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National Institutes of Health 
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Abstract 

Fibroblast growth factor 21 (FGF21) regulates energy expenditure (EE) and influences weight 

change after low-protein overfeeding in rodent models. The change in EE after low-protein 

overfeeding diet is a predictor of weight change in humans and a feature of the “thrifty” 

metabolic phenotype. However, there are no studies showing an association between circulating 

FGF21 and EE in humans. We assessed the changes in plasma FGF21 concentrations after 24 

hours of seven dietary interventions with different macronutrient content while in a whole-room 

indirect calorimeter in 64 healthy subjects with normal glucose regulation. Plasma FGF21 

concentration consistently increased by 3-fold only after the two low-protein (3%) overfeeding 

diets, one high in carbohydrate (75%) and the other high in fat (46%), with larger increases in 

FGF21 being associated with greater increases in 24-h EE. Subjects with smaller increases in 

FGF21 after the low-protein high-fat diet gained more weight after six months in free-living 

conditions. Therefore, the individual predisposition to weight gain over time can be assessed by 

24-h overfeeding a low-protein diet and measurements of plasma FGF21 concentrations. 

Individuals with a blunted FGF21 response to a low-protein diet have a thrifty metabolism and 

are at risk for future weight gain. 

Clinical Trial Registration Number: NCT00523627 

 

  



Introduction 

As a result of altered energy homeostasis due to the imbalance between energy intake and 

expenditure (EE), obesity has become more prevalent and a major public health concern. However, 

the propensity to weight gain is different among individuals, such that some subjects are more 

resistant to weight gain when overeating as they appear to be more able to dissipate the excess 

energy than other individuals who instead are more metabolically “thrifty” (1-4). The inter-

individual diversity in susceptibility to weight gain seems to be secondary to genetic factors and 

to the capacity to increase EE in response to feeding, i.e., the diet-induced thermogenesis (3). The 

manifestation of metabolic phenotypes can be elucidated more clearly when assessing the 

individual EE response to extreme and macronutrient-unbalanced dietary interventions (2). 

Specifically, low-protein (<10%) overfeeding has been shown to most effectively uncover the 

individual propensity to weight gain (3-5), presumably due to the energetic cost required to 

maintain body lean mass (3; 4; 6). The underlying hormonal mechanisms by which low-protein 

overfeeding accentuates inter-individual differences in diet-induced thermogenesis and 

characterizes the subject-specific inclination to weight gain remain unknown.  

We previously determined that the acute (24-hour) EE response to low-protein overfeeding is a 

feature of the thrifty/spendthrift metabolic phenotypes, where a smaller increase (or even a 

decrease) in 24-h EE during this diet predicts weight gain (5). Fibroblast growth factor 21 (FGF21) 

is a relatively newly identified hormone implicated in the regulation of energy homeostasis (7-9). 

Rodents who are overfed with low-protein diet show FGF21-mediated increases in EE compared 

to normal-protein diet, and are less likely to gain weight (10-13). In humans, sustained low-protein 

overfeeding increased plasma FGF21 concentrations after 7 (13) or 28 days (10), although no 

change in EE was observed in the 28-day study (14). The aim of the current study was to determine 



whether FGF21 concentration changes after 24 hours of low-protein overfeeding, and to assess 

whether FGF21 correlates with the diet-induced change in 24-h EE and free-living weight change. 

We hypothesized that a reduced capacity to respond to a low-protein overfeeding diet by increasing 

FGF21 concentrations may be a metabolic feature of the “thrifty” metabolic phenotype, indicating 

a propensity to weight gain. 

Research Design and Methods 

Subjects 

This is an analysis of data from an ongoing study (clinicaltrials.gov identifier: NCT00523627) 

aimed to assess whether the 24-h EE responses to fasting and overfeeding predict free-living 

weight change in healthy, weight-stable individuals (Supplemental Figure 1). On admission to 

the clinical research unit, subjects were placed on a standard normal-protein weight-maintaining 

diet (WMD; 50% carbohydrate-CHO, 30% fat, and 20% protein-Pro)(15), adjusted daily by the 

research dietitian to assure weight stability within 1% of admission weight. The average 

coefficient of variation (CV) of the volunteers’ body weight prior to the dietary interventions was 

0.94 kg. All subjects had normal glucose regulation based on OGTT performed after three days 

on the WMD(16). Body composition was assessed by dual-energy X-ray absorptiometry (DPX-1, 

Lunar Corp, Madison, Wisconsin, USA) with fat mass (FM) and fat free mass (FFM) calculated from the 

percentage body fat and weight. Following discharge, forty-eight subjects returned after 6 months 

[median∙(interquartile range)=6.5∙(6.1-7.2) months] to assess weight change. All participants provided 

written informed consent prior to beginning the study. The Institutional Review Board of the NIDDK 

approved this study. 



Dietary interventions 

 The experimental protocol (Supplemental Figure 2) for dietary manipulation was 

described previously (17). The assessment of 24-h EE during energy balance was done in two 

steps. The first eucaloric EE assessment was obtained while subjects resided for 24 hours in a 

whole-room indirect calorimeter and were provided four balanced meals with total daily energy 

intake calculated using a unit-specific formula to achieve 24-h energy balance in the confined 

environment of the calorimeter. Secondly, all subjects had another eucaloric EE assessment 

inside the calorimeter when the total energy intake of four balanced meals was equal to the 24-h 

EE value calculated during the first eucaloric EE assessment for precise determination of 24-h 

EE during energy balance. 

Subsequently, volunteers had 24-h EE assessments in the calorimeter in random order and 

separated by a 3-day washout period on the WMD: 24-h fasting, two low-protein (LowPro/HighFat 

and LowPro/HighCHO), one high-protein, and three normal-protein overfeeding diets with total 

energy intake determined by doubling the 24-h EE value obtained during energy balance (Table 2, 

Supplemental Figure 3).  

Metabolic and hormone measurements 

The experimental protocol for the assessment of 24-h EE and substrate oxidation inside the whole-

room indirect calorimeter was previously described (17; 18). . Carbon dioxide production (VCO2) 

and oxygen consumption (VO2) in liters were calculated every minute and extrapolated to the 24-

h interval. The 24-h RQ was calculated as the ratio of 24-h VCO2 to 24-h VO2 while 24-h EE was 

calculated by Lusk's formula (18). Carbohydrate and fat oxidation rates were derived from the 24-

h RQ, after accounting for protein oxidation which was estimated from measurement of 24-h 

urinary nitrogen excretion (18).  



Fasting plasma was collected both at entry and at exit from the calorimeter in EDTA-containing 

tubes and frozen to −70°C for later measurements. FGF21 concentrations were measured by 

ELISA (R&D Systems, Minneapolis, MN, USA). Intra-assay and inter-assay CVs were 2.5% and 

5.2%, respectively.  

Statistics 

Non-normally distributed FGF21 concentrations were analyzed as log10 values, and results were 

presented as geometric mean with 95% confidence interval (CI). The change in FGF21 

concentration after each diet was assessed by paired t-test. For each subject, all the fasting FGF21 

measurements obtained before entering the calorimeter were averaged and used in ANOVA to 

determine differences according to sex and ethnicity and in correlation analysis with 

anthropometric characteristics.  

Results 

Baseline characteristics of the study cohort are presented on Table 1. The fasting FGF21 

concentration correlated with anthropometric characteristics (Supplemental Figure 4) and differed 

by ethnicity, such that on average FGF21 was lower by 60% (CI: 48% to 69%; p<0.0001) in Blacks 

compared to other ethnicities.  

On average, FGF21 concentrations greatly increased after the two low-protein overfeeding diets 

with a nearly threefold increase both after the LowPro/HighFat (+297%, CI: 254% to 347%] and 

LowPro/HighCHO (+326%, CI: 234% to 456%) overfeeding (Figure 1A-1B). The individual 

increases in FGF21 observed after these two low-protein overfeeding diets were correlated in the 

same subject (r=0.78, p<0.001, Supplemental Figure 5). Conversely, FGF21 concentrations 

decreased following 24-h fasting (−34%, CI: −21% to −44%) and all normal-protein overfeeding 



diets (Table 2), with the largest decrease after high-protein overfeeding (−75%, CI: −66% to 

−81%). A greater increase in FGF21 concentration after LowPro/HighFat overfeeding was 

associated with greater increase in 24-h EE (r=0.34, p=0.008, Figure 2A; in men only: r=0.31, 

p=0.03), but not during any normal-protein overfeeding diet or fasting (p=0.32, Supplemental 

Figure 6). There were no associations between the change in FGF21 after LowPro/HighFat 

overfeeding and 24-h RQ, macronutrient oxidation rates or substrate balance (all p>0.05). 

Despite a wide variability in weight change (SD=4.7 kg), on average body weight was stable after 

6 months (mean±SD, 0.8±4.7 kg, p=0.26). A greater increase in plasma FGF21 concentration after 

LowPro/HighFat overfeeding at baseline was associated with weight loss at the follow-up visit 

(r=−0.36, p=0.01; R2=12.9%, Figure 2B; in men only: r=−0.41, p=0.008), such that a 100 ng/mL 

increase in FGF21 after LowPro/HighFat overfeeding was associated with an average weight 

change of −0.9 kg (CI: −1.5 to −0.2) at follow-up. Similarly, the change in 24-h EE during 

LowPro/HighFat overfeeding, but not during any other dietary intervention (all p>0.05), was 

inversely associated with weight change (r=−0.30, p=0.04). However, in multivariate analysis only 

the change in FGF21 after LowPro/HighFat overfeeding (p=0.04), but not the concomitant change 

in 24-h EE (p=0.16), was the only predictor of weight change independently of age (p=0.21), sex 

(p=0.77), and ethnicity (p=0.12). 

Discussion 

We aimed to test whether FGF21 mediates the change in 24-h EE observed during low-protein 

overfeeding, as we had previously shown that this diet identifies a metabolic phenotype resistant 

to weight gain. Circulating FGF21 concentrations increased acutely (i.e., after 24 hours) and 

consistently after two different overfeeding diets both with low-protein content (3%), while 

decreasing after fasting and other normal/high-protein overfeeding diets. Importantly, the increase 



in plasma FGF21 concentration following low-protein overfeeding was associated with diet-

related changes in 24-h EE, where a greater increase in FGF21 concentration was associated with 

a higher increase in EE. We further determined that the extent of the increase in FGF21 

concentration following low-protein high-fat overfeeding was associated with weight change at 6 

months, indicating that a decreased capability to increase FGF21 concentration in response to low-

protein overfeeding is a hormonal feature of the thrifty metabolic phenotype inclined to gain 

weight over time. 

The “thrifty” and “spendthrift” metabolic phenotypes hypothesis has evolved over the years from 

a theorized genotype that led to insulin overproduction due to food consumption favoring adipose 

storage (19), to a focus on the energy conservation in face of repeated famine or overeating (5; 20; 

21). These human metabolic phenotypes can be described by the individual ability to increase or 

decrease EE in an energetically restricted (fasting) or unrestricted (overeating) setting. While the 

extent of EE increase during overfeeding is highly dependent on the macronutrient composition of 

the diet (22), certain diets such as low-protein overfeeding appear more likely to uncover these 

metabolic phenotypes associated with weight change (5). In the present study including healthy 

subjects with normal glucose regulation, FGF21 concentrations increased in nearly all subjects by 

approximately threefold after one day of low-protein overfeeding, in line with what reported in 

previous studies (10; 13). Importantly, as the degree of this increase correlated with the dietary-

related EE, we have identified one of the hormonal mediators of the EE response to this diet that 

characterizes the thrifty metabolic phenotype prone to weight gain. In addition, the ability to 

increase circulating FGF21 after low-protein overfeeding was associated with less weight gain or 

weight loss 6 months following subjects return to their routine activities, and explained 12.9% of 

the inter-individual variance in free-living weight change, a value much higher than that of 



established metabolic determinants of weight change such as lower 24-h EE (2.5%) and higher RQ 

(5.8%) during energy balance (23; 24).  

The biological mechanisms by which FGF21 may increase diet-induced EE during low-protein 

overfeeding in humans are not known but could involve UCP2 and UCP3 as FGF21 treatment of 

cultured human cardiomyocytes increases expression of UCP2 and UCP3 (25). Notably, the 

significant intra-subject variance (25%, Supplemental Figure 7) in FGF21 concentrations suggests 

that the capacity of increasing FGF21 in response to low-protein diet is an individual-specific 

characteristic, perhaps genetically determined, which could partly explain the lower FGF21 

concentrations found in Blacks.  

Our study has some limitations. First, we have a relatively small representation of women, 

therefore our results may need to be validated in a larger female cohort. However, sensitivity 

analyses including only men provided similar results. Second, we do not have assessment of free-

living food intake, physical activity, or fitness during the follow-up period, thus we were not able 

to assess whether the association between FGF21 concentration and weight change was 

independent of these factors. Nevertheless, subjects were recruited as being weight-stable for six 

months before admission, and on average weight did not change after 6 months, thus indicating 

that no substantial changes in free-living physical activity or food intake took place during the 

follow-up period.  

In conclusion, we have identified a thrifty metabolic phenotype that can be characterized by 

reduced FGF21 response after 24 hours of low-protein overfeeding, and that confers susceptibility 

to weight gain. Furthermore, we have found that the increase in FGF21 after low-protein 

overfeeding is correlated with the diet-induced change in 24-h EE and, ultimately, with weight 

change. The present results are important in the context of our current obesogenic environment 



that includes the widespread overexposure to low-protein dietary options that are highly palatable, 

easily overeaten, and inexpensive, such as sodas, ice creams, doughnuts, etc. We speculate that 

exogenous FGF21 therapy may help metabolically thrifty individuals to prevent weight gain or 

achieving greater weight loss during obesity interventions. This may be useful for preventing and 

treating obesity in some people genetically prone to obesity and its complications. 
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Tables 

Table 1. Baseline characteristics of the study group. 

 
All subjects (n=64) Women (n=12) Men (n=52) 

Age (year) 37 ± 10 (18, 54) 33 ± 8 (20, 45) 38 ± 10 (18, 54) 

Ethnicity 14 BLK, 19 WHT,  

11 HSP, 20 NAM 

5 BLK, 4 WHT,  

1 HSP, 2 NAM 

9 BLK, 15 WHT,  

10 HSP, 18 NAM 

Body weight (kg) 78.5 ± 12.2 (47.5, 107.8) 74.4 ± 16.8 (47.5, 107.8) 79 ± 11 (56, 105) 

BMI (kg/m2) 26.2 ± 3.9 (17.8, 39.1) 26.9 ± 5.8 (17.8, 39.1) 26 ± 3 (18, 37) 

Body fat (%) 27.6 ± 10.0 (6.9, 53.8) 40.4 ± 8.4 (24.2, 53.8) 25 ± 8 (6.9, 38) * 

FM (kg) 22.1 ± 10.0 (4.9, 56.9) 31.2 ± 13.0 (13.6, 56.9) 20 ± 8 (4.9, 36) * 

FFM (kg) 56.4 ± 9.3 (33.9, 79.4) 43.2 ± 4.9 (33.9, 50.9) 59 ± 7 (47, 79.4) * 

24-h EE 

(kcal/day) 

2038 ± 283 (1502, 2810) 1802 ± 223 (1502, 2290) 2094 ± 268 (1573, 2810) * 

24-h RQ (ratio) 0.87 ± 0.03 (0.80, 0.93) 0.86 ± 0.03 (0.81, 0.91) 0.87 ± 0.03 (0.80, 0.93) 

Fasting glucose 

(mg/dL) 

92.0 ± 5.07 (80.0, 99.0) 91.0 ± 3.3 (86.5, 97.0) 92.3 ± 5.4 (80, 99) 

2-h OGTT 

glucose (mg/dL) 

103.8 ± 19.9 (65, 138) 104.2 ± 16.5 (80, 130) 103.7 ± 20.8 (65, 138) 

Fasting plasma 

FGF21 (pg/mL) 

128.8: 105.8 to 156.9  

(13.0, 492.9) 

119.0: 70.6 to 200.5  

(22.4, 288.2) 

131.2: 105.4 to 163.4 

(13.0, 492.9) 

Data are presented as mean ± standard deviation (minimum, maximum), except for FGF21 

where values are presented as geometric mean with its 95% CI (minimum, maximum). Fasting 

plasma FGF21 concentration was calculated as the average of all pre-diet fasting measurements.  



*: p<0.05 vs. women, calculated by Student’s t test.  

Abbreviations:  

BLK, Black, WHT, White; HSP, Hispanic; NAM, Native American;  

BMI, body mass index; FM, fat mass; FFM, fat free mass; EE, energy expenditure; RQ, 

respiratory quotient; OGTT: oral glucose tolerance test, FGF21, fibroblast growth factor 21.  

  



Table 2. Plasma FGF21 concentrations before and after each dietary intervention. 

Diet Pre-diet 

FGF21 

(pg/mL) 

Post-diet 

FGF21 

(pg/mL) 

Change in 

FGF21 

(pg/mL) 

Fold change 

(ratio) 

P-value 

24-h fasting (n=64) 124.8 

(101.6 to 153.4) 

82.6 

(70.2 to 97.3) 

−65.0 

(−87.8 to −42.2) 

0.66 

(0.56 to 0.79) 

<0.0001 

Energy balance (n=64) 97.6 

(76.8 to 124.1) 

85.5 

(68.2 to 107) 

−25.0 

(−42.9 to 7.2) 

0.88 

(0.75 to 1.02) 

0.10 

NormalPro/NormalCHO 

overfeeding (n=63) 

119.3 

(90.8 to 156.7) 

68.3 

(52.4 to 89) 

−72.0 

(−94.7 to −49.3) 

0.57 

(0.47 to 0.70) 

<0.0001 

NormalPro/HighCHO 

overfeeding (n=63) 

123.3 

(100.5 to 151.2) 

99.8 

(79 to 126) 

−20.6 

(−39.0 to −2.1) 

0.81 

(0.72 to 0.92) 

0.001 

NormalPro/HighFat 

overfeeding (n=63) 

126.2 

(102.7 to 155.2) 

63.7 

(50.9 to 79.6) 

−72.5 

(−89.0 to −56.0) 

0.50 

(0.43 to 0.59) 

<0.0001 

HighPro/HighFat 

overfeeding (n=51) 

125.4 

(93.3 to 165.6) 

31.7 

(23.5 to 42.8) 

−121.1 

(−148.0 to −94.3) 

0.25 

(0.19 to 0.34) 

<0.0001 

LowPro/HighFat 

overfeeding 

(n=63) 

121.6 

(96.1 to 153.9) 

361.4 

(303.2 to 430.8) 

+278.7 

(226.5 to 331.0) 

2.97 

(2.54 to 3.47) 

<0.0001 

LowPro/HighCHO 

overfeeding (n=15) 

146.7 

(98.1 to 219.5) 

461.8 

(312.8 to 681.6) 

+214.8 

(128.6 to 333.4) 

3.26 

(2.34 to 4.56) 

<0.0001 

Pre-diet and post-diet plasma FGF21 concentrations are expressed as geometric means with 95% 

CI. The absolute changes in FGF21 concentrations (pg/mL) are reported as arithmetic means 



with 95% CI. Fold changes (95% CI) were calculated by exponentiating the average difference 

between post-diet minus pre-diet FGF21 concentrations both expressed as log10 values. P-values 

were calculated by paired t-test analysis of log10 FGF21 values.  

Macronutrient composition of diets: energy balance diet and NormalPro/NormalCHO 

overfeeding diet: 50% carbohydrate, 30% fat, 20% protein; NormalPro/HighCHO overfeeding 

diet: 75% carbohydrate, 5% fat, 20% protein; NormalPro/HighFat overfeeding diet: 20% 

carbohydrate, 60% fat, 20% protein; HighPro/HighFat overfeeding diet: 26% carbohydrate, 44% 

fat, 30% protein; LowPro/HighFat overfeeding diet: 51% carbohydrate, 46% fat, 3% protein; and 

LowPro/HighCHO overfeeding diet: 75% carbohydrate, 22% fat, 3% protein. 

  



Figure legends 

Figure 1. Plasma FGF21 concentrations prior to and following 24-h dietary interventions. 

Panel A. Plasma FGF21 concentrations before (white bars) and after (black bars) each dietary 

intervention. Bars represent geographic means with 95% CI.  

Panel B. Individual changes in plasma FGF21 concentration after each dietary intervention. Red 

lines represent arithmetic means with 95% CI.  

Macronutrient composition of diets: energy balance diet and NormalPro/NormalCHO 

overfeeding diet: 50% carbohydrate, 30% fat, 20% protein; NormalPro/HighCHO overfeeding 

diet: 75% carbohydrate, 5% fat, 20% protein; NormalPro/HighFat overfeeding diet: 20% 

carbohydrate, 60% fat, 20% protein; HighPro/HighFat overfeeding diet: 26% carbohydrate, 44% 

fat, 30% protein; LowPro/HighFat overfeeding diet: 51% carbohydrate, 46% fat, 3% protein; and 

LowPro/HighCHO overfeeding diet: 75% carbohydrate, 22% fat, 3% protein. 

  



Figure 2. Relationships between the change in plasma FGF21 concentration after 24-h low-

protein high-fat overfeeding and the percent change in 24-h energy expenditure from 

energy balance (Panel A) and free-living weight change after 6 months (Panel B). 

The macronutrient composition of low-protein high-fat overfeeding diet was: 51% carbohydrate, 

46% fat, 3% protein. The percent change in 24-h energy expenditure was calculated as: (24-h 

EEoverfeeding diet – 24-h EEenergy balance) / 24-h EEenergy balance ×100. One subject found to have 

impaired fasting glucose on the oral glucose tolerance test and one subject with benign 

glycosuria were excluded from these analyses as these conditions are known to affect 24-h EE. 

Associations were quantified by the Pearson’s correlation index.  


