domain (from C4 to C7). Comparing the results from C6 and C7, a

small impact on the resulting real eigenvalue is found showing grid convergence. Thus, in

the following, all the presented global stability results are obtained using the mesh C6.

V. RESULTS

A. Direct numerical simulations

A first characterisation of the vortex and engulfment regimes has been carried out by

performing several DNS simulations. For different values of the temperature difference of

the two streams entering the mixer, i.e. ∆T = T2−T1, different values of the flow Reynolds

numbers <1 have been considered so as to detect the critical value Recr for the occurrence
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Mesh x2 y2 ne nv ndof hmax hmin 103λ0

C1 3.0 −10.0 176832 33891 1046391 0.438 0.039 −12.388

C2 3.0 −3.0 82560 16467 499047 0.441 0.039 −14.711

C3 1.5 −3.0 97920 19019 583519 0.197 0.039 +2.868

C4 3.0 −3.0 135360 26169 804669 0.438 0.036 −13.613

C5 3.0 −3.0 180768 34245 1063049 0.451 0.035 −9.194

C6 3.0 −3.0 201600 38311 1187611 0.435 0.031 −6.561

C7 3.0 −3.0 228096 42670 1332442 0.459 0.034 −6.728

Table I. Results on convergence tests of the global stability analysis at Re = 105 and ∆T = 40oC;

x2 and y2 are defined in figure ??b; ne and nv are the numbers of elements and vertices of the mesh;

ndof is the resulting number of degrees of freedom for the unknown variables [u, v, w, θ, p]; hmax

and hmin are the resulting maximum and minimum grid spacing, respectively; λ0 is the leading

global eigenvalue obtained by stability analysis.

of the engulfment bifurcation. The different flow regimes (vortex or engulfment regime)

identified at different values of <1 are summarised in Figure ?? for each ∆T here considered.

These results show that Recr decreases as ∆T is increased, reaching an almost constant value

with ∆T for ∆T ≥ 30oC. Quantitatively, while 135 ≤ Recr ≤ 145 when ∆T = 0oC, the Recr

reaches the value of 115 for ∆T = 30oC. Lastly, when ∆T is greater than 30oC, the effect

of the temperature variation on the Recr can be considered mild, as it is clearly shown in

figure ??.

The engulfment or vortex regimes have been identified in figure ?? by performing a

simulation for each reported point and by checking the symmetries of the resulting steady

solution. We remind that both the vortex and the engulfment regimes are steady and,

depending on the saturation velocity of the instability, engulfment regime can take long

time to settle especially for Reynolds numbers close to the critical one.

Besides visual inspection of the flow symmetries, a complementary way to highlight the

development of the engulfment regime is by inspecting the mixing degree between the two

flows entering the two inlet channels, since it is known that engulfment is associated with

a rapid increase of mixing (see for instance [? ]). In order to quantify mixing, a non-
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Figure 3. Flow regimes (vortex or engulfment regime) identified using DNSs for different values

of the Reynolds number <1 at different values of the temperature jump between the two streams

entering the T-mixer ∆T .

dimensional quantity φ is defined:

φ(x, y, z) =
T (x, y, z)− T1

∆T
(16)

Following [? ] and using the definition in Eq. (??), the mixing degree δm in the outlet

channel has been defined as follows:

δm(y) = 1− σb(y)

σmax
(17)

where the bulk value of the quantity φ̄b and the standard deviation of the volumetric flow

σb are defined as follows:

φ̄b =

∫
φ(x, y, z)V (x, y, z) dx dz∫

V (x, y, z) dx dz
(18)

σ2
b (y) =

∫
(φ(x, y, z)− φ̄b)2V (x, y, z) dx dz∫

V (x, y, z) dx dz
(19)

where V (x, y, z) is the y-velocity component in the y cross section within the outlet channel.

σmax is the maximum value of σb, which is achieved when the two streams remain completely
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Figure 4. Degree of mixing δm evaluated in the outlet channel at y=-5 for different temperature

jumps.

segregated, and it is defined as:

σmax =
√
φ̄b(1− φ̄b) (20)

As a result, δm is bounded in the range 0 ≤ δm ≤ 1, and δm = 0 and δm = 1 indicate a

completely segregated and a fully mixed flow, respectively. The mixing parameter δm has

been computed using the available simulations and the results are reported in figure ??.

Inspecting figure ?? it is possible to notice that, for each temperature jump ∆T , there is a

sudden increase of mixing as the engulfment regime develops, i.e. as Re becomes larger than

Recr. For this reason it is possible to deduce an approximate value of Recr looking at the

behaviour of mixing in the referenced figure. In particular, figure ?? confirms that Recr is

almost constant for ∆T ≥ 30oC, as also deduced from figure ??. Moreover, it can be evinced

that the increase of mixing is progressively sharper with the flow Reynolds number when ∆T

is increased. For instance, at ∆T = 10oC, the value of δm starts to increase starting from

Re ' 130, but it does not reach an asymptotic value in the range of considered Reynolds

numbers (Re ≤ 180). Conversely, δm starts to increase at Re = 110 for ∆T = 40oC and it

reaches an asymptotic value of δm ' 0.55 for Re ' 130. This behaviour indicates that, as

∆T is increased, the engulfment instability increases more sharply with Re.

16



As concerns the characteristics of the flow fields in the vortex and the engulfment regimes,

we now discuss the main differences that can be observed by comparison between the case

with the highest temperature difference, ∆T = 40oC (hereafter denoted DT40) and the case

without temperature difference (denoted DT0), which has been widely investigated in the

literature. In particular, in [? ? ] the same T-mixer configuration was analysed for ∆T = 0

both through DNS and stability analysis.

In figure ?? representative isosurfaces of the λ2 field are reported, λ2 being the scalar

parameter in the vortex identification criterion described in [? ], so as to identify the vortical

structures of the flow in the vortex regime. The two flow fields in figure ?? have been taken

at a Reynolds number which is slightly subcritical for the engulfment instability, which is

equal to Re = 135 and Re = 110 for the cases DT0 and DT40, respectively. As for the

DT0 case, depicted in figure ??(a), also in the case DT40 (see figure ??(b)) two vortices

originate at the confluence region between the two incoming streams. The vortices have

their axis parallel to the z direction and they extend towards the outflow channel with two

“legs” which remain almost parallel to the y direction and in specular position with respect

to plane z = h/2. As a result, at each xz section in the outflow channel we can identify 4

vortices whose axis is almost parallel to the y direction, two rotating in clockwise and two in

counter-clockwise direction. In the DT0 case the flow field has two reflectional symmetries,

with respect to the z = h/2 and to the x = 0 planes. Conversely, for the DT40 case, and

in general when ∆T 6= 0oC, the flow is no more symmetric with respect to the plane x = 0.

This is already evident by the asymmetry in the shape of the two couples of vortices located

in the outlet channel which can be observed in figure ??(b).

For a more detailed comparison, the distribution of temperature is shown in figure ?? at

selected xz sections for five different values of ∆T , from ∆T = 0oC to ∆T = 40oC. In the case

of ∆T = 0oC, the distribution of the concentration of a passive scalar is shown for comparison

with temperature. In figure 6 and in the following, the range of variation of the passive tracer

is arbitrarily fixed between 10 and 11 to make the comparison with the distribution of T

easier.Figure ?? comprises 5 different values of ∆T , but for the moment we focus only on

DT0 and DT40 only. For each value of ∆T , the flow Reynolds number considered is just

subcritical for the engulfment instability so that all cases have approximately the same

“distance” in terms of Re from the instability. Let us focus for the moment only on the DT0

and DT40 cases only. By comparison between the passive tracer in DT0 and temperature
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field for DT40 the loss of one reflectional symmetry is evident. As a consequence, since

the viscosity depends on temperature and thus couples the momentum and the temperature

equations, also the velocity field looses the reflectional symmetry with respect to the plane

x = 0, as highlighted in Figure ??. Figure ?? also shows another interesting behaviour

which is caused by the variation of viscosity with temperature. Colder fluid, which implies

higher viscosity for water, passes to the hotter half of the mixer (x ≥ 0) flowing in a complex

way in the confluence region between the two incoming streams. A more precise idea of the

temperature distribution in this region can be gained integrating the views in Figure ?? with

those in Figure ??, where the temperature distribution at selected xy sections is reported,

with focus on the confluence region. The complex asymmetrical behaviour described above

can be guessed also from Figure ??, where it can be noticed that the vortex forming in the

cold region (blue vortex) is slightly higher in the y direction than the hot one. The cold fluid

passing to the other half of the mixer in the confluence region descend the outlet channel

staying adjacent to the wall x = w0/2, thus creating a colder layer which can be clearly seen

in Figure ?? for the section y = −1.

Due to the coupling between temperature and velocity through viscosity, the temperature

difference ∆T has also a significant impact on the velocity and vorticity distribution. In

particular, looking again at Figure ?? it can be noticed that the two vortices in the colder

region dissipates more quickly than the two equivalent ones in the hotter region, viscosity in

the colder fluid being larger by a factor approximately equal to 5 for DT40. This fact further

increases the flow asymmetry and explains the particular temperature distribution at y = −3

that can be observed in Figure ??, where hotter water penetrates in the cold half of the

mixer (x ≤ 0) especially in proximity of the lateral walls (x = ±h/2). This loss of symmetry

leads, for the largest values of ∆T , to a small amount of mixing also in the vortical regime

(see figure 4). Since, as it will be discussed in the following, the engulfment regime takes

place when the flow symmetries are broken, the previous observations are also consistent

with the fact that increasing ∆T the value of the critical Reynolds number decreases.

In the cases with a value of ∆T which is intermediate between DT0 and DT40, also

reported in Figures ?? and ?? , the flow behaviour is regularly changing with ∆T and is

thus intermediate between the DT0 and DT40 cases. For this reason we will not comment

them further.

With reference to Figure ??, the onset of the engulfment regime leads to a modification
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Figure 5. Top and lateral views of the 3D vortical structures identified by the λ2 criterion ([? ])

for the vortex regime at (a) ∆T = 0oC and Re = 135 and (b) ∆T = 40oC and Re = 110.

of the flow which is similar to what observed in the literature in the DT0 case. In particular,

the two vortices forming near the top wall of the mixer (y = w) tilt their axis in the yz-

plane, thus breaking the reflectional symmetry with respect to the plane z = 0, which

is the only reflectional symmetry that can be found in the vortex regime when ∆T 6= 0.

As a consequence, the two legs of each vortex, which enters the outflow channel due to

convection, are asymmetric and their intensity is different. While in the case DT0 the

flow in the engulfment regime preserves a single reflectional symmetry, all symmetries are

lost when ∆T 6= 0oC. In all cases, however, only two co-rotating vortices remain in the

outlet conduit at a sufficient distance from the confluence region of the three channels, and

their induced velocity field is the main characteristic causing, by convection, the increase

of mixing observed in this flow regime. The fact that the intensity of these two surviving

vortices is slightly different when ∆T 6= 0oC does not alter significantly the scenario and

the characteristics of the resulting flow, if compared to the DT0 case, as shown in figure ??

and figure ?? where the temperature and the velocity fields for the engulfment regime at
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∆T = 0oC, Re = 135

∆T = 10oC, Re = 120

∆T = 20oC, Re = 115

∆T = 30oC, Re = 110

∆T = 40oC, Re = 110

Figure 6. Distribution of temperature in the vortex regime for different values of the temperature

jump ∆T = T2 − T1 at three selected sections in xz−plane at y = 0.5,−1,−3
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∆T = 0oC, Re = 135

∆T = 10oC, Re = 120

∆T = 20oC, Re = 115

∆T = 30oC, Re = 110

∆T = 40oC, Re = 110

Figure 7. Distribution of the velocity in y direction in the vortex regime for different values of the

temperature jump ∆T = T2 − T1 at three selected sections in xz−plane at y = 0.5,−1,−3

21



∆T = 0oC, Re = 135
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∆T = 40oC, Re = 110
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Figure 8. Distribution of temperature in the vortex regime for different values of the temperature

jump ∆T = T2 − T1 at two selected sections in xy−plane, located at z = h/2 and at z = 0.95h

different ∆T are reported at the same sections of figure ?? and figure ??.

B. Global stability analysis

Stability analysis is carried out here to further investigate the flow instability leading

from the vortex to the engulfment regime and how it is possibly affected by ∆T and by

the consequent variation of viscosity. As a first step, the critical Reynolds number for

this instability Recr, already estimated by DNS in Section ??, can be also evaluated by
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Figure 9. Top and lateral views of the 3D vortical structures identified by the λ2 criterion ([? ])

for the vortex regime at (a) ∆T = 0oC and Re = 160 and (b) ∆T = 40oC and Re = 120; the color

on the isosurfaces indicate the value of temperature (or of the passive scalar in the case ∆T = 0oC)

stability analysis. This has been done by considering, for each value of ∆T , several values of

subcritical flow Reynolds numbers Rej. For each value of Rej the stability analysis is applied,

identifying the least stable mode and estimating its growth rate λj = λ(Rej). The data so

collected are then used to extrapolate the behaviour of the growth rate as a function of the

Re, i.e. λ(Re), and to approximate the Recr as the value of Re that corresponds to a null

growth rate, i.e. λ(Re = Recr) ' 0. We remind that the stability analysis has been carried

out here by dedicated numerical tools, described in section ??, which are completely different

from the numerical method used for DNS. For this reason slight discrepancies between the

two different estimations of Recr have been found. In particular, the maximum difference has

been obtained for ∆T = 40oC, where DNS predicts 110 ≤ Recr ≤ 120 while according to the

stability analysis we should have Recr ' 105. The reasons for this discrepancy, even if rather

small, are not fully clear to the authors. As previously said, they might be ascribed to the

different methods and spatial resolutions employed. Another possible cause of discrepancy
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∆T = 10oC, Re = 130

∆T = 20oC, Re = 125

∆T = 30oC, Re = 120

∆T = 40oC, Re = 120

Figure 10. Distribution of temperature in the engulfment regime for different values of the tem-

perature jump ∆T = T2 − T1
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∆T = 0oC, Re = 160

∆T = 10oC, Re = 130

∆T = 20oC, Re = 125

∆T = 30oC, Re = 120

∆T = 40oC, Re = 110

Figure 11. Distribution of the velocity in y direction in the engulfment regime for different values

of the temperature jump ∆T = T2 − T1 at three selected sections in xz−plane at y = 0.5,−1,−3
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Figure 12. Leading direct global mode for the case ∆T = 10oC and Re = 120 at three different

sections: (a-d) y = −0.5, (b-e) y = −1.5 and (c-f) y = −3. Left column: the color contours

represent the y-component of the velocity field and the vectors the in-plane velocity; right column:

temperature perturbation field.

lies in the fact that in DNS the simulation times to identify the engulfment instability may

be very large when growth factors are low, as it may happen near the critical conditions.
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Figure 13. DNS Velocity (y component) and temperature fields at y = −0.5 before (a)-(e) and after

(b)-(f) the engulfment instability for ∆T = 10oC; the velocity and temperature fields in subfigures

(c)-(g) are the difference between the fields (b)-(f) and those in (a)-(e), i.e. the difference fields

between the post-enguflment and the pre-engulment ones; velocity (y component) and temperature

eigenmodes obtained by stability analysis are depicted in subfigures (d) and (h) and normalised so

as to ease comparison with (c) and (g).

Thus, there might be the possibility that a point which is identified as stable in the vortex

regime is slightly unstable but this eventuality has not been shown by DNS.

However, despite the mild differences in terms of Recr, it can be shown that there is a close

agreement between the least stable mode identified by global stability analysis (an example

of the shape of the leading global mode is shown in figure ??) and the results obtained by

DNS, confirming that the stability analysis correctly identifies the mode which is responsible

for the onset of the engulfment regime. This can be demonstrated by comparing the spatial

shape of the eigenmode identified by stability analysis with the flow field (∆v∗,∆p∗,∆T∗)
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(a)

(b)

(c)

(d)

Figure 14. Representative sections (top) and iso-surfaces (bottom) of the sensitivity maps (a)

SM (x∗) and (b) ST (x∗) (∆T = 10oC and Re = 120)

obtained by subtracting the flow field obtained in DNS at a Reynolds number slightly lower

than Recr (vortical regime, see for instance figures ??(a) and (e)) to the one obtained at

Re slightly larger than Recr (engulfment regime, see for instance figures ??(b) and (f)).

The resulting velocity and temperature fields (∆v∗,∆p∗,∆T∗) are reported at the section

y = −0.5 for ∆T = 10oC in figures ??(c) and (g), respectively. Figure ?? allows the

comparison between (∆v∗,∆p∗,∆T∗) and the stability eigenmode, which is reported for the

same case in figures ??(d) (y-velocity) and (h) (temperature). As can be evinced by the

figure, the difference field (∆v∗,∆p∗,∆T∗) obtained by DNS, which is representative of the

way in which the engulfment instability grows in slightly supercritical conditions over the

vortex regime, is in excellent agreement with the least stable eigenmode identified by the

stability analysis.

Once demonstrated that the stability analysis allows the identification of the eigenmode

leading to the engulfment regime, it is possible to apply the sensitivity analysis described in

section ?? so as to locate the core of the instability. We remind that, following [? ], the core

of the instability is the region of the flow where the instability takes origin and where it is
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most sensitive to a possible control. The instability core is identified as the region where the

sensitivity maps SM (x∗) and ST (x∗) (see equation (??)) take values significantly different

from 0. The isosurfaces delimiting these regions are reported in figure ?? for the case at

∆T = 10oC and Re = 120 (slight subcritical conditions), showing that the core regions

are well delimited in space and confined at the confluence region of the two inlet channels.

The region where ST (x∗) is non-null, i.e. where the instability is sensitive to a structural

perturbation of the temperature equation, is almost included into the region where also

SM (x∗) is non-null. Moreover, the global core of the instability, which is dominated by the

sensitivity map SM (x∗), is very similar to that already found for the case of uniform fluid

properties (∆T = 0) (see [? ] for detailed comments). The only difference is the slight

asymmetry of the core with respect to the plane x = 0, which is related to the asymmetry of

the baseflow already discussed in the previous section. From this observation we can argue

that the onset of the engulfment regime is mainly related to a mechanism which is dominated

by the momentum equation and by the velocity field, while the effect of the temperature field

is to modify the scenario from a quantitative viewpoint but not qualitatively, i.e. without

altering the physical origin of the instability. To further support this speculation, different

global stability analyses have been carried out on artificially modified system of equations. In

particular, by inspecting the stability equations (??), it is possible to identify 2 terms which

couple the momentum and the temperature linearised equations: the third term (v̂∗ ·∇∗Tb∗)

on the LHS of Eq. (??c), labelled in the following as T1, and the last term of the RHS in

Eq. (??b), denoted here as M1. The term T1 is a source term for T̂∗ and represents the

temperature fluctuations caused by the eigenmode velocity v̂∗ moving the fluid particles in

the base temperature field Tb∗. The term M1 takes into account the variation of the fluid

viscosity in the momentum equation caused by the temperature fluctuations T̂∗. The role of

the temperature equation in the engulfment instability can be then highlighted performing

the following tests:

1. Test#1 - The term T1 is neglected. This implies that the momentum equation depends

on the temperature fluctuations T̂∗, while the temperature equation is decoupled from

the momentum equation and depends only on the baseflow velocity Vb∗.

2. Test#2 - The term M1 is neglected, meaning that the temperature equation depends

on v̂∗, while the momentum equation is decoupled from the temperature equation and
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Figure 15. Eigenmodes related to the engulfment instability at ∆T = 10oC and Re = 120 resulting

from the 2 tests described in the text: (a) velocity field in the y direction obtained in both tests 1

and 2 (fields are identical so only one is reported) and (b) temperature field obtained in test 2.

depends only on the baseflow temperature Tb∗ but not on the temperature fluctuations.

Focusing on the case at ∆T = 10oC and Re = 120, the leading eigenvalue identified in

Test#1 is very close to the one obtained with the full set of equations. A good comparison

has been also found between the shape of the velocity field of the corresponding eigenmode,

reported in figure ??(a), and the true eigenmode, previously shown in figure ??(d). How-

ever, the associated temperature eigenmode, which depends now on a convection-diffusion

equation decoupled from the momentum equation, is null to machine accuracy. This result

demonstrates that the source for temperature fluctuations in the engulfment instability is

driven by the velocity eigenmode through the term T1 and temperature equation does not

drive any new instability mechanism.

On the other hand, the least stable eigenvalue predicted by the Test#2 is also similar

to that of the full stability analysis but, at difference with Test#1, in this second case the

corresponding temperature perturbation field is not null. In particular, the temperature ei-

genmode, reported in figure ??(b), is now very similar to the one obtained when all the terms

of the stability equations are retained, as can be evinced by comparison with figure ??(h).

This second test further proves that the temperature eigenmode is driven by the velocity

field through the term T1.

With the tests described above we have thus demonstrated that the engulfment instability

is dictated by the same physical mechanisms highlighted in the case without temperature

difference, i.e. with constant viscosity, which have been largely discussed in the dedicated

paper [? ]. The role of ∆T is to change quantitatively the stability characteristics via a

variation of the viscosity coefficient, but the temperature equation does not add any new
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instability mechanism to the flow.

VI. CONCLUSIONS

The flow in a T-mixer is investigated when fluids at different temperatures enter the

mixer. Water is selected as working fluid at varying temperature, so as to highlight the

effect of a significant viscosity variation on the onset of the fluid flow regimes while density

variations are negligible. The temperature of water entering from one channel is hold at a

constant value equal to T1 = 10oC, while in the other inlet channel temperature is varied

in the range 10oC ≤ T2 ≤ 50oC. This study focus in particular on the transition from the

vortex to the engulfment regime in the mixer, engulfment being of engineering interest due

to the related enhancement of the mixing between the inlet fluids.

The results of the numerical simulations show that the onset of the engulfment regime is

promoted by increasing the temperature jump between the two entering fluids. In particular,

the corresponding critical Reynolds numbers (Recr) for the onset of the flow bifurcation

leading to the engulfment tend to decrease with increasing the temperature difference up to

T2 − T1 = ∆T = 30oC. Above this temperature difference, Recr reaches an almost constant

value approximately equal to Recr = 115. This behaviour is also confirmed by the evaluation

of the degree of mixing between the two entering fluids for the temperature jumps considered

here. This second test also shows that the saturation of the mixing in the engulfment regime

with increasing Re is faster for larger ∆T . DNS simulations also show that, when the inlet

streams have different temperature and hence viscosity, a loss of symmetry is present in the

flow filed also in the vortical regime and this promotes the occurrence of the engulfment

regime, in which the flow symmetries are definitely broken.

Lastly, three-dimensional global stability analysis has been carried out to further charac-

terise the process leading to the engulfment regime. For each value of ∆T considered in the

selected range specified above, a supercritical pitchfork bifurcation has been identified from

the analysis of the eigenvalue spectrum obtained at different values of the flow Reynolds

number, following the same procedure proposed by [? ] for the study of a similar flow con-

figuration when ∆T = 0. Despite slight discrepancies between the values of Recr estimated

by DNS and by stability analysis, which are however compatible with the different numerical

methods used in the two cases, it is shown that the global mode identified by stability ana-
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lysis is the one responsable for the onset of the engulfment regime. Consequently, sensitivity

analysis has been applied to localise the core of the instability and to further investigate the

role played by the temperature field in the onset of the engulfment. It is shown that the

instability core is similar to that already identified for a uniform fluid in [? ]. Indeed, the

new part resulting from the temperature equation leads to a high sensitivity region which is

almost completely included into that related to the momentum equation, so that the overall

sensitivity region is only slightly different.

In order to further investigate the role of the temperature equation on the onset of the

identified bifurcation, two artificially modified stability problems have been formulated so

as to isolate the role of each one among the two terms of the equations which couple the

momentum and the temperature equations. The results obtained and their comparison with

the true case demonstrate that the temperature equation does not lead to any new instability

mechanism, but engulfment is dictated by the same physical mechanisms highlighted in

the case without temperature difference. The effect of the temperature is only to change

quantitatively the stability characteristics via a variation of the viscosity coefficient.
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Appendix A: Derivation of the adjoint stability equations

We derive here the adjoint stability equations (??) using a classical variational approach.

The starting point are the direct stability equations (??), which are concisely indicated as

follows:

L q̂∗ = 0 (A1)

where the vector q̂∗ collects the direct eigenmode, i.e. q̂∗ =
(
v̂∗, p̂∗, T̂∗

)T
Equation (??) is

introduced through associated Lagrange multipliers q̃∗ =
(
ṽ∗,−p̃∗, T̃∗

)T
in an augmented
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functional J :

J = σ − 〈q̃∗,L q̂∗〉 (A2)

Imposing stationarity of J with respect to generic variation of the adjoint variables, δq̃∗, i.e.

δJ = −〈δq̃∗,L q̂∗〉 = 0, leads to equation (??), which is the starting direct problem included

here as a constraint. For the derivation of the adjoint problems it is necessary to find the

adjoint operator L+, which is defined as follows:

〈q̃∗,L q̂∗〉 = 〈L+ q̃∗, q̂∗〉 (A3)

Following the definition in equation (??), the operator L+ and the associated boundary

conditions are found using integration by parts so as to shift the application differential

operators from q̂∗ to q̃∗. The boundary integrals resulting from this procedure needs to be

nullified by properly selected boundary conditions to be applied to the adjoint variables q̃∗.

Once L+ has been found, the augmented functional can be written as:

J = σ − 〈L+ q̃∗, q̂∗〉 (A4)

Imposing stationarity of J with respect to generic variation of the direct variables, δq̂∗, i.e.

δJ = −〈L+ q̃∗, δq̂∗〉 = 0, leads to the adjoint eigenvalue problem:

L+ q̃∗ = 0 (A5)

which is supplemented by the natural boundary conditions for q̃∗ which nullify the boundary

intergrals arising in the derivation of the operator L+. Once the direct and the adjoint

problems are solved, it is possible to find the variation δσ of the selected eigenvalue for a

generic variation of the linearised operator, δL, as follow:

δσ = −〈q̃∗, δLq̂∗〉 (A6)

and this is done in Section ?? for investigating the sensitivity of the instability to a partic-

ular structural perturbation of the linearised Navier Stokes equations.

In the following we will concisely detail the passage formally given in equation (??). Integra-

tion by parts is applied to the term 〈q̃∗,L q̂∗〉 until all differential operators are moved from

q̂∗ to q̃∗, which implies one integration by parts for first-order terms and two for second-order
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terms, and the final result is the following:

〈q̃∗,L q̂∗〉 =− 〈p̃∗,∇∗ · v̂∗〉+

〈ṽ∗, σv̂∗ + Vb∗ · ∇∗v̂∗ + v̂∗ · ∇∗Vb∗ +∇∗p̂∗ −∇∗ ·
[
α (Tb∗)

(
∇∗v̂∗ +∇T

∗ v̂∗
)]

+

−∇∗ ·

[
∂α (y)

∂y

∣∣∣∣
y=Tb∗

(
∇∗Vb∗ +∇T

∗ Vb∗
)]
T̂∗〉+

〈T̃∗, σ T̂∗ + Vb∗ · ∇∗T̂∗ + v̂∗ · ∇∗Tb∗ −∇∗ ·
(
β (Tb∗)∇∗T̂∗

)
+

−∇∗ ·

(
∂β (y)

∂y

∣∣∣∣
y=Tb∗

∇∗Tb∗

)
T̂∗〉 =

− 〈∇∗ · ṽ∗, p̂∗〉+

〈σ∗ṽ∗ −Vb∗ · ∇∗ṽ∗ +∇∗Vb∗ · ṽ∗ +∇∗p̃∗, v̂∗〉+

+ 〈−∇∗ ·
[
α (Tb∗)

(
∇∗ṽ∗ +∇T

∗ ṽ∗
)]

+ (∇∗Tb∗) T̃∗, v̂∗〉+

+ 〈σ∗T̃∗ −Vb∗ · ∇∗T̃∗ +
1

2

(
∇∗ṽ∗ +∇T

∗ ṽ∗
)

:
(
∇∗Vb∗ +∇T

∗ Vb∗
) ∂α (y)

∂y

∣∣∣∣
y=Tb∗

, T̂∗〉+

+ 〈 ∂β (y)

∂y

∣∣∣∣
y=Tb∗

∇∗T̃∗ · ∇∗Tb∗ −∇∗ ·
(
β (Tb∗) T̃∗

)
, T̂∗〉+∮

∂V

−p̃∗ (v̂∗ · n) dS +

∮
∂V

(ṽ∗ · v̂∗) Vb∗ · n dS +

∮
∂V

p̂∗ṽ∗ · n dS+

−
∮
∂V

ṽ∗ ·

{[
∂α (y)

∂y

∣∣∣∣
y=Tb∗

(
∇∗Vb∗ +∇T

∗ Vb∗
)
T̂∗

]
· n

}
dS+

−
∮
∂V

ṽ∗ ·
{[
α (Tb∗)

(
∇∗v̂∗ +∇T

∗ v̂∗
)]
· n
}

dS+

+

∮
∂V

v̂∗ ·
{[
α (Tb∗)

(
∇∗ṽ∗ +∇T

∗ ṽ∗
)]
· n
}

dS+

+

∮
∂V

T̂∗ T̃∗ (Vb∗ · n) dS −
∮
∂V

(
T̃∗
∂β (y)

∂y

∣∣∣∣
y=Tb∗

T̂∗

)
∇∗Tb∗ · n dS+

−
∮
∂V

T̃∗ β(Tb∗)
(
∇∗T̂∗ · n

)
dS +

∮
∂V

T̂∗ β(Tb∗)
(
∇∗T̃∗ · n

)
dS

(A7)
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The boundary integrals, i.e. those terms involving a surface integral on the surface bounding

the fluid domain, can be rearranged in the following way:∮
∂V

v̂∗ ·
{
−p̃∗n + ṽ∗ (Vb∗ · n) +

[
α (Tb∗)

(
∇∗ṽ∗ +∇T

∗ ṽ∗
)]
· n
}

dS+

+

∮
∂V

ṽ∗ ·

{
p̂∗n−

[
∂α (y)

∂y

∣∣∣∣
y=Tb∗

(
∇∗Vb∗ +∇T

∗ Vb∗
)
T̂∗

]
· n−

[
α (Tb∗)

(
∇∗v̂∗ +∇T

∗ v̂∗
)]
· n

}
dS+

+

∮
∂V

T̂∗

[
T̃∗ (Vb∗ · n) + β(Tb∗)

(
∇∗T̃∗ · n

)]
dS

−
∮
∂V

[(
T̃∗
∂β (y)

∂y

∣∣∣∣
y=Tb∗

T̂∗

)
∇∗Tb∗ · n

]
dS −

∮
∂V

[
T̃∗ β(Tb∗)

(
∇∗T̂∗ · n

)]
dS

(A8)

We remind that the boundary conditions for the base flow (Vb∗, Pb∗, Tb∗) are the following:

Vb∗ = f(x), Tb∗ = g(x), on ΓI (A9a)

Vb∗ = 0, ∇∗Tb∗ · n = 0, on ΓW (A9b)[
−Pb∗I +∇∗ ·

(
α (Tb∗)

(
∇∗Vb∗ +∇T

∗ Vb∗
))]
· n = 0, ∇∗Tb∗ · n = 0, on ΓO (A9c)

Moreover, the boundary conditions for the direct eigenmodes in the stability problem,

(v̂∗, p̂∗, T̂∗), are the following:

v̂∗ = 0, T̂∗ = 0, on ΓI (A10a)

v̂∗ = 0, ∇∗T̂∗ · n = 0, on ΓW (A10b)[
p̂∗I −∇∗ ·

(
α (Tb∗)

(
∇∗v̂∗ +∇T

∗ v̂∗
))
−∇∗ ·

(
∂α (y)

∂y

∣∣∣∣
y=Tb∗

(
∇∗Vb∗ +∇T

∗ Vb∗
))

T̂∗

]
· n =

= 0, ∇∗T̂∗ · n = 0, on ΓO

(A10c)

Considering that the boundary conditions for the baseflow and for the direct problem and

inspecting the boundary terms in Equation (??) it is possible to deduce the natural boundary

conditions for the adjoint flow variables such that all the boundary integrals in Equation (??)

vanish. In particular, we have:

ṽ∗ = 0, T̃∗ = 0, on ΓI (A11a)

ṽ∗ = 0, ∇∗T̃∗ · n = 0, on ΓW (A11b)
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− p̃∗n + (Vb∗ · n) ṽ∗ + α (Tb∗)
(
∇∗ṽ∗ +∇T

∗ ṽ∗
)
· n = 0 on ΓO

(Vb∗ · n) T̃∗ + β (Tb∗)∇∗T̃∗ · n = 0 on ΓO
(A11c)

With the above mentioned boundary conditions, all boundary integrals vanish and, in-

specting Equation (??) and remembering the definition of the adjoint operator L+ given in

Equation (??) it is possible to deduce straightforwardly the adjoint Equations (??).
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