Permafrost conditions in the Mediterranean region since the Last Glaciation

M. Oliva¹; M. Žebre²; M. Guglielmin³; P.D. Hughes⁴; A. Çiner⁵; G. Vieira⁶; X. Bodin⁷; N. Andrés⁸; R.R. Colucci⁹; C. García-Hernández¹⁰; C. Mora⁶; J. Nofre¹¹; D. Palacios⁸; A. Pérez-Alberti¹²; A. Ribolini¹³; J. Ruiz-Fernández¹⁰; M.A. Sarıkaya⁵; E. Serrano¹⁴; P. Urdea¹⁵; M. Valcárcel¹²; J.C. Woodward⁴; C. Yıldırım⁵

- (1) Department of Geography, University of Barcelona, Spain
- (2) Geological Survey of Slovenia, Slovenia

(3) Department of Theoretical and Applied Sciences, Insubria University, Italy

(4) Department of Geography, The University of Manchester, United Kingdom

(5) Eurasia Institute of Earth Sciences, Istanbul Technical University, Turkey

(6) CEG - Institute of Geography and Spatial Planning, Universidade de Lisboa, Portugal

- (7) Environment Dynamics and Territories of Mountains (EDYTEM), University of Grenoble, France
- (8) Department of Geography, Complutense University of Madrid, Spain
- (9) Department of Earth System Sciences and Environmental Technologies, ISMAR-CNR, Italy
- (10) Department of Geography, University of Oviedo, Spain
- (11) Interdisciplinary Centre of Social Sciences, New University of Lisbon, Lisbon
- (12) Department of Geography, University of Santiago de Compostela, Spain
- (13) Department of Earth Sciences, University of Pisa, Italy
- (14) Department of Geography, University of Valladolid, Spain
- (15) Department of Geography, West University of Timisoara, Romania

* Corresponding author

Marc Oliva, oliva_marc@yahoo.com

Department of Geography Faculty of Geography and History, University of Barcelona

c/ Montalegre 6, 08001 - Barcelona, Spain

Tel: ++34 616104266

1. Introduction

Permafrost is one of the elements of the cryosphere with the widest global distribution. The area occupied by permafrost in both hemispheres varies according to different authors between 22.10⁶ km² (17% of the Earth's exposed land surface; Gruber, 2012) and 36.10⁶ km² (24%; French, 2007). Terrestrial ecosystems in many ice-free areas at high latitudes and in high mountains are conditioned by the presence of permafrost. Additionally, permafrost has an influence on the socioeconomic activities of these areas, especially those related to the construction and maintenance of all kinds of equipment and infrastructures (Nelson et al., 2001, 2002; Bommer et al., 2010). However, as a research topic, permafrost has received much less global attention than other elements of the cryosphere, such as glaciers, which are highly visible elements in the landscape and carry important hydrological and global sea level consequences (e.g. Favier et al., 2014; Smith et al., 2017), and sea ice due to its influence on ocean-atmospheric interactions (e.g. Curran et al., 2003; Robinson et al., 2012) and geopolitical implications across the Arctic (Østerud and Hønneland, 2014).

As a result of the International Polar Year 2007-2008, there has been an important development in the study of the thermal state and current distribution of permafrost (Lewkowicz, 2010) and the active layer (Oliva et al., 2017), along with their geoecological implications (Jorgenson et al., 2001; Jorgenson and Osterkamp, 2005; Genxu et al., 2006). Most studies have focused mainly on the Arctic (e.g. Mackay, 2000; Brown et al., 2001; Lantuit et al., 2012; Fritz et al., 2017), but also on Antarctica (e.g. Vieira et al., 2010; Bockheim et al., 2013; Guglielmin et al., 2014; Oliva and Ruiz-Fernández, 2015) and mountainous areas with increased population and tourism pressure (e.g. Alps, Haeberli and Beniston, 1998; Boeckli et al., 2012). Permafrost degradation as the consequence of recent global warming is already posing risks and problems to certain socio-economic activities in many areas (Nelson et al., 2001, 2002; Ravanel, et al., 2017). Besides, during the last decade, scientists have pointed out the importance of permafrost not only at the local and regional level, but also at global scale examining the role of permafrost thawing in the carbon cycle and greenhouse gas fixation, as well as its contribution to recent and future climatic evolution (e.g. Hugelius et al., 2014; Zubrzycki et al., 2014; Schuur et al., 2015).

From a geographical perspective, the thermal state and distribution of permafrost have been much less studied in environments such as mountain ranges in the mid-latitudes. This is the case of the high mountains of the Mediterranean basin, where knowledge about the thermal dynamics, depth and extent of permafrost is uneven across the region.

The Mediterranean region is a transition zone between the subtropical climatic area and temperate regions more characteristic of the middle latitudes (Woodward, 2009). This region has its own climatic characteristics, conditioned by the presence of a nearly closed sea (the Mediterranean), and a complex and mountainous landscape defined by the existence of large peripheral mountain ranges, rugged coasts, and many islands and archipelagos. Most research on cold processes in the Mediterranean mountains has focused on the Quaternary glaciations (Hughes et al., 2006a, 2007, 2013; Hughes and Woodward, 2008), while permafrost and periglacial processes have been less examined (Hughes and Woodward, 2009). Thus, knowledge of the distribution of permafrost in this basin in the past is limited to generic maps that represent the area occupied by permafrost in the Northern Hemisphere during the Last Glacial Maximum (LGM; 26.5-20/19 ka (Clark et al. 2009); 27.5-23.3 ka (Hughes and Gibbard, 2015), as a complement to glacial extent (Brown et al., 2001, Vandenberghe et al., 2014; Kitover et al., 2016). However, the Mediterranean region is loosely represented in these maps since permafrost areas are barely included, except for certain areas such as the Alps and the SE coast of France. Besides, knowledge of the distribution of permafrost following the LGM and throughout the Holocene is limited and geographically sparse.

As far as the current dynamics are concerned, the existing studies on permafrost and related periglacial morphodynamics mainly concentrate on the southern slope of the Alps and the Pyrenees (Guglielmin et al., 1994; Hoelzle, 1996; Dramis et al., 1995; Ikeda and Matsuoka, 2002; Lugon et al., 2004; Julián and Chueca, 2007; Serrano et al., 2009, 2010; Colucci et al., 2016a), and to a much lesser extent on other massifs, such as the Sierra Nevada (Gómez-Ortiz et al., 2001, 2014; Oliva et al., 2016b) and the Atlas (Vieira et al, 2017).

In consequence, permafrost studies in the Mediterranean region are spatially limited and temporally dispersed. Thus, it is essential to encourage detailed reflection on the state of knowledge of permafrost in this region, and identify the areas and periods in which research on this topic needs to be intensified. Accordingly, the general aim of this article is to fill this gap by looking into the spatial distribution of permafrost in the mountains of the Mediterranean region since the Last Glaciation, which is defined by the last cold stage (Weichselian/Würmian; marine isotope stage (MIS) 5d-2), to the present day. To meet this aim, the following specific objectives will be addressed:

- Reconstructing the spatio-temporal evolution of permafrost in this region since the Last Glaciation.
- Identifying the Mediterranean areas where permafrost has been studied.
- Determining the best-known permafrost stages and those with knowledge gaps.
- Pointing out future lines of work to the scientific community centred on the study of permafrost in the Mediterranean mountains.
- Discussing the distribution of the spatio-temporal pattern of the areas affected by permafrost and its associated geomorphological processes within the climatic and environmental evolution recognised on the European continent since the Last Glaciation.

2. Regional setting

Extending over a surface of ca. 2.5.10⁶ km² (Jeftic et al., 1989), the Mediterranean constitutes an almost enclosed basin between southern Europe (north), Anatolia (east), northern Africa (south) and the Iberian Peninsula (west), only connected to the Atlantic Ocean through the Strait of Gibraltar (ca. 15 km wide). Etymologically, Mediterranean derives from the Latin '*medius*' (middle) and '*terra*' (land), highlighting one of the main characteristics of the Mediterranean region: the presence of mountains next to the sea (Figure 1). Several volcanoes and mountain ranges with elevations exceeding 2500-3000 m asl stretch a few km off the coastline (Table 1).

Figure 1

Table 1

The Mediterranean basin is located in a boundary position between the mid-latitude westerlies and the influence of continental and subtropical high-pressure systems. The existence of multiple peninsulas, islands, rugged coastlines and mountain ranges determines a broad spectrum of climate regimes across the region, both in terms of temperatures and precipitation (Figure 1). This results in a wide range of hydrological, edaphic, geomorphological and biological processes prevailing in the Mediterranean region.

A broad variety of marine and terrestrial records preserve evidence of the nature and magnitude of Quaternary climate oscillations driving environmental changes in the Mediterranean basin (Woodward, 2009). Climate changes also determined large social transformations transitioning

from the prehistoric inhabitants to the first sedentary agricultural communities that settled in the fertile soils of the Mediterranean lowlands (Mithen, 2004). The topographic configuration of the Mediterranean and its relief, together with relatively warm climate conditions during the Holocene, favoured the development of early civilizations, agriculture flourishing and trade and cultural exchange. Human-induced activities, together with shifts on ecosystem dynamics promoted by climate fluctuations, substantially affected the Mediterranean landscape, particularly since the Mid-Holocene, accelerating over the last few centuries.

Quaternary climate variability has followed different spatio-temporal patterns across the Mediterranean basin, which resulted in changing cold-climate geomorphological processes occurring in the mountains of the region. Glacial and periglacial activity has shaped the highest environments during the Late Pleistocene (Hughes and Woodward, 2016). The timing and spatial extent of glacial processes was highly conditioned by the combination of cold and moisture regimes, with significant spatio-temporal differences between the areas (Hughes et al, 2006a,b; Hughes and Woodward, 2008). Periglacial activity followed a similar pattern, expanding down-valleys during glaciations and shifting to higher elevations during interglacial periods (Oliva et al., 2016b). Though periglacial processes in Mediterranean mountains are currently mostly related to seasonal frost, environments affected by permafrost conditions in the past were significantly larger as suggested by a wide range of records that will be examined in detail in this research.

3. Methodology

This paper presents a detailed analysis of the published scientific literature on permafrost evolution in the Mediterranean region since the Last Glaciation. To better examine spatial and temporal patterns of permafrost conditions within the region, the Mediterranean basin has been subdivided in the following areas: Iberian Peninsula, southern Alps, Italian Peninsula, Balkan Peninsula, Anatolian Peninsula, northern Africa and Mediterranean islands (Figure 1).

For each of the areas we have conducted a detailed review of all the existing knowledge on permafrost conditions focusing on five main periods: Last Glaciation, deglaciation, Holocene, LIA and present-day. We establish the chronological boundary between the Last Glaciation and the deglaciation at 19-20 ka, after the LGM, when Clark et al. (2009) proposed the onset of deglaciation in the Northern Hemisphere, including also the Mediterranean region. We recognise that glaciers reached their maxima at different times during the Last Glaciation and glaciers in some areas retreated to smaller positions earlier than others, but the widespread deglaciation occurred after 19-20 ka in all parts of the Mediterranean mountains. The deglaciation extends until the Holocene and is divided considering different colder/warmer periods, sometimes characterised by phases of glacier advance/retreat, namely the Oldest Dryas (OD; 17.5-14.7 ka, stadial GS-2.1a), Bølling-Allerød (BA; 14.7-12.9 ka, interstadial GI-1) and Younger Dryas (YD; 12.9-11.7 ka, stadial 1 - GS1). The Holocene is subdivided following Walker et al. (2012) who established the limit between Early-Middle Holocene at 8.2 ka BP and the boundary between the Middle-Late Holocene at 4.2 ka BP. The LIA is defined as a single period within the Late Holocene encompassing from the 14th to 19th centuries, followed by the post-LIA warming. The characterization of current permafrost distribution and associated geomorphic processes in Mediterranean mountains allows comparing present-day dynamics with past permafrost conditions.

All these data have been summarized in a table including the location of the massifs, topographic characteristics (elevation, aspect), geomorphic evidence, available chronology (if existing) and associated references for each region. The distribution of permafrost-related features in each of the areas for each of the study periods has been mapped in GIS environment.

Rock glaciers constitute the most frequent and reliable information on palaeo-permafrost occurrence in Mediterranean mountains (Oliva et al., 2016b). Several fossil rock glaciers have been dated by analyzing the exposure of surfaces to cosmogenic radiation, usually by the presence of ³⁶Cl or ¹⁰Be isotopes in the rock surface (i.e. Ciner et al., 2017). Two approaches have been generally used for inferring the age of rock glaciers: (i) their maximum age of formation has been often determined from samples collected from polished bedrock outcrops in which the rock glacier lies, (ii) their minimum age of stabilization has been also established based on samples taken from the surfaces of boulders distributed from the front of the rock glacier to the roots in the slope. Therefore, following this approach the dated samples should yield younger ages from the rock bedrock outcrops towards the roots of the rock glacier, which in fact has happened in most cases. However, there are still many unsolved issues concerning the application of surface exposure dating on rock glaciers, mainly related to: (i) the timing between boulders (i.e. rock glacier) stabilization and permafrost disappearance, (ii) the paleoclimatic significance of rock glacier activity in very active geomorphological settings experiencing paraglacial readjustment (Ballantyne et al., 2009; Palacios et al., 2016, 2017b; Andrés et al., 2018), (iii) the problem of excessive inherited nuclides yielding too old ages (Ivy-Ochs et al., 2009; Ciner et al., 2017) contrary to the moraines where glacial carving removes the cosmogenic inheritance, and last but not least (iv) the problem related to toppling and/or erosion of boulders that result in too young ages (e.g. Moran et al., 2016).

4. Geomorphological and sedimentological evidence

4.1 Iberian Peninsula

The Iberian Peninsula constitutes the SW tip of the Eurasian continent between the Atlantic Ocean and the Mediterranean Sea. Relatively flat terrain is mostly located in the central plateaus and coastal plains, separated by several mountain ranges aligned W-E with the highest peaks exceeding 2000 m: NW ranges, Cantabrian Mountains, Pyrenees, Central Range, the Iberian Range and the Betic Range (Figure 2). The rough terrain together with the high elevations have conditioned the magnitude and extent of glacial and periglacial processes during the Quaternary, including substantial variations of the spatial domain of permafrost through time. Sierra Nevada, in the Betic Range (Mulhacén, 3478 m), and the Maladeta massif, in the Pyrenees (Aneto, 3404 m) encompass the highest elevations in Western Europe outside the Alps.

A wide range of lithologies is found across Iberia. While some mountain regions show a relatively homogeneous composition - such as the NW ranges, Central Iberian Range and Iberian Range with prevailing metamorphic and crystalline rocks - or the Cantabrian Mountains with widespread thick Mesozoic carbonates -, others include a variety of rocks – such as the Pyrenees and the Betic Range with alternating Palaeozoic crystalline rocks and Mesozoic carbonates.

Quaternary periglacial activity has been more or less intense and extensive in the Iberian Peninsula in response to prevailing climate conditions. The intensity and duration of the cold determined if periglacial processes were conditioned by the presence of permafrost or seasonal frost conditions. This is also reflected in the widespread geomorphological and sedimentological features of periglacial origin in mid and high mountain environments in Iberia, but also at lower elevations such as in the NW corner and Cantabrian coast where periglacial activity almost reached sea level.

Last Glaciation

Although the chronology of periglacial activity in the Iberian Peninsula during the Last Glaciation is still uncertain (Oliva et al., 2016a), it is likely to consider that its extent and intensity followed periods of glacial advance and retreat. In this sense, the local Maximum Ice Extent (MIE) occurred asynchronously across Iberian mountain ranges: while the combination of cold and moisture was more effective for glacier development in NW Iberia between 35 and 45 ka cal BP (Valcárcel, 1998; Jiménez and Farias, 2002; Moreno et al., 2010; Serrano et al., 2012, 2013, 2015; Jiménez et al., 2013; Rodríguez-Rodríguez et al., 2014, 2016; Nieuwendam et al., 2016; Ruiz-Fernández et al., 2016), in the Central and some sectors of the Eastern Pyrenees it occurred prior to the LGM, probably at approximately 60 ka cal BP (García-Ruiz et al., 2003, 2010, 2013; Lewis et al., 2009; Delmas, 2015), in Sierra Nevada it took place around 30-32 ka (Gómez-Ortiz et al., 2012a, 2015; Oliva et al., 2014; Palacios et al., 2016) and in the rest of high mountain ranges, also in the Eastern Pyrenees, was slightly earlier or almost synchronous with the Last Glacial Maximum (LGM) (Pallàs et al., 2006; Domínguez-Villar et al., 2013; Hughes et al., 2013; Pedraza et al., 2013; Carrasco et al., 2015; Palacios et al., 2015). During the coldest stages of the Last Glaciation (e.g. MIS 2) glaciers extended across the highest mountain ranges in Iberia and periglacial processes expanded to the lowlands; warmer phases favoured periglacial activity only in mountain environments in parallel to glacier shrinkage.

Periglacial processes in mid and low environments were mainly driven by seasonal frost conditions, though some researchers have found evidence of ice wedge development in Pleistocene fluvial terraces between 200 and 1000 m in the Tajo and Duero basins, central Iberia, which may be related to very intense periglacial conditions but probably not associated with a permafrost regime (Badorrey et al., 1970; Asensio-Amor and González-Martín, 1974; Serrano et al., 2010a). Taking into account the presence of block streams and rock glaciers, the non-glaciated slopes of Iberian mountains were affected by permafrost conditions above 700-1300 m in northern mountain ranges (Figure 2), significantly higher in lower latitude mountain ranges, such as the Central Range (1800 m) and Sierra Nevada (2500 m) (Table 2). Sediments of periglacial origin, such as stratified and head deposits, could have been also produced under permafrost conditions, namely in the highest slopes and during the coldest stages. The presence of meter-sized patterned ground features, such as the sorted circles existing across the summit plateaus of most of the mountain ranges (Pyrenees, Sierra Nevada, Cantabrian Mountains), suggests also very intense periglacial conditions in these relatively flat areas where wind redistribution did not favour snow accumulation.

Figure 2

Deglaciation

As in many other glaciated environments in the Northern Hemisphere (Clark et al., 2009), a rapid deglaciation process started in Iberian mountains around 19-20 ka (Hughes and Woodward, 2008; García-Ruiz et al., 2010) at the same time as in mountain areas bordering the NE Atlantic to the north (Hughes et al., 2016). The terrain exposed by retreating glaciers was subject to paraglacial activity and intense periglacial processes under permafrost conditions. Many rock glaciers, protalus lobes and few block streams formed in recently deglaciated environments, though most

of them became gradually inactive as temperatures kept raising, namely those located at lower altitudes (Table 2).

Table 2

However, the deglaciation was not a linear process and glacial expansion occurred in the highest mountain ranges during two major cold periods before the Holocene, namely the OD and YD. Following each of these cold stages, rock glaciers developed inside the circues and highest slopes. As temperatures rose, rock glaciers became inactive at lower elevations with activity only at higher locations; in the case of the Pyrenees, rock glaciers formed during the OD at elevations above 2250 m with widespread permafrost above 2490 m, while during the YD rock glaciers developed above 2350 m and permafrost was limited to elevations above 2525 m (Oliva et al., 2016a). Many rock glaciers in the Cantabrian Mountains have been assigned to this period (Redondo et al., 2010; Gómez-Villar et al., 2011; Pellitero et al., 2011; García-Ruiz et al., 2016a,b), as well as in the Iberian Range, where several rock glaciers were also related to this period in the Cebollera Sierra (Ortigosa, 1986), and in the Demanda Sierra (García-Ruiz et al., 1979; Fernández-Fernández et al., 2017). Surface exposure dating suggests that rock glaciers were active in the Eastern Pyrenees between 15 and 10.5 ka (Palacios et al., 2015; García-Ruiz et al., 2016a,b) and in the Sierra Nevada from 12.8 to 6.4 ka (Gómez-Ortiz et al., 2012a; Palacios et al., 2016). Patterned ground probably related to permafrost conditions may have been active during the coldest stages of the OD and YD in the high lands of the highest mountain ranges.

Holocene

The onset of the Holocene saw the last massive deglaciation in Iberian mountains that was parallel to a progressive shift of periglacial conditions to higher elevations (Oliva et al., 2011). It is unlikely that the atmospheric temperatures recorded in Iberian mountains during the Holocene favoured the existence of widespread permafrost regimes (Oliva et al., 2016b), with the only exception of the highest massifs in the Pyrenees (Serrano, 1998). In the other highest mountain ranges permafrost conditions during the Holocene may have been marginal and only related to favourable geomorphological settings.

The Pyrenees, Cantabrian Mountains and Sierra Nevada were the only environments encompassing glaciers during the coldest stages of the present-day interglacial. Apart from the LIA glaciation, Gellatly et al. (1992) dated a cold phase in the Troumouse cirque (French Pyrenees) between 4.6 and 5.1 ka cal BP and García-Ruiz et al. (2014) reported evidence of glacier activity in the Pyrenees during the Neoglacial (5.1, 3.5 ka) and Dark Ages (1.4-1.2 ka) periods. Based on denudation rates, debris supply from circue walls and flow displacement rates, Serrano et al. (2006, 2011) suggested that some active rock glaciers today in the Pyrenees (i.e. Argualas, Bastampé, Besiberri and Guerreys) probably developed between 3.4 and 6.2 ka; therefore, during part of the Mid Holocene permafrost environments may have existed in the highest mountains. This stage of rock glacier development seems to correlate with Neoglacial cold phases favouring glacial expansion in the Troumouse cirque (Gellatly et al., 1995) and Monte Perdido massif (García-Ruiz et al., 2014). The morphology and internal stratigraphy of the rock glaciers, some of which reshaped by LIA glacial advance, suggests that at least seven currently active rock glaciers originated during the Mid Holocene (Serrano et al. 2002, 2010b, 2011). Ice caves in the Central Pyrenees also started forming during the Mid Holocene, namely between 6 and 2 ka cal BP (Sancho et al., 2016).

In Sierra Nevada, Oliva and Gómez-Ortiz (2012) also identified glacial advances during the Neoglacial period (2.8-2.7 ka cal BP) and Dark Ages (1.4-1.2 ka cal BP). These glacial conditions were accompanied by an extent of periglacial activity, enhanced erosion processes and decrease of vegetation cover (Oliva-Urcía et al., 2013), with permafrost conditions only in the highest parts of the glacial cirques (Oliva and Gómez-Ortiz, 2012). The existence of permafrost was confirmed by surface exposure dating in some areas such as in Sierra Nevada, where rock glaciers were active until the Mid Holocene in favourable topographic environments inside the YD glaciated cirques (Palacios et al., 2016). In some cases, the development of protalus lobes during the Holocene may be also indicative of permafrost conditions (Table 2).

LIA

In Iberia, colder than present-day climate conditions accompanied by fluctuating precipitation prevailed during the LIA (Barriendos, 1997; Rodrigo, 1999). These conditions led to glacial advance in the Pyrenees, as well as the appearance of small glacial spots in the Cantabrian Mountains and Sierra Nevada (González-Trueba, 2006, González-Trueba et al., 2008; Gómez-Ortiz et al., 2006, 2009; Oliva and Gómez-Ortiz, 2012). Periglacial conditions expanded down-valleys and more extensive snow fields remained during the summer season. Permafrost conditions reactivated and new protalus lobes and rock glaciers formed in the Pyrenees above 2560 m (Serrano et al., 2001, 2011; Fernandes et al., 2017). Several currently active rock glaciers are linked with LIA lateral moraines, suggesting their origin following the LIA in historical times. All of them are relatively small and influenced by glaciers, which indicates the elevation boundary of permafrost conditions above 2560 m (Serrano, 1998; Serrano et al., 2004, 2011; González-García, 2014). With the exception of the surroundings of the glaciated areas and highest periglacial environments, it is unlikely that permafrost existed in other areas.

Present-day

Temperature increase in Iberian mountains since the last decades of the XIX century has been quantified in about 1 °C (González-Trueba et al., 2008; Oliva and Gómez-Ortiz, 2012). The 0 °C isotherm lies today close to the top of the highest peaks in the Cantabrian Mountains (2500 m; González-Trueba et al., 2007) and Sierra Nevada (3400 m; Oliva et al., 2016b), which explains the inexistence of widespread permafrost conditions. In these massifs, the bottom of the northern cirques that held glaciers during the LIA encompasses buried ice and permafrost covered by debris left by paraglacial dynamics (Serrano et al., 2011b; Gómez-Ortiz et al., 2004; Ruiz-Fernández et al., 2016; Pisabarro et al. 2016). In the Veleta cirque, in Sierra Nevada, a rock glacier formed during post-LIA deglaciation shows multiple subsidence and collapses as a result of the accelerated melting of the frozen body existing in its interior (Gómez-Ortiz et al., 2014).

In the Pyrenees, BTS measurements, geophysical surveying and geomorphological observations made in several massifs indicate that mountain permafrost regime occurs today above 2630 m in northern aspects and 2800 m in southern ones (Serrano et al., 1999, 2001, 2002, 2006, 2009, 2011a; González-García et al., 2014). Possible permafrost conditions have been estimated above 2400 m in northern slopes and above 2650 m in southern ones, with high variability depending on the massifs. While possible permafrost in the Infierno massif is located above 2450 m, in the Maladeta it exists above 2760 m and in the Posets above 2800 m (Serrano et al., 2001, 2009; González-García, 2014). The same variability is detected in the probable permafrost areas, located generally above 2700 m, oscillating between 2630 m in north faces and above 2800 m in southern ones. While in the Infierno massif the probable permafrost lies above 2650, in the Maladeta it sits above 2890 m and in the Posets above 2950 m. Three types of high mountain permafrost have

been differentiated: (i) climatic origin, as suggested where MAAT are around -1/-2 °C; (ii) topoclimatic, located in lower environments where cirque walls condition low incident radiation; and (iii) morphodynamic, where buried ice existing below the debris cover favours permafrost aggradation (González-García, 2014). In recently deglaciated environments there are landforms linked to frozen bodies, such as protalus lobes and frost mounds, as well as other, such as patterned ground features and solifluction lobes located always around 2700-3000 m, which may be also associated with permafrost (Serrano et al., 2000, 2001; Feuillet, 2010; Feuillet and Mercier, 2012; González-García, 2014; González-García et al., 2017).

Both in the Cantabrian Mountains (Gómez-Lende et al., 2014) and the Pyrenees (Bartolomé et al., 2015) there are also other landforms including subsurficial frozen features, which are an inheritance from the LIA. Ice caves show bedrock recording below freezing mean annual ground temperatures in contact with the perennial ice, and therefore may be defined as permafrost. In the case of the Cantabrian Mountains, the organic remnants trapped in the ice provided ages between 200 and 600 cal yr BP (Gómez-Lende, 2015), whereas in the Pyrenees ranged between 200 and 1200 cal yr BP (Bartolomé et al., 2015; Leunda et al., 2015; Sancho et al., 2016).

Figure 3

4.2 Southern Alps

The Southern Alps constitute the south side of the European Alps and include only the southern slope of the highest summit of the European Alps like the Monte Bianco (4810 m), Monte Rosa (4634 m) but also entirely some other peaks around 4000 m (like Gran Paradiso 4061 m or Ortles 3905 m). The Southern Alps are crossed by large valleys mainly W-E oriented (Aosta Valley, Valtellina) or N-S (Ossola Valley, ValCamonica, Adige Valley; Piave Valley or Tagliamento Valley). The Southern Alps can be divided into four main sectors: the Southern sector or Maritime Alps located between Italy and France south of Maddalena Pass; the western sector located between Maddalena Pass and the Ossola Valley; the central sector between the Ossola Valley and Adige Valley and the Eastern sector eastward of Adige Valley. These sectors reflect different local climate and different prevailing lithologies.

The southern and western sectors are characterized mainly by prevailing metamorphic and crystalline rocks while in the eastern sector Mesozoic carbonates prevail. Within the central sector the southern areas are dominated by Mesozoic carbonates whereas the northern areas by metamorphic and crystalline rocks. The differences in climate of these sectors are mainly related to the variation in the precipitation regime that reflects the main orientation of the mountain belt. In general, the outer parts of the mountain belt (southern and the more eastern areas of the Eastern sector) are the wettest while the northern (and inner) areas of the central sector are the driest.

Last Glaciation

There is still considerable uncertainty about the timing of the last glacial stadials recorded in the Alpine end-moraines at about 18-21 ka cal BP before the onset of glacial termination (Ivy-Ochs et al., 2008), although the LGM culminations in the southern Alps may span from 26 to 21 ka cal BP (Monegato et al., 2007, 2017; Ravazzi et al., 2012; Mozzi et al., 2013; Rossato et al., 2013; Federici et al., 2017). Paleo-temperatures between 30 and 17 ka BP have been recently reconstructed in NE Italy through the analyses of chironomids of lacustrine sediments series (Lake della Costa, Samartin et al., 2016). These authors associated the lack of chironomids remains around 24 ka and 18 ka cal BP to very cold conditions correlated with Heinrich events (HE; Heinrich, 1988) HE-2 (24.2 \pm 3.8 ka cal BP) and HE-1 (16.9 \pm 3.3 ka cal BP) (Hemming, 2004). In these events possibly a weakening of the Mediterranean low-pressure systems occurred with a

higher aridity in the Mediterranean (Tzedakis et al., 2004; Kwiecien et al., 2009). On the other hand, a southward shift of the storm track between 26.5-23.5 ka cal BP has also been suggested, together with a change in the seasonal distribution of precipitation, predominantly occurring between spring and autumn (Luetscher et al., 2015).

Evidence of active periglacial processes at low elevations as well as in the Po plain are almost unknown. Nevertheless, two stratified scree deposits have been described in the Maritime Alps (Pappalardo, 1999) with stratified screes, partially cemented, on the southern slopes of M. Cornizzolo (1242 m) and on M. Barro (923 m) very close to Lake Como. Possible cryoturbations on the loess cover at Bagaggera (310 m), only few km south of Lake Como, have also been detected (Guglielmin, unpublished data). An interesting indicator of periglacial or cryotic conditions during the Late Pleistocene and LGM is the distribution of loess. According to Cremaschi et al. (2015) between 70 and 35 ka cal BP large loess deposits were deposited along the northern, western and southern margins of the Po plain. In the Julian Alps, between Italy and Slovenia, four rock glaciers have their front at 1076 m on average (Colucci et al., 2016a), which is very close to the estimated ELA during the LGM (1200 m, Colucci et al., 2014). This also suggests a temperature drop of at least 7.1-7.6 °C, which is in accordance with LGM temperature reconstructions for this sector of the Alps (Kuhlemann et al., 2008).

The presence of relict block streams and blockfields is also reported (Figure 4), and the largest area covered by such features (140 km²) is the Ultramafic Lanzo Complex a short distance from Turin, at an elevation of 1000 to 1650 m. These landforms could be related to permafrost conditions during the LGM (Fioraso and Spagnolo, 2009; Paro, 2011). Other block streams and blockfields are located in the internal margin of Piedmont between Sangone valley (50 km S Turin) and Oropa (150 km NE of Turin) (Paro, 2011).

Figure 4

Deglaciation

The onset of glacial retreat in the southern Alps is thought to have occurred at 20.8 ± 1.5 ka (Gianotti et al., 2008), almost simultaneously with the Fennoscandinavian Ice Sheet (FIS) (A.L. Hughes et al., 2016). Downwasting of the large piedmont glaciers back into the Alpine valleys during the Late Glacial promoted widespread paraglacial activity, although several glacial readvances took place between the OD and the YD (Ivy-Ochs et al., 2008, 2009). Remnants of moraines of the YD glacier advance have been morphologically associated to rock glaciers from the lowermost belt (Frauenfeder et al., 2001; Ivy-Ochs et al., 2009).

Rock glaciers constitute widespread periglacial landforms in the southern Alps, both in the form of active and inactive landforms (Table 3). At present, climatic conditions favourable for their activity range between 2400 and 2900 m (Guglielmin and Smiraglia, 1997; Seppi et al., 2012; Scotti et al., 2013; Colucci et al., 2016a). Relict forms are generally 400-500 m lower than the active ones, corresponding to a temperature drop of ca. 2.6-3.3 °C (Frauenfelder et al., 2001). Also for this reason, despite the low number of dated rock glaciers in the southern Alps, YD or early Holocene ages have been suggested for most of them. The mean altitude of the front of the YD rock glaciers in the Alps is found at the lowest elevations in the SE fringe of this mountain range, with fronts distributed at 1777 m (Colucci et al., 2016a).

Table 3

In the SW Alps (France), more than 1000 relict rock glaciers have been identified by Bornet et al. (2014). The mean altitude of their fronts is around 2260 m, whereas a few of them (7) reach

altitudes lower than 1800 m, with the lowest one lying at 1440 m. It is probable that most of those relict rock glaciers are of YD age, though no absolute dating is yet available. A YD age is in good agreement with the general scheme of Late Glacial rock glaciers formation further North (45°N) proposed by Cossart et al. (2010). Nevertheless, the authors emphasize the poor climatic significance of those permafrost-related landforms, because they developed at higher altitude than the local YD moraine and disconnected from talus slopes, therefore their extent has probably been limited by the availability of sediment sources. These conclusions are consistent with several geoelectrical resistivity soundings carried out on rock glaciers in different sectors, from the Col du Lautaret (near Briancon village) to the Mercantour area (data partly reviewed by Ribolini and Fabre, 2006). Overall, looking at the minimum altitude of the relict rock glacier fronts in the southern Alps (Guglielmin and Smiraglia, 1997; Seppi et al., 2012; Scotti et al., 2013; Bornet et al., 2014; Colucci et al., 2016a), there is a clear lowering trend from the western Alps (2260-2340 m) to the central Alps (2170-2281 m) and the southeastern Alps (1778 m) (Figure 5). Although the Maritime Alps do not follow this scheme, this overall pattern in rock glacier elevations follows the ELA depression observed in the eastern Alps compared to the western Alps at the LGM peak (Kuhlemann et al., 2008).

Figure 5

591 592 593

594

595

596

597

598

599

600

601

602

603

604

605

606

607 608

609

610 611

612 613

614

615

616

617

618

619

620

621

622

623

624

625

626 627 628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

Holocene

According to Finsinger and Tinner (2006), during the Early Holocene two cooling phases (8.8-7.3 and 6.1-5.2 ka cal BP) occurred in the western Alps. The cold event at 8.2 ka cal BP has also been documented in the eastern Alps with ca. 3°C below the early Holocene thermal maximum (Ilyashuk et al., 2011), which has been reconstructed between 9 and 5 ka BP with an estimated mean July temperature 1-2°C warmer than the recent pre-industrial period (Samartin et al., 2017). Since 4.5 ka BP, with the exception of the end of the 20th century, a progressive cooling trend occurred (Ilyashuk et al., 2011). During the Holocene glaciers showed several advance stages that were not synchronous within the Alps, although most of the glaciers at the onset of the Holocene recorded a rapid shrinkage to a size generally smaller than their late 20th century size until 3.3 ka cal BP (Ivy-Ochs et al., 2009). Subsequently, glaciers showed a widespread re-advance especially between 3.0 and 2.6 ka cal BP and between 1.4 and 1.2 ka cal BP with the final major last readvance during the LIA between 0.45 and 0.1 ka cal BP (Ivy-Ochs et al., 2009).

With regards to the chronology of Holocene periglacial activity in the southern Alps, there are only a few available ages for periglacial and permafrost landforms. A cooler and dryer period ca. 4.5 ka cal BP must have favoured permafrost aggradation and rock glaciers development in the southern Alps (Ilyashuk et al., 2011). The re-calibraton with OxCal 4.3.1 (Bronk Ramsey, 2009) of the available radiocarbon ages of inactive rock glaciers (Calderoni et al., 1998; Dramis et al., 2003) in the central and western Italian Alps using the IntCal 13 dataset, suggests that the period of maximum activity occurred between 2720 and 2850 cal yr BP with some older exceptions (all younger than 5900 cal yr BP). On the other hand, based on the existence of a paleosoil buried by the rock glacier front, Calderoni et al. (1998) and Scapozza et al. (2010) showed evidence of their activity between 929 and 1374 cal yr BP, a similar age to that reported by a Salix sp. leaf trapped within the ice of the Foscagno active rock glacier dated at 919-961 cal yr BP (Stenni et al., 2007). Recently, Krainer et al. (2015) found that the age of ice within an active rock glacier in the central Italian Alps ranged between 8960 and 2240 cal yr BP at 23.5 and 2.8 m depth, respectively, showing evidence that the ice preserved within the rock glaciers can be useful paleoclimate archives. The investigation in fact shows that frozen material, which had existed during most of the Holocene, is now thawing; this is strong evidence that temperatures during the past about 9 ka have never been as high as they are today.

- 646 647
- 648 649

LIA and present-day

650 651 652

653

654

655

656

657

658

659

660

661

662

663

664

665

666 667

668

669

670

671

672

673

674

675

676

677

678 679

680

681

682

683

684

685

686 687

688 689

690

691

692

693

694

695

696

697

698

699

700

701 702

703

704

705

Widespread wetter and cooler condition over the Alps promoted a well-documented glacier advance during the LIA (~1400-1860 AD; Ivy-Ochs et al., 2009). After the LIA, the warming trend in the Alps has been about twice the global trend over the time period 1906-2005 (1.4°C; Brunetti et al., 2009) and in the SE Alps temperature at 2200 m increased by about 1.7°C from 1851 to 2012 (Colucci and Guglielmin, 2015) leading to a 96% reduction in volume of glacial bodies (Colucci and Žebre, 2016). In the French western Maritime Alps, geophysical investigations provided resistivity values coherent with permafrost existence at about 2550 m in the Mercantour sector (Evin and Fabre, 1990). In the Ubaye-Queyras sector, rock glaciers below 2400 m lack internal ice, while above 2500 m permafrost starts to be common (e.g. Marinet rock glacier; Evin and Fabre, 1990; Evin et al., 1990; Assier et al., 1996; Smiraglia et al., 1996; Ribolini et al., 2010). This indicates that 2500 m represents here the modern limit for the existence of active rock glaciers. In the Lautaret and Mt. Viso areas, active rock glaciers were found at 2400-2450 m (Evin, 1991; Francou and Reynaud, 1992; Bodin et al., 2009). According to Bornet et al. (2014) more than 50% of the active and inactive rock glaciers (following Barsch, 1996) in the SW French Alps, from a total number of 780 inventoried landforms, are located above 2600 m and 51% of them are lying on N and NW facing slopes. They cover 2% of the total surface (50 km²) and mostly develop between 2100 and 3000 m. Most of the active rock glaciers in the southern French Alps are smaller than 0.1 km², whereas the relict ones are generally larger (up to a few km²). More than 80% of the active and inactive rock glaciers are probably located below the regional mean annual 0°C-isotherm, raising the question of their stability under climate change (Bodin et al., 2015). This probable imbalance with the present climatic conditions may be responsible for the fast flow observed on some very active rock glaciers (Delalove et al., 2008), and may also have led to the collapse of the Bérard rock glacier during summer 2006 (Bodin et al., 2017).

In the western Italian Alps active rock glaciers reach with their fronts a mean elevation of 2647 m although a few active rock glaciers appear sporadically between 2000 m and 2300 m. In the Central Italian Alps the mean elevation reached by the active rock glaciers is lower (2526 m) but ice was found within rock glaciers locally also at very low elevation in ventilated talus (1000 m; Guglielmin, unpublished data). As well known the lower altitudinal limit of permafrost based on the elevation of the active rock glaciers, although investigated through geophysical methods, can be not representative of the real regional permafrost; in fact, the lower limit can decrease up to 200 m due to the local density-driven air flows (Balch, 1900). Several rock glaciers have developed since the LIA in the Adamello-Presanella area (eastern Italian Alps) where the current mean elevation of the fronts of active rock glaciers is 2527 m, around 400 m above the limit of the relict ones and where patches of sporadic permafrost can reach an elevation of 2200 m (Baroni et al., 2004). Only a few active rock glaciers occur in the western Alps within LIA deglaciated areas; this is the case of an active rock glacier in the Dolomites (SE Alps) at about 2400 m forming in an area previously occupied by the tongue of a LIA glacier and now dominated by periglacial processes. This study provides an example of how periglacial processes are replacing glacial processes under present climate change during the paraglacial stage (Seppi et al., 2014). Recently, possible sporadic permafrost in an area occupied by two protalus rampart have been deduced based on BTS measurements in the Carnic Prealps at 2258 m (Colucci et al., 2016a). Nine active protalus and pronival ramparts, located in front of permanent snow/firn bodies and ice patches, have been also reported in the Julian Alps and in the Kamnik-Savinja Alps at an average altitude of 2158 m (Colucci, 2016).

Although in the Alps permafrost is limited to the highest and driest areas, ground ice is also reported from several caves (Figure 6). Ice caves are generally widespread in high elevated karstic environments of the Alps, mainly in the central and eastern parts. The real distribution and size

of ground ice in Alpine caves is still very uncertain, although recently in the southeastern Italian Alps 1100 ice caves have been reported. Here, they are generally located between 1500 and 2200 m and their distribution is well-correlated with MAAT and altitude, being significantly more frequent for MAAT lower than 2 °C and 5°C; therefore, they are placed within the periglacial domain characterized by high precipitations (Colucci et al., 2016b). In Slovenia, 551 ice caves have been reported by Mihevc (2008). According to the Slovenian Cave Registry (2014), approximately 520 cryo caves, of which ca. 100 ice caves, can be found in the Slovenian Alps. Most of them have the entrance between 1000 and 2400 m (Mihevc, 2008). The radiocarbon age of an insect found in an ice core extracted in 2003 from the Abisso sul Margine dell'alto Bregai (central Alps) reported an age of 185 ± 30 cal yr BP (Citterio et al., 2016). In the cave *Ledena jama pri Planini Viševnik* (eastern Alps), an ice core was recently extracted and larch trapped in the ice yielded a radiocarbon age of 300 ± 45 cal yr BP (Staut et al., 2016). In the light of accelerated climate change, other important paleoclimate archives exploitable from ice caves are represented by *in-situ* coarse cryogenic cave carbonates, recently discovered for the first time in a vertical ice outcrop of a cave in the southeastern Alps (Colucci et al., 2017).

Figure 6

4.3 Italian Peninsula

The Italian Peninsula lies between the Tyrrhenian Sea on the west, the Ionian Sea on the south, and the Adriatic Sea on the east. It includes large plains of northern Italy (Po Plain and Venetian Plain) and extends over more than 1200 km crossing 8° of latitudes between 38 and 46 °N. The Apennine Mountains run along the entire peninsula and culminate in the Gran Sasso d'Italia (2912) and La Majella (2793 m). Geologically, the Apennines are quite homogeneous with a clear dominance of Mesozoic carbonates although sandstones, shales and flysch are also found, especially in the northern Apennines.

In the Italian Peninsula, from the Late Pliocene/Early Pleistocene transition the climate was characterized by rapid succession between xeric cool (glacials) and humid warm (interglacials) phases (Bertini, 2010). These alternating climatic conditions favoured the existence of "warm" steppes or coniferous forests alternated with subtropical to warm-temperate deciduous forests. During these periods, the paleogeography of the Italian coasts changed significantly due to sea level variations; indeed, the coastline of Adriatic Sea moved hundreds of km southward during the LGM and did not reach the current position until ca. 7 ka (Lambeck et al., 2011; Anzidei et al., 2014).

Last Glaciation

In the Apennines valley glaciers were only present on the highest mountains, with the maximum glacial expansion dated at 27.2 ± 0.9 ka cal BP in the Campo Imperatore valley and a rapid glacial retreat at around 21 ka cal BP (Giraudi and Frezzotti, 1997). Subsequently, lake level oscillations of Fucino Lake showed an aridity period between 20 and 17 ka cal BP and between 15 ka cal BP and the Early Holocene (Giraudi, 1998). More recently, at Campo Felice (central Apeninnes) Giraudi (2012) suggested that the maximum glacial advance was dated earlier than in other areas (33-27 ka cal BP) driven by a relatively milder and wetter period. Kuhlemann et al. (2008) modelled the air circulation and the ELA of the glaciers in the Mediterranean area indicating possible conditions for glaciers occurrence also on Mt. Pollino in Calabria and on Mt. Etna in Sicily.

Several landforms were related to periglacial or permafrost conditions during the LGM or during the deglaciation process, particularly during the OD in Italy (Figure 7). In the northern Apennines only a couple of relict rock glaciers described by Chelli and Tellini (2002) were associated to

LGM period on the northern slopes of the highest mountains of this belt between Mt. Cusna (2121 m) and Mt. Cimone (2165 m). Rock glaciers from this period are more frequent in the central Apennines, where 38 relict rock glaciers were identified by Giraudi (2002) almost all located along the eastern side of the central Apennines. They are mainly present on the Gran Sasso Massif (2912 m), the Maiella Massif (2793 m) and Mt. Velino (2486 m). In the southern Apennines only one relict rock glacier has been detected on the northern slope of Mt. Pollino (2267 m).

Figure 7

Block streams from this stage are located around Mt. Beigua (1287 m), few km far from the Ligurian Sea. These landforms are located between 900 and 1100 m on all the slopes and are characterized by an open-work texture in the upper 1.5 m thickness with angular or subangular blocks and frequent vertical dipping, or imbrication of the boulders (Firpo et al., 2006). Remarkably, none has any rock cliff or free face at their head and they show generally the smallest blocks in their frontal part. These landforms are all shaped on the same bedrock (serpentine and metabasalts) and they could have formed at a maximum age of 33 ka (Firpo et al., 2006). Moreover, in the upper parts of the Mt. Beigua thors and blockfields are also present, suggesting intense periglacial conditions (Firpo et al., 2006).

In the Apennines stratified scree deposits (gréeze litée) are the most widespread and studied periglacial sedimentary archives (Table 4). They were found in different localities of the Northern Apennines, such as Corniglio and Bratica Valley (Chelli and Tellini, 2002), Monte Prampa (Bernini et al., 1978), Alpi Apuane (Federici, 1981) and, above all, in the central Apennines (Coltorti and Dramis, 1988; Coltorti et al., 1983) and in different valleys in the Marche region. In the central Apennines stratified screes were described in the late 1970's mainly along the Adriatic side of Umbria-Marche Apennines (Coltorti et al., 1979, Castiglioni et al., 1979; Boenzi, 1980), where these deposits are particularly widespread and connected with outcrops of limestone and marly limestone bedrock (Coltorti et al., 1983). These deposits are documented at different elevations from the coast to more than 2000 m (Mt. Conero) generally at the foot of rectified slopes or down-slope ancient nivation hollows. Features identified as stratified scree were also found southward in Abruzzo (Maielama valley; Frezzotti and Giraudi, 1992; Sulmona valley, Miccadei et al., 1999), Molise (Coltorti, 1983; Scarciglia, 2000) and Puglia regions (Boenzi et al., 1977). In some cases, they were also found close to the coast of the western side of the Apennines on the Palmaria Island, close to La Spezia (Chelli and Pappalardo, 2006) and on the Sorrento Peninsula (Brancaccio, 1968). The southernmost stratified screes were found in Calabria (Mt. Pollino and Mt. Sila down to 500 m; Boenzi and Palmentola, 1975; Praia a Mare and Mormanno down to 700 m; Robustelli and Scarciglia, 2006). In most of the cases, they were probably associated to seasonal frost conditions, with no permafrost regime.

Table 4

Finally, cryoturbations have been also documented on soils of Mt. Beigua at 650 m (Rellini et al., 2014) and at even lower elevations in the Cilento hills (at 30 m asl; Scarciglia et al., 2003) where severe winter frost was hypothesized during the Last Glaciation. Only in one case, in the Sila Mountain at 1350 m, a fossil sand wedge, an ice wedge cast and some other cryogenic features within the soils were described by Dimase (2006).

Holocene

According to Giraudi et al. (2011), the onset of the Holocene in the Italian Peninsula and in Sicily was characterized by dramatic environmental and climatic changes. Between ca. 9.5 and ca. 6-5.5 ka cal BP the climate was generally warmer and wetter than present, although in some records

the wettest period seems to have occurred later at ca. 6-5 ka cal BP. Subsequently, a progressive cooling with higher precipitation variability started at 4.5 ka cal BP, with wet periods recorded at 2.8-2.6, 1.4-1.2 and 0.5-0.3 ka cal BP and an aridity peak between 3.7 and 3.2 ka cal BP (Calderoni et al., 1998; Giraudi, 1998). No dated evidence of glacial advances has been documented in the Italian Peninsula during the Holocene except for Gran Sasso area, where the Calderone glacier extends now over a few ha (Hughes et al., 2006a). Here, the glacier is thought to have persisted in this circue throughout the Early Holocene, although the circue was probably ice-free between ca. 4.3 and 3.9 ka cal BP (Giraudi, 2004; Hughes, 2006a). Subsequently this glacier experienced several phases of expansion, namely at ca.: 2.9- 2.7, 1.4-1.3 and 0.64-0.58 ka cal BP (Giraudi, 2003, 2004; Hughes, 2006a).

The ages for periglacial landforms developed during the Holocene are rare and limited to few rock glaciers in the central-eastern Apennines. According to these ages, it is possible that permafrost existed during the Early Holocene at elevations higher than 1900-2000 m and started to degrade at ca. 7 ka cal BP (Dramis et al., 2003). Nevertheless, a possible new phase of permafrost aggradation may have occurred at high elevations during the aridity phase that took place between 3.7 and 3.2 ka cal BP (Dramis et al., 2003).

LIA and present-day

It is reasonable to hypothesize that colder conditions prevailing during the LIA favoured the development of some sporadic permafrost at elevations above 2200 m in the central Apennine (Mt. Gran Sasso, Maiella, Mt. Velino). A still active rock glacier is located on the north face of Mt. Amaro, with its front reaching 2522 m (Figure 8) (La Maiella massif, Dramis and Kotarba, 1992). As documented by BTS measurements, at elevations higher than 2400 m in the same massif (Bisci et al., 2003) and locally lower in Mt. Velino permafrost occurrence was possible, until at least 15 years ago (Guglielmin, unpublished data).

Figure 8

4.4 Balkan Peninsula

The Balkan Peninsula (also referred to as Balkans) is situated in south-eastern Europe and is bounded by the Adriatic, Ionian, Aegean and Black Seas. Situated between the Eurasian and African lithospheric plates, the Balkan Peninsula constitutes a mosaic of several mountain systems: Dinaric, Balkan, Macedonia–Rhodopes and Pindus, separated by internal tectonic depressions and major valleys. This internal topographic variability, coupled with general orientation of the mountain ranges, NNW to SSE Dinaric and Pindus and W to E for Bulgarian Mountains, generates a wide diversity of local geographical conditions, reflected in the presence and evolution of permafrost through time. The highest peak of the Balkans is Musala (2925 m), found in the Rila Mountain.

The geology of the Balkan Peninsula is very diverse. For instance, the Dinaric Alps are dominated by up to 8000 m thick Mesozoic carbonates (Jurasic limestone, Triasic dolomite and Werfen sandstones and schists, and Wengen sandstones). The Šar Mountains and Mount Korab on the eastern Albania border consist of polymetamorphic metasedimentary sequence with Hercynian granitoid intrusions in its central part. The major Bulgarian mountains are composed largely of Precambrian and Palaeozoic crystalline rocks (crystalline schist, gneiss, amphibolites, metamorphosed sedimentary rocks etc.) intruded by the Rila-West Rodophian batholith (Sinnyovsky, 2015), in some areas also by crystalline limestone and marble. In Greece the Pindus Mountains and Olympos Massif are dominated by Mezozoic (Lower Jurassic - Upper Cretaceous)

sedimentary rock, especially limestone, dolomite and breccia, with ophiolithic rocks also present in some areas, such as at Mount Smolikas and Mount Vasilitsa.

The Balkan Peninsula is one of the Mediterranean regions where information on present and past permafrost conditions is very general and has a speculative character (King and Akermann, 1993; Dobiński, 2005). There is evidence that "isolated patches of permafrost" (Brown et al., 2001) are still present in the high mountain environment of the Balkan Peninsula. However, apart from ice caves (Bočić et al., 2014; Buzjak et al., 2014; Kern et al., 2006a) no other active permafrost features have been recognised in the study area. Relict permafrost features in the Balkan Peninsula have been recognised, although only recorded in detail in the Pindus, Prokletije, Rila and Pirin Mountains, where rock glacier inventories have been compiled (Palmentola et al., 1995; Hughes et al., 2003; Palmentola and Stamatopoulos, 2004; Dimitrov and Gikov, 2012; Gikov and Dimitrov, 2011; Magori et al., 2017). Sand wedges and cryoturbations present in the Pannonian Basin indicate a deep seasonal frost and perhaps isolated patches of sporadic permafrost (Ruszkiczay-Rüdiger and Kern, 2015) in the SW lowlands of the Pannonian Basin and in Getic Basin (Romanian Plain) (Frenzel et al., 1992) during the Pleistocene. However, there is no evidence of continuous permafrost as suggested by some previous studies (e.g., Poser, 1948; Velichko, 1982). At the LGM only the highest mountains of the Central Balkans were located in the discontinuous permafrost zone (Van Vliet-Lanoë and Hallegouët, 2001). Hence, it follows that rock glaciers are the main source of paleo-environmental information to infer past permafrost conditions in low-latitude areas of the Balkan Peninsula, while the ice caves are the best indicators for evaluating the present permafrost distribution in this area. Other elements of periglacial morphogenesis associated with permafrost conditions, such as large and medium size patterned ground and block streams, are very little-studied in the Balkan Peninsula. As is other parts of the Mediterranean region, thick Pleistocene stratified scree deposits are present across the Balkans especially in the uplands - and attest to active frost action under cold climate conditions. These sediments can be well preserved in limestone caves and rockshelters (e.g. Bailey and Woodward 1997; Morley and Woodward, 2011), but establishing their paleoclimatic significance is not always straighforward (Woodward and Goldberg, 2001).

Last Glaciation and Deglaciation

The Last Glaciation in the Balkan Peninsula was characterised by the presence of ice fields and valley glaciers over some of the highest mountain massifs (e.g., Milivojević et al., 2008; Hughes et al., 2010, 2011; Kuhlemann et al., 2009, 2013; Žebre and Stepišnik, 2014; Sinnyovsky, 2015; Zebre et al., 2016). Late Pleistocene glaciers reached their maximum extents before the LGM in Pindus Mountains and this is recorded indirectly in the fluvial record downstream where glaciofluvial sediments have been dated at 25-30 ka (Lewin et al., 1991; Woodward et al. 1995; 2008; Hughes et al 2006b). In the Peloponnese, pre-LGM moraines have recently been dated to 30-40 ka using ³⁶Cl exposure dating (Pope et al., 2017). In the Rila Mountains, Bulgaria, it is most likely that two glacial advances occurred, one at the beginning (25-23 ka) and one at the end (16-18 ka) of the global LGM (Kuhlemann et al., 2013). However, the exact timing of the local LGM over the Balkan Peninsula is still a matter of debate with some of the best evidence coming from the fluvial record in NW Greece (Woodward et al., 2008). In the Dinaric Alps, relatively high moisture (Hughes et al., 2010; Žebre and Stepišnik, 2014) was more favourable for glacier development in the highest massifs, meanwhile the lowlands were likely characterised by periglacial environment (Table 5). Almost no research on permafrost features from the Pleistocene period has been presented until now from this area. According to the interpretation by van Vliet-Lanoe et al. (2004) and Ruszkiczay-Rüdiger and Kern (2015), the Dinaric Alps area

942 943 944

886 887 888

889

890 891

892

893

894 895

896

897

898

899

900

901

902

903 904

905

906

907

908

909

910

911

912

913 914

915

916

917

918

919

920 921

922 923

924

925

926

927

928

929

930

931

932 933

934

935

936

937

938

939

940

(at least its NW part) probably hosted discontinuous permafrost, bounded by a seasonal frost or even isolated patches of sporadic permafrost in the Pannonian basin to the NE. In fact, ice wedges and cryoturbations have been found in till in the Lovćen Mountain (Liedtke, 1962), supporting the idea of the permafrost presence in the Dinaric Alps. The presence of tors on the highest peaks indicates intensive periglacial processes in the ice-free areas above the local Equilibrium Line Altitude (ELA).

Table 5

In contrast, in the continental, more arid part of the Balkan Peninsula relict rock glaciers, and also block streams and patterned ground are widespread (Figure 9). Early periglacial studies from the Bulgarian mountains revealed a broad presence of scree deposits, block streams and blockfields (Stoyanov and Gachev, 2012). In addition, 27 and 55 rock glaciers were identified in Rila (Gikov and Dimitrov, 2011) and Pirin Mountains (Dimitrov and Gikov, 2012), respectively, though Magori et al. (2017) recently found new field evidence of the existence of 122 units in both massifs. Rock glaciers are distributed at elevations between 2080 and 2600 m, with a mean altitude of 2340 m in Rila Mountains and 2390 m in Pirin Mountains (Magori et al., 2017). They are considered to be from the end of Pleistocene and early Holocene (Dimitrov and Gikov, 2012; Gikov and Dimitrov, 2011; Kuhlemann et al., 2013), although the spatial relation between different altitudinal groups of landforms suggest other timing interpretation. In the Sar Mountains several rock glaciers, most of them in direct spatial connection with latero-frontal moraines, were recognized above 1700 m by Kuhlemann et al. (2009). Several generations of rock glaciers appear on the northern side of the ridge Bistra (2651 m) – Jezerski (2604 m) between 1750 and 2550 m. A similar situation is found on the north and north-western slope of Mount Korab, where relict rock glaciers are present at altitudes between 1480 and 2600 m. Relict rock glaciers are widespread also in the Pindus and other mountains in Greece. These features have been identified on Mount Parnassus (Pechoux, 1970) in central Greece, and Mount Tymphi (Hughes et al., 2003), Mount Smolikas (Hughes et al., 2006c) and Mount Lakmos-Peristeri (Palmentola and Stamatopoulos, 2004) in northwest Greece. The relict rock glaciers of the Pindus Mountains have wide-ranging elevations and occupy cirgues between 1330 and 2300 m (Hughes et al., 2003; Palmentola and Stamatopoulos, 2004; Hughes et al., 2006a) and are likely to represent different generations of rock glacier. Hughes et al. (2003) argued that the rock glaciers of Mount Tymphi must belong to the LGM and formed as climate became colder and drier forcing circue glaciers to retreat and become overwhelmed by debris. Further research is necessary to test the ages of the rock glaciers in the Balkans.

Figure 9

Besides rock glaciers other permafrost features can also be identified in the inland part of the Balkans (Figure 10). On the Vitosha Mountain, relict stone circles, tors and large blockfields were identified at the elevation range of 1850-1900 m. Some of the largest block streams in Europe, called Zlatnite Mostove (Golden Bridges) and Golyamata Gramada (Big Pile) are also present in this area. The first is 2.2 km long and 150 m wide, descending from 1800 to 1410 m, and the latter 1 km long and 300 m wide at the altitude between 1900 and 1550 m. Block streams are present in the Stara Planina (Balkan) Mountains, descending even down to 930 m in the northern slopes and 1130 m in the southern slopes. They can be found also in the granite part of Rila and Pirin Mountains where they descend down to 1500 m, and in Osogovo Mountain, where they reach 1700 m. Patterned ground and frost-shattered features were noted on Mount Tymphi by Hagedorn

(1969) and Hughes (2004). Separating active or recent periglacial activity from Pleistocene features is difficult for many of the landforms on the highest mountains, although the lower periglacial forms must be Pleistocene in age.

It is certainly true that some rock glaciers form during deglaciation when glacier retreat causes glaciers to become overloaded by debris and morphing into ice-cored rock glaciers (Morris and Olyphant, 1990). It is also true that rock glaciers are most likely to form when climate is cold and dry (Haeberli, 1985). The period characterised by "deglaciation" depends on the timing of the local LGM. In many parts of the world this predates the global LGM, with cold and dry conditions at the global LGM causing glacier retreat (Hughes et al., 2013).

Figure 10

In the Pindus Mountains, on Mount Smolikas (2632 m), a rock glacier occurs at much higher altitude (>2100 m) than on neighbouring Mount Tymphi (1800-2200 m) (Table 6). This led Hughes et al. (2006a) to argue for a YD age for the Smolikas rock glacier. Based on climate modelling, Hughes et al. (2006a) argued that this feature and the associated last ever glaciers on Mount Smolikas could not be Holocene in age. On Mount Tymphi Late-glacial rock glaciers are absent because the level of permafrost was above the cirque floors and consequently, rock glaciers only formed on higher mountains such as Mount Smolikas. On Mount Lakmos-Peristeri, just 25 km southeast of Mount Tymphi, Palmentola and Stamatopoulos (2004) argued for an OD age for the numerous relict rock glaciers in the cirques of these mountains. This was based on earlier suggestions made for similar relict rock glaciers in the Prokletije Mountains, where the study of 16 inactive rock glaciers located above 1700 m was presented by Palmentola et al. (1995). Formation of several relict rock glaciers in the inland Dinaric Alps of Bosnia and Herzegovina and Montenegro (never studied before, but clearly recognized from different satellite images), indicating past permafrost conditions at elevations above 1650 m, may also be related to one of the dry and cold periods of the late Pleistocene. This is in accordance with the recently compiled rock glacier inventory in the nearby SE Alps (Colucci et al., 2016a) where the formation of rock glaciers was related to the YD cold phase. However, in Greece Hughes et al. (2003) argued that similar elevation rock glaciers were older, forming during the LGM. The OD ELA in Sar Mountains was calculated to 2200-2350 m (Kuhlemann et al., 2009). Thus, it is likely that rock glaciers present in the altitudinal belt 1950-2060 m on the northern side of the ridge Bistra (2651 m) – Jezerski (2604 m) belong to this period. During YD, the ELA was placed at 2300-2400, so the rock glacier at 2260-2550 m could belong to this period. Relict rock glaciers on Mount Korab located above 2400 m appear to be fresher (without vegetation) and could belong also to one of these two periods. In the Rila Mountains, rock glaciers above 2200 m and below local ELA are likely to be formed in the deglaciation period. During the deglaciation period, the stadial moraines at 1700 m, 1850 m, and 2000 m point to gradual retreat of the glaciers in the Osogovo Mountain (Milevski, 2008). Embryonic rock glaciers at 1850 and 2030 m in the circue below the Ruen Peak (2251 m) were likely active during this period. However, none of the rock glaciers in the Balkans have been dated and therefore the competing geochronological hypotheses proposed by Palmentola et al. (1995), Hughes et al. (2003) and Palmentola and Stamatopoulos (2004) remain to be tested.

Holocene

1065 Holocene cooling periods in 8.2 ka cal BP (Tonkov et al., 2016), 7.5 ka cal BP (Stefanova et al., 1066 2006) and between 6.7 and 5 ka cal BP (Bozilova and Tonkov, 2000) based on pollen records 1067 were reported for the Rila and Pirin Mountains. It is likely that these cooling events triggered the 1068 formation of some newly rock glaciers, while the highest lying rock glaciers continued their 1069 existence. Rock glaciers in the Rila and Pirin Mountains situated above 2500 m were probably 1070 active also during Holocene. One example is the rock glacier on the northern slope of Polezhan 1071 1072 Peak (2851 m) with the front at 2490 m where at least three rock glacier generations can be 1073 recognised. Also in the Sar Mountains, on the northern slopes of the Bistra (2651 m) – Jezerski 1074 (2604 m) ridge, rock glaciers above ~2300 m likely persisted in their active mode during the 1075 Holocene, as suggested by Kuhlemann et al. (2009). 1076

> Some of the cirque and valley glaciers that were present during the YD likely persisted to Holocene in some areas of the Balkans. Calcite cements in cirque moraines, which provide minimum ages for the moraines, yield early Holocene ages in central Montenegro (Hughes et al., 2011). On Mount Olympus, in the north-facing cirque of Megali Kazania, large moraines were considered to be Holocene Neo-glacial moraines by Smith et al. (1997). This possibility has recently been advocated by Styllas et al. (2015). This would seem plausible given the presence of small glaciers today further north in the Balkans. It is possible that this was also the case in other inland mountains in the Balkan Peninsula, although there is very little known about the Holocene glacial history. Periglacial forms related to these small glaciers, such as nivation hollows, are also poorly understood. However, given the warmer conditions at the Holocene optimum it is arguable that smaller glaciers and snow patches nowadays present in Pirin, Prokletije and Durmitor Mountains (Gachev et al., 2016) would have been less than today.

LIA

Owing to cooling conditions during the LIA there were numerous small cirque glaciers (Hughes, 2010) in the highest massifs of the Balkan Peninsula. There would have also been many more perennial snow fields. Nival processes would have therefore been a significant geomorphological agent across the mountains in the Balkan Peninsula at this time. Rock glaciers above 2350 m in the Rila and Pirin Mountains probably reactivated during the LIA period.

Present-day

Because of relatively low altitude and low latitude, the mountain permafrost in the Balkan Peninsula is nearly inexistent in recent climate. Permafrost may be present in some niche localities on the highest peaks, and this possibility was highlighted in Dobinski (2005) who suggested that permafrost conditions may exist above ~2700 m on Mount Olympus (2912 m), and above ~2350 m on Rila Mountain (2925 m). This idea is partially supported by Brown et al. (2001) modelling results, suggesting that sporadic permafrost is present only in the highest peaks of the southern Dinaric Alps, Šar Mountains, and Rila and Pirin Mountains. In fact, Milivojević et al. (2008) mapped two active rock glaciers in the central Prokletije Mountains. According to Hughes (2009) these features may not be actively moving because they lack the clear lobate form. However, they may be described as patches of sporadic permafrost. Perennial snow fields and modern nival forms are widespread across the highest mountains of the Balkan Peninsula. For example, Styllas et al. (2016) reported perennial snow and ice masses in the north-facing circue of Megali Kazania (Olympus Mountain). Apart from this 16 glacierets and small circue glaciers exist in the Durmitor, Prokletije and Pirin Mountains (Hughes, 2008; Djurović, 2013; Milivojević et al., 2008; Hughes, 2009; Gachev and Stoyanov, 2012; Gachev et al., 2016). Some of these ice masses are debris-covered and exhibit similar geomorphology to the buried ice patches of the Corral

1119 1120 1121

1063 1064

1077

1078

1079

1080 1081

1082

1083

1084

1085

1086

1087

1088

1089

1090 1091 1092

1093

1094

1095

1096

1097

1098 1099 1100

1101

1102

1103

1104

1105

1106

1107

1108

1109 1110

1111

1112

1113

1114

1115

1116

1117

Veleta site in the Sierra Nevada, Spain (Gómez-Ortiz et al., 2001). Therefore, the possible presence of patches of sporadic permafrost below these perennial snow patches can not be excluded.

Instead ice caves are permafrost phenomena in carbonate massifs of the Balkan Peninsula which often exist at elevations where outside MAAT is well above 0 °C (Colucci et al., 2016b) owing to karstic topography which functions as cold air trap and thus promote the survival of permanent snow and ice. Majority of caves containing permanent frozen materials, the so-called cryo caves (sensu Colucci et al., 2016b), occur at elevations above 800-1000 m in the Dinaric Alps (Bočić et al., 2014; Kern et al., 2006b; Zupan Hajna, 2016) and mountains in Macedonia (Temovski, 2016), although some cryo caves in Slovenia were reported from lower altitudes (Mihevc, 2008). In the Dinaric karst of Slovenia about 100 cryo caves (Slovenian Cave Registry, 2014) and in the northern Velebit Mountain in Croatia 150 cryo caves (Buzjak et al., 2016) were explored by speleologists. Moreover, active patterned ground likely related to seasonal frost heaving was reported from some Slovenian caves by Zupan Hajna (2007), Mihevc (2009) and Obu et al. (2018).

Nevertheless, periglacial activity is a significant geomorphological agent in the highest areas of the Balkan Peninsula. In the Rila and Pirin Mountains, periglacial processes are active above 1900-2000 m (Stoyanov and Gachev, 2012).

4.5 Anatolian Peninsula

Located between one of the world's most seismically active areas, the Anatolian Peninsula constitutes a relatively small orogenic plateau that is bounded by the Mediterranean, Aegean, Marmara and Black Seas. Despite its modest average elevations just ~ 1200 m and low overall exhumation, the Anatolian Peninsula is a first-order morphotectonic feature that has fundamentally impacted the geologic, geomorphic, and climatic evolution of the Eastern Mediterranean (Ciner et al., 2013). The tectonically active boundaries of the plateau delineate the Anatolian plate, which has been extruding toward the west with respect to Eurasia since the Miocene as the result of extension in the Aegean and the Arabia-Eurasia collision (Sengör and Yılmaz, 1981; Bozkurt, 2001). The Eastern Black Sea Mountains (also known as the Pontides) and the Taurus Mountain Range bound the northern and southern flanks of the plateau respectively and attain elevations more than 3000 m in places. Several paleoglacial valleys with moraines, occasional small glaciers and periglacial features are preserved in these mountains (Palgrave, 1872; Luis, 1944; Kurter, 1991; Çiner, 2003; Sarıkaya et al., 2011; Çalışkan et al., 2012; Sarıkaya and Tekeli, 2012; Bayrakdar et al., 2015; Yavaşlı et al., 2015). In the central parts, high volcanoes such as Ağrı (also known as Ararat, 5137 m), Süphan (4058 m) and Erciyes (3917 m) also contain active glaciers and periglacial features (Penther, 1905; Erinç, 1951; Messerli, 1964; Kurter, 1991; Kesici, 2005; Sarıkaya et al., 2009; Sarıkaya, 2012).

The geology of the Anatolia Peninsula is rather complicated. However, the Taurus Mountains along the Mediterranean coast of Turkey are mainly made up of platform carbonate rocks with occasional presence of ophiolitic rocks emplaced as trust sheets (Monod, 1977). On the other hand, the Eastern Black Sea Mountains along the NE Black Sea coast of Turkey contain mostly quartz bearing lithologies composed of plutonic and volcanic rocks. The volcanoes scattered in the central parts of Anatolian Peninsula are generally andesitic to rhyolitic in composition.

Late Pleistocene glacial deposits in Turkey are now well described and constitute one of the bestdated records of its kind in the world (Hughes and Woodward, 2017) (see a review of glacial landforms and TCN dating chronologies by Sarıkaya and Çiner, 2015, 2017). On the other hand, periglacial landforms are only scarcely described, often in local journals and in Turkish and lack quantitative age results. Here, we present an overview of the distribution of mountains with periglacial landforms based mainly on literature but also on field observations on periglacial processes and landforms formed since the Last Glaciation (Table 7).

Table 7

Last Glaciation

There are no age data on the periglacial landforms related to the Last Glaciation in Turkey. However, moraines in the Taurus Range, particularly in Mt. Sandıras (2295 m) (Sarıkaya et al., 2008), Mt. Akdağ (3016 m) (Sarıkaya et al., 2014), Mt. Dedegöl (2992 m) (Zahno et al., 2009; Çılğın, 2015; Köse et al., 2017), Mt. Aladağlar (3756 m) (Zreda et al., 2011), Mt. Bolkar (3524 m) (Çiner and Sarıkaya, 2017) and Mt. Geyikdağ (2877 m) (Çiner et al., 2015, 2017; Sarıkaya et al., 2017) yield TCN ages that vary between ~50 to 5 ka. To the NW of Turkey, on Başyayla Valley of Mt. Kaçkar, (3937 m) along the Eastern Black Sea Mountain Range, the MIE is reported to be around 56 ka (Reber et al., 2014). It is therefore reasonable to assume that the extent of glacier advances and retreats also controlled the intensity of periglacial activity as well as the development of periglacial landforms in these areas.

The synchronicity of the LGM in the eastern Mediterranean region is under current debate (e.g., Clark et al., 2009; Hughes and Woodward, 2008; Hughes et al., 2013). However, there seems to be a consensus on the rather synchronous LGM extent and timing (centred to around 21 ka) on the Taurus Mountains (e.g., Sarıkaya and Çiner, 2017), Eastern Black Sea Mountains (Akçar et al., 2007, 2008), Lesser Caucasus Mountains (Dede et al., 2017) and the individual mountains in the central Anatolia such as Mt. Uludağ (2543 m) (Akçar et al., 2014, 2017; Zahno et al., 2010) and Mt. Erciyes (Sarıkaya et al., 2009). It is therefore very likely that during the Last Glaciation and at LGM, periglacial processes below LGM snowline, approximately between 2400-2600 m in the Taurus Mountains and 2300-2500 m in the Eastern Black Sea Mountains (Erinç, 1952; Messerli, 1967; Çiner, 2004), were active and permafrost mainly controlled the development of some relict rock glaciers as well as patterned ground features (Figure 11).

Figure 11

Deglaciation

Following the LGM, at around 21 ka a rapid deglaciation is documented throughout the Anatolia Peninsula (e.g., Sarıkaya and Çiner, 2015). As in other periglacial alpine environments (Barsch, 1992; Knight and Harrison, 2008), mountains in Anatolia also experienced increasing rockfall and mass movements, leading to rock glacier instability, formation of outwash plains and sediment release to the rivers. This deglaciation was interrupted by two cold intervals; OD, which was rather long compared to the relatively shorter YD, where glaciers regained momentum and descended down valleys (Çiner et al., 2015; Sarıkaya and Çiner, 2015). These two cold stages were followed by rock glacier development, especially in the Eastern Black Sea Mountains (e.g., Akçar et al., 2007) and in Mt. Mercan (also known as Mt. Munzur; 3463 m) in central Anatolia (Bilgin, 1972). A relict rock glacier terminus that lies around 2100 m was recently TCN dated to

15.7 ± 1.3 ka in the Mt. Karçal (3932 m) of the Lesser Caucasus Mountains (Dede et al., 2017) (Figure 12).

Figure 12

Holocene

The Holocene record of periglacial conditions is not well known in Turkey. Although the existence of glaciers in southeastern Taurus Mountains (e.g., Mt Cilo, 4135 m) (İzbıkak, 1951; Erinç, 1953) and high volcanoes such as Mt. Ararat are known (Sarıkaya, 2012), only few glacial deposits were TCN dated. For instance, on the Erciyes Volcano in central Anatolia, reported Early Holocene (9.3 ± 0.5 ka) and Late Holocene (3.8 ± 0.4 ka) glacial advances suggesting also periglacial conditions surrounding this mountain (Sarıkaya et al., 2009). On the other hand, rock glaciers probably were extensively developed during the Holocene especially in the northern parts of the Anatolia Peninsula. However, the development of rock glaciers is rather restricted in the Taurus Range probably because of the well-developed karst that restrained surface water flow. Nevertheless, rock glaciers were previously described in Mt. Geyikdağ in the central Taurus Mountains (Arpat and Özgül, 1972; Çiner et al., 1999) and recently Çiner et al. (2017) TCN dated a rock glacier to < 6 ka (Fig. 2c). On the other hand, a study carried out on the southern slopes of Mt. Ararat (Avc1, 2007) claimed that during the glacial/periglacial climates of the past, mass movements gave rise to debris on the slopes and blocky colluvium in the valley floor.

LIA

With the exception of Mt. Ararat ice cap that covers around 5.6 km² (Sarıkaya, 2012) and Mt. Cilo Uludoruk glacier (<3 km long), only few small glaciers are present today in Turkey, where two third are located in the southeastern Taurus Mountains (Kurter, 1991; Çiner, 2004; Akçar and Schlüchter, 2005; Sarıkaya and Tekeli, 2014). However, glaciers were more numerous and much larger during the LIA in Turkey and in the Mediterranean mountains in general (Hughes, 2014, 2017).

For instance, the highest moraines in Mt. Uludağ were attributed to LIA (Erinç, 1952). More recently Zahno et al. (2010) TCN dated a boulder from the innermost moraine (sample TRU-12 in Zahno et al., 2010) with negligible cosmogenic nuclide concentration supporting a probable LIA advance in Mt Uludağ. Birman (1968) also tentatively proposed a recent age for the formation of this moraine.

In Mt. Aladağlar in the central Taurus Mountains a small glacier covered by rock debris (Altın, 2006; Gürgen et al., 2010) is probably a remnant of LIA glacier development. Even though at least 12 glaciers exist in the Eastern Black Sea Mountains, moraines associated with a LIA advance are reported to be absent in Kavron and Verçenik valleys of Mt. Kaçkar probably because of dry and cold climatic conditions (Doğu et al., 1993; Akçar et al., 2007, 2008; Bayrakdar and Özdemir, 2010; Reber et al., 2014). We can therefore presume that periglacial conditions surrounding these glacial environments were more extensive during LIA compared to today's conditions in these areas with probable development of rock glaciers and protalus lobes.

Present-day

Although no active glaciers exist in Mt. Uludağ in western Turkey, it is probably one of the bestdescribed mountains concerning periglacial landforms. Studies carried out by Erinç (1949, 1957) identified two distinct periglacial levels on Mt. Uludağ. The first one lies between 1900-2300 m

and is characterised by garland soils that developed in slopes ranging between 2 and 40°. The second level lies above 2300 m and is mainly represented by stone accumulations, 40-50 cm in diameter, stone stripes and stone circles preserved over quasi-flat (0-10°) surfaces (Figure 12) (Öztürk, 2012). Additionally, Türkeş and Öztürk (2008, 2011) indicated that while several alpine plant species are effective in the formation of garlands, only two types of *Festuca* sp. are effective in the formation of circles. Although much less developed compared to Mt. Uludağ, Bilgin (1960) also reported garland soils at the summit and NE facing slopes of Mt. Kazdağ (~1700 m), in the westernmost part of the Anatolia Peninsula, near the Aegean Sea. This mountain composed of granite and schist was too low to be glaciated during the Last Glaciation but relict block streams were encountered at 1350 m facing northeast suggesting past permafrost conditions (Bilgin, 1960).

Mt. Ilgaz in central Anatolia also shows some periglacial features (Erinç et al., 1961). While large features such as block flows and cyroplanation surfaces are classified as inactive, smaller stone circles (50 cm in diameter) and garlands are thought to be active. Garlands and polygonal soils above 2500 m near Yedigöller Lake on the north-facing slopes of Mt. Esence (also known as Mt. Keşiş; 3549 m) are present (Akkan and Tuncel, 1993). Stone rings at 2650 m on Mt. Mescid (3239 m) are also reported (Atalay, 1983).

On the Eastern Black Sea Range at Mt. Karagöl (3107 m), stone circles ranging from 25 cm to 1 m in diameter and ovoid depressions 1 to 1.5 m in diameter and few decimetres in depth are reported at ca. 1800 and 1900 m, respectively (de Planhol and Bilgin, 1964). Turoğlu (2009) also reported recent solifluction, frost creep and mass movements such as rock falls, talus, talus creeps, rock avalanches and rock flows on the same mountain. In the nearby Mt. Karadağ (3331 m) periglacial features are also known to exist (Bilgin, 1969; Gürgen, 2001). On Elevit and Hacıvanak glacial valleys of Mt. Göller (3328 m) active garlands, stone circles and solifluction terraces related to seasonal frost conditions are best observed on the south facing slopes (Çiçek et al., 2006).

Active rock glaciers are mostly concentrated on the northeastern Turkey and central Anatolia. In a recent study, Gorbunov (2012) detected several active, inactive and fossil rock glaciers in Turkey using satellite imagery. Among around 600 rock glaciers located mainly between 2800-3400 m, of which about 200 are reported to be active, with some reaching 1200-1300 m in length. In some places, fossil rock glaciers descend downvalleys to 2200-2300 m. For instance, in the upper parts of the northern tributary of the Başyayla Valley in the Eastern Black Sea Mountains and in the Mt. Karçal in the Lesser Caucasus Mountains several active rock glaciers were reported (Çalışkan, 2016; Gürgen and Yeşilyurt, 2012; Reber et al., 2014; Dede et al., 2015). In Kavron Valley intensive rock glacier activity is responsible for the destruction of LIA moraines (Akçar and Schlüchter, 2005). In the so-called ski valley of Erciyes Volcano a rock glacier is also described as being active (Sarıkaya et al., 2003; Ünal and Sarıkaya, 2013) (Figure 12b). On the other hand, according to Yeşilyurt and Doğan (2010) several debris-covered glaciers were mistakenly interpreted as rock glaciers on Mt. Munzur.

Mt. Dedegöl is the only site in western Taurus Mountains where rock glaciers are developed (Dellanoy and Maire, 1983). Although some are not active, others situated between 2500 and 2800 m are active with calcareous blocks of 0.5 to 1.5 m in diameter. In Mt. Aladağlar in the central Taurus Mountains, speleologists discovered a karstic cave at ~3400 m, containing 120 m thick ice along a shaft that was probably inherited from LIA (Bayarı et al., 2003; Klimchouk et

al., 2006) (Figure 12). This is the only known ice occurrence within a cave system in Turkey. On the Yedigöller plateau of Mt. Aladağlar where the paleo-ice cap is known to have melted at the onset of the Holocene (Zreda et al., 2011), stone stripes are also reported at 3200 m (Figure 12). Rock glaciers also developed in front of the rapidly melting glaciers of Mt. İhtiyar Şahap (also known as Mt. Kavuşşahap; 3650 m) on the southeastern Taurus Mountains (Doğu, 2009; Yeşilyurt et al., 2018).

4.6 Northern Africa

Northern Africa mountainous regions are dominated by the Atlas, a series of ranges and plateaus, running eastwards from the Atlantic at ca. 31° N in coastal Morocco to 35 °N in the Mediterranean in northern Tunisia, across almost 2000 km. In Morocco, the Atlas is divided in the Middle Atlas (Djebel Bou Naceur, 3340 m), the High Atlas (Djebel Toubkal, 4167 m) and the Anti-Atlas (Djebel Sirwa, 3304 m), not analysed in this paper. The three major massifs in the High Atlas are, from west to east, the Djebel Toubkal massif (4167 m), the Irhil M'Goun massif (4071 m) and the Djebel Ayachi (3751 m). Towards the east, the High Atlas extends to the Saharian Atlas, culminating in the Aurès Massif in Algeria at 35°N (2324 m). North of the Atlas and close to the Mediterranean coast, lie the Rif (3445 m) and the Algerian Tell (2308 m) divided from the former by the Algerian high plateaus (1729 m). Further south, already in the interior Sahara Desert, lie two other large massifs, with a drier climate and with evidence of relict periglacial phenomena: the Hoggar (2981 m) in southern Algeria at 23°N, and the Tibesti (3445 m) in northern Chad at 21°N.

The major geological structures of the mountains in North Africa are fold-thrust belts formed by the collision between the African and the European plates (Gómez et al., 1977; Dewey et. al., 1989) along the plate boundary. The materials in the Rif-Tell Atlas are allochthonous, with the presence of flysch sequences and limestones covering African shield metamorphics and granitoids. The High Atlas – Saharan Atlas is an intracontinental fold-thrust belt in the foreland of the Rif (Arboleya et al., 2004), with autochthonous rocks. Mesozoic limestones prevail in the Middle Atlas, also with Cenozoic basaltic lava flows infilling pre-existing valleys (Arboleya et al., 2004). The High Atlas has three major morphostructures, with the western part showing limestone plateaus, the central zone showing Paleozoic magmatics from the African shield (granites, rhyolites, andesites and trachytes) and the eastern zone, a folded structure of carbonates (Joly, 1962; Hughes et al., 2004). The Saharan Atlas is composed by folded structures affecting mostly Cenozoic limestones.

The Hoggar massif is located in a cratonic setting, showing in its western part, middle-Proterozoic thick meta-sedimentary units and alkaline-peralkaline intrusives, magmatic complexes of basic to ultrabasic rocks and volcanoclastic deposits, andesites to dacites and calc-alkaline batholiths. The central Hoggar is mainly composed of gneisses and schist belts, while the eastern Hoggar shows mainly gneisses and granites (Bertrand and Kaby, 1978). The Tibesti massif is composed of Precambrian crystalline rocks, being formed by a core of intrusive and metamorphic rocks, which is bounded by Paleozoic and sedimentary sequences. These units are partially capped by Tertiary volcanics (Ghuma and Rogers, 1978, Permentier and Oppenheimer, 2007).

The mountains of North Africa mark strong climatic gradients between the Atlantic in the west, the Mediterranean in the north, and the Sahara influence in the south. This impacts essentially the precipitation amounts, varying from over 2,000 mm in the Rif mountains to145 mm in the Hoggar and 11 mm in the Tibesti, and are characterized by regimes, from the Mediterranean type, in the north, to semi-arid and arid regimes as one moves towards the Sahara. Air temperatures show both the effects of continentality and latitude, with striking impacts on the estimated altitudes of

the 0 °C MAAT, which range from slightly above 3000 m in the Rif to about 4900 m in the Hoggar, much higher than the maximum elevations in these ranges (Table 2).

Periglacial features in North African mountains have been described by several authors, but most through a classical naturalistic approach, lacking quantification, sedimentological studies and absolute dating of relict features (Table 8). Most features relate to evidence of frost shattering, talus slopes, stratified slope deposits and more sporadically, to rock glaciers, although lacking detailed observations. At least one case of the latter, in the High Atlas, has been recently reinterpreted as a catastrophic rock slope failure deposit, rather than as a rock glacier (Hughes et al., 2014), which calls for a need for encompassing detailed studies and reinterpretation. Presentday periglacial activity has been vaguely described by the presence of solifluction landforms and ground frost features at high altitude localities, but again the observations lack modern objective assessments and monitoring data are lacking almost everywhere. A recent study by Vieira et al. (2017) based on geomorphological evidence and ground surface temperature data indicates the possible presence of permafrost in the upper reaches of the High Atlas. Both relict and presentday periglacial features reflect the climatic gradient, with the evidence showing an increasing moisture content from SE to NW and a decrease of temperatures.

Table 8

Last Glaciation

No absolute age records exist from periglacial deposits or landforms in North Africa and the only chronological framework for the cold event derives from glacial evidence, which have been especially well-studied in the High Atlas (De Martonne, 1924; Dresch, 1949; Wiche, 1953; Messerli, 1967; Messerli and Winiger, 1992; Chardon and Riser, 1981; Hughes et al., 2004, 2011, 2018; Hannah et al., 2017). In the Djebel Toubkal region, Hughes et al. (2018) have identified three phases of glacier advance or sustained stabilisation, with ages of ca. 50 ka, 22 ka and 12 ka, pointing to a pre-LGM maximum and to the presence of glaciers during both the LGM and the YD. These relate to several valley glaciers that descended in some areas down to 1900 m, with typical glacier lengths of 2 to 9 km. Other ranges showing glacier evidence are the Rif (Mensching, 1960) and the Middle Atlas (Dresch and Raynal, 1953; Raynal et al., 1956; Awad, 1963) in Morocco, and the Tell Atlas (Barbier and Cailleux, 1950) and the Aurès mountains (Ballais, 1981) in Algeria, but with no known absolute age records.

Relict periglacial deposits in northern Africa mountains have been attributed by the different authors mostly to the Last Glaciation (Figure 13). The most frequent reference to periglacial features are probably slope deposits, which vary from head-type deposits to stratified slope deposits and grèzes in some limestone areas. They were identified in the Algerian Tell above 1400 m and in the Aurés Massif above 1800 m (Tihay, 1973), and are widespread in the High Atlas (Chardon and Riser, 1981). We have observed a good outcrop at the Middle Atlas southeast of the Djebel Bou Iblane at 2350 m. Other references to slope processes relate essentially to a diffuse concept of solifluction, which has to be accounted for with great care due to the difficulty relating to the identification of processes, but also to the variability of the interpretation of the concept. As such, relict solifluction features have been identified in the High and Middle Atlas (Awad, 1963) and Messerli (1973) associates frost action in the Hoggar and Tibesti to the presence of slope deposits and filling of hollows, which are present even below 2000 m. Nivation forms (presumably hollows), as a set of geomorphic processes, have been identified by Messerli (1973) in the Hoggar (above 2400 m), in the Tibesti (above 3000 m), by Tihay (1973) in the Aurés above 1800 m and in the Algerian Tell above 1500 m, by Marre and Quinif (1981) in the Algerian High Plateaux above 1500 m, and in the Rif by Mensching (1960). Rock glaciers, which are the single landform identified which is an indicator of the presence of permafrost, have been reported for

the Algerian Tell (possible) above 1100 m by Tihay (1973) (an altitude that seems excessively low), for the Middle Atlas between 2100 and 2500 m (Awad, 1963) and for the Rif by Mensching (1960). Nivation forms would have been widespread marginal to glaciated areas of the High Atlas during the Last Glaciation. Patterned ground can be observed on plateau surfaces in the High Atlas, especially between 3000 and 3600 m over the extensive high plateaus of Iouzagner (3502 m) and Tazaghart (3980 m). Hannah et al. (2017) described large polygonal and linear patterned ground (10-20 m wide and up to 1000 m long) as well as extensive covering of thick regolith, blockfields, blockstreams and smaller-scale stone stripes on these high plateaus. The plateaus were covered in ice during the most extensive glacial phase of the Last Glaciation (before ~50 ka based on dating in Hughes et al. 2018) and the periglacial features formed afterwards and are probably still active today given the high altitude of the plateau.

Figure 13

Deglaciation

Few observations exist for the deglaciation phase. However, the rock glaciers reported for the M'Goun Massif by Wiche (1953) which are located inside the valleys well-within the glacier limit can be included in this phase. These features are probably derived from frontal moraines in the cirques, as suggested by Hughes et al. (2006). It is also possible that the rock glaciers described by Awad (1963) for the Middle Atlas, close to the Djebel Bou Naceur, as well as some of the High Atlas rock glaciers described by Dresch (1941) and Wiche (1953) also correspond to this phase.

Present-day

Observations on present-day periglacial processes and landforms are scarce and lack quantitative data. The lack of a common methodology by the different authors limits a regional analysis. Messerli (1973) shows that the Tibesti and Hoggar lack present-day frost activity, a fact that they attribute more to the dryness than to the lack of sub-zero temperatures. At the Aurés Massif, Tihay (1973) indicates that frost action occurs above 2300 m, while Ballais (1981) mentions solifluction between 1300 and 1800 m. For the Algerian Tell, Tihay (1973) lowers these limits, putting frost action above 1500 m. In the Middle Atlas, Dresch and Raynal (1952) and Raynal et al. (1956) indicate active frost shattering. Above 2700 m a marginal periglacial zone starts to be evident in the eastern part of the Bou Naceur massif, with vegetation crescents and very shallow solifluction.

The most consistent reports on present-day periglacial activity in North Africa are from the Djebel Toubkal massif in the High Atlas, the highest peak in north Africa. Periglacial features are widespread (Hughes et al., 2011) and were described for the Central High Atlas by Couvreur (1966), who reported active solifluction above 2200 m (Figure 14). For the western High Atlas, Chardon and Riser (1981) indicate the limit of frost activity to be around 2500 m and considered that frost action dominates the morphogenesis above 3000 m. Chardon and Riser (1981), seemingly were the first to interpret a lobate feature in the Irhzer Ikhibi south at 3800 m as an active rock glacier. Vieira et al. (2017) installed a series of ground surface temperature and air temperature dataloggers during one full year, from 3210 to 4160 m altitude. The authors analysed the ground temperature regimes and snow cover and identified a hot season from late-May to late-September and a long cold season from mid-October to mid-April. Freeze-thaw regimes were analysed and the most important finding was the possible presence of permafrost at a location close to the rock glacier identified by Chardon and Riser (1981). This interpretation was based on the very low temperatures (c. -5.8 °C) measured at the ground surface beneath a stable snow pack that lasted from mid-December until late-March. Other lobate rock debris features are found at similar altitudes in other circues nearby and it is possible that these are also associated with sporadic patches of permafrost (Hughes, 2018). Permanent snowfields were present in the High Atlas in the mid-20th century and were probably widespread in the LIA (Hughes, 2018).

4.7 Mediterranean islands

Figure 14

The Mediterranean Sea encompasses several archipelagos and some major islands, some of which exceed 10,000 km² (Sicily, Sardinia, Corsica, Crete). Some of the islands are very mountainous, with elevations exceeding 2000 m in Sicily (Etna, 3350 m), Corsica (Monte Cinto, 2706 m), Crete (Lefka Ori, 2452 m). Lithologies are highly variable, with abundant limestones and granites and also volcanic rocks in the case of the highest elevation within the limits of the Mediterranean Sea, the Etna. While past glacial activity in Mediterranean islands has received some attention (e.g. Hughes et al., 2006a, Hughes and Woodward, 2016), periglacial processes have been less examined.

Last Glaciation

Glaciation has affected the mountains of Corsica, and the active volcano of Mt. Etna in Sicily, and the mountains of Crete. In the highest mountains in Corsica, Kuhlemann et al. (2008) dated *roches moutonnées* at 18 ka BP. In Crete, Bathrellos et al. (2014) found 17 glacial cirques between 1870 and 2360 m distributed around the two main mountains groups: Mt. Lefka Ori (2453 m) and Mt. Idi (2456 m). However, the ages of the Cretan glaciations remain untested and could potentially be older than the Late Pleistocene as in parts of mainland Greece (cf. Hughes et al., 2007).

Past periglacial activity has been documented in several Mediterranean islands associated in most of the cases to seasonal frost regime. In Corsica, despite the quite extensive glaciation during the LGM periglacial landforms are not common if we exclude granite weathering features like tafoni, weathering pits or grooves that are extensively widespread in the island and that occur largely also in modern cryotic conditions in Antarctica (i.e Guglielmin et al., 2005; Strini et al., 2008). Kuhlemann et al. (2009) recorded blockfields and tors above 2200 m and describe them as possible periglacial landforms, even reporting less common similar features at lower altitudes.

Landforms associated to intense periglacial conditions are also observed in Sardinia as indicated by Ginesu (1990) who described several blockfields and block streams composed by basalts in the centre of the island (Pranu Mannu plateau) at an altitude of about 600 m. Ginesu and Sias (2006) suggested a periglacial origin also for other block accumulations on different lithologies in the higher reliefs of Sardinia (Gennargentu, Limbara, Perdasdefogu). More recently, Ginesu et al. (2014) interpreted some block deposits found on Asinara island as block streams. In this case, block streams are composed by granites subrounded blocks and located close to the coast and even below the present sea level (4 m depth) in Cala Arena. Block streams and block slopes close to Tyrrenian coast have been described in the Pisani Mountains between 400 and 800 m on quarzites by Casarosa and Pappalardo (2006).

Poser (1957) found patterned ground and solifluction lobes above 1800 m in Crete, suggesting that the lower limit of periglacial activity in this island was represented by boulder pavements extending down to elevations of 800 m. Cemented stratified scree of unknown age are present on the southern slope of Mt. Idi (Guglielmin, unpublished), probably related to the coldest phases of the Last Glaciation.

In the Balearic Islands there is evidence of periglacial activity during the Last Glaciation, with scree deposits located at elevations above 1200 m in the limestone Tramuntana massif (Rosselló, 1977) though no evidence of permafrost conditions was detected at this altitude.

Deglaciation

The temperature increase recorded following the LGM conditioned the deglaciation of Mediterranean mountains, with only the possible existence of minor glaciers during the OD and YD in the highest mountains in Corsica. No evidence of permafrost conditions has been reported for this stage, though periglacial processes driven by seasonal frost may have existed during the coldest stages in the highest mountains.

Holocene

It is very unlikely that climate conditions prevailing during the Holocene allowed the existence of permafrost even in the high lands of the major islands.

LIA and present-day

LIA cold-climate conditions probably reactivated periglacial processes in the highest mountains in Sardinia and Sicily. In fact, evidence of permanent ice deposits in lava tubes has been found at 2043 m on the north flank of Mt Etna volcano (*Grotta del Gelo*, Cave of Frost), in Sicily. It is probably the southernmost European ice cave (Marino, 1992; Hughes and Woodward, 2009; Scoto et al., 2016). The lava tube formed during the historic long-lasting eruption of 1614-24 and despite its geological setting and latitude, after about twenty years from the last phases of the eruption (coinciding with the Minimum Maunder, 1645-1715), subterranean freezing inside the cave started to take place. Beside the development of seasonal ice formations (seasonal lake ice, ice stalactites, stalagmites and columns generally located close to the entrance), perennial ground ice is present in the deepest zone. The ice extension reaches about 240 m², and the volume is estimated at about 220-260 m³ (Scoto et al., 2016). On Mt. Etna, at elevations above 2900 m, nivo-aeolian deposits were found with frozen ground beneath that can persist for more than 2 years, and therefore can be considered as current permafrost (Guglielmin, unpublished).

5. Discussion

Climate variability during the Quaternary has conditioned the spatial distribution of glacial and periglacial processes in the Mediterranean region, and therefore the area under permafrost conditions (Figure 15). Glacial stages favoured a substantial expansion of glaciers in the currently still glaciated mountain ranges and the formation of glaciers in presently deglaciated mountain environments (Woodward, 2009). The glaciation in the Mediterranean mountains has been long debated and several reviews have focused on the calendar and geography of the maximum glacial expansion in the different mountain regions (i.e. Allen et al., 1999; Hughes et al., 2006a, 2008, 2013; Hughes and Woodward, 2016). The temperature increase recorded during interglacial phases - such as the Holocene - conditioned the complete disappearance or substantial retreat of glaciers and the migration of permafrost and periglacial processes to higher elevations (i.e. Oliva et al., 2016b).

Figure 15

5.1 Last Glaciation

The calendar of the maximum glacial expansion of the Last Glaciation shows a diachronous pattern among the massifs, which must be also framed with the dating method used in each study (Hughes et al., 2013). Whereas radiocarbon, U-series and OSL indicate an early glacial advance that occurred several thousand to tens of thousands of years earlier than the global LGM in the Sierra Nevada, Cantabrian Mountains, Central Pyrenees, Italian Apennines and Pindus Mountains, cosmogenic exposure ages suggest a local MIE in the Iberian Central Range, Maritime Alps and Anatolia mountains (almost) synchronous to the LGM (Hughes et al., 2008).

The FIS extended over northern Europe until latitude 50°N in its southern fringe (Hughes et al., 2015; Stroeven et al., 2016). Therefore, the Mediterranean region was not extensively glaciated by comparison, with glaciers concentrated in mountain environments in the form of small ice caps and mountain glaciers filling the valleys. The ELA decrease in Mediterranean mountains during the LGM compared to present-day was about 800 and 1200 m, which is translated in a minimum temperature difference of ca. 6-10 °C (Allen et al., 2008; Kuhlemann et al., 2008). The glaciated environments in the western and central Mediterranean region was associated with ELAs above 1500-2000 m in most of mountain ranges (Hughes et al., 2006a, 2008), slightly increasing towards the easternmost fringe in mountains of Turkish and Lebanon where the ELA was located around 2500-3000 m (Messerli, 1967).

The southern ice-free land surrounding the large FIS was underlain by permafrost, which extended across the lowlands in much of central Europe as well as the northern fringe of the Mediterranean region, in areas such as central France and the northern Balkan region (Brown, 2001; Vandenberghe et al., 2014). Dry and cold climate conditions prevailing in these permafrost areas during the LGM promoted intense aeolian activity, with the deposition of thick loess deposits in non-glaciated environments from central-northern Europe (Antoine et al., 2009) and northern Italy (Cremaschi et al., 2015). In the Mediterranean region, the presence of ice wedges and cryoturbations features in some basins, such as in the Pannonian basin (van Vliet-Lanoe et al., 2004; Ruszkiczay-Rüdiger and Kern, 2015) or in some basins in the Spanish Meseta (Badorrey et al., 1970; Asensio-Amor and González-Martín, 1974; Serrano et al., 2010a) has been related to deep seasonal frost conditions or even isolated patches of sporadic permafrost. Despite few data in areas surrounding the valley glaciers in the southern Alps, environments at the foot of the northern Apennines and even at the Po plain should have been affected by permafrost conditions as suggested by loess deposits and the existence of some cryoturbation features (Cremaschi et al., 2015). In the Mediterranean mountains, immediately below the glaciated environments was the periglacial belt affected by permafrost regime at high elevations and seasonal frost at the foot of the mountains and high-altitude plateaus (e.g. 600-1200 m).

Permafrost was also widespread in non-glaciated environments above the snowline as revealed by the present-day distribution of inactive permafrost-derived features. Rock glaciers formed during the Last Glaciation have been described in several Mediterranean mountains at a wide range of altitudes (e.g. Figure 3 and Table 5). Block streams, some km long and hundreds of meters wide, also developed during this stage at elevations between 700 and 1800 m. In relatively flat summit areas where wind action did not favour snow and ice accumulation, meter-sized stone circles developed in several massifs except for the Italian Peninsula where there are no evidences of large stone circles in the LGM ice-free areas. Similar patterned ground features are observed today in present-day polar environments where permafrost conditions are widespread with mean annual temperatures below -6 °C (French, 2007). It is therefore feasible to relate the formation of these currently inactive features to permafrost occurrence. Concurrently, very intense periglacial conditions favoured the development of large blockfields and tors, which are remnants of original surfaces in the highest lands. The thermal regime of the ground in the nunataks standing out the glaciated slopes must have been also characterized by permanent frozen conditions well below 0 °C.

5.2 Deglaciation

During the most important phases of the last deglaciation, the evolution of the glaciers of the different Mediterranean mountains shows a much more homogenous pattern than during the LGM. The latest studies indicate interruptions during the deglaciation process and even some important glacial advances, in full synchrony within the Mediterranean region and with the mountainous systems of central Europe, as well as with the FIS. The onset of a massive retreat of the FIS is dated at 19 ka and accelerated at 18 ka (Marks, 2015; Stroeven et al., 2015; Toucanne et al., 2015; A.L. Hughes et al., 2016; Petrini et al., 2018), in parallel to most European mountains. For example, some of the largest glaciers in the Alps had lost ca. 80% of their mass at 18 ka (Ivy-Ochs et al., 2004, Ivy-Ochs, 2015) and glaciers could almost have disappeared completely in the Pyrenees at that time, as probably occurred in many other Mediterranean mountains (Palacios et al., 2017a).

The first glacial advance within the deglaciation took place during the OD, when advances have been detected in numerous sectors of the FIS (Marks, 2015; Stroeven et al., 2015; Toucanne et al., 2015; A.L. Hughes et al., 2016). In the Alps, glaciers expanded along the valley bottoms with their fronts reaching elevations only 400 m above the LGM moraines (Kerschner and Ivy-Ochs, 2008; Ivy-Ochs et al., 2009; Ivy-Ochs, 2015). Similar glacial advances occurred during this period in the Tatra Mountains (Makos, 2015) as well as Mediterranean glaciers that also experienced important advances, as in the Iberian Peninsula (Palacios et al., 2017a), Southern Alps (Federici et al., 2012), Apennines (Giraudi, 2015), Balkan Peninsula (Kuhlemann et al., 2013) and Anatolian Peninsula (Sarıkaya et al., 2008, Akçar et al., 2014). A significant drop of the North Atlantic temperature induced a significant reduction of the meridional overturning circulation (Bard et al., 2000; McManus et al., 2004), with extreme seasonality of cold winters and mild summers (Denton et al., 2005; Williams et al., 2012) favouring glacial expansion during this period. Similar conditions have also been detected in southern Europe and in the Mediterranean region (Fletcher et al., 2010). For example, glaciological models indicate that during the OD the MAAT in the Alps was 10 °C lower than present-day, and precipitation was one-third less (Ivy-Ochs, 2015). Undoubtedly, these conditions would have favoured a substantial expansion of permafrost conditions in mountain environments. Many fossil periglacial landforms existing in Mediterranean regions, such as patterned ground, protalus lobes or rock glaciers, could have originated at this time. But these climatic conditions changed drastically during the BO, when the environmental conditions shifted abruptly and become very similar to present in the Mediterranean region (Fletcher et al., 2010). Consequently, there was a massive glacial retreat in Europe, including the FIS and British-Irish Ice Sheet (Marks, 2015; Stroeven et al., 2015; Toucanne et al., 2015; Hughes et al., 2016), central European mountains (Ivy-Ochs, 2015; Makos, 2015) and Mediterranean mountains (Sarikava et al., 2008; Federici et al., 2012; Kuhlemann et al., 2013; Akçar et al., 2014; Giraudi, 2015; Palacios et al., 2017a).

The recent application of absolute dating methods, fundamentally cosmogenic, to fossil rock glaciers is allowing a better comprehension of the timing of their formation and stabilization, remaining therefore exposed to cosmogenic radiation. In many European mountains, this method is showing that numerous rock glaciers developed on polished glacial surfaces that were deglaciated just at the end of OD. In many cases, the fronts of these rock glaciers were stabilized soon after formation, although their roots remained active during thousands of years (Oliva et al., 2016b, Palacios et al., 2017a,b). This fact shows evidence that most fossil rock glaciers in different Mediterranean mountain ranges developed under paraglacial conditions (Ballantyne, 2002; Mercier, 2008; Oliva et al., 2016b). They occupied the formerly glaciated cirques, extending over very active geomorphological areas at the end of the OD. Subsequently, as

temperatures increased during the OD permafrost conditions migrate to higher elevations and rock glaciers became relict. This process has been mostly described in many Iberian mountain environments (Rodríguez-Rodríguez, 2016; Fernández-Fernández, 2017; Palacios et al., 2017a,b), and should be tested in the future in other Mediterranean ranges. Noteworthy, a similar pattern has been also reported in other mountains, such as in the British Isles (Ballantyne et al., 2009) and the Alps (Hippolyte et al., 2009).

During the YD, in full agreement with the last major advance of the FIS (Greenwood et al., 2015; A.L. Hughes et al., 2016; Stroeven et al., 2015), Mediterranean glaciers advanced again for the last time during the Pleistocene, but only in the highest massifs. Glaciers rarely exceeded the limits of the cirques in the Pyrenees (García-Ruiz et al., 2016a,b) and were moderately longer in the southern Alps (Ivy-Ochs et al., 2008, 2009). This glacial advance was related to a cold and arid period during the YD in the Mediterranean region that ended abruptly at 11.8 ka cal BP (Fletcher et al., 2010). In the Alps, where glaciers had virtually disappeared during the BO, they formed again during the YD and progressed considerably (Ivy-Ochs, 2015) due to 3.5-5 °C lower MAAT than present and precipitation was up to 30% less (Kerschner and Ivy-Ochs, 2008). A similar pattern was also detected in the Tatra Mountains (Makos, 2015).

As occurred at the end of the OD, the end of the YD favoured the rapid retreat of glaciers and, in some cases, the reactivation of paraglacial processes in the walls of the cirques and the formation of rock glaciers and protalus lobes. Again, their fronts became inactive soon after formation, while the roots could have remained active even until the warmest Holocene periods (García-Ruiz et al., 2016a,b; Oliva et al 2016b). Many generations of Mediterranean rock glaciers have been considered to form during or at the end of the YD, as reported in many Iberian mountains (Palacios et al., 2015, 2016; Andrés et al., 2018) and southern Alps (Colucci et al., 2016a), though in other high mountain Mediterranean regions this fact still needs to be confirmed.

Therefore, the cold periods interrupting the long-term deglaciation process showed both glacial and periglacial evidence in the Mediterranean mountains, mainly with the formation of permafrost-related features associated with paraglacial dynamics. The existence of these inactive landforms suggests the minimum altitude for the presence of permafrost during these stages.

5.3 Holocene

The northern Atlantic region has been subjected to significant climate shifts during the Holocene, as revealed by marine sediment records (Witak et al., 2015) and Greenland ice cores (Masson-Delmotte et al., 2005). Climate variability has been also significant across the Mediterranean region, where Holocene temperature oscillations of the order of ca. ± 2 °C have caused significant disruptions in early civilizations (Mayewski et al., 2004). During the Holocene, temperature and moisture shifts have also affected the type and intensity of cold-climate geomorphological processes prevailing in Mediterranean mountains.

The onset of the Holocene saw an accelerated shrinking of the glaciers, which disappeared until nowadays in many massifs during the Early Holocene (Gómez-Ortiz et al., 2012a; García-Ruiz et al., 2016a,b; Palacios et al., 2016). The formerly glaciated environments became occupied by periglacial dynamics, which expanded gradually upvalleys (Oliva et al., 2016b). In many midaltitude mountain ranges – with highest peaks around 2000 m in the central and western Mediterranean and 2500-3000 m in the eastern part of the region – the periglacial belt disappeared during the Holocene, and significantly shrunk in the highest ranges, particularly during the

warmest stages, such as the Holocene Warm Period (HWP) and the Medieval Climate Anomaly (MCA). In the southern Alps, even during warmer Holocene stages some currently active rock glaciers were still active (Calderoni et al., 1998; Stenni et al., 2007; Scapozza et al., 2010); indeed, the major part of the dated rock glaciers reported an age between 2720 and 2850 cal yr BP with some older exceptions (all younger than 5900 cal yr BP; Calderoni et al., 1998; Guglielmin et al., 2001; Dramis et al, 2003). During the warmest phases, only the environments above 2500-3000 m included a periglacial belt mostly related to seasonal frost conditions, with permafrost regime limited to the highest ranges in the Maritime Alps and the highest mountains in Anatolia.

Most of the active periglacial features during the YD became gradually inactive, and only reactivated during the coldest stages of the Holocene. Permafrost-related features showed activity until the Early Holocene in many of the highest Mediterranean massifs (Kuhlemann et al., 2009; Gómez-Ortiz et al., 2012a; Palacios et al., 2016, 2017a,b). Some authors proposed the initial formation of currently active rock glaciers synchronously to the HWP, such as in the central Taurus Mountains (Çiner et al., 2017) and the Pyrenees at ca. 6 ka (Serrano et al., 2010c). Periglacial landforms related to seasonal frost conditions, such as solifluction landforms located today in the present-day periglacial belt of Sierra Nevada at elevations between 2500 and 3000 m, were inactive during the HWP until 5 ka cal BP but reactivated later during cold and wet phases, namely at 5-4, 3.6-3.4, 3-2.8, 2.5-2.3, 1.8-1.6, 0.85-0.7, 0.4-0.15 ka cal BP (Oliva et al., 2011). Therefore, the alternation between cold and warm phases during the Holocene accompanied also by changing precipitation regimes must have also influenced the intensity of periglacial processes and the spatial distribution of permafrost conditions.

5.4 Little Ice Age

The LIA has been defined as the coldest most recent period where many glaciers reached their largest volume over the last 10,000 years (Bradley and Jones, 1992), and, thus, it has been widely employed in mid-latitude mountain environments as the reference for Holocene cold stages (Grove, 2004; Oliva et al., 2018). In the Mediterranean region, colder and (generally) wetter than present-day climate conditions prevailing during the LIA also favoured the presence of larger and more numerous glaciers (Hughes, 2014). Consequently, the spatial domain of periglacial dynamics expanded down-valleys and cryogenic processes reappeared in some areas where seasonal frost activity was limited during the MCA and is no longer active at present.

During the LIA permafrost features such as rock glaciers and protalus lobes formed and/or reactivated in the highest slopes of the main massifs, above 2350 m in some areas of the Balkan region and 2560 m in the Pyrenees (Tables 6 and 2). In the southern Alps, especially in the eastern part several rock glaciers developed since the LIA around 2400-2500 m (Baroni et al., 2004; Seppi et al., 2014) while only a few active rock glaciers formed in the western Alps and central Alps.

Ice caves, namely natural caves formed in bedrock containing perennial accumulations of ice, are considered as sporadic permafrost phenomena (Holmlund et al., 2005; Luetscher et al., 2005; Hausmann and Behm, 2011; Luetscher et al., 2013). As part of the cryosphere, ice caves occurrence is closely linked to cold climates, even if they do also exist in different kind of environments, often at an altitude with an outside mean annual air temperature well-above 0°C (Holmlund et al., 2005; Stoffel et al., 2009; Obleitner and Spötl, 2012; Colucci et al., 2016b). Ice caves existing in several high karstic mountains have been examined for paleoenvironmental purposes. In most cases these ice caves are several hundreds of meters below the glaciated environments during the LIA, reaching elevations even below 1000 m in the Dinaric Alps (Kern

et al., 2006b; Bočić et al., 2014). The dating of the organic remnants preserved in the ice suggests that it accumulated during the coldest centuries of the LIA (Bayarı et al., 2003; Kern et al., 2006b; Klimchouk et al., 2006; Bočić et al., 2014; Gómez-Lende, 2015; Bartolomé et al., 2015; Temovski, 2016; Zupan-Hajna, 2016; Sancho et al., 2016), and even during the MCA and HWP (Sancho et al., 2016). Interestingly, the frozen ground in contact with the ice inside the caves has been also described as permafrost (Gómez-Lende, 2015; Colucci et al., 2016b), which in many cases still persist in environments with MAAT well above 0 °C due to specific microtopographic conditions (very low solar radiation, existence of stable temperature inversion or density driven air flows and chimney effects).

In all Mediterranean massifs, long-lasting and perennial snow-patches were more extensive than today, which also enhanced nival processes that left some small well-preserved landforms such as protalus ramparts at the foot of slopes.

5.5 Present-day

In the western Mediterranean region, the temperature increase since the last cold stages of the LIA has been estimated at ca. 1 °C (González-Trueba, 2006; González-Trueba et al., 2008; Oliva and Gómez-Ortiz, 2012) and ca. 2 °C since the Minimum Maunder (Oliva et al., 2018). A similar increase has been inferred for other parts of the Mediterranean, such as in the Balkans (Repapis and Philandras, 1988 Xoplaki et al., 2001; Hughes, 2010). This temperature increase has led to glacial retreat/disappearance (Zumbühl et al., 2008), enhanced paraglacial activity (Cossart and Fort, 2008), shift of periglacial processes to higher elevations (Oliva et al., 2011), geoecological changes (Cannone et al., 2007, 2008; Pauli et al., 2012; García-Ruiz et al., 2015; Camarero et al., 2016), as well as degradation of alpine permafrost in mid-latitude high mountain environments, e.g. the Alps (Harris et al., 2003; Gruber et al., 2004; Lugon et al., 2004; Zenklusen-Mutter et al., 2010).

A wide range of approaches have been used to infer the current altitudinal limit of permafrost conditions, such as geomorphological techniques, geophysical surveying and monitoring activities (BTS measurements, boreholes, terrain deformation). Today, permafrost conditions generally increase in elevation towards the eastern part of the region and from north to south. In the western and central Mediterranean, permanently frozen ground is rarely found below 2500 m, discontinuous permafrost is generally detected between 2500 and 2800/3000 m and continuous permafrost is distributed in ice-free environments above this level. An alpine permafrost belt is detected above 2630 m in northern aspects and 2800 m in southern ones in the Pyrenees (Serrano et al., 1999, 2001, 2002, 2006, 2009, 2011a; González-García et al., 2014), above 2400 m in the Southern Alps (Bodin et al., 2009), above ~2350 m on Rila Mountain and ~2700 m on Mount Olympus (Dobinski, 2005) and above 2800-3400 m in NE Turkey and central Anatolia (Gorbunov, 2012). No permafrost belt is found in the highest mountains in southern Europe (i.e. Sierra Nevada) and northern Africa (i.e. Atlas) where permanent frozen conditions are only found in form of isolated patches at the highest elevations at 3000-3100 m (Oliva et al., 2016a) and 3800 m (Vieira et al., 2017), respectively. Certain climate conditions (i.e. reduced snow cover) can favour the presence of permafrost patches at relatively low elevations in the Central Apennines on La Majella and M. Velino massifs (ca. 2400 m) or by lithological conditions (i.e. volcanic sediments), as detected in the highest active European volcano (Mt. Etna) at elevations above 2900 m.

Scientific papers and international reports coincide in anticipating that the Mediterranean basin will be one of the areas on Earth where annual and seasonal climate variations will be more pronounced, with significant warming and reduced rainfall (e.g. IPCC, 2013). These climate conditions would lead to a migration of permafrost conditions to upper elevations, even disappearing in those areas where isolated patches persist but undergo a rapid degradation process (e.g. Atlas, Sierra Nevada Cantabrian Mountains), possibly triggering large rock avalanches or other mass wasting processes with important socio-economic impacts.

6. Conclusions

 The present and past distribution of cold-climate geomorphological processes in the Mediterranean region is conditioned by the topography and wide spectrum of microclimatic conditions prevailing in the region. Both glacial and periglacial processes (including permafrost conditions) since the Last Glaciation have been almost exclusively restricted to mountain environments.

Since the Last Glaciation there has been a long-term decrease in the area occupied by permafrost in the Mediterranean mountains. The existence of abundant inactive permafrost-derived landforms (rock glaciers, block streams, patterned ground features, ice wedges) formed during the last Pleistocene glacial cycle suggests that ice-free slopes in mid-altitude mountain environments and high summit plateaus together with the lowlands of the northernmost fringe of the Mediterranean region could have been underlain by permafrost conditions to a greater or lesser extent during that stage. The thermal increase following the LGM meant that, after that time, periglacial conditions were limited to mountain areas. The gradual upward shift of the snowline in all Mediterranean massifs conditioned a massive deglaciation that was only interrupted by brief periods of glacial readvance. Paraglacial dynamics during the deglaciation process favoured the development of most of the rock glaciers distributed in the majority of the massifs, almost all of which are inactive under present-day climate conditions. Therefore, their formation is primarily associated with adjustment of the circue walls to a new morphodynamic setting and not strictly related to a climatic origin. Warmer temperatures during the onset of the Holocene saw a shrinking of periglacial activity to the highest elevations. Many rock glaciers and protalus lobes became inactive during the Early Holocene as temperatures rose. Permafrost disappeared from most of the massifs and only reappeared in some mountains during the coldest stages of the Holocene, such as the LIA. Since then, post-LIA warming led to the spatial confinement of continuous/discontinuous permafrost conditions in the highest mountain areas, such as some areas in the Pyrenees, Southern Alps, Apennines and Anatolian mountains, or as isolated patches in north-facing circues that were glaciated during the LIA in the Sierra Nevada, Atlas Mountains and the Balkan region.

In contrast to neighbouring mountain environments where there has been a richer analysis of permafrost history (i.e. Alps), permafrost research in the Mediterranean basin still has some gaps:

- The improvement of the glacial chronology that has taken place over the last decade in many Mediterranean massifs has not been paralleled by a strengthening of the chronology of periglacial activity, and therefore of permafrost evolution in the Mediterranean region.
- Data about periglacial dynamics and spatial domains of permafrost are substantial for certain periods (i.e. the last deglaciation), though current knowledge is still poor for others (i.e. Holocene).

- Knowledge of permafrost evolution in some mountain environments is still limited, particularly in North Africa ranges, Apennines and Mediterranean islands.
- Future studies should focus on precise descriptions of landforms and quantitative age proxy data, especially on rock glaciers as indicators of present and past permafrost conditions.

Finally, permafrost scientists in the Mediterranean region should focus on these gaps in order to better understand the spatio-temporal evolution of permafrost conditions in the region. A better characterization of the evolution of permafrost - a key component of the cryosphere in landscape dynamics in mid-latitude high mountain ranges – may be also helpful to anticipate the future geoecological response towards the changing climate scenarios forecasted in these highly sensitive mountain ecosystems.

Acknowledgements

This research was supported by the project CTM2017-87976-P of the Spanish Ministry of Economy, Industry and Competitiveness. Marc Oliva is supported by the Ramón y Cajal Program of the Spanish Ministry of Economy and Competitiveness (RYC-2015-17597) and the Research Group ANTALP (Antarctic, Arctic, Alpine Environments; 2017-SGR-1102) funded by the Government of Catalonia through the AGAUR agency. Attila Çiner and M. Akif Sarıkaya are grateful to TÜBİTAK (Project no: 101Y002, 107Y069, 110Y300, 112Y139, 114Y548T and 116Y155) for continuous support to the glacial/periglacial research in Turkey. The authors are grateful to Prof. Dr. Wilfried Haeberli for his valuable comments and suggestions that improved the manuscript.

7. References

Akçar, N., Schlüchter, C., 2005. Paleoglaciations in Anatolia: A schematic review and first results. Eiszeitalter und Gegenwart, 55, 102-121.

Akçar, N., Yavuz, V., Ivy-Ochs, S., Kubik, P.W., Vardar, M., Schlüchter, C., 2007. Paleoglacial records from Kavron Valley, NE Turkey: Field and cosmogenic exposure dating evidence. Quaternary International, 164-165, 170-183.

Akçar, N., Yavuz, V., Ivy-Ochs, S., Kubik, P.W., Vardar, M., Schlüchter, C., 2008. A Case for a down wasting Mountain Glacier during the Termination-I, Verçenik Valley, NE Turkey. Journal of Quaternary Science, 23, 273-285.

Akçar, N., Yavuz, V., Ivy-Ochs, S., Reber, R., Kubik, P.W., Zahno, C., Schlüchter, C., 2014. Glacier response to the change in atmospheric circulation in the eastern Mediterranean during the Last Glacial Maximum. Quaternary Geochronology, 19, 17-41.

Akçar, N., Yavuz, V., Yeşilyurt, S., Ivy-Ochs, S., Reber, R., Bayrakdar, C., Kubik, P.W., Zahno, C., Schlunegger, F., Schlüchter, C., 2017. Synchronous Last Glacial Maximum across the Anatolian Peninsula. Geological Society, London, Special Publications, 433, 251-269. doi: 10.1144/SP433.7.

Akkan, E., Tuncel, M., 1993. Esence (Kesiş) Dağlarında Buzul Şekilleri, A.Ü. Coğrafyası Araştırma ve Uygulama Merkezi Dergisi, 2, 225-240.

Allen, J.R.M., Brandt, U., Brauer, A., Hubberten, H.W., Huntley, B., Keller, J., Kraml, M., Mackensen, A., Mingram, J., Negendank, J.F.W., Nowaczyk, N.R., Oberhansli, H., Watts, W.A., Wulf, S., Zolitschka, B., 1999. Rapid environmental changes in southern Europe during the last glacial period. Nature, 400, 740-743.

Allen, R., Siegert, M.J., Payne, A.J., 2008. Reconstructing glacier-based climates of LGM Europe and Russia - Part 2: A dataset of LGM precipitation/temperature relations derived from degree-day modelling of palaeo glaciers. Climate of the Past, 4, 249-263.

Alonso, V., 1989. Glaciares rocosos fósiles en el área Degaña-Leitariegos (Occidente de Asturias, Cordillera Cantábrica). Cuaternario y Geomorfolología, 3(1-4), 9-15.

Alonso, V., Trombotto, D., 2009. Periglacial geomorphology of El Miro area, Cantabrian Mountains, NW Spain. Zeitschrift für Geomorphologie, 53, 335-357.

Altın, T., 2006. Aladağlar ve Bolkar dağları üzerinde görülen periglasiyal jeomorfolojik şekiller. Türk Coğrafya Dergisi, 46, 105-122.

Andrés, N., Gómez-Ortiz, A., Fernández-Fernández, J.M., Tanarro, L.M., Salvador, F., Oliva, M., Palacios, D., 2018. Timing of deglaciation and rock glacier origin in the southeastern Pyrenees: a review and new data. Boreas, doi: 10.1111/bor.12324.

Antoine, P., Rousseau, D., Moine, O., Kunesch, S., Hatte, C., Lang, A., Tissoux, H., Zoller, L., 2009. Rapid and cyclic aeolian deposition during the Last Glacial in European loess: A high-resolution record from Nussloch, Germany. Quaternary Science Reviews 28(25-26), 2955-2973.

Anzidei, M., Lambeck, K., Antonioli, F., Furlani, S., Mastronuzzi, S., Serpelloni, E., Vannucci, G., 2014. Coastal structure, sea level changes and vertical motion of the land in the Mediterranean. In: Martini I.P., Wanless H.R. (Editors), Sedimentary coastal zones from High to low latitudes: Similarities and Differences. Geological Society, London, Special Publications, 388.

Arboleya, M. L., Teixell, A., Charroud, M., Julivert, M., 2004. A structural transect through the High and Middle Atlas of Morocco. Journal of African Earth Sciences, 39, 319-327.

Sistema Ibérico. Cuadernos de Investigación Geográfica, 13(1-2), 1-153.
Arnáez, J., García Ruíz, J.M., 2000. El periglaciarismo en el Sistema Ibérico Noroccidental.
In: Peña, J.L., Sánchez- Fabre, M., Lozano, M.V. (Editors), Procesos y formas periglaciares en la montaña mediterránea. Instituto de Estudios Turolenses, Teruel, 113-126.
Arpat, E., Özgül, N., 1972. Orta Toroslar'da Geyik dağı yöresinde kaya buzulları. Bulletin of the Mineral Research and Exploration, 78, 30-35.
Asensio-Amor, I., 1974. Contribución al estudio de acciones periglaciares en el límite galaicoastur. Boletín del Instituto de Estudios Asturianos, 83, 805-809.

Arnáez, J., 1987. Formas y procesos de evolución de vertientes de la Sierra de la Demanda,

Asensio-Amor, I., González-Martín, J.A., 1974. Formas de crioturbación en altos niveles cuaternarios del valle del Jarama. Estudios Geográficos, 137, 579-591.

Assier, A., Fabre, D., Evin, M., 1996. Prospection électrique sur les glaciers rocheux du cirque de Sainte-Anne (Queyras, Alpes du Sud, France). Permafrost and Periglacial Processes, 7(1), 53-67.

Atalay, I., 1983. Mescid dağının glasyal morfolojisi. Ege Coğrafya Dergisi, 2(1), 31-48.

Avcı, M., 2007. Noah's Ark: its relationship to the Telçeker earthflow, Mount Ararat, Eastern Turkey. Bulletin of Engineering Geology and the Environment, 66, 377-380.

Awad, H., 1963. Some aspects of the geomorphology of Marocco related to the Quaternary climate. Geographical Journal, 129, 129-139.

Badorrey, T., Guerra, A., Pinilla, A., 1970. Fenómenos de periglaciarismo en paleosuelos de la meseta castellana. Anales de Edafología y Agrobiología, 11-12, 931-940.

Bailey, G.N., Woodward, J.C., 1997. The Klithi deposits: Sedimentology, stratigraphy and chronology. In: G.N. Bailey (Editor), Klithi: Paleolithic settlement and Quaternary landscapes in northwest Greece. Volume 1: Excavation and intra-site analysis at Klithi. Cambridge: McDonald Institute for Archaeological Research, 61-94.

Balch, E.S., 1900. Glacières or Freezing Caverns. Philadelphia Allen, Lane & Scott reprinted in 1970 by Johnson Reprint Corp., New York, 38 pp.

Ballantyne, C.K., 2002. Paraglacial geomorphology. Quaternary Science Reviews, 21(18-19), 1935-2017.

Ballantyne, C.K., Schnabel, C., Xu, S., 2009. Exposure dating and reinterpretation of coarse debris accumulations ('rock glaciers') in the Cairngorm Mountains, Scotland. Journal of Quaternary Science, 24(1), 19-31.

Ballais J.L., 1981. Recherches géomorphologiques dans les Aurès (Algérie). PhD thesis, University of Paris I.

Barbier, A., Cailleux, A., 1950. Glaciaire et périglaciaire dans le Djurdjura occidental (Algérie). Comptes Rendus des Séances de l'Académie des Sciences, Paris. Juillet-Décembre 1950, 365-366.

Bard, E., Rostek, F., Turon, J.L., Gendeau, S., 2000. Hydrological impact of Heinrich Events into the subtropical Northeast Atlantic. Science, 289, 1321-1324.

Baroni, C., Carton, A., Seppi, R., 2004. Distribution and behaviour of rock glaciers in the Adamello-Presanella Massif (Italian Alps) Permafrost and Periglacial Processes, 15, 243-259.

Barriendos, M., 1997. Climatic variations in the Iberian Peninsula during the late Maunder Minimum (AD 1675-1715): an analysis of data from rogation ceremonies. The Holocene, 7(1), 105-111.

Barsch, D., 1992. Permafrost creep and rockglaciers. Permafrost and Periglacial Processes, 3, 175-163.

Barsch, D., 1996. Rockglaciers: indicators for the present and former geoecology in high mountain environments. Springer, Berlin, 331 pp.

Bartolomé, M., Sancho, C., Osácar, M.C., Moreno, A., Leunda, M., Spötl, C., Luetscher, M., López-Martínez, J., Belmonte, A., 2015. Characteristics of cryogenic carbonates in a Pyrenean ice cave (northern Spain). Geogaceta, 58, 107-110.

Bayarı, S., Zreda, M., Çiner, A., Nazik, L., Törk, K., Özyurt, N., Klimchouk, A., Sarıkaya, M.A., 2003. The Extent of Pleistocene Ice Cap, glacial deposits and glaciokarst in the Aladağlar Massif: Central Taurids Range, Southern Turkey. Proceedings of the XVI INQUA Congress, Geological Society of America, 144-145.

Bayrakdar, C., Özdemir, H., 2010. Kaçkar Dağı'nda bakı faktörünün glasiyal ve periglasiyal topografya gelişimi üzerindeki etkisi. Türk Coğrafya Dergisi, 54, 1-13.

Bayrakdar, C., Çılgın, Z., Döker, M.F., Canpolat, E., 2015. Evidence of an active glacier in the Munzur Mountains, eastern Turkey. Turkish Journal of Earth Sciences, 24, 56-71.

Bernini, M., Carton, A., Castaldini, D., Cremaschi, M., 1978. Segnalazione di un deposito di versante di tipo Grèzes liteès a sud di M. Prampa (alto Appennino reggiano). Gruppo Studio del Quaternario Padano, 4, 153-172.

Bertini, A., 2010. Pliocene to Pleistocene palynoflora and vegetation in Italy: State of the art. Quaternary International, 225, 5-24.

Bertrand, J.M.L., Caby, R., 1978. Geodynamic evolution of the Pan-African orogenic belt: A new interpretation of the Hoggar shield (Algerian Sahara). Geol Rundschau, 67, 357.

Bilgin, T., 1960. Kazdağı ve üzerindeki periglasiyal şekiller hakkında. Türk Coğrafya Dergisi, 20, 114-123.

Bilgin, T., 1969. Gavurdağ kütlesinde glasiyal ve periglasiyal topoğrafya şekilleri. İstanbul Üniversitesi Yayınları, 1494, 58 pp.

Bilgin, T., 1972. Munzur Dağları doğu kısmının glasiyal ve periglasiyal morfolojisi, İstanbul Üniversitesi Yayınları, 1757, 85 pp.

Birman, J.H., 1968. Glacial reconnaissance in Turkey. Geological Society of America Bulletin, 79, 1009-1026.

Bisci, C., Dramis, F., Fazzini, M., Guglielmin, M., 2003. Climatic conditions and sporadic permafrost in the Maiella Massif (Central Apennines, Italy). Geografia Fisica e Dinamica Quaternaria, 26(1), 3-13.

Bočić, N., Kern, Z., Buzjak, N., 2014. Some new potential subterranean glaciation research sites from Velebit Mt. (Croatia). In: Land, L., Kern, Z., Maggi, V., Turri, S. (Editors), Proceedings of the 6th international workshop on ice caves, 72-76.

Bockheim, J.G., Vieira, G., Ramos, M., López-Martínez, J., Serrano, E., Guglielmin, M., Wilhelm, K., Nieuwendam, A., 2013. Climate Warming and Permafrost Dynamics in the Antarctic Peninsula Region. Global and Planetary Change, 100, 215-223.

Bodin, X., Thibert, E., Fabre, D., Ribolini, A., Schoeneich, P., Francou, B., Reynaud, L., Fort, M., 2009. Two decades of responses (1986-2006) to climate by the laurichard rock glacier, French Alps. Permafrost and Periglacial Processes, 20(4), 331-344.

Bodin, X., Schoeneich, P., Deline, P., Ravanel, L., Magnin, F., Krysiecki, J.M., Echelard, T., 2015. Mountain permafrost and associated geomorphological processes: recent changes in the French Alps. Revue de Géographie Alpine, 103(2), 2885.

Bodin, X., Krysiecki, J.M., Schoeneich, P., Le Roux, O., Lorier, L., Echelard, T., Peyron, M., Walpersdorf, A., 2017. The 2006 collapse of the Bérard Rock Glacier (Southern French Alps). Permafrost and Periglacial Processes, 28(1), 209-223.

Boeckli, L., Brenning, A., Gruber, S., Noetzli, J., 2012. Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics. The Cryosphere, 6, 807-820.

Boenzi, F., 1980. Some evidence of Quaternary cold periods in Southern Italy: data and reflections. Rivista di Geografia Fisica e Dinamica Quaternaria, 3, 16-20.

Boenzi, F., Palmentola, G., 1975. Effetti di fenomeni glaciali quaternari nella Calabria nordoccidentale. Bollettino della Società Geologica Italiana, 94(4), 871-887.

Boenzi, F., Pennetta, L., DiGennaro, M.A., 1977. Osservazioni geologiche e morfologiche sul bordo occidentale delle Murge tra Fermata di Acquatetta e Lamapera (Bari). Bollettino della Società Geologica Italiana, 96, 169-180.

Boixadera, J., Antúnez, M., Poch, R.M., 2008. Soil evolution along a toposequence on glacial and periglacial materials in the Pyrenees Range. In: Kapur, S., Mermut, A, Stoops, G. (Editors), New Trends in Soil Micromorphology. Springer Verlag, Berlin, 39-65.

Bommer, C., Phillips, M., Arenson, L.U., 2010. Practical recommendations for planning, constructing and maintaining infrastructure in mountain permafrost. Permafrost and Periglacial Processes, 21, 97-104.

Bornet, D., Bodin X., Schoeneich P., Charvet R., Bouvet P., Caubet D, Andréis N., Riguidel A., 2014. The rock glaciers inventory in the Southern French Alps. In: Vieira, G., Pina, P., Mora, C., Correia, A. (Editors), Proceedings of the Fourth European Conference On Permafrost, University of Lisbon and University of Évora, 503.

Bozilova, E., Tonkov, S., 2000. Pollen from Lake Sedmo Rilsko reveals southeast European postglacial vegetation in the highest mountain area of the Balkans. New Phytologist, 148, 315-325.

Bozkurt, E., 2001. Neotectonics of Turkey - a synthesis. Geodinamica Acta, 14, 3-30.

Bradley, R.S., Jones, P.D., 1992. Climate since 1500 A.D. Routeledge, London, 679 pp.

Brancaccio, L., 1968. Genesi e caratteri delle forme costiere nella Penisola Sorrentina. Bollettino della Società Geologica Italiana, 96, 169-180.

Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337-360.

Brown, J., Ferrians, O.J., Heginbottom, J.A., Melnikov, E.S., 2001. Circum-arctic map of permafrost and ground ice conditions. Circum-pacific map series. Reston, VA: US Geological Survey.

Brunetti, M., Lentini, G., Maugeri, M., Nanni, T., Auer, I., Böhm, R., Schöner, W., 2009. Climate variability and change in the Greater Alpine Region over the last two centuries based on multi-variable analysis. International Journal of Climatology, 29, 2197-2225.

Burić, D., Micev, S., 2008. Kepenova podjela klima u Crnoj gori prikazana klimadijagramima po Valteru.

Buzjak, N., Bočić, N., Paar, D., Dubovečak, V., 2016. Geographical distribution and ice cave types in Croatia. In: Mihevc, A., Zupan Hajna, N., Gostinčar, P. (Editors), Proceedings of the 7th International Workshop on Ice Caves, 37-38.

Buzjak, N., Dubovečak, V., Paar, D., Bočić, N., 2014. The influence of karst topography to ice cave occurrence - Example of Ledena jama in Lomska duliba (Croatia). In: Land, L., Kern, Z., Maggi, V., Turri, S. (Editors), Proceedings of the 6th International Workshop on Ice Caves, 17-23.

Calderoni, G., Guglielmin, M., Tellini, C., 1998. Radiocarbon dating and postglacial evolution, upper Valtellina and Livignese area (Sondrio, central Italian Alps). Permafrost and Periglacial Processes, 9(3), 275-284.

Çalışkan, O., 2016. Dört farklı soğuk ortam topoğrafyası tek bir buzullaşma alanı üzerinde gözlenebilir mi? Karçal Dağları örneği (Doğu Karadeniz Bölümü/Türkiye). Marmara Coğrafya Dergisi, 33, 368-389.

Çalışkan, O., Gürgen, G., Yılmaz, E., Yeşilyurt, S., 2012. Bolkar Dağları kuzeydoğusunun glasyal morfolojisi ve döküntüyle örtülü buzulları. Uluslararası İnsan Bilimleri Dergisi, 9(1), 890-911.

Cannone, N, Sgorbati, S, Guglielmin, M. 2007. Unexpected impacts of climate change on Alpine vegetation. Frontiers in Ecology and the Environment, 5, 360-364.

Cannone, N., Diolaiuti, G., Guglielmin, M., Smiraglia, C. 2008. Accelerating climate change impacts on alpine glacier forefield ecosystems in the European Alps, Ecological Applications, 18(3), 637-648.

Carrasco, R.M., Pedraza, J., Domínguez-Villar, D., Villa, J., Willenbring, J.K., 2012. The plateau glacier in the Sierra de Béjar (Iberian Central System) during its maximum extent. Reconstruction and chronology. Geomorphology, 196, 83-93.

Carrasco, R.M., Pedraza, J., Domínguez-Villar, D., Willenbring, J.K, Villa, J., 2015. Sequence and chronology of the Cuerpo de Hombre paleoglacier (Iberian Central System) during the Last Glacial Cycle. Quaternary Science Reviews, 129, 163-177.

Casarosa, N., Pappalardo, M., 2006. I Monti Pisani (Toscana settentrionale). In: Chelli, A., D'Aquila, P., Firpo, M., Ginesu, S., Guglielmin, M., Pappalardo, M., Pecci, M., Piacentini, T., Queirolo, C., Robustelli, G., Scarciglia, F., Sias, S., Tellini, C. (Editors), Testimoni di una montagna scomparsa. Contributo alle metodologie d'indagine delle forme periglaciali relitte. Problematiche e applicazioni in differenti ambienti morfodinamici. Collana «Quaderni della Montagna», vol. 8, Bologna: Bonomia University Press, 55-63.

Castañón, J.C., Frochoso, M., 1994. El periglaciarismo de la Cordillera Cantábrica. In: Gómez-Ortiz, A., Simón-Torres, M., Salvador-Franch, F. (Editors), Periglaciarismo en la Península Ibérica, Canarias y Baleares. Sociedad Española de Geomorfología, Universidad de Granada and Servei de Gestió i Evolució del Paisatge de la Universitat de Barcelona, Granada, 75-91.

Castañón, J.C., Frochoso, M., 1998. La alta montaña cantábrica: condiciones térmicas y morfodinámicas en los Picos de Europa. In: Gómez-Ortiz, A., Salvador-Franch, F., Schulte, L., García-Navarro, A. (Editors), Procesos biofísicos actuales en medios fríos. Publicacions de la Universitat de Barcelona, 113-132.

2361	
2362	
2363	Castiglioni, G.B., Girardi, A., Sauro, U., Tessari, F., 1979. Grézes Litées e falde detritiche
2364	stratificate di origine crionivale. Rivista di Geografia Fisica e Dinamica Quaternaria, 2, 64-82.
2365	Charden M. Disen I. 1001 Ferrura et masserer a ferrembalarismer dens la Unit Atlas
2366	Chardon, M., Riser, J., 1981. Formes et processus géomorphologiques dans le Haut-Atlas
2367	marocain, Revue de Geographie Alpine, 69, 561-582.
2368	Chelli, A., Pappalardo, M., 2006. Geomorphological mapping, a basic tool for interpreting
2369	rock coasts landforms: An example from Eastern Liguria (Italy). Geografia Fisica e Dinamica
2370	Quaternaria, 31(1), 13-19.
2371	
2372	Chelli, A., Tellini, C., 2002. Geomorphological features of the Bratica Valley (Northern
2373 2374	Apennines, Italy). Geografia Fisica e Dinamica Quaternaria, 25(1), 45-60.
2375	Chueca, J., 1992. Análisis geomorfológico de la fenomenología glaciar y periglaciar en el
2375	Macizo del Turbón-Sierra de Ballabriga (Pirineo oscense). Instituto de Estudios Altoaragoneses,
2377	Huesca, 212 pp.
2378	
2379	Chueca, J., Gómez-Ortiz, A., Lampre, F., Peña, J.L., 1994. El periglaciarismo heredado y
2380	actual de la cordillera pirenaica y del sistema costero catalán. In: Gómez-Ortiz, A., Simón-Torres,
2381	M., Salvador-Franch, F. (Editors), Periglaciarismo en la Península Ibérica, Canarias y Baleares.
2382	Sociedad Española de Geomorfología, Universidad de Granada and Servei de Gestió i Evolució
2383	del Paisatge de la Universitat de Barcelona, Granada, 93-117.
2384	Chueca, J., Julián, A., 2008. Geomorphological map of the Alta Ribagorza (Central Pyrenees,
2385	Spain). Journal of Maps, 4, 235-247.
2386	
2387	Chueca, J., Julián, A., Peña, J.L., 2000. El periglaciarismo funcional en las Sierras Exteriores
2388	Oscenses. In: Peña, J.L., Sánchez-Fabre, M., Lozano, M.V. (Editors), Procesos y formas
2389	periglaciares en la montaña mediterránea. Instituto de Estudios Turolenses, Teruel, 97-112.
2390	Chueca, J., Julián, A., Saz, M.A., Creus J., López, J.I., 2005. Responses to climatic changes
2391	since the Little Ice Age on Maladeta Glacier (Central Pyrenees). Geomorphology, 68, 167-82.
2392	
2393	Çiçek, İ., Gürgen, G., Tunçel, H., Doğu, A.F., 2006. Doğu Karadeniz dağları'nın glasyal
2394	morfolojisi. Proceedings of the symposium of International studies of the Mountainous Areas of
2395	Caucasus and Anatolia on Pleistocene and today, 28-42.
2396	Çılğın, Z., 2015. Dedegöl Dağı Kuvaterner buzullaşmaları. Türk Coğrafya Dergisi, 64, 19-37.
2397	
2398	Çiner, A., 2003. Türkiye'nin güncel buzulları ve Geç Kuvaterner buzul çökelleri. Türkiye
2399	Jeoloji Bülteni, 46(1), 55-78.
2400	Çiner, A., 2004. Turkish glaciers and glacial deposits. In: Ehlers, J., Gibbard, P.L. (Editors),
2401	Quaternary Glaciations: Extent and Chronology, Part I: Europe. Elsevier Publishers, Amsterdam,
2402	419-429.
2403	
2404	Çiner, A., Deynoux, M., Çörekçioğlu, E., 1999. Hummocky moraines in the Namaras and
2405	Susam valleys, Central Taurids, SW Turkey. Quaternary Science Reviews, 18, 4-5, 659-669.
2406	Çiner, A., Sarıkaya, M.A., 2017. Cosmogenic 36Cl Geochronology of late Quaternary glaciers
2407	on the Bolkar Mountains, south central Turkey. In: Hughes, P., Woodward, J. (Editors),
2408	Quaternary Glaciation in the Mediterranean Mountains, Geological Society of London Special
2409	Publications, 433, 271-287.
2410 2411	
2411	Çiner, A., Sarıkaya, M.A., Yıldırım, C., 2015. Late Pleistocene piedmont glaciations in the
2412	Eastern Mediterranean; insights from cosmogenic 36Cl dating of hummocky moraines in
2413	southern Turkey. Quaternary Science Reviews, 116, 44-56.
2415	
2416	
2417	
2418	
2419	

2420	
2421	
2422	
2423	Çiner, A., Sarıkaya, M.A., Yıldırım, C., 2017. Misleading old age on a young landform? The
2424	dilemma of cosmogenic inheritance in surface exposure dating: moraines vs. rock glaciers.
	Quaternary Geochronology, 42, 76-88.
2425	
2426	Citterio, M., Turri, S., Perșoiu, A., Bini, A., Maggi, V., 2005. Radiocarbon ages from two ice
2427	caves in the Italian Alps and the Romanian Carpathians and their significance. In: Mavlyudov,
2428	B.R. (Editor), Glacier Caves and Glacial Karst in High Mountains and Polar Regions, Institute of
2429	geography of the Russian Academy of Sciences, Moscow, 87-92.
2430	
2431	Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X.,
2432	Hostetler, S.W., McCabe, A.M., 2009. The Last Glacial Maximum. Science, 325, 710-714.
2433	Climate Atlas of Croatia 1961-1990, 1971-2000, 2008. Zaninović, K. (Editor), Zagreb,
2434	
2435	Državni hidrometeorološki zavod, 199 pp.
2436	Coltorti, M., Dramis, F., 1988. The significance of stratified slope-waste deposits in the
	Quaternary of Umbria-Marche Apennines, central Italy. Zeitschrift für Geomorphologie,
2437	
2438	Supplementband, 71, 59-70.
2439	Coltorti, M., Dramis, F., GentiIi, B., Pambianchi, G., 1979. Stratified slope waste deposits in
2440	the Umbria-Marche Apennines. Proceedings of the 15th Meeting Geomorphological Survey &
2441	Mapping, Modena, 207-212.
2442	Mapping, Modena, 207-212.
2443	Coltorti, M., Dramis, F., Pambianchi, G., 1983. Stratified slope-waste deposits in the Esino
2444	River basin, Umbria-Marche Apennines, central Italy. Polarforschung, 53(2), 59-66.
2445	
2446	Colucci, R.R., 2016. Geomorphic influence on small glacier response to post Little Ice Age
2447	climate warming: Julian Alps, Europe. Earth Surface Processes and Landforms, 41, 1227-1240.
2448	Columpi B.B. Cualialmin M. 2015. Draginitation tomporature alanges and evolution of a
2449	Colucci, R.R., Guglielmin, M., 2015. Precipitation-temperature changes and evolution of a
	small glacier in the southeastern European Alps during the last 90 years. International Journal of
2450	Climatology, 35(10), 2783-2797.
2451	Colucci, R.R., Žebre M., 2016. Late Holocene evolution of glaciers in the southeastern Alps
2452	-
2453	Journal of Maps, 12, 289-299.
2454	Colucci, R.R., Monegato, G., Žebre, M., 2014. Glacial and proglacial deposits of the Resia
2455	Valley (NE Italy): new insights on the onset and decay of the last alpine glacial maximum in the
2456	Julian Alps. Alpine and Mediterranean Quaternary, 27, 85-104.
2457	
2458	Colucci, R.R., Boccali, C., Žebre, M., Guglielmin, M., 2016a. Rock glaciers, protalus ramparts
2459	and pronival ramparts in the south-eastern Alps. Geomorphology, 269, 112-121.
2460	
2461	Colucci, R.R., Fontana, D., Forte, E., Potleca, M., Guglielmin, M., 2016b. Response of ice
2462	caves to weather extremes in the southeastern Alps, Europe. Geomorphology, 261, 1-11.
2463	Colucci, R.R., Luetscher, M., Forte, E., Guglielmin, M., Lanza, D., Princivalle, F., Vita, F.,
2464	
	2017. First alpine evidence of in situ coarse cryogenic cave carbonates (CCCcoarse). Geografia
2465	Fisica e Dinamica Quaternaria, 40, 53-59.
2466	Copóns, R., Bordonau, J., 1994. La Pequeña Edad de Hielo en el Macizo de la Maladeta (Alta
2467	cuenca del Ésera, Pirineos Centrales). In: Martí-Bono, C., García-Ruiz, J.M. (Editors), El
2468	
2469	glaciarismo surpirenaico: nuevas aportaciones. Geoforma Ediciones, Zaragoza, 111-124.
2470	Cossart, E., Fort, M., Bourles, D., Carcaillet, J., Perrier, R., Siame, L., Braucher, R., 2010.
2471	Climatic significance of glacier retreat and rockglaciers re-assessed in the light of cosmogenic
2472	dating and weathering rind thickness in Clarée Valley (Briançonnais, French Alps). Catena, 80(3),
2473	
2474	204-219.
2475	
2476	
2477	

2480	
2481	Conversur C. 1066 Los formations párialogiairos du Haut Atlas control maragain. Davas de
2482	Couvreur, G., 1966. Les formations périglaciaires du Haut Atlas central marocain. Revue de
2483	Géographie du Maroc, 10, 47-50.
2484	Cremaschi, M., Zerboni, A., Nicosia, C., Negrino, F., Rodnight, H., Spötl, C., 2015. Age, soil-
2485	forming processes, and archaeology of the loess deposits at the Apennine margin of the Po plain
2486	
	(northern Italy): New insights from the Ghiardo area. Quaternary International, 376, 173-188.
2487	Ćurić, M., 1996. Climate of Durmitor national park. In: Lješević, M. (Editor), The nature of
2488	National Park Durmitor. Geografski fakultet: Beograd, 151-162.
2489	
2490	Curran M.A.J., van Ommen, T.D., Morgan, V.I., Phillips K.L., Palmer, A.S., 2003. Ice core
2491	evidence for Antarctic sea ice decline since the 1950s. Science, 302(5648), 1203-1206.
2492	Descent S. 1072 Occlasses encounter d'enclution motorning des connects en Destand
2493	Daveau, S., 1973. Quelques exemples d'evolution quaternaire des versants au Portugal.
2494	Finisterra, 8, 5-47.
2495	Daveau, S., 1978. Le periglaciaire d'altitude au Portugal. Colloque sur le periglaciaire
2496	d'altitude du domaine mediterraneen et ses abords, Estrasburgo, 63-78.
2497	u annude du domaine mediterrancen et ses aborus, Estrasourgo, 03-78.
2498	Daveau, S., Ferreira, A.B., Ferreira, N., Vieira, G., 1997. Novas observações sobre aglaciação
2499	da Serra da Estrela, Portugal. Estudos do Quaternário, 1, 41-51.
2500	
2500	De Martonne, E., 1924. Les formes glaciaires sur le versant nord du Haut Atlas, Annales de
	Géographie , 33, 296-302.
2502	Dada V. Ciasle İ. Haav I. 2015. Formations of reals classer in Kanad Mauntains (in
2503	Dede, V., Çiçek, İ., Uncu, L., 2015. Formations of rock glacier in Karçal Mountains, (in
2504	Turkish), Bulletin of the Earth Sciences Application and Research Centre of Hacettepe
2505	University, 36(2), 61-80.
2506	Dede, V., Çiçek, İ., Sarıkaya, M.A., Çiner, A., Uncu, L., 2017. Late Pleistocene Glaciation in
2507	the Lesser Caucasus; Cosmogenic 36Cl geochronology of the Karçal Valley, NE Turkey.
2508	
2509	Quaternary Science Reviews, 164, 54-67.
2510	Delaloye, R., Perruchoud, E., Avian, M., Kaufmann, V., Bodin, X., Hausmann, H., Ikeda, A.,
2511	2008. Recent interannual variations of rock glacier creep in the European Alps. In: Kane, D.L.,
2512	Hinkel, K.M. (Editors), Proceedings of the 9th International Conference on Permafrost,
2513	
2514	Fairbanks, USA, 343-348.
2515	Delannoy, J.J., Maire, R., 1983. Le Massif de Dedegöl dag (Taurus Occidental, Turquie).
2516	Recherches de géomorphologie glaciaire et karstique. Bulletin de l'Association de Géographie.
2517	Française, 491, 43-53.
2518	
2519	Delmas, M., 2015. The last maximum ice extent and subsequent deglaciation of the Pyrenees:
	an overview of recent research. Cuadernos de Investigación Geográfica, 41(2), 359-387.
2520	Denten C.H. Aller D.D. Comer C.C. Dreeden W.G. 2005 The relevation
2521	Denton, G.H., Alley, R.B., Comer, G.C., Broecker, W.S., 2005. The role of seasonality in
2522	abrupt climate change. Quaternary Science Reviews, 24, 1159-1182.
2523	Desanges, J., Riser, J., 1989, Atlas, Encyclopédie berbère, 7 - Asarakae - Aurès, Aix-en-
2524	Provence, Edisud, 1013-1026.
2525	110venee, Edisud, 1013-1020.
2526	Dewey, J.F., Helman, M.N.L., Turco, E., Hutton, D.H.W., and Knott, S.D., 1989. Kinematics
2527	of the western Mediterranean. In: Coward M, (Editor), AlpineTectonics. Geological Society,
2528	London, Special Publication, 45, 265-283.
2529	
2530	Dimase, A.C., 2006. Fossil cryogenic features in paleosols of southern Italy: Characteristics
2531	and paleoclimatic significance. Quaternary International, 156-157, 32-48.
2532	Dimitrary D. Cilcons A. 2012 Delict media decisions 11 (10 (1) 1) (1)
2533	Dimitrov, P., Gikov, A., 2012. Relict rock glaciers identification and mapping in Pirin
2534	Mountain using aerial and satellite images. In: Mardirossian, G., Srebrova, T., Jelev, G. (Editors),
2535	
2536	
2537	

2539	
2540	
2541	Proceedings of the Seventh Scientific Conference on Space, Ecology, Safety, Sofia, Bulgaria,
	256-263.
2542	Diversió D. 2012. The Deheli Nemet classics from the second half of the 20th contains to the
2543	Djurović P., 2013. The Debeli Namet glacier from the second half of the 20th century to the
2544	present. Acta Geographica Slovenica, 52(2), 277-301.
2545	Dobiński, W., 2005. Permafrost of the Carpathian and Balkan Mountains, Eastern and
2546	Southeastern Europe. Permafrost and Periglacial Processes, 16, 395-398.
2547	Southeastern Europe. I enhanost and I englacial i locesses, 10, 375-378.
2548	Doğu, A.F., 2009. İhtiyar Şahap Dağları-Van'ın Buzulları, Yeşil Atlas Dergisi, 66-71.
2549	
2550	Doğu, A.F., Somuncu, M., Çiçek, İ., Tuncel, H., Gürgen, G., 1993. Kaçkar Dağı'nda buzul
2551	şekilleri, yaylalar ve turizm. Ankara Üniversitesi Türkiye Coğrafyası Araştırma ve Uygulama
2552	Merkezi Dergisi, 157-183.
2553	Demánguez Viller D. Corresco D.M. Dedroze I. Chang II. Edwards D.I. Willerhring
2554	Domínguez-Villar, D., Carrasco, R.M., Pedraza, J., Cheng, H., Edwards, R.L., Willenbring,
2555	J.K., 2013. Early maximum extent of paleoglaciers from Mediterranean mountains during the last
	glaciation. Scientific Reports, 3, 20-34.
2556	Dramis, F., Kotarba, A., 1992. Southern limit of relict rock glaciers, Central Apennines, Italy.
2557	Permafrost and Periglacial Processes, 3, 257-260.
2558	Permanost and Penglacial Processes, 5, 257-200.
2559	Dramis, F., Govi, M., Guglielmin, M., Mortara, G., 1995. Mountain permafrost and slope
2560	instability in the Italian Alps: The Val Pola Landslide. Permafrost and Periglacial Processes, 6(1),
2561	73-81.
2562	75-61.
2563	Dramis, F., Giraudi, C., Guglielmin, M., 2003. Rock glacier distribution and paleoclimate in
2564	Italy. In: Philips, M., Springman, S.M., Arenson, L.U. (Editors), Permafrost. Taylor & Francis,
2565	London, 199-204.
2566	
2567	Dresch, J., 1941. Recherches sur l'evolution du relief dans le Massif Central du Grand Atlas
2568	le Haouz et le Sous. Arrault et Cie, Maitres imprimeurs, 653 pp.
2569	Dresch, J., 1949. Sur des formations de remblaiement continental et la presence de forms
2570	1
2571	glaciaires dans le Haut Atlas calcaire. Computes Rendus Somm. Séances Societé Géologique Fr.,
2572	9-10, 169-171.
	Dresch, J., Raynal, R., 1953. Les formes glaciaires et periglaciaires dans le Moyen Atlas.
2573	Comptes Rendus Somm. Seances Societ e Geologique Fr. 11-12, 195-197.
2574	Comptes Rendus Somm. Seances Societ e Ocologique 11. 11-12, 195-197.
2575	Erinç, S., 1949. Uludağ üzerinde glasyal morfoloji araştırmaları. Türk Coğrafya Dergisi, 79-
2576	94.
2577	
2578	Erinç, S., 1951. Glasiyal ve postglasiyal safhada Erciyes glasiyesi. İstanbul Üniversitesi
2579	Coğrafya Enstitüsü Dergisi, 1(2), 82-90.
2580	Erinç, S., 1952. Glacial evidences of the climatic variations in Turkey. Geografiska Annaler,
2581	Series A, Physical Geography, 34(1-2), 89-98.
2582	Series A, Physical Geography, 54(1-2), 89-98.
2583	Erinç, S., 1953. Van'dan Cilo Dağlarına. Türkiye Coğrafya Bülteni, Ankara Üniversitesi
2584	Yayınları, 3-4, 84-106.
2585	<u> </u>
2586	Erinç, S., 1957. Uludağ periglasiyali hakkında. İstanbul Üniv. Coğrafya Enst. Dergisi, 4(8),
2587	91-94.
2588	Fring S Bildin T Banar M 1061 Ildaz üzarinda narialasiyal sabillar Türk Cažrafus
2589	Erinç, S., Bilgin, T., Bener, M., 1961. Ilgaz üzerinde periglasiyal şekiller, Türk Coğrafya
2590	Dergisi, 12, 151-160.
2590	Evin, M., Fabre, D., 1990. The distribution of permafrost in rock glaciers of Southern Alps
	(France). Geomorphology, 3, 57-71.
2592	(1 mile). Security 1005, 5, 5, 7, 71.
2593	
2594	
2595	

2597	
2598	
2599	Evin M. Assist A. Eshas D. 1000 Les clasier rechenne du Marinet Heurt Liberra France.
2600	Evin, M., Assier, A., Fabre, D., 1990. Les glacier rocheux du Marinet, Haut Ubaye, France.
2601	Revue de Géomorphologie Dynamique, 4, 139-155.
2602	Evin, M., 1991. Une moraine de refoulement au Viso (Italie). Zeitschrift für Gletscherkunde
2603	und Glazialgeologie, 27-28, 11-24.
2604	
2605	Favier, L., Durand, G., Cornford, S.L., Gudmundsson, G.H., Gagliardini, O., Gillet-Chaulet,
2606	F., Zwinger, T., Payne, A.J., Le Brocq, A.M., 2014. Retreat of Pine Island Glacier controlled by
	marine ice-sheet instability. Nature Climate Change, 4, 117-121.
2607	
2608	Federici, P.R., Ribolini, A., Spagnolo, M., 2017. Glacial History of the Maritime Alps from
2609	the Last Glacial Maximum to the Little Ice Age. Geological Society Special Publications, 443(1),
2610	137-159.
2611	Federici, P.R., Granger, D.E., Riobolini, A., Spagnolo, M., Pappalardo, M., Cyr, A.J., 2012.
2612	
2613	Last glacial Maximum and the Gschnitz stadial in ther Maritime Alps according to 10Be
2614	cosmogenic dating. Boreas, 41, 277-291.
2615	Fernandes, M., Oliva, M., Palma, P., Ruiz-Fernández, J., Lopes, L., 2017. Glacial stages and
2616	post-glacial environmental evolution in the Upper Garonne valley, Central Pyrenees. Science of
2617	the Total Environment, 584, 1282-1299.
2618	the Total Environment, 384, 1282-1299.
2619	Fernández-Fernández J.M., Palacios D., García-Ruiz, J.M., Andrés, N., Schimmelpfennig, I.,
2620	Gómez-Villar, A., Santos-González, J., Álvarez-Martínez, J., Arnáez, J., Úbeda, J., Léanni, L.,
2621	ASTER Team., 2017. Age and geomorphological context of fossil debris-covered glaciers in
2622	relation to deglaciation processes: a case study in the Sierra de la Demanda, Northern Spain.
2623	Quaternary Science Reviews, 170, 232-249.
2624	Quaternary Science Reviews, 176, 252-24).
2625	Ferreira, A.B., Rodrigues, M.L., Vieira, G.T., 2000. Manifestações herdadas e actuais de
2626	climas frios em Portugal. In: Peña, J.L., Sánchez- Fabre, M., Lozano, M.V. (Editors), Procesos y
2627	formas periglaciares en la montaña mediterránea. Instituto de Estudios Turolenses, Teruel, 161-
2628	190.
2629	
2630	Feuillet, T., 2010. Les formes périglaciaires dans les Pyrénées centrales francaises: analyse
2631	spatiale, chronologique et valorisation. PhD Thesis, University of Nantes.
2632	Feuillet, T., Mercier, D., 2012. Post-Little Ice Age patterned ground development on two
2633	Pyrenean proglacial areas: from deglaciation to periglaciation. Geografiska Annaler, Series A,
2634	Physical Geography, 94, 363-376.
2635	Filysical Geography, 94, 505-570.
	Finsinger, W., Tinner, W., 2006. Holocene vegetation and land-use changes in response to
2636	climatic changes in the forelands of the southwestern Alps, Italy. Journal of Quaternary Science,
2637	21(3), 243-258.
2638	
2639	Fioraso, G., Spagnolo, G., 2009. I block stream del Massiccio Peridotitico di Lanzo (Alpi nord-
2640	occidentali). Il Quaternario, 22(1), 3-22.
2641	Firpo, M., Guglielmin, M., Queirolo, C., 2006. Relict blockfields in the Ligurian Alps (Mount
2642	Beigua, Italy). Permafrost and Periglacial Processes, 17, 71-78.
2643	Dergua, rury). Fermanost and Ferngracian Frocesses, 17, 71-70.
2644	Fletcher, W.J., Sánchez-Goñi, M.F., Peyron, O., Dormoy, I., 2010. Abrupt climate changes of
2645	the last deglaciation detected in a Western Mediterranean forest record. Climate of the Past, 6,
2646	245-264.
2647	
2648	Fotiadi, A.K., Metaxas, D.A., Bartzokas, A., 1999. A statistical study of precipitation in
2649	northwest Greece. International Journal of Climatology, 19, 1221-1232.
2650	Francou, B., Reynaud, L., 1992. 10-year surficial velocity on a rock glacier (Laurichard,
2651	French Alps). Permafrost Periglacial Processes, 3, 209-213.
2652	1 1 mpo). 1 official of 1 official 1 10000000, 5, 207 215.
2653	
2654	
2655	

2657	
2658	Frauenfelder, R., Haeberli, W., Hoelzle, M., Maisch, M., 2001. Using relict rockglaciers in
2659	
2660	GIS-based modelling to reconstruct Younger Dryas permafrost distribution patterns in the err-
2661	Julier area, Swiss Alps. Norsk Geografisk Tidsskrift, 55, 195-202.
2662	French, H.M., 2007. The periglacial environment. John Wiley & Sons, Third Edition.
2663	Chichester, England.
2664	Chichester, England.
2665	Frenzel, B., Pecsi, B., Velichko, A.A., 1992. Atlas of Palaeoclimates and Palaeoenvironments
	of the Northern Hemisphere. Budapest: INQUA/Hungarian Academy of Sciences.
2666	
2667	Frezzotti, M., Giraudi, C., 1992. Late Pleistocene and Holocene geological evolution of the
2668	Majelama Valley alluvial fan (Velino Massi, Abruzzo). Alpine and Mediterranean Quaternary,
2669	5(1), 33-50.
2670	Eritz M. Varle I.E. Lantvit II. 2017. Callenging Anotic coastlines. Nature Climate Change
2671	Fritz, M., Vonk, J.E., Lantuit, H., 2017. Collapsing Arctic coastlines. Nature Climate Change,
2672	7(1), 6-7.
2673	Gachev E., Stoyanov K., 2012. Present day small prerennial firn-like patches in the mountains
2674	of the western Balkan Peninsula. Studia geomorphologica Carpatho-Balcanica, vol. XLVI, 51-
2675	70.
2676	70.
2677	Gachev, E., Stoyanov, K., Gikov, A., 2016. Small glaciers on the Balkan Peninsula: State and
2678	changes in the last several years. Quaternary International, 415, 33-54.
2679	
2680	García de Celis, A., 1991. Los glaciares rocosos de la Sierra del Suspirón (León). Polígonos,
2681	1, 9-20.
2682	García de Celis, A., 2002. Formas periglaciares relictas en la Sierra de Suspirón (Cordillera
2683	
	Cantábrica, León): campos de bloques. In: Serrano, E., García de Celis, A. (Editors),
2684	Periglaciarismo en montaña y altas latitudes, Universidad de Valladolid, Valladolid, 37-52.
2685	García-Ruiz, J.M., 1979. El glaciarismo cuaternario en la Sierra de la Demanda (Logroño-
2686	Burgos, España). Cuadernos de Investigación. Geografía e Historia, 5(2), 3-25.
2687	
2688	García-Ruiz, J.M., Martí-Bono, C., 2001. Mapa geomorfológico del Parque Nacional de
2689	Ordesa y Monte Perdido. Ministerio de Medio Ambiente, Madrid, 106 pp.
2690	García-Ruiz, J.M., Alvera, B., del Barrio, G., Puigdefábregas, J., 1988. Geomorphic processes
2691	
2692	above the timberline in the Spanish Pyrenees. Mountain Research and Development, 10(3), 201-
2693	214.
2694	García-Ruiz, J.M., Ortigosa, L., Pellicer, F., Arnáez, J., 1998. Geomorfología glaciar del
2695	Sistema Ibérico. In: Gómez-Ortiz, A., Pérez-Alberti, A. (Editors), Las huellas glaciares de las
2696	montañas españolas. Universidad de Santiago de Compostela, 347-381.
2697	montanas espanolas. Oniversidad de Santiago de Compostera, 547-561.
2698	García-Ruiz, J.M., Beguería, S., Lorente, A., 2000. Eventos hidrológicos de baja frecuencia
2699	en el Pirineo Central español y sus efectos geomorfológicos. Serie Geográfica, 9, 163-176.
2700	
2701	García-Ruiz, J.M., Gómez-Villar, A., Ortigosa, L., Martí-Bono, C., 2000. Morphometry of
2702	glacial cirques in the Central Spanish Pyrenees. Geografiska Annaler. Series A, Physical
2703	Geography, 82(4), 433-442.
2704	Correio Duiz IM Martí Dana C. Valara D. Correilar Sametria D. 2005 Control G. 1
2705	García-Ruiz, J.M., Martí-Bono, C., Valero B., González-Sampériz, P., 2005. Central Spanish
	Pyrenees: glacial and periglacial landforms. Proceedings of the Sixth International Conference on
2706	Geomorphology, Field trip guides t-1, SEG-University of Zaragoza, 311-340.
2707	García-Ruiz, J.M., Moreno, A., González-Sampériz, P., Valero-Garcés, B., Martí-Bono, C.,
2708	*
2709	2010. La cronología del último ciclo glaciar en las montañas del sur de Europa. Una revisión.
2710	Cuaternario & Geomorfología, 24(1-2), 35-46.
2711	
2712	
2713	

español: una revisión a distintas escalas espaciales y temporales. Pirineos, 170, e012. the Younger Dryas. Quaternary Science Reviews, 138, 16-30. (12,9-11,7 ka BP) en la Península Ibérica. Cuaternario y Geomorfología, 30(1-2), 9-21. Quaternary Science, 18, 61-72. Pyrenees. The Holocene, 2(3), 266-270. 1156-1169. 1358. International, 190(1), 123-135. 259. Geografia Fisica e Dinamica Quaternaria 13(2), 179-181. University Press, 73-80. Analyses, 2(1), 19-32. Palaoklimaforschung- Palaeoclimate Research, 25, 1-18.

García-Ruiz, J.M., Palacios, D., de Andrés, N., Valero-Garcés, B.L., López-Moreno, J.L., Sanjuán, Y., 2014. Holocene and Little Ice Age glacial activity in the Marboré cirque, Monte Perdido Massif, Central Spanish Pyrenees. The Holocene, 24(11), 1439-1452.

2715 2716 2717

2718

2719

2720 2721

2722 2723

2724

2725

2726

2727

2728 2729

2730

2731

2732

2733

2734

2735 2736

2737

2738

2739 2740

2741

2742

2743

2744

2745 2746

2747

2748

2749

2750

2751 2752

2753 2754

2755

2756 2757

2758

2759

2760

2761

2762

2763

2764

2765

2766 2767

2768

2769

García-Ruiz, J.M., López-Moreno, J.I., Lasanta, T., Vicente-Serrano, S.M., González-Sampériz, P., Valero-Garcés, B.L., Sanjuán, Y., Beguería, S., Nadal-Romero, E., Lana-Renault, N., Gómez-Villar, A., 2015. Los efectos geoecológicos del cambio global en el Pirineo Central

García-Ruiz, J.M., Palacios, D., González-Sampériz, P., Andrés, N., Moreno, A., Valero-Garcés, B., Gómez-Villar, A., 2016a. Mountain glacier evolution in the Iberian Peninsula during

García-Ruiz, J.M., Palacios, D., González-Sampériz. P., de Andrés, N., Moreno, A., Valero-Garcés, B., Gómez-Villar, A., 2016b. Evidencias de actividad glaciar durante el Dryas Reciente

García-Ruiz, J.M., Valero-Garcés, B.L., Martí-Bono, C., González-Sampériz, P., 2003. Asynchroneity of maximum glacier advances in the central Spanish Pyrenees. Journal of

Gellatly, A.F., Grove, J.M., Switsur, V.R., 1992. Mid Holocene glacial activity in the

Genxu, W., Yuanshou, L., Qingbai, W., Yibo, W., 2006. Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau. Science in China Series D: Earth Sciences, 49(11),

Ghuma M.A., Rogers, J.J.W., 1978. Geology, geochemistry, and tectonic setting of the Ben Ghnema batholith, Tibesti massif, southern Libya. Geological Society of America, 89, 1351-

Gianotti, F., Forno, M.G., Ivy-Ochs, S., Kubik, P.W., 2008. New chronological and stratigraphical data on the Morainic Amphiteatre of Ivrea (Piedmont, NW Italy). Quaternary

Gikov, A., Dimitrov, P., 2011. Relict rock glaciers identification and mapping in Rila mountain using aerial and satellite images. In: Mardirossian, G., Srebrova, T., Jelev, G. (Editors), Proceedings of the Sixth Scientific Conference on Space, Ecology, Safety, Sofia, Bulgaria, 252-

Ginesu, S., 1990. Periglacial deposits in Sardinia: the blockstreams near Pranu Mannu.

Ginesu, S., Sias, S., 2006. La Sardegna. In: Chelli, A., D'Aquila, P., Firpo, M., Ginesu, S., Guglielmin, M., Pappalardo, M., Pecci, M., Piacentini, T., Queirolo, C., Robustelli, G., Scarciglia, F., Sias, S., Tellini, C. (Editors), Testimoni di una montagna scomparsa. Contributo alle metodologie d'indagine delle forme periglaciali relitte. Problematiche e applicazioni in differenti ambienti morfodinamici. Collana «Quaderni della Montagna», vol. 8, Bologna: Bonomia

Ginesu, S., Carboni, D., Congiatu, P.P., 2014. Relict forms of disappeared mountain. The periglacial deposits in Asinara Island-Sardinia (Italy). Journal of Environmental and Tourism

Giraudi, C., 1998. Late Pleistocene and Holocene lake level variations in Fucino Lake (Abruzzo - Central Italy) inferred from geological, archaeological and historical data.

2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2803
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827

2828 2829

2830 2831

2832

Giraudi, C., 2002. I rock glacier tardo-pleistocenici ed oloceni dell'appennino: età, distribuzione, significato paleoclimatico. Alpine and Mediterranean Quaternary, 15(1), 45-52.

Giraudi, C., 2003. Middle Pleistocene to Holocene Apennine glaciations (Italy). Alpine and Mediterranean Quaternary, 16(1), 37-48.

Giraudi, C., 2004. The Apennine glaciations in Italy. Developments in Quaternary Science, 2(1), 215-223.

Giraudi, C., 2012. The Campo Felice late Pleistocene Glaciation (Apennines, central Italy). Journal of Quaternary Science, 27(4), 432-440.

Giraudi, C., 2015. The Upper Pleistocene deglaciation on the Apennines (Peninsular Italy). Cuadernos de Investigación Geográfica, 41(2), 87-105.

Giraudi, C., Frezzotti, M., 1997. Late Pleistocene glacial events in the Central Apennines, Italy. Quaternary Research, 48(3), 280-290.

Giraudi, C., Magny, M., Zanchetta, G., Drysdale, R.N., 2011. The Holocene climatic evolution of Mediterranean Italy: A review of the continental geological data. The Holocene, 21(1), 105-115.

Gómez, F., Allmendinger, R., Barazangi, M., Beauchamp, W., 2000. Role of the Atlas Mountains (northwest Africa) within the African-Eurasian plate boundary zone. Geology, 28, 769-864.

Gómez-Lende M., 2015. Las cuevas heladas en Picos de Europa: clima, morfologías y dinámicas. PhD thesis, University of Valladolid.

Gómez-Lende, M., Berenguer, F., Serrano, E., 2014. Morphology, ice types and thermal regime in a high mountain ice cave. First studies applying terrestrial laser scanner in the Peña Castil Ice Cave (Picos de Europa, Northern Spain). Geografía Fisica e Dinamica Quaternaria, 37, 141-150.

Gómez-Ortiz, A., 1980. Estudio geomorfológico del Pirineo catalán: morfogénesis glacial y periglacial de los altos niveles y vertientes merdionales de los macizos de Calmquerdós, Tossa Plana de Llés y Port Negre (Cerdanya-Alt Urgell). PhD thesis, University of Barcelona.

Gómez-Ortiz, A., 1987. Morfología glaciar en la vertiente meridional de Sierra Nevada (área Veleta-Mulhacén). Estudios Geográficos, 193, 527-558.

Gómez-Ortiz, A., Serrat, D., 1977. Las formaciones geométricas periglaciares de los altos niveles del Pirineo Oriental. V Coloquio de Geografía. Universidad de Granada, Granada, 75-81.

Gómez-Ortiz, A., Salvador-Franch, F., 1992. Aportaciones significativas al conocimiento del glaciarismo y periglaciarismo de Sierra Nevada. Notes de Geografía Física, 20-21, 89-101.

Gómez-Ortiz, A., Díaz del Olmo, F., Simón-Torres, M., 1994. Periglaciarismo en las Cordilleras Béticas. In: Gómez-Ortiz, A., Simón-Torres, M., Salvador-Franch, F. (Editors), Periglaciarismo en la Península Ibérica, Canarias y Baleares. Estudios significativos, SEG-Universidad de Granada, Granada, 165-188.

Gómez-Ortiz, A., Palacios, D., Ramos, M., Tanarro, L.M., Schulte, L., Salvador, F., 2001. Location of permafrost in marginal regions: Corral del Veleta, Sierra Nevada, Spain. Permafrost and Periglacial Processes, 12, 93-110.

Gómez-Ortiz, A., 2002. Mapa geomorfológico de Sierra Nevada. Consejería de Medio Ambiente de la Junta de Andalucía, Granada.

Series A, Physical Geography, 91, 279-289. Agricultura, Alimentación y Medio Ambiente. Madrid, 25-43. Boletín de la Asociación de Geógrafos Españoles, 61, 139-162. the Veleta cirque (Sierra Nevada, Spain) from 2006-2013. Solid Earth, 5, 979-993. knowledge and new contributions. Cuadernos de Investigación Geográfica, 41(2), 409-426. 37(2), 49-80. Procesos, formas y condiciones ambientales. PhD thesis, University of Málaga. 689-700. Cantábrica Leonesa). University of León. Annaler: Series A, Physical Geography, 95, 15-32. Zeitschrift für Gletscherkunde und Glazialgeologie, 39, 115-125.

Gómez-Ortiz, A., Palacios, D., Ramos, M., 2004. Permafrost, evolution of associated landforms and thermal control in the Veleta Cirque (Sierra Nevada, Spain). New results. Boletín de la Real Sociedad Española de Historia Natural, 99(1-4), 47-63.

2833 2834 2835

2836

2837

2838

2839 2840

2841

2842

2843

2844

2845

2846 2847

2848

2849

2850

2851

2852

2853

2854 2855

2856

2857

2858

2859 2860

2861

2862

2863

2864

2865

2866 2867

2868

2869

2870

2871 2872

2873

2874

2875

2876 2877

2878

2879

2880

2881

2882 2883

2884

2885

Gómez-Ortiz, A., Plana Castellví, J.A., 2006. La Pequeña Edad del Hielo en Sierra Nevada a partir de los escritos de la época (siglos XVIII y XIX) y relaciones con el progreso de la geografía física y geomorfología española. Boletín de la Asociación de Geografos Españoles, 42, 71-98.

Gómez-Ortiz, A., Palacios, D., Schulte, L., Salvador-Franch, F., Plana, J.A., 2009. Evidences from historical documents of landscape evolution after Little Ice Age of a Mediterranean high mountain area, Sierra Nevada, Spain (eighteenth to twentieth centuries). Geografiska Annaler,

Gómez-Ortiz, A., Palacios, D., Palade, B., Vázquez-Selem, L., Salvador-Franch, F., 2012a. The deglaciation of the Sierra Nevada (Southern Spain). Geomorphology, 159-160, 93-105.

Gómez-Ortiz, A., Salvador-Franch, F., Sanjosé, J.J., Palacios, D., Oliva, M., Salvà, M., Tanarro, L., Raso, J., Atkinson, A., Schulte, L., Plana, J., Milheiro, B., Serrano, D., 2012b. Degradación de hielo fósil y permafrost y cambio climático en Sierra Nevada. In: Ramírez, L., Asensio, B. (Editors), Proyectos de investigación en parques nacionales: 2008-2011. Colección Naturaleza y Parques Nacionales. Organismo Autónomo Parques Nacionales, Ministerio de

Gómez-Ortiz, A., Palacios, D., Palade, B., Vázquez-Selem, L., Salvador, F., Tanarro, L., Oliva, M., 2013. La evolución glaciar de Sierra Nevada y la formación de glaciares rocosos.

Gómez-Ortiz, A., Oliva, M., Salvador, F., Salvà, M., Palacios, D., Sanjosé, J.J., Tanarro, L., Galindo-Zaldívar, J., Sanz de Galdeano, C., 2014. Degradation of buried ice and permafrost in

Gómez-Ortiz, A., Oliva, M., Palacios, D., Salvador-Franch, F., Vázquez-Selem, L., Salvà-Catarineu, M., de Andrés, N., 2015. The deglaciation of Sierra Nevada (Spain), synthesis of the

Gómez-Villar, A., González-Gutiérrez, R.B., Redondo, J.M., Santos, J., 2011. Distribución de glaciares rocosos relictos en la Cordillera Cantábrica. Cuadernos de Investigación Geográfica,

González-García, M., 2014. La alta montaña periglaciar en el Pirineo Central español.

González-García, M., Serrano, E., Sanjosé, J.J., González-Trueba, J.J., 2017. Surface dynamic of a protalus lobe in the temperate high mountain, Western Maladeta, Pyrenees. Catena, 149(3),

González-Gutiérrez, R.B., 2002. El relieve de los valles del Torío y Curureño (Montaña

González-Sampériz, P., Moreno, A., 2013. Glacial and fluvial deposits in the Aragón Valley, central-western Pyrenees: chronology of the Pyrenean late Pleistocene glaciers. Geografiska

González-Trueba, J.J., 2006. Topoclimatical factors and very small glaciers in Atlantic mountain of SW Europe: Little Ice Age glacial advance in Picos de Europa (NW Spain).

2893	
2894	González-Trueba, J.J., 2007a. El paisaje natural del Macizo Central de los Picos de Europa:
2895	Geomorfología y sus implicaciones geoecológicas en la alta montaña cantábrica. CIMA-Medio
2896	
2897	Ambiente de Cantabria, Santander.
2898	González-Trueba, J.J., 2007b. Geomorfología del macizo central del Parque Nacional de Picos
2899	de Europa. OAPN-Ministerio de Medio Ambiente, Madrid.
2900	•
2901	González-Trueba, J.J., Martín, R., Martínez de Pisón, E., Serrano, E., 2008. Little Ice Age and
2902	current glaciers, Iberian Peninsula. The Holocene, 18, 551-568.
2903	Gorbunov, A.P., 2012. Rock glaciers, kurums, glaciers and permafrost in the mountains of
2904	
2905	Turkey (Geographical review). Earth Cryosphere, 16, 2, 3-8.
2906	Greenwood, S.L., O'Regan, M., Swärd, H., Flodén, T., Ananyev, R., Chernykh, D., Jakobsson,
2907	M., 2015. Multiple re-advances of a Lake Vättern outlet glacier during Fennoscandian Ice Sheet
2908	retreat, south-central Sweden. Boreas, 44(4), 619-637.
2909	
	Grove, J.M., 2004. Little Ice Ages: Ancient and Modern. Routledge, London (2 volumes).
2910	Grove, J.M., Gellatly, A.F., 1995. Little Ice Age fluctuations in the Pyrenees. Zeitschrift für
2911	Gletcherkunde und Glacialgeologie, 31, 199-206.
2912	Oletenerkunde und Olaciaigeologie, 51, 199-200.
2913	Gruber, S., 2012. Derivation and analysis of a high-resolution estimate of global permafrost
2914	zonation. The Cryosphere, 6, 221-233.
2915	
2916	Gruber, S., Hoelzle, M., Haeberli, W., 2004. Permafrost thaw and destabilization of Alpine
2917	rock walls in the hot summer of 2003. Geophysical Research Letters, 31, 13, 504.
2918	Grünewald, K., Scheithauer, J., 2008. Bohrung in einen Mikrogletscher. Zeitschrift für
2919	Gletscherkunde und Glazialmorphologie, 42, 3-18.
2920	Oleischerkunde und Olaziannorphologie, 42, 3-18.
2921	Grunewald, K., Scheithauer, J., 2010. Europe's southernmost glaciers: response and
2922	adaptation to climate change. Journal of Glaciology, 42, 3-18.
2923	
2924	Grünewald, K., Scheitchauer, J., Gikov, A., 2008. Microglaciers in the Pirin Mountains
2925	(Mikrolednitsi v Pirin Planina). Problems of Geography, Bulgarian Academy of Sciences, 1-2.
2926	Guglielmin, M., Smiraglia, C. (Editors), 1997. Catasto dei rock glaciers delle Alpi Italiane.
2927	Archivio Comitato Glaciologico Italiano, 3, 1-103.
2928	-
2929	Guglielmin, M., Lozej, A., Tellini, C., 1994. Permafrost distribution and rock glaciers in the
2930	Livigno area (northern Italy). Permafrost and Periglacial Processes, 5, 1-12.
2931	Custialmin M. Commons N. Dramis E. 2001. Demusfrost alosial suclution during the
2932	Guglielmin, M., Cannone, N, Dramis, F., 2001. Permafrost-glacial evolution during the
2933	Holocene in the Italian Central Alps. Permafrost and Periglacial Processes, 12, 111-124.
2934	Guglielmin, M., Cannone, N, Strini, A, Lewkowicz, A., 2005. Biotic and abiotic processes on
2935	granite weathering landforms in a cryotic environment, Northern Victoria Land, Antarctica.
2936	Permafrost and Periglacial Processes, 16, 69-85.
2937	remanost and remandrar rocesses, ro, 07-05.
2938	Guglielmin, M., Dalle Fratte, M., Cannone, N., 2014. Permafrost warming and vegetation
	changes in continental Antarctica. Environmental Research Letters, 9, 045001.
2939	Cürzen C. 2001 Kanadaž (Cürzüshana) astronomia alegual marfalaiigi va turiem natargivali
2940	Gürgen, G., 2001. Karadağ (Gümüşhane) çevresinin glasyal morfolojisi ve turizm potansiyeli.
2941	AÜ Türkiye Coğrafyası Dergisi, 8, 109-132.
2942	Gürgen, G., Yeşilyurt, S., 2012. Karçal Dağı Buzulları (Artvin). Coğrafi Bilimler Dergisi,
2943	10(1), 91-104.
2944	
2945	Gürgen, G., Çalışkan, O., Yılmaz, E., Yeşilyurt, S., 2010. Yedigöller platosu ve Emli vadisinde
2946	(Aladağlar) döküntü örtülü buzullar, E-Journal of New World Sciences Academy, NEWSSA,
2947	(www.newwsa.com), 5, 98-116.
2948	
2949	
2950	

2952	
2953	Gutierrez, M., Peña, J.L., 1977. Las acumulaciones periglaciares del Macizo del Tremedal
2954	
2955	(Sierra de Albarracín). Boletín Geológico y Minero, 88(2), 109-115.
2956	Haeberli, W., 1985. Creep of mountain permafrost: internal structure and flow of alpine rock
2957	glaciers. Mitteilungen der Versuchsanstalt Conference with International Participation Space, 77,
2958	142 pp.
2959	Haeberli, W., Beniston, M., 1998. Climate change and its impacts on glaciers and permafrost
2960	in the Alps. Ambio, 27(4), 258-265.
2961	In the rups. runolo, $27(4)$, $230-203$.
2962	Hagedorn J., 1969. Beiträge zur Quartärmorphologie griechischer Hochgebirge. Göttinger
2963	Geographische Abhandlungen, 50, 135 pp.
2964	
2965	Hall-Riaza, J.F., Valcárcel, M., Blanco-Chao, R., 2016. Caracterización morfométrica de
2966	formas glaciares en cuña en las Sierras de Xistral, Teleno y Cabrera. Polígonos. Revista de
2967	Geografía, 28, 55-71.
2968	
	Hannah, G., Hughes, P.D., Gibbard, P. L., 2017. Pleistocene plateau ice fields in the High
2969	Atlas, Morocco. In: Hughes, P., Woodward, J. (Editors), Quaternary Glaciation in the
2970	Mediterranean Mountains, Geological Society of London Special Publications, 433, 25-53.
2971	
2972	Harris, C., Vonder-Mühll, D., Isaksen, K., Haeberli, W., Sollid, J.L., King, L., Holmlund, P.,
2973	Dramis, F., Guglielmin, M., Palacios, D., 2003. Warming permafrost in European mountains.
2974	Global and Planetary Change, 39(3-4), 215-225.
2975	
2976	Hausmann, H., Behm, M., 2011. Imaging the structure of cave ice by ground penetrating radar.
2977	The Cryosphere, 5, 329-340.
2978	Heinrich, 1988. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean
2979	
2980	during the past 130,000 years. Quaternary Research, 29(2), 142-152.
	Hemming, S.R., 2004. Heinrich events: Massive late Pleistocene detritus layers of the North
2981	Atlantic and their global climate imprint. Reviews of Geophysics, 42(1), 1-43.
2982	
2983	Hempel, L., 1991. Forschungen zur Physischen Geographie der Insel Kreta im Quartär. Ein
2984	Beitrag zur Geoökologie des Mittelmeerraumes. Vandenhoeck & Ruprecht in Göttingen.
2985	
2986	Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G., Jarvis, A., 2005. Very high resolution
2987	interpolated climate surfaces for global land areas. International Journal of Climatology, 25,
2988	1965-1978.
2989	
2990	Hippolyte, J.C., Bourlès, D., Braucher, R., Carcaillet, J., Léanni, L., Arnold, M., Aumaitre, G.,
2991	2009. Cosmogenic 10Be dating of a sackung and its faulted rock glaciers, in the Alps of Savoy
2992	(France). Geomorphology, 108, 312-320.
	Uirash E. Dash T. 2014 Coonductical prograstion on Late Ousternary addiments in the
2993	Hirsch, F., Raab, T., 2014. Geophysical prospection on Late Quaternary sediments in the
2994	Gállego Valley, Central Spanish Pyrenees. Zeitschrift für Geomorphologie, 58, 47-62.
2995	Hoelzle, M., 1992. Permafrost occurrence from BTS measurements and climatic parameters
2996	in the eastern Swiss Alps. Permafrost and Periglacial Processes, 3(2), 143-147.
2997	in the eastern Swiss Aips. Fernanost and Fenglacian Flocesses, 5(2), 145-147.
2998	Hoelzle, M., 1996. Mapping and modelling of mountain permafrost distribution in the Alps.
2999	Norwegian Journal of Geography, 50, 11-15.
3000	
3001	Höllermann, P., 1985. The periglacial belt of midlatitude mountains from a geoecological
3002	point of view. Erdkunde 39, 259-270.
3003	Holmburd D. Once D.D. Hongson M. Holmonen V. Mäuth M. Norres M. D. '
3004	Holmlund, P., Onac, B.B., Hansson, M., Holmgren, K., Mörth, M., Nyman, M., Perşoiu, A.,
3005	2005. Assessing the palaeoclimatic potential of cave glaciers: the example of the Scarisoara Ice
	Cave (Romania). Geografiska Annaler, Series A, Physical Geography, 87(1), 193-201.
3006	
3007	
3008	

3010	
3011 3012 3013	Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J.W., Schuur, E.A.G., Ping, C.L.,
3014 3015 3016	Schirrmeister, L., Grosse, G., Michaelson, G.J., Koven C.D., O'Donnell, J.A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., Kuhry, P., 2014. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11, 6573, 6503
3017 3018 3019 3020	 11, 6573-6593. Hughes, A.L.C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J., Svendsen, J. I., 2016. The last Eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1. Boreas, 45(1), 1-45.
3021 3022 3023	Hughes, P.D., 2004. Quaternary Glaciation in the Pindus Mountains, Northwest Greece. Ph.D. thesis, University of Cambridge, 341 pp.
3024 3025 3026	Hughes, P.D., 2008. Response of a Montenegro glacier to extreme summer heatwaves in 2003 and 2007. Geografiska Annaler, Series A, Physical Geography, 192, 259-267.
3027 3028	Hughes, P.D., 2009. Twenty-first Century Glaciers and Climate in the Prokletije Mountains, Albania. Arctic Antacrtic and Alpine Research, 41, 455-459.
3029 3030 3031 3032	Hughes, P.D., 2010. Little Ice Age glaciers in the Balkans: Low altitude glaciation enabled by cooler temperatures and local topoclimatic controls. Earth Surface Processes and Landforms, 35, 229-241.
3033 3034	Hughes, P.D., 2014. Little Ice Age glaciers on the Mediterranean mountains. Mediterranée. 112, 63-79.
3035 3036 3037	Hughes, P.D., 2018. Little Ice Age glaciers and climate in the Mediterranean mountains: a new analysis. Cuadernos de Investigación Geográfica, 44, 15-46.
3038 3039	Hughes, P.D., Gibbard, P.L. 2015. A stratigraphical basis for the Last Glacial Maximum (LGM). Quaternary International, 383, 174-185.
3040	
3041 3042	Hughes, P.D., Woodward, J.C., 2008. Timing of glaciation in the Mediterranean mountains during the last cold stage. Journal of Quaternary Science, 23(6-7), 575-588.
3043 3044 3045 3046	Hughes, P.D., Woodward, J.C., 2009. Glacial and periglacial environments. In: Woodward, J.C. (Editor), The Physical Geography of the Mediterranean. Oxford University Press, Oxford, 353-383.
3047 3048 3049	Hughes, P.D., Woodward, J., 2017. Quaternary glaciation in the Mediterranean mountains: a new synthesis. In: Hughes, P., Woodward, J.C., (Editors), Quaternary Glaciation in the Mediterranean Mountains, Geological Society of London Special Publication, 433, 1-23.
3050 3051 3052 3053	Hughes, P.D., Gibbard, P.L., Woodward, J.C., 2003. Relict rock glaciers as indicators of Mediterranean palaeoclimate during the Last Glacial Maximum (Late Würmian) in northwest Greece. Journal of Quaternary Science, 18, 431-440.
3054 3055 3056 3057	Hughes, P.D., Gibbard, P.L., Woodward, J.C., 2004. Quaternary glaciation in the Atlas mountains, North Africa. In: Ehlers, J., Gibbard, P.L. (Editors), Quaternary Glaciations: Extent and Chronology, Volume 3: Asia, Latin America, Africa, Australia, Antarctica. Elsevier Publishers, Amsterdam, 255-260.
3058 3059 3060	Hughes, P.D., Woodward, J.C., Gibbard, P.L., 2006a. Quaternary glacial history of the Mediterranean mountains. Progress in Physical Geography, 30(3), 334-364.
3061 3062 3063 3064 3065 3066 3066 3067	Hughes, P.D., Woodward, J.C., Gibbard, P.L., 2006b. Late Pleistocene glaciers and climate in the Mediterranean region. Global and Planetary Change, 50(1-2), 83-98.

3069	
3070	
3071	Hacker D.D. Westward I.C. Cithard D.I. 2007 Middle Distances and store director
3072	Hughes, P.D., Woodward, J.C., Gibbard, P.L., 2007. Middle Pleistocene cold stage climates
3073	in the Mediterranean: new evidence from the glacial record. Earth and Planetary Science Letters,
3074	253, 50-56.
	Under DD Weidered LC and Colstern DC. Therese LE Adamsen KD 2010
3075	Hughes, P.D., Woodward, J.C., van Calsteren, P.C., Thomas, L.E., Adamson, K.R., 2010.
3076	Pleistocene ice caps on the coastal mountains of the Adriatic Sea. Quaternary Science Reviews,
3077	29, 3690-3708.
3078	Unches D. D. Fonton C. D. Cikhard D. I. 2011 Quaternamy Clasicitiens of the Atlas
3079	Hughes, P. D., Fenton, C.R., Gibbard, P. L., 2011. Quaternary Glaciations of the Atlas
3080	Mountains, North Africa, in: Developments in Quaternary Science, Elsevier, USA, 15, 1065-
3081	1074.
3082	Unchas D.D. Woodward I.C. von Colstoren D.C. Themes I.E. 2011 The closed history
3083	Hughes, P.D., Woodward, J.C., van Calsteren, P.C., Thomas, L.E., 2011. The glacial history
3084	of the Dinaric Alps, Montenegro. Quaternary Science Reviews, 30, 3393-3412.
	Hughes, P.D., Gibbard, P.L., Ehlers, J., 2013. Timing of glaciation during the last glacial cycle:
3085	evaluating the concept of a global "Last Glacial Maximum" (LGM). Earth Science Reviews, 125,
3086	
3087	171-198.
3088	Hughes, P.D., Fink, D., Fletcher, W.J., Hannah, G., 2014. Catastrophic rock avalanches in a
3089	glaciated valley of the High Atlas, Morocco: ¹⁰ Be exposure ages reveal a 4.5 ka seismic event.
3090	
3091	Geological Society of America Bulletin 126, 1093-1104.
3092	Hughes, P.D., Glasser, N.F., Fink, D., 2016. Rapid thinning of the Welsh Ice Cap at 20-19 ka
3093	based on ¹⁰ Be ages. Quaternary Research 85, 107-117.
3094	based on The ages. Quaternary Research 85, 107-117.
	Hughes, P.D., Fink, D., Rodés, Á., Fenton, C. R., Fujiyoka, T., 2018. Timing of Pleistocene
3095	glaciations in the High Atlas, Morocco: New ¹⁰ Be and ³⁶ Cl exposures ages. Quaternary Science
3096	Reviews, 180, 193-213.
3097	Reviews, 160, 195-215.
3098	Ikeda, A., Matsuoka, N., 2002. Degradation of talus-derived rock glaciers in the Upper
3099	Engadin, Swiss Alps. Permafrost and Periglacial Processes, 13(2), 145-161.
3100	
3101	Ilyashuk, E.A., Koinig, K.A., Heiri, O., Ilyashuk, B.P., Psenner, R., 2011. Holocene
3102	temperature variations at a high-altitude site in the Eastern Alps: A chironomid record from
3103	Schwarzsee ob Sölden, Austria. Quaternary Science Reviews, 30(1-2), 176-191.
3104	
3105	IPCC Climate Change 2013, 2013. The Physical Science Basis. Contribution of Working
	Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
3106	Cambridge University Press, Cambridge, 1535 pp.
3107	
3108	Ivy-Ochs, S., 2015. Glacier variations in the European Alps at the end of the Last Glaciation.
3109	Cuadernos de Investigación Geográfica, 4(2), 295-315.
3110	Ive Oaba S. Sahöffar I. Kubik D.W. Sunal H.N. Sahlüahtar C. 2004 Timing of
3111	Ivy-Ochs, S., Schäffer, J., Kubik, P.W., Synal, H.N., Schlüchter, C., 2004. Timing of
3112	deglaciation on the northern Alpine foreland (Switzerland). Eclogae Geologicae Helvetiae, 97,
3113	47-55.
3114	Ivy-Ochs, S., Kerschner, H., Reuther, A., Preusser, F., Heine, K., Maisch, M., Kubik, P.W.,
3115	•
3116	Schlüchter, C., 2008. Chronology of the last glacial cycle in the European Alps. Journal of
	Quaternary Science, 23, 559-573.
3117	Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P.W., Schlüchter, C., 2009.
3118	Latest Pleistocene and Holocene glacier variations in the European Alps. Quaternary Science
3119	
3120	Reviews, 28(21-22), 2137-2149.
3121	İzbırak, R., 1951. Cilo Dağı ve Hakkari ile Van Gölü çevrelerinde coğrafya araştırmaları,
3122	Ankara Üniversitesi Dil Tarih Coğrafya Fakültesi yayınları, 67(4), 149.
3123	Ankara Oniversitesi Dir Farm Cografya Fakurtesi yayıman, 07(4), 142.
3124	
3125	
3126	
3127	
- • - •	

Park (Cantabrian Mountains, NW Spain). Geodinamica Acta, 15, 93-101. Jiménez, M., Rodríguez-Rodríguez, L., García-Ruiz, J.M., Domínguez-Cuesta, M.J., Farias, glacial cycle. Geomorphology, 196, 50-64. Chérifien, série géologie et géographie physique, 10, 578 pp. Jorgenson, M.T., Osterkamp, T.E., 2005. Response of boreal ecosystems to varying modes of permafrost degradation. Canadian Journal of Forest Research, 35(9), 2100-2111. Jorgenson, M.T., Racine, C.H., Walters, J.C., Osterkamp, T.E., 2001. Permafrost degradation 48(4), 551-579. Joughin, I., Smith, B.E., Holland, D.M., 2010. Sensitivity of 21st century sea level to ocean-Julián, A., Chueca, J., 1998. Le Petit Âge Glaciaire dans les Pyrénées Centrales Meridionales: 3, 79-88. shaded mountainous area. Permafrost and periglacial Processes, 18(2), 137-149. and Karst Research Institute of the Slovenian Academy of Science and Arts. 2nd international workshop on ice caves, Demänovská dolina, Slovak Republic, 70-73. Kerschner, H., Ivy-Ochs, S., 2008. Paleoclimate from glaciers: examples from the Eastern araştırmaları. TÜBİTAK proje raporu No: 101Y131. King, L., Akerman J., 1993. Mountain permafrost in Europe. In: Proceedings of the Sixth Guangzhou, Vol. 2, 1022-1027. Kitover, D.C., van Balen, R.T., Vandenberghe, J., Roche, D.M., Renssen, H., 2016. LGM Model iLOVECLIM. Permafrost and Periglacial Processes, 27, 31-42. Klimchouk, A., Bayarı, S., Nazik, L., Törk, K., 2006. Glacial destruction of cave systems in Carsologica, 35, 2, 111-121.

Jeftic, L., Bernhard, M., Demetropoulos, A., Fernex, F., Gabrielides, G.P., Gasparovic, F., Halim, Y., Orhon, D., Saliba, L.J., Fukai, R., 1989. State of the Mediterranean Marine Environment. MAP Technical Reports Series No. 28. UNEP, Athens.

3128 3129 3130

3131

3132

3133

3134

3135 3136

3137

3138

3139

3140

3141 3142

3143

3144

3145

3146 3147

3148

3149

3150

3151 3152

3153

3154

3155

3156 3157

3158

3159

3160

3161

3162 3163

3164

3165

3166

3167

3168 3169

3170

3171 3172

3173

3174

3175

3176

3177

3178 3179

3180

3181

Jiménez, M., Farias, P., 2002. New radiometric and geomorphologic evidences of a Last Glacial Maximum older than 18 ka in SW European mountains: the example of Redes Natural

P., Valero-Garcés, B., Moreno, A., Rico, M., Valcárcel, M., 2013. A review of glacial geomorphology and chronology in northern Spain: timing and regional variability during the last

Joly, F., 1962. Etude sur le relief du Sud-Est morocain: Rabat, Travaux Institut Scientifique

and ecological changes associated with a warming climate in Central Alaska. Climatic Change,

induced thinning of Pine Island Glacier, Antarctica. Geophysical Research Letters, 37, L20502.

estimation des paléotempératures à partir d'inférences géomorphologiques. Sud-Ouest Europeen.

Julián, A., Chueca, J., 2007. Permafrost distribution from BTS measurements (Sierra de Telera, Central Pyrenees, Spain): assessing the importance of solar radiation in a mid-elevation

Slovenian Cave Registry, 2014. Jointly managed by Speleological Association of Slovenia

Kern, Z., Surányi, G., Molnár, M., Nagy, B., Balogh, D., 2006a. Investigation of natural perennial ice deposits of Durmitor Mts, Montenegro. In: Zelinka, J. (Editor), Proceedings of the

Alps during the Alpine Lateglacial and early Holocene. Global and Planetary Change, 60, 58-71.

Kesici, O., 2005. Küresel ısınma cerçevesinde Süphan ve Cilo dağlarında buzul morfolojisi

International Conference on Permafrost. South China University of Technology Press, Wushan,

permafrost thickness and extent in the Northern Hemisphere derived from the Earth System

high mountains, with a special reference to the Aladağlar massif, central Taurus, Turkey. Acta

Knight, J., Harrison, S., 2008. Periglacial and Paraglacial Processes and Environments. Geological Society of London Special Publications, 320.

Köse, O., Sarıkaya, M.A., Çiner, A., Şen, Ö.L., Candaş, A. 2017. Cosmogenic 36Cl Geochronology of the Northern Valleys of Mount Dedegöl, Western Taurus Mountains (Turkey). EGU General Assembly, Vienna, Geophysical Research Abstracts, Vol. 19, EGU2017-1377.

Košutnik, J., Gostinčar, P., Mihevc, A., 2014. Ledene jame in nekatere geomorfološke značilnosti Kočevske: vodnik po ekskurziji. (Ice caves and some geomorphological characteristics of Kočevska: field trip guide). 8 November 2014 Geomorphological Society of Slovenia, Ljubljana, pp. 37.

Krainer, K., Bressan, D., Dietre, B., Haas, J.N., Hajdas, I., Lang, K., Mair, V., Nickus, U., Reidl, D., Thies, H., Tonidandel, D., 2015. A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy). Quaternary Research, 83, 2(1), 324-335.

Kuhlemann, J., Rohling, E.J., Krumrei, I., Kubik, P., Ivy-Ochs, S., Kucera, M., 2008. Regional synthesis of Mediterranean atmospheric circulation during the last glacial maximum. Science, 321, 1338-1340.

Kuhlemann, J., Milivojević, M., Krumrei, I., Kubik, P.W., 2009. Last glaciation of the Šara Range (Balkan Peninsula): Increasing dryness from the LGM to the Holocene. Austrian Journal of Earth Science, 102, 146-158.

Kuhlemann, J., Gachev, E., Gikov, A., Nedkov, S., Krumrei, I., Kubik, P., 2013. Glaciation in the Rila Mountains (Bulgaria) during the Last Glacial Maximum. Quaternary International, 293, 51-62.

Kurter, A., 1991. Glaciers of Middle East and Africa - Glaciers of Turkey. In: Williams, R.S., Ferrigno, J.G. (Editors), Satellite Image Atlas of the World. USGS Professional Paper 1386-G-1, 1-30.

Kwiecien, O., Arz, H.W., Lamy, F., Plessen, B., Bahr, A., Haug, G.H., 2009. North Atlantic control on precipitation pattern in the eastern Mediterranean/Black Sea region during the last glacial. Quaternary Research, 71, 375-384.

Lambeck, K., Antonioli, F., Anzidei, M., Ferranti, L., Leoni, G., Scicchitano, G., Silenzi, S., 2011. Sea level change along the Italian coast during the Holocene and projections for the future. Quaternary International, 232, 250-257.

Lantuit, H., Overduin, P.P., Couture, N., Wetterich, S., Are, F., Atkinson, D., Brown, J., Cherkashov, G., Drozdov, D., Forbes, D., Graves-Gaylord, A., Grigoriev, M., Hubberten, H.W., Jordan, J., Jorgenson, T., Ødegård, R S., Ogorodov, S., Pollard, W., Rachold, V., Sedenko, S., Solomon, S., Steenhuisen, F., Streletskaya, I., Vasiliev, A., 2012. The Arctic Coastal Dynamics database. A new classification scheme and statistics on arctic permafrost coastlines. Estuaries and Coasts, 35(2), 383-400.

Leunda. M., Bartolomé. M., Sancho. C., Moreno. A., Oliva-Urcia. B., González-Sampériz. P., Gil-Romera. G., Gomollón. A., 2015. La Cueva Helada de Casteret (PNOMP, Huesca): Primeras aportaciones del registro del hielo. In: Gómez Zotano, J., Arias García, J., Olmedo Cobo, J.A., Serrano Montes, J.L. (Editors), Avances en Biogeografía. Areas de distribución: entre puentes y barreras, Universidad de Granada, Editorial Universidad de Granada, 78-81.

Lewin, J., Macklin, M.G., Woodward, J.C., 1991. Late Quaternary fluvial sedimentation in the Voidomatis Basin, Epirus, northwest Greece. Quaternary Research, 35(1), 103-115.

3247	
3247	
3248	
3249	
3250	
3251	
3252	
3253	
3254	
3255	
3256	
3257	
3258	
3259	
3260	
3261	
3262	
3263	
3264	
3265	
3266	
3267	
3268	
3269	
3270	
3271	
3272	
3273	
3274	
0075	
3275	
3275	
3276	
3276 3277	
3276 3277 3278	
3276 3277 3278 3279	
3276 3277 3278	
3276 3277 3278 3279 3280	
3276 3277 3278 3279 3280 3281	
3276 3277 3278 3279 3280	
3276 3277 3278 3279 3280 3281 3282	
3276 3277 3278 3279 3280 3281 3282 3283	
3276 3277 3278 3279 3280 3281 3282	
3276 3277 3278 3279 3280 3281 3282 3283	
3276 3277 3278 3279 3280 3281 3282 3283 3283 3284 3285	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286	
3276 3277 3278 3279 3280 3281 3282 3283 3283 3284 3285	
3276 3277 3278 3279 3280 3281 3282 3283 3283 3284 3285 3286 3286 3287	
3276 3277 3278 3279 3280 3281 3282 3283 3283 3284 3285 3286 3287 3288	
3276 3277 3278 3279 3280 3281 3282 3283 3283 3284 3285 3286 3286 3287	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3285 3286 3287 3288 3288	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3286 3287 3288 3289 3290	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3286 3287 3288 3289 3290 3291	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3286 3287 3288 3289 3290	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3286 3287 3288 3289 3290 3291 3292	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3286 3287 3288 3289 3290 3291 3292	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294	
3276 3277 3278 3279 3280 3281 3282 3283 3283 3284 3285 3286 3287 3288 3287 3288 3289 3290 3291 3292 3293 3294 3295	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294	
3276 3277 3278 3279 3280 3281 3282 3283 3283 3284 3285 3286 3287 3288 3287 3288 3289 3290 3291 3292 3293 3294 3295	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3291 3292 3293 3294 3295 3296 3297	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3293 3294 3295 3296 3297 3298	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3291 3292 3293 3294 3295 3296 3297	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3294 3295 3296 3297 3298 3299	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3294 3295 3296 3297 3298 3299 3299 3299 3300	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3294 3295 3296 3297 3298 3299	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3294 3295 3296 3297 3298 3299 3299 3299 3300	

Lovcen östlich von Kotor. Eiszeitalter und Gegenwart, 13, 15-18. Rundschau, 34, 7-8, 447-481. evolution: a case study from the Jura Mountains. The Holocene, 15, 982-993. The Cryosphere, 7, 1073-1081. recorded by Alpine speleothems. Nature Communications, 6, 6344. Permafrost and Periglacial Processes, 15(3), 207-220. coast: a long-term study. Géographie physique et Quaternaire, 54(1), 41-68. development. Geoadria, 7, 1, 51-81. International Conference on Geomorphology, New Delhi, abstract 302. Geográfica, 41(2), 317-335. Etna). Geografia Fisica e Dinamica Quaternaria, 15, 127-132. Geográfica, 41(2), 279-293. en el Pirineo Español. MOPU, Madrid, 29-98. A. (Editors), Atlas Climático de Galicia. Xunta de Galicia, 167-185. Masson-Delmotte, V., Landais, A., Stievenard, M., Cattani, O., Falourd, S., Jouzel, J., D14102.

Lewis, C.J., McDonald, E.V., Sancho, C., Peña, J.L., Rhodes, E.J., 2009. Climatic implications of correlated Upper Pleistocene glacial and fluvial deposits on the Cinca and Gállego Rivers (NE Spain) based on OSL dating and soil stratigraphy. Global and Planetary Change, 67, 141-152.

Lewkowicz, A. 2010. The lasting impacts of the fourth international polar year on permafrost science. Permafrost and Periglacial Processes, 21, 105.

Liedtke, V.H., 1962. Vergletscherungsspuren und Periglazialerscheinungen am Südhang des

Louis, H.L., 1944. Evidence for Pleistocene glaciation in Anatolia (in German). Geologische

Luetscher, M., Jeannin, P., Haeberli, W., 2005. Ice caves as an indicator of winter climate

Luetscher, M., Borreguero, M., Moseley, G.E., Spotl, C., Edwards, R.L., 2013. Alpine permafrost thawing during the Medieval Warm Period identified from cryogenic cave carbonates.

Luetscher, M., Boch, R., Sodemann, H., Spotl, C., Cheng, H., Edwards, R.L., Frisia, S., Hof, F., Muller, W., 2015. North Atlantic storm track changes during the Last Glacial Maximum

Lugon, R., Delaloyé, R., Serrano, E., Reynard, E., Lambiel, C., González, J.J., 2004. Permafrost and Little Ice Age glacier relationships, Posets Massif, Central Pyrenees, Spain.

Mackay, J.R., 2000. Thermally induced movements in ice-wedge polygons, western Arctic

Magaš, D., 2002. Natural-geographic characteristics of the Boka Kotorska area as the basis of

Magori, B., Onaca, A., Gachev, E., Urdea, P., 2017, The geomorphological characteristics of rock glaciers and protalus ramparts in the Rila and Pirin Mountains. Proceedings of the 9th

Makos, M., 2015. Deglaciation of the High Tatra Mountains. Cuadernos de Investigación

Marino, A., 1992. Nota preliminaire sul fenomeno glaciologico della Grotta del Gelo (Monte

Marks, L., 2015. Last deglaciation of northern continental Europe. Cuadernos de Investigación

Martínez de Pisón, E., Arenillas, M., 1988. Los glaciares actuales del Pirineo español. La nieve

Martínez-Cortizas, Valcárcel, M., Pérez-Alberti, A., Castillo-Rodríguez, F., Blanco-Chao, R., 1999. Cambio climático e paleoambientes cuaternarios. In: Martínez-Cortizas. A., Pérez-Alberti,

Johnsen, S.J., Dahl-Jensen, D., Sveinbjörnsdottir, A.E., White, J.W.C., Popp, T., Fischer, H., 2005. Holocene climatic changes in Greenland: Different deuterium excess signals at Greenland Ice Core Project (GRIP) and NorthGRIP. Journal of Geophysical Research - Oceans, 110,

3305	
3306	
3307	McManus, J.F., Francois, R., Gherardi, J.M., Keigwin, L.D., Brown-Leger, S., 2004. Collapse
3308	
3309	and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes.
3310	Nature, 428, 834-837.
3311	Mensching, H., 1960. Bericht und gedanken zur tagung der kommission für
3312	
	periglazialforschung in der IGU in Marokko vom 19. bis 31. Oktober 1959. Zeitschrift für
3313	Geomorpholohie, 159-170.
3314	Mercier, D., 2008. Paraglacial and paraperiglacial landsystems; concepts, temporal scales and
3315	spatial distribution. Géomorphologie. Relief, Processus, Environnement 14(4), 223-233.
3316	spatial distribution. Geomorphologic. Renet, 1 rocessus, Environmentent 14(4), 225-255.
3317	Messerli, B., 1964. Der Gletscher am Erciyas Dagh und das Problem der rezenten
3318	Schneegrenze im anatolischen und mediterranen Raum. Geographica Helvetica, 19(1), 19-34.
3319	
3320	Messerli, B., 1965. Beiträge zur Geomorphologie der Sierra Nevada (Andalusien). Juris
3321	Verlag. Zürich.
3322	Messerli, B., 1967. Die eiszeitliche und die gegenwartige Vergletscherung in Mittelmeerraum.
3323	
3324	Geographica Helvetica, 22, 105-228.
3325	Messerli, B., 1973. Problems of vertical and horizontal arrangement in the high mountains of
3326	the extreme arid zone (central Sahara). Artic and alpine Research, 5, 139-147.
3327	the externe and zone (central Sanara). Aftic and alphic Research, 5, 159 117.
	Messerli, B., Winiger, M., 1992. Climate, environmental change and resources of the African
3328	mountains from the Mediterranean to the Equator. Mountain Research and Development, 12, 315-
3329	336.
3330	
3331	Miccadei, E., Barberi, R., Cavinato, G.P., 1998. La geologia quaternaria della conca di
3332	Sulmona (Abruzzo, Italia centrale). Geologica Romana, 34(1), 59-86.
3333	Mihevc, A., 2009. Cryoturbation of the sediments at the cave entrances-case studies from
3334	
3335	Skednena jama, Potočka zijalka and Bestažovca cave. Proceedings of the 51st Annual Meeting in
3336	Ljubljana, 26-27.
3337	Mihevc, A., 2008. Distribution and characteristics of ice caves in Slovenia. In: Kadebskaya,
3338	Olga, Mavljudov, B.R., Mikhail, P. (Editors), Proceedings of the 3rd international workshop on
3339	
3340	ice caves, Kungur Ice Cave, Russia, 61-64.
3341	Milevski, I., 2008. Fossil glacial landforms and periglacial phenomena on the Osogovo
3342	Mountain massif. Annual Report No. 37 of the Institute of Geography, Faculty of Natural
3343	Sciences and Mathematics, Skopje, 25-49.
3344	
	Milivojević, M., Menković, L., Ćalić, J., 2008. Pleistocene glacial relief of the central part of
3345	Mt. Prokletije (Albanian Alps). Quaternary International, 190, 112-122.
3346	
3347	Mithen, S., 2004. After the ice: a global human history 20,000-5,000 BC. Cambridge, MA:
3348	Harvard University Press, 664 pp.
3349	Monegato, G., Ravazzi, C., Donegana, M., Pini, R., Calderoni, G., Wick, L., 2007. Evidence
3350	of a two-fold glacial advance during the last glacial maximum in the Tagliamento end moraine
3351	
3352	system (eastern Alps). Quaternary Research, 68, 284-302.
3353	Monegato, G., Scardia, G., Hajdas, I., Rizzini, F., Piccin, A., 2017. The Alpine LGM in the
3354	boreal ice-sheets game. Scientific Reports, 7, doi: 10.1038/s41598-017-02148-7.
3355	
3356	Monod, O., 1977. Recherches géologiques dans le Taurus occidental au sud de Beyşehir
3357	(Turquie). PhD Thesis, Universitity Paris Sud, Orsay.
3358	
3359	
3360	
3361	
3362	
0002	

3365 3366 Moran, A.P., Ivy Ochs, S., Vockenhuber, C., Kerschner, H., 2016. Rock glacier development 3367 in the Northern Calcareous Alps at the Pleistocene-Holocene boundary. Geomorphology, 273, 3368 178-188. 3369 3370 Moreno, A., Valero-Garcés, B.L., Jiménez-Sánchez, M., Domínguez-Cuesta, M.J., Mata, M.P., Navas, A., González-Sampériz, P., Stoll, H., Farias, P., Morellón, M., Corella, J.P., Rico, 3371 3372 M., 2010. The last deglaciation in the Picos de Europa National Park (Cantabrian Mountains, 3373 Northern Spain). Journal of Quaternary Science, 25(7), 1076-1091. 3374 Morley, M.W. and Woodward, J.C. (2011) The Campanian Ignimbrite (Y5) tephra at Crvena 3375 Stijena Rockshelter, Montenegro, Quaternary Research, 75, 683-696, 3376 3377 Morris, S.E., Olyphant, G.A., 1990. Alpine lithofacies variation: working towards a physically 3378 based model. Geomorphology, 3, 73-90. 3379 Mozzi, P., Ferrarese, F., Fontana, A., 2013. Document integrating Digital Elevation Models 3380 and stratigraphic data for the reconstruction of the post-LGM unconformity in the brenta alluvial 3381 megafan (north-eastern Italy). Alpine and Mediterranean Qiuaternary, 26(1), 41-54. 3382 3383 Nelson, F.E., Anisimov, O.A., Shiklomanov, N.I., 2001. Subsidence risk from thawing 3384 permafrost. Nature, 410, 889-90. 3385 Nelson, F.E., Anisimov, O.A., Shiklomanov, N.I., 2002. Climate change and hazard zonation 3386 in the circum-Arctic permafrost regions. Natural Hazards, 3, 203-225. 3387 3388 Nieuwendam, A., Ruiz-Fernández, J., Oliva, M., Freitas, C., Paio, V., Cruces, A., 2015. 3389 Postglacial landscape changes and cryogenic processes in the Picos de Europa (Northern Spain) 3390 reconstructed from geomorphological mapping and microstructures on quartz grains. Permafrost 3391 and Periglacial Processes, 27, 96-108. 3392 3393 Nojarov, P., 2012a. Changes in air temperatures and atmosphere circulation in high 3394 mountainous parts of Bulgaria for the period 1941-2008. Journal of Mountain Science, 9, 185-3395 200. 3396 Nojarov, P., 2012b. Variations in precipitation amounts, atmosphere circulation, and relative 3397 humidity in high mountainous parts of Bulgaria for the period 1947-2008. Theoretical and 3398 Applied Climatology, 107, 175-187. 3399 3400 Obleitner, F., Spötl, C., 2011. The mass and energy balance of ice within the Eisriesenwelt 3401 cave, Austria. The Cryosphere, 5, 245-257. 3402 Obu, J., Košutnik, J., Overduin, P.P., Boike, J., Blatnik, M., Zwieback, S., Gostinčar, P., 3403 3404 Mihevc, A., 2018. Sorted patterned ground in a karst cave, Ledenica pod Hrušico, Slovenia. 3405 Permafrost and Periglacial Processes, doi: 10.1002/ppp.1970. 3406 Oliva, M., 2009. Holocene alpine environments in Sierra Nevada (Southern Spain). PhD 3407 thesis. University of Barcelona. 3408 3409 Oliva, M., 2011. Evolución cuaternaria del paisaje de cumbres en Sierra Nevada. Cuaternario 3410 & Geomorfología, 25(1-2), 21-44. 3411 Oliva, M., Gómez-Ortiz, A., 2011. Holocene slope dynamics in Sierra Nevada (Southern 3412 Spain). Sedimentological analysis of solifluction landforms and lake deposits. In: Martini, I.P., 3413 French, H.M., Pérez-Alberti, A. (Editors), Ice-Marginal and Periglacial Processes and Sediments. 3414 Geological Society, London, Special Publications, 354, 227-239. 3415 3416 Oliva, M., Gómez-Ortiz, A., 2012. Late Holocene environmental dynamics and climate 3417 variability in a Mediterranean high mountain environment (Sierra Nevada, Spain) inferred from 3418 lake sediments and historical sources. The Holocene, 22(8), 915-927. 3419 3420 3421 3422

3423	
3424	
3425	Oliva, M., Ruiz-Fernández, J., 2015. Coupling patterns between para-glacial and permafrost
3426	
3427	degradation responses in Antarctica. Earth Surface Processes and Landforms, 40(9), 1227-1238.
3428	Oliva, M., Schulte, L., Gómez-Ortiz, A., 2011. The role of aridification in constraining the
3429	elevation range of Holocene solifluction processes and associated landforms in the periglacial belt
3430	of the Sierra Nevada (Southern Spain). Earth Surface Processes and Landforms, 36, 1279-1291.
3431	of the Sterra Wevada (Southern Spani). Earth Surface Processes and Eandronnis, 50, 1279-1291.
3432	Oliva, M., Gómez-Ortiz, A., Palacios, D., Salvador-Franch, F., Salvà-Catarineu, M., 2014.
	Environmental evolution in Sierra Nevada (South Spain) since the Last glaciation based on multi-
3433	proxy records. Quaternary International, 353, 195-209.
3434	prony records. Quaternary international, 505, 195 209.
3435	Oliva, M., Gómez-Ortiz, A., Salvador-Franch, F., Salvá-Catarineu, Palacios, D., Tanarro, L.,
3436	Ramos, M., Pereira, P., Ruiz-Fernández, J., 2016a. Inexistence of permafrost at the top of the
3437	Veleta peak (Sierra Nevada, Spain). Science of the Total Environment, 550, 484-494.
3438	
3439	Oliva, M., Serrano, E., Gómez-Ortiz, A., González-Amuchástegui, M.J., Nieuwendam, A.,
3440	Palacios, D., Pérez-Alberti, A., Pellitero, R., Ruiz-Fernández, J., Valcárcel, M., Vieira, G.,
3441	Antoniades, D., 2016b. Spatial and temporal variability of periglaciation of the Iberian Peninsula.
3442	Quaternary Science Reviews, 137, 176-199.
3443	
3444	Oliva, M., Pereira, P., Ruiz-Fernández, J., Nieuwendam, A., 2017. Recent advances in the
3445	study of active layer thermal regime and seasonal frost dynamics in cold climate environments.
	Catena, 149(2), 515-518.
3446	
3447	Oliva, M., Ruiz-Fernández, J., Barriendos, M., Benito, G., Cuadrat, J.M., García-Ruiz, J.M.,
3448	Giralt, S., Gómez-Ortiz, A., Hernández, A., López-Costas, O., López-Moreno, J.I., López-Sáez,
3449	J.A., Martínez-Cortizas, A., Moreno, A., Prohom, M., Saz, M.A., Serrano, E., Tejedor, E., Trigo,
3450	R., Valero-Garcés, B., Vicente-Serrano, S., 2018. The Little Ice Age in Iberian mountains. Earth
3451	Science Reviews, 177, 175-208.
3452	
3453	Oliva-Urcía, B., Moreno, A., Valero-Garcés, B., Mata, P., Grupo HORDA, 2013. Magnetismo
3454	y cambios ambientales en registros terrestres: el lago de Marboré, Parque Nacional de Ordesa y
3455	Monte Perdido (Huesca). Cuadernos de Investigación Geográfica, 39(1), 117-140.
3456	
3457	Ontañón, J., 1985. Evolución cuaternaria del valle del Paular. Publicaciones de la Universidad
3458	Complutense de Madrid, Madrid.
3459	Ontañón, J., Asensio-Amor, I., 1973. Observaciones sobre los frentes morrenicos en el alto
3460	valle del Lozoya. Estudios Geográficos, 29, 559-562
3461	Ortigosa, L., 1986. Geomorfología glaciar de la Sierra Cebollera (Sistema Ibérico). Instituto
3462	de Estudios Riojanos, Logroño, 77 pp.
3463	
3464	Osmaston, H.A., Harrison, S.P., 2005. The late Quaternary glaciation of Africa: a regional
3465	synthesis. Quaternary International, 138, 32-54.
3466	
3467	Østerud, Ø., Hønneland, G., 2014. Geopolitics and International Governance in the Arctic.
3468	Arctic Review on Law and Politics, 5(2), 156-176.
3469	Öztürk, M., 2012. Uludağ'daki periglasiyal süreçlerin, periglasiyal yerşekillerinin ve bunları
3470	denetleyen etmenlerin incelenmesi, Nilüfer Akkılıç Kütüphanesi Yayınları, 10, 161 pp.
3471	denetieyen etinemenni meelenmesi, witatei Akkinç Kutapitanesi Tayınları, 10, 101 pp.
3472	Palacios, D., Andrés, N., Luengo, E., 2003. Distribution and effectiveness of nivation in
3473	Mediterranean mountains: Peñalara (Spain). Geomorphology, 54(3-4), 157-178.
3474	
	Palacios, D., Andrés, N., Marcos, J. Vázquez-Selem, J., 2011a. Glacial landforms and their
3475	paleoclimatic significance in Sierra de Guadarrama, Central Iberian Peninsula. Geomorphology,
3476	139-140, 67-78.
3477	
3478	
3479	
3480	

Palacios, D., Marcos, J. Vázquez-Selem, L., 2011b. Last Glacial Maximum and deglaciation of Sierra de Gredos, Central Iberian Peninsula. Quaternary International, 233, 16-26.

Palacios, D., Andrés, N., Marcos, J. Vázquez-Selem, J., 2012. Maximum glacial advance and deglaciation of the Pinar Valley (Sierra de Gredos, Central Spain) and its significance in the Mediterranean context. Geomorphology, 177-178, 51-61.

Palacios, D., Gómez-Ortiz, A., de Andrés, N., Vázquez-Selem, L., Salvador-Franch, F., Oliva, M., 2015. Maximum extent of Late Pleistocene glaciers and last deglaciation of La Cerdanya mountains, Southeastern Pyrenees. Geomorphology, 231, 116-129.

Palacios, D., Gómez-Ortiz, A., Andrés, N. Salvador, F., Oliva, M., 2016. Timing and new geomorphologic evidence of the Last Deglaciation stages in Sierra Nevada (southern Spain). Quaternary Science Reviews, 150, 110-129.

Palacios D., Andrés N., Gómez-Ortiz A., García-Ruiz G., 2017a. Evidence of glacial activity during the Oldest Dryas in the Mountain of Spain. In: Hughes, P., Woodward, J. (Editors), Quaternary Glaciation in the Mediterranean Mountains, Geological Society of London Special Publications, 433, 87-110.

Palacios, D., Andrés, N., García-Ruiz, J.M., Schimmelpfennig, I., Campos, N., Léanni, L., Aster Team, 2017b. Deglaciation in the central Pyrenees during the Pleistocene–Holocene transition: timing and geomorphological significance. Quaternary Science Reviews, 150, 110-129.

Palade, B., Gómez-Ortiz, A., Palacios, D., 2011. Glaciares rocosos de Sierra Nevada y su significado paleoclimático: una primera aproximación. Cuadernos de Investigación Geográfica, 37, 95-118.

Palgrave, W.G., 1872. Vestiges of the glacial period in northeastern Anatolia. Nature, 5, 444-445.

Pallàs, R., Rodés, A., Braucher, R., Carcaillet, J., Ortuño, M., Bordonau, J., Bourlès, D., Vilaplana, J.M., Masana, E., Santanach, P., 2006. Late Pleistocene and Holocene glaciation in the Pyrenees: a critical review and new evidence from 10Be expoisure ages, south-central Pyrenees. Quaternary Science Reviews, 25 (21-22), 2937-2963.

Palma, P., Oliva, M., García-Hernández, C., Ruiz-Fernández, J., Gómez-Ortiz, A., Salvador-Franch, F., Salvà-Catarineu, F., 2017. Spatial characterization of glacial and periglacial landforms in the high lands of Sierra Nevada (Spain). Science of the Total Environment, 584, 1256-1267.

Palmentola, G., Stamatopoulos, L., 2004. Preliminray data about sporadic permafrost on Peristeri and Tzoumerka massifs (pindos Chain, Northwestern Greece). Revue de Geomorphologie, 8, 17-23.

Palmentola, G., Baboci, K., Gruda, G.J., Zito, G., 1995. A note on rock glaciers in the Albanian Alps. Permafrost and Periglacial Processes, 6, 251-257.

Pappalardo, M., 1999. Observations on stratified slope deposits, Gesso Valley, Italian Maritime Alps. Permafrost and Periglacial Processes, 10, 107-111.

Paro, L., 2011. Il ruolo dei processi criotici nell'evoluzione del paesaggio alpino: il caso di studio dei block stream del Complesso Ultrabasico di Lanzo (Alpi occidentali italiane). PhD thesis, University of Torino.

Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Benito-Alonso, J.L.,
Coldea, G., Dick, J., Erschbamer, B., Fernández-Calzado, R., Ghosn, D., Holten, J.I., Kanka, R.,
Kazakis, G., Kollár, J., Larsson, P., Moiseev, P., Moiseev, D., Molau, U., Molero-Mesa, J., Nagy,
L., Pelino, G., Puscas, M., Rossi, G., Stanisci, A., Syverhuset, A.O., Theurillat, J.P., Tomaselli,

302, 88-10	ry stages in the Gredos mountains (Iberian Central system). Quaternary Internation 00.
Pellice	r, F., 1980. El periglaciarismo del Moncayo. Geographicalia, 7-8, 3-25.
mountain	o, R., 2009. Application of an alpine geomorphological mapping system to an Atla environment: the Curavacas Massif (Cantabrian Range, northest Spain). Journa), 194-205.
	o, R., 2012. Geomorfología, paleoambiente cuaternario y geodiversidad en el Ma s Carrionas-Montaña Palentina. PhD thesis. University of Valladolid.
	o, R., 2014. Geomorphology and geomorphological landscapes of Fuentes Carrie Maps, 10(2), 313-323.
	o, R., Serrano, E., González-Trueba, J.J., 2011. Glaciares rocosos del sector centra a Cantábrica: indicadores paleoambientales. Cuadernos de Investigación Geográ -144.
	r, A., 1905. Eine Reise in das Gebiet des Erdschias-Dagh (Kleinasien), 1 ngen der k. k. Geography Gesellschaft in Wien, 6, 1.
Centrorier	J.L., Lozano, M.V., 1998. Las formas periglaciares de la Cordillera Ib- atal. In: Peña, J.L. (Editor), Geomorfología de campo de la Sierra de Albarra ad de Verano de Teruel, 159-177.
J., Julián, la Cordill	L., Lozano, M.V., Sánchez-Fabre, M., Jiménez-Martínez, A., Longares, L.A., Chu A., 2000. Las acumulaciones de clima frío de la Sierra de Albarracín en el context era Ibérica Oriental. In: Peña, J.L., Sánchez- Fabre, M., Lozano, M.V. (Edit y formas periglaciares en la montaña mediterránea. Instituto de Estudios Turolet 7-147.
	Alberti, A., 1979. Nuevas observaciones sobre glaciarismo y periglaciarismo en el nsula Ibérica. La Galicia sud oriental. Acta Geológica Hispana, 14, 441-444.
manifestac In: Pérez-	Alberti, A., Rodríguez-Guitián, M., 1993. Formas y depósitos de macroclasticiones actuales de periglaciarismo en las sierras septentrionales y orientales de Gal Alberti, Guitián, L., Ramil, P. (Editors), La evolución del paisaje en las montañas el Camino de Santiago. Xunta de Galicia, 91-105.
Galicia or	Alberti, A., Valcárcel, M., 2000. Depósitos de ladera de estructura estratificada e iental (Noroeste Ibérico). In: Peña, J.L., Sánchez- Fabre, M., Lozano, M.V. (Edit / formas periglaciares en la montaña mediterránea. Instituto de Estudios Turoler -44.
Noroeste o	Alberti, A., Martínez-Cortizas, A., Moares, C., 1994. Los procesos periglaciares de la Península Ibérica. In: Gómez-Ortiz, A., Simón Torres, M., Salvador-Franc riglaciarismo en la Península Ibérica, Canarias y Baleares. Monografías de la S
, ,	Estudios significativos, 7, 33-54.

M., Unterluggauer, P., Villar, L., Vittoz, P., Grabherr, G., 2012. Recent plant diversity changes on Europe's mountain summits. Science, 336, 353-355.

Pechoux, P.Y., 1970. Traces of glacial action in the Mountains of Central Greece. Revue de Géographie Alpine, 58, 211-224.

Pedraza J Carrasco R.M. Domínguez-Villar, D., Villa, J., 2013. Late Pleistocene glacial onal,

3600 3601	
3602 3603 3604 3605	datos climáticos, geomorfológicos y botánicos. In: Gómez-Ortiz, A., Salvador-Franch, F., Schulte, L., García-Navarro, A. (Editors), Procesos biofísicos actuales en medios fríos. Publicacions de la Universitat de Barcelona, 245-261.
3606 3607 3608 3609	Pérez-Alberti, A., Valcárcel, M., Martini, I.P. Pascucci, V., Andreucci, 2011. Upper Pleistocene glacial valley-junction sediments at Pias, Trevinca Mountains, NW Spain. In: Martini, I.P., French, H., Pérez-Alberti, A. (Editors), Ice-Marginal and Periglacial Processes and Sediments. The Geological Society. Special Publication, London, 354, 93-110.
3610 3611 3612	Permenter, J.L., Oppenheimer, C., 2007. Volcanoes of the Tibesti massif (Chad, northern Africa). Bulletin of Volcanology, 69, 609–626.
3613 3614 3615	Petrini M., Colleoni F., Kirchner N., Hughes L.C.A., Camerlenghi A., Rebesco M., Lucchi R.G., Forte E., Colucci R.R., Noormets R., 2018. Interplay of grounding-line dynamics and sub- shelf melting during the last retreat of Bjørnøyrenna Ice Stream. Scientific Reports, 8, 7196.
3616 3617 3618	Planhol, X. de, Bilgin, T., 1964. Glaciaire et périglaciaire quaternaires et actuels dans le massif du Karagöl (Chaines pontiques, Turquie). Revue de Géographie Alpine, 52, 3, 497-512.
3619	Pope, R.J., Hughes, P.D., Skourtsos, E., 2017. Glacial history of Mt Chelmos, Peloponnesus,
3620	Greece. In: Hughes, P.D., Woodward, J.C. (Editors), Quaternary glaciation in the Mediterranean
3621 3622	Mountains. Geological Society of London Special Publications 433, 211-236.
3623	Poser, H., 1948. Boden- und Klimaverhaltnisse in Mittel- und Westeuropa wahrend der
3624	Würmeiszeit. Erdkunde, 2, 53-68.
3625	
3626	Poser, J., 1957. Klimamorphologische Probleme auf Kreta. Zeitschrift für Geomorphologie,
3627	2, 113-142.
3628	Pučnik, J., 1980. Velika knjiga o vremenu. Ljubljana, Cankarjeva založba, 367.
3629	Radovanović, M., 1994. Pluviometrijske karakteristike NP - Lovćen. In: Mijušković, M.
3630	(Editor), Nacionalni park Lovćen - prirodna i kulturna dobra. Cetinje, 17-18 September 1993.
3631	Podgorica, Crnogorska akademija nauka i umjetnosti, 27-37.
3632	
3633	Raynal, R., Dresch, J., Joly, F., 1956. Deux exemples regionaux de glaciation quaternaire au
3634 3635	Maroc: Haut Atlas Oriental, Moyen Atlas Septentrional. IV Congres INQUA, Rome-Pisa, 108-
3636	117.
3637	Ravanel, L., Magnin, F., Deline, P., 2017. Impacts of the 2003 and 2015 Summer Heatwaves
3638	on Permafrost-Affected Rock-Walls in the Mont Blanc Massif. Science of the Total Environment,
3639	609, 132-143.
3640	Pavarri C. Padina E. Margatti D. Patara C. Paimar B.I. 2012 Degument Clasial to
3641	Ravazzi, C., Badino, F., Marsetti, D., Patera, G., Reimer, P.J., 2012. Document Glacial to paraglacial history and forest recovery in the Oglio glacier system (Italian Alps) between 26 and
3642	15 ka cal BP. Quaternary Science Reviews, 58, 146-161.
3643	15 ka cai BF. Quaternary Science Reviews, 58, 140-101.
3644	Reber, R., Akçar, A., Yesilyurt, S., Yavuz, V., Tikhomirov, D., Kubik, P.W., Schlüchter, C.,
3645	2014. Glacier advances in northeastern Turkey before and during the global Last Glacial
3646	Maximum. Quaternary Science Reviews, 101, 177-192.
3647	Redondo, J.M., Carrera, P., González-Gutiérrez, R.B. Gómez-Villar, A., 2002.
3648 3649	Caracterización de los Macizos que dominan los glaciares rocosos fósiles de la Sierra de Gistredo
3650	(León): influencia de la fracturación en la génesis y desarrollo de esas formas periglaciares. In:
3651	Serrano, E., García de Celis, A. (Editors), Periglaciarismo en montaña y altas latitudes. University
3652	of Valladolid, Valladolid, 27-36.
3653	
3654	
3655	
3656	

3659 3660 3661 Redondo, J.M., Gómez-Villar, A., González-Gutiérrez, R.B., 2004. Localización y 3662 caracterización morfométrica de los glaciares rocosos relictos de la Sierra de Gistredo (Montaña 3663 Cantábrica, León). Cuadernos de Investigación Geográfica, 30, 35-60. 3664 3665 Redondo, J.M., Gómez-Villar, A., González-Gutiérrez, R.B., Santos, J., 2010. Los glaciares 3666 rocosos de la Cordillera Cantábrica. University of León, León, 158 pp. 3667 Redžić, S., Barudanović, S., Trakić, S., Kulijer, D., 2011 Vascular plant biodiversity richness 3668 and endemo-relictness of the karst mountains Preni, Cvrsnica and Cabulja in Bosnia and 3669 Herzegovina (W. Balkan) = Biodiverziteta in endemo-reliktnost vaskularnih rastlin kraških 3670 gorovij Prenj, Čvrsnica in Čabulja, Bosna in Hercegovina. Acta Carsologica, 40, 3, 527-555. 3671 3672 Rellini, I., Trombino, L., Rossi, P.M., Firpo, M., 2014. Frost activity and ice segregation in a 3673 palaeosol of the Ligurian Alps (Beigua Massif, Italy): Evidence of past permafrost? Geografia 3674 Fisica e Dinamica Quaternaria, 37(1), 29-42. 3675 Repapis, C.C., Philandras, C.M., 1988. A note on the air temperature trends of the last 100 3676 years as evidenced in the Eastern Mediterranean time series. Theoretical and Applied 3677 Climatology, 39, 93-97. 3678 3679 Ribolini, A., Fabre, D., 2006. Permafrost existence in the rock glaciers of the Argentera Massif 3680 (Maritime Alps, Italy). Permafrost and Periglacial Processes, 17, 49-63. 3681 Ribolini, A., Guglielmin, M., Fabre, D., Bodin, X., Marchisio, M., Sartini, S., Spagnolo, M., 3682 3683 Schoeneich, P., 2010. The internal structure of rock glaciers and recently-deglaciated slopes as 3684 revealed by geoelectrical tomography: insights on permafrost and recent glacial evolution in the 3685 Central and Western Alps (Italy-France). Quaternary Sciences Reviews, 29, 507-521. 3686 Robinson, A., Calov, R., Ganopolski, A., 2012. Multistability and critical thresholds of the 3687 Greenland ice sheet. Nature Climate Change, 2, 429-432. 3688 3689 Robustelli, G., Scarciglia, F., 2006. Mormanno, 2006, e Praia a Mare (Calabria settentrionale). 3690 In: Chelli, A., D'Aquila, P., Firpo, M., Ginesu, S., Guglielmin, M., Pappalardo, M., Pecci, M., 3691 Piacentini, T., Queirolo, C., Robustelli, G., Scarciglia, F., Sias, S., Tellini, C. (Editors), Testimoni 3692 di una montagna scomparsa. Contributo alle metodologie d'indagine delle forme periglaciali 3693 relitte. Problematiche e applicazioni in differenti ambienti morfodinamici. Collana Quaderni della 3694 Montagna, vol. 8, Bologna, Bonomia University Press, 81-92. 3695 3696 Rodrigo, F.S., Esteban-Parra, M.J., Pozo-Vázquez, D., Castro-Díaz, Y., 1999. A 500-year precipitation record in southern Spain. International Journal of Climatology, 19, 1233-1253. 3697 3698 Rodríguez-Pérez, C., 1995. Estudio geomorfológico del Puerto de San Isidro. Ería, 36, 63-87. 3699 3700 Rodríguez-Pérez, C., 2009. Geomorfología de la montaña astur-leonesa entre los puertos de 3701 Ventana y de Somiedo. PhD thesis, University of Oviedo. 3702 Rodríguez-Rodríguez, L., Jiménez-Sánchez, M., Domínguez-Cuesta, M.J., Aranburu, A., 3703 2014. Research history on glacial geomorphology and geochronology of the Cantabrian 3704 Mountains, north Iberia (43-42°N/7-2°W). Quaternary International, 364, 6-21. 3705 3706 Rodríguez-Rodríguez, L., Jiménez-Sánchez, M., Domínguez-Cuesta, M.J., Rinterknecht, V., 3707 Pallàs, R., Bourlès, D., 2016. Chronology of glaciations in the Cantabrian Mountains (NW Iberia) 3708 during the Last Glacial Cycle based on in situ-produced 10Be. Quaternary Science Reviews, 138, 3709 31-48. 3710 Rossato, S., Monegato, G., Mozzi, P., Cucato, M., Gaudisoso, B., Miola, A., 2013. Late 3711 Quaternary glaciations and connections to the piedmont plain in the prealpine environment: The 3712 middle and lower Astico Valley (NE Italy). Quaternary International, 288, 8-24. 3713 3714 3715 3716 3717

Rosselló, V., 1977. Screes periglaciares en la montaña mallorquina. V Coloquio de Geógrafos Españoles. AGE-Universidad de Granada, Granada, 83-92.

Ruiz-Fernández, J., 2013. Las formas de modelado glaciar, periglaciar y fluviotorrencial del Macizo Occidental de los Picos de Europa (Cordillera Cantábrica). PhD thesis, University of Oviedo.

Ruiz-Fernández, J., Poblete, M.A., García, C., 2014. Características morfoclimáticas y procesos y formas periglaciares actuales en el Macizo Occidental de los Picos de Europa (Cordillera Cantábrica). In: Gómez-Ortiz, A., Salvador, F., Oliva, M., Salvà, M. (Editors), Avances, métodos y técnicas en el estudio del periglaciarismo. University of Barcelona, Barcelona, 91-103.

Ruiz-Fernández, J., Oliva, M., Cruces, A., Lopes, V., Freitas, C., Andrade, C., García-Hernández, C., López-Sáez, J.A., Geraldes, M., 2016. Environmental evolution in the Picos de Europa (Cantabrian Mountains, SW Europe) since the Last Glaciation. Quaternary Science Reviews, 138, 87-104.

Ruszkiczay-Rüdiger, Z., Kern, Z., 2015. Permafrost or seasonal frost? A review of paleoclimate proxies of the last glacial cycle in the East Central European lowlands. Quaternary International, 415, 241-252.

Salvador-Franch, F., Gómez-Ortiz, A., Palacios, D., 2010. Comportamiento térmico del suelo en un enclave de alta montaña mediterránea con permafrost residual: Corral del Veleta (Sierra Nevada, Granada. España). In: Blanco, J.J., de Pablo, M.A., Ramos, M. (Editors), Ambientes periglaciares, permafrost y variabilidad climática. Publicaciones de la Universidad de Alcalá, Alcalá de Henares (Spain), 61-68.

Salvador-Franch, F., Gómez-Ortiz, A., Salvà-Catarineu, M., Palacios, D., 2011. Caracterización térmica de la capa activa de un glaciar rocoso en medio periglaciar de alta montaña mediterránea: El ejemplo del Corral del Veleta (Sierra Nevada, España). Cuadernos de Investigación Geográfica, 37(2), 25-48.

Samartin, S., Heiri, O., Kaltenrieder, P., Kühl, N., Tinner, W., 2016. Reconstruction of full glacial environments and summer temperatures from Lago della Costa, a refugial site in Northern Italy. Quaternary Science Reviews, 143, 107-119.

Samartin, S., Heiri, O., Joos, F., Renssen, H., Franke, J., Brönnimann, S., Tinner, W., 2017. Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages. Nature Geoscience, 10, 207-212.

Sancho, C., Bartolomé, M., Moreno, A., Belmonte, A., Leunda, M., Oliva-Urcia, B., López-Martínez, J., Delgado-Huertas, A., 2016. Las cuevas heladas del Pirineo como sensores paleoambientales: estado de la cuestión. Geo-Temas, 16(1), 311-314.

Santos-González, J., 2010. Glaciarismo y periglaciarismo en el Alto Sil, provincia de León (Cordillera Cantábrica). PhD thesis. University of León.

Sanz, E., Pellicer, F., 1994. El periglaciarismo de la Sierra Cebollera (Soria y La Rioja). Cuaternario & Geomorfología, 8(1-2), 123-138.

Sanz-Herráiz, C., 1988. El relieve del Guadarrama Oriental. Consejería de Política Territorial, Madrid.

Sarıkaya, M.A., 2012. Recession of the ice cap on Mount Ağrı (Ararat), Turkey, from 1976 to 2011 and its climatic significance. Journal of Asian Earth Sciences, 46, 190-194.

3777	
3778	
3779	Sarıkaya, M.A., Tekeli, A.E., 2014. Satellite inventory of glaciers in Turkey. In: Kargel, J.S.,
3780	Leonard, G.J., Bishop, M.P., Kääb, A., Raup, B. (Editors), Global Land Ice Measurements from
3781	Space, Praxis-Springer (Publisher), Berlin Heidelberg, 465-480.
3782	
3783	Sarıkaya, M.A., Çiner, A., 2015. Late Pleistocene glaciations and paleoclimate of Turkey.
3784	Bulletin of Mineral Research and Exploration (MTA), 151, 107-127.
3785	Sarıkaya, M.A., Çiner, A., 2017. The late Quaternary glaciation in the Eastern Mediterranean.
3786	
3787	In: Hughes, P.D., Woodward, J.C. (Editors), Quaternary Glaciation in the Mediterranean
3788	Mountains, Geological Society of London Special Publication, 433, 289-305.
3789	Sarıkaya, M.A., Çiner, A., Zreda, M., 2003. Erciyes volkanı Geç Kuvaterner buzul çökelleri.
3790	HU Yerbilimleri, 27, 59-74.
3791	
3792	Sarıkaya, M. A., Zreda, M., Çiner, A., 2009. Glaciations and paleoclimate of Mount Erciyes,
3793	central Turkey, since the Last Glacial Maximum, inferred from 36Cl cosmogenic dating and
3794	glacier modelling. Quaternary Science Reviews, 28(23-24), 2326-2341.
3795	Combrand M.A. Cimer A. Zarda M. 2011 Quatermany classificant of Tanlary In Ebland I
3796	Sarıkaya, M.A., Çiner, A., Zreda, M., 2011. Quaternary glaciations of Turkey. In: Ehlers, J.,
3797	Gibbard, P.L., Hughes, P.D. (Editors), Quaternary Glaciations - extent and chronology; a closer
3798	look, Elsevier Publications, Developments in Quaternary Science, Amsterdam, 15, 393-403.
3799	Sarıkaya, M.A., Çiner, A., Yıldırım, C. 2017. Cosmogenic ³⁶ Cl glacial chronologies of the
3800	Late Quaternary glaciers on Mount Geyikdağ in the Eastern Mediterranean. Quaternary
3801	
3802	Geochronology, 39, 189-204.
3803	Sarıkaya, M.A., Zreda, M., Çiner, A., Zweck, C., 2008. Cold and wet Last Glacial Maximum
	on Mount Sandiras, SW Turkey, inferred from cosmogenic dating and glacier modelling.
3804	Quaternary Science Reviews, 27(7-8), 769-789.
3805	
3806	Sarıkaya, M.A., Çiner, A., Haybat, H., Zreda, M., 2014. An early advance of glaciers on Mount
3807	Akdağ, SW Turkey, before the global Last Glacial Maximum; insights from cosmogenic nuclides
3808	and glacier modeling. Quaternary Science Reviews, 88, 96-109.
3809	Scapozza, C., Lambiel, C. Reynard, E., Fallot, JM., Antognini, M., Schoeneich, P., 2010.
3810	Radiocarbon Dating of Fossil Wood Remains Buried by the Piancabella Rock Glacier, Blenio
3811	6
3812	Valley (Ticino, Southern Swiss Alps): Implications for rock glacier, treeline and climate history,
3813	Permafrost and Periglacial Processes, 21, 90-96.
3814	Scarciglia, F., 2000. Variazioni tardo-quaternarie delle morfodinamiche di versante in
3815	Appennino meridionale: il contributo della paleopedologia. PhD thesis, University of Napoli.
3816	
3817	Scarciglia, F., Terribile, F., Colombo, C., Cinque, A., 2003. Late Quaternary climatic changes
3818	in Northern Cilento (Southern Italy): an integrated geomorphological and paleopedological study.
3819	Quaternary International, 106-107, 141-158.
3820	Sahuur EAC McCuira AD Sahädal C Crassa C Harden IW Havas DI Hugalius
3821	Schuur, E.A.G., McGuire, A.D., Schädel, C. Grosse, G., Harden, J.W., Hayes, D.J., Hugelius,
3822	G., Koven, C.D., Kuhry, P., Lawrence, D.M., Natali, S.M., Olefeldt, D., Romanovsky, V.E.,
3823	Schaefer, K., Turetsky, M.R., Treat, C.C., Vonk, J.E., 2015. Climate change and the permafrost
3824	carbon feedback. Nature, 520(7546), 171-179.
3825	Scoto, F., Giudice, G., Randazzo, L., Maggi, V., 2016. Air circulation model and topographic
3826	survey of the "grotto del gelo", Mt. Etna Italy. In: Mihevc, A., Zupan Hajna, N., Gostinčar, P.
3827	(Editors), Proceedings of the 7th International Workshop on Ice Caves, pp. 71-73.
3828	(Lenois), i roccoungs of the /th international workshop on ice Caves, pp. /1-/3.
3829	Scotti, R., Brardinoni, F., Alberti, S., Frattini, P., Crosta, G.B., 2013. A regional inventory of
3830	rock glaciers and protalus ramparts in the central Italian Alps. Geomorphology, 186, 136-149.
3831	
3832	
3833	
3834	
3835	

3836 3837 3838 Sengör, A.M.C., Yilmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. 3839 Tectonophysics, 75, 181-241. 3840 Seppi, R., Carton, A., Zumiani, M., Dall'Amico, M., Zampedri, G., Rigon, R., 2012. Inventory, 3841 3842 distribution and topographic features of rock glaciers in the southern region of the eastern Italian 3843 Alps (Trentino). Geografia Fisica e Dinamica Quaternaria, 35, 185-197. 3844 Seppi, R., Zanoner, T., Carton, A., Bondesan, A., Francese, R., Carturan, L., Zumiani, M., 3845 Giorgi, M., Ninfo, A., 2014. Current transition from glacial to periglacial processes in the 3846 Dolomites (South-Eastern Alps). Geomorphology, 228, 71-86. 3847 3848 Serrano, E., 1998. Geomorfología del Alto Gállego (Pirineo aragonés). Fundación Fernando 3849 El Católico, Zaragoza. 3850 Serrano, E., Agudo, C., 1998. Los glaciares rocosos de los Pirineos. Implicaciones 3851 ambientales. In: Gómez-Ortiz, A., Salvador-Franch, F., Schulte, L., García-Navarro, A. (Editors), 3852 Procesos biofísicos actuales en medios fríos. Publicacions de la Universitat de Barcelona, 133-3853 154. 3854 3855 Serrano, E., Agudo, C., 2004. Glaciares rocosos y deglaciación en la alta montaña de los 3856 Pirineos aragoneses (España). Boletín de la Real Sociedad Española de Historia Natural, 99, 159-3857 172. 3858 3859 Serrano, E., Agudo, C., Martínez De Pisón, E., 1999. Rock glaciers in the Pyrenees. Permafrost 3860 and Periglaclacial Processes, 10, 101-106. 3861 Serrano, E., Martínez de Pisón, E., Agudo, C., 2000. El medio periglaciar de alta montaña en 3862 el Pirineo central: aportaciones recientes. In: Peña, J.L., Sánchez- Fabre, M., Lozano, M.V. 3863 (Editors), Procesos y formas periglaciares en la montaña mediterránea. Instituto de Estudios 3864 Turolenses, Teruel, 45-62. 3865 3866 Serrano, E., Agudo, C., Delaloyé, R., González-Trueba, J.J., 2001. Permafrost distribution in 3867 the Posets massif, Central Pyrenees. Norwegian Journal of Geography, 55(4), 245-252. 3868 Serrano, E., Agudo, C., González Trueba, J.J., 2002. La deglaciación de la alta montaña del 3869 macizo del Posets (Pirineo aragonés). Morfología, evolución y fases morfogenéticas glaciares. 3870 Cuaternario y Geomorfología, 16, 111-126. 3871 3872 Serrano, E., San José, J.J., Agudo, C., 2006. Rock glacier dynamics in a marginal periglacial 3873 high mountain environment: flow, movement (1991-2000) and structure of the Argualas rock 3874 glacier, the Pyrenees. Geomorphology, 74, 285-296. 3875 Serrano, E., Pellitero, R., Otero, M., 2010a. Huellas pleistocenas de frío intenso en la Cuenca 3876 3877 del Duero: cuñas de arena relictas en las terrazas del Pisuerga. In: Úbeda, X., Vericat, D., Batalla, 3878 R.J. (Editors), Avances de la Geomorfología en España, 2008-2010. SEG-Universitat de 3879 Barcelona, Barcelona, 417-420. 3880 Serrano, E., Agudo, C., Delaloyé, R., González, J.J., 2010b. Permafrost distribution in the 3881 Posets massif, Central Pyrenees. Norsk Geografisk Tidsskrift, 55(4), 245-252. 3882 3883 Serrano, E., Sanjosé, J.J., González Trueba, J.J., 2010c. Rock glaciers dynamics in marginal 3884 periglacial environments. Earth Surface Processes and Landforms, 35(11), 1302-1314. 3885 Serrano, E., González-Trueba, J.J., San José, J.J., 2011a. Dinámica, evolución y estructura de 3886 los glaciares rocosos de los Pirineos. Cuadernos de Investigación Geográfica, 37, 145-169. 3887 3888 Serrano, E., Morales, C., González Trueba, J.J., Martín, R., 2009. Cartografía del permafrost 3889 de montaña en los Pirineos españoles. Finisterra, 87, 45-54. 3890 3891 3892 3893

Serrano, E., González-Trueba, J.J., San José, J.J., Del Río, L.M., 2011b. Ice patch origin, evolution and dynamics in a temperate maritime high mountain: the Jou Negro, Picos De Europa (NW Spain). Geographiska Annaler, 9(2), 57-70. Serrano, E., González-Trueba, J.J., González-García, M., 2012. Mountain glaciation and paleoclimate reconstruction in the Picos de Europa (Iberian Peninsula, SW Europe). Quaternary Research, 78, 303-314. Serrano, E., González-Trueba, J.J., Pellitero, R., González-García, M., Gómez, M., 2013. Quaternary glacial evolution in the Cantabrian Mountains (Northern Spain). Geomorphology, 196, 65-82. Serrano, E., Gómez-Lende, M., González-Amuchastegui, M.J., González-García, M., González-Trueba, J.J., Pellitero, R., Rico, I., 2015. Glacial chronology, environmental changes and implications for human occupation during the upper Pleistocene in the eastern Cantabrian Mountains. Quaternary International, 364, 22-34. Simón, M., Sánchez, S., García, I., 2000. Soil-landscape evolution on a Mediterranean high mountain. Catena, 39, 211-231. Sinnyovsky, D., 2015. Wurm glacier formations and mountain landscapes in Rila Mountain, Bulgaria. Proceedings of the 15th International Multidisciplinary Scientific GeoConference SGEM 2015, 1, 529-536. Smiraglia, C., Fabre, D., Evin, M., Assier, A., 1994. The rock glaciers of the Manzina, Valfurva, Stelvio National Park, Italy. Geoelectrical soundin, Geografia Fisica e Dinamica Quaternaria, 17(1), 79-85. Smith, G.W., Nance, R.D., Genes, A.N., 1997. Quaternary glacial history of Mount Olympus. Geological Society of America Bulletin, 109, 809-824. Smith, J.A., Andersen, T.J., Shortt, M., Gaffney, A.M., Truffer, M., Stanton, T.P., Bindschadler, R., Dutrieux, P., Jenkins, A., Hillenbrand, C.D., Ehrmann, W., Corr, H.F.J., Farley, N., Crowhurst S., Vaughan, D.G., 2017. Sub-ice-shelf sediments record history of twentiethcentury retreat of Pine Island Glacier. Nature, 541, 77-80. Soutadé, G., 1980. Modelé et dynamique actualle des versants supraforestiers des Pyrénées Orientales. Imp. Coop. du Sud-Ouest, Albi, 452 pp. Staut, M., Vreča, P., Merela, M., Brenčič, M., 2016. Recent fluctuations of ice deposits in the cave Ledena jama pri Planini Viševnik, NW Slovenia. In: Mihevc, A., Zupan Hajna, N., Gostinčar, P. (Editors), Proceedings of the 7th International Workshop on Ice Caves, 73-74.

Stefanova, I., Atanassova, J., Delcheva, M., Wright, H. E., 2006. Chronological framework for the Lateglacial pollen and macrofossil sequence in the Pirin Mountains, Bulgaria: Lake Besbog and Lake Kremensko-5. The Holocene, 16, 6, 877-892.

Stenni, B., Genoni, L., Flora, O., Guglielmin, M., 2007. An oxygen isotope record from the Foscagno rock-glacier ice core, upper Valtellina, Italian central Alps. The Holocene, 17, 1033-1039.

Stoffel, M., Luetscher, M., Bollschweiler, M., Schlatter, F., 2009. Evidence of NAO control on subsurface ice accumulation in a 1200 yr old cave-ice sequence, St Livres ice cave, Switzerland. Quaternary Research, 72, 16-26.

Stoyanov, K., Gachev, E., 2012. Recent Landform Evolution in Bulgaria. In: Lóczy, D., Stankoviansky, M., Kotarba, A. (Editors), Recent Landform Evolution: The Carpatho-Balkan-Dinaric Region, Springer, Dordrecht, New York, 377-412.

3955	
3956	Stroeven, A.P., Hättestrand, C., Kleman, J., Heyman, J., Fabel, D., Fredin, O., Goodfellow,
3957	•
3958	B.W., Harbor, J.M., Jansen, J.D., Olsen, L., Caffee, M.W., Fink, D., Lundqvist, J., Rosqvist, G.C.,
3959	Strömberg, B., Jansson, K.N., 2016. Deglaciation of Fennoscandia. Quaternary Science Reviews,
3960	147, 91-121.
3961	Styllas, M., Schimmelpfennig, I., Ghilardi, M., Benedetti, L., 2016. Geomorphologic and
3962	palaeoclimatic evidence of Holocene glaciation on Mount Olympus, Greece. The Holocene, 26,
3963	709-721.
3964	/09-/21.
	Tanarro, L.M., Palacios, D., Zamorano, J.J., Gómez-Ortiz, A., 2010. Cubierta nival,
3965	permafrost y formación de flujos superficiales en un talud detrítico de alta montaña (Corral del
3966	Veleta, Sierra Nevada, España). Cuadernos de Investigación Geográfica, 36(2), 39-60.
3967	vereta, Sierra Nevada, España). Edadernos de investigación Geogranica, 50(2), 57-60.
3968	Temovski, M., 2016. Ice caves in Macedonia. In: Mihevc, A., Zupan Hajna, N., Gostinčar, P.
3969	(Editors), Proceedings of the 7th International Workshop on Ice Caves, 74.
3970	
3971	Tihay, J.P., 1973. Note sur quelques paléoformes periglaciaires observées en Algérie orientale.
3972	Méditerranée, 13(2), 37-47.
3973	Thornes, J.B., 1968. Glacial and periglacial features in the Urbión Mountains. Spain. Estudios
3974	Geológicos, 24, 249-258.
3975	Geologicos, 24, 249-238.
3976	Tonkov, S., Bozilova, E., Possnert, G., 2016. Lateglacial to Holocene vegetation development
3977	in the Central Rila Mountains, Bulgaria. The Holocene, 26, 17-28.
3978	
3979	Toucanne, S., Soulet, G., Freslon, N., Silva, R., Dennielou, B., Zaragosi, S., Eynaud, F.,
3980	Bourillet, J.F., Bayon, G., 2015. Millennial-scale fluctuations of the European Ice Sheet at the
3981	end of the last glacial, and their potential impact on global climate. Quaternary Science Reviews,
3982	123, 113-133.
3983	Türkeş, M., Öztürk, M.Z., 2008. Uludağ periglasiyal jeomorfolojisi. Ulusal jeomorfoloji
3984	Sempozyumu, 387-395.
3985	Türkeş, M., Öztürk, M.Z., 2011. Uludağ'da girland ve çember oluşumları, Coğrafi Bilimler
3986	Dergisi, 2, 239-257.
3987	Dergisi, 2, 237-237.
3988	Turoğlu, H., 2009. Aksu Deresi Havzası (Giresun) Periglasiyal Sahasında Kütle Hareketleri.
3989	Türk Coğrafya Dergisi, 52, 41-54.
3990	
3991	Tzedakis, P.C., Frogley, M.R., Lawson, I.T., Preece, R.C., Cacho, I., de Abreu, L., 2004.
3992	Ecological thresholds and patterns of millennial-scale climate variability: The response of
3993	vegetation in Greece during the last glacial period. Geology, 32, 109-112.
3994	Ugarte, F. M., 1992. Glacial and periglacial morphogenesis in the Basque mountains. The Late
3995	
3996	Quaternary in the Western Pyrenean Region, University of of the Basque Country, 235-250.
3997	Ünal, A., Sarıkaya, M.A., 2013. Erciyes kaya buzulunun uzaktan algılama ile incelenmesi
3998	(2001-2012). Coğrafyacılar Derneği Yıllık Kongresi Bildiriler Kitabı, İstanbul, 1-5.
3999	
4000	Valcárcel, M., 1998. Evolución geomorfológica y dinámica de vertientes en el NE de Galicia.
4001	Importancia de los procesos de origen frío en un sector de las montañas lucenses. PhD thesis,
4002	University of Santiago de Compostela.
4003	
4003	Valcárcel, M., Pérez-Alberti, A., 2002. Los campos de bloques en montañas del noroeste de
	la Península Ibérica: Génesis y significado paleoambiental. In: Serrano, E., García de Celis, A.
4005	(Editors), Periglaciarismo en montaña y altas latitudes. University of Valladolid, Valladolid, 13-
4006	26.
4007	Valaéraal M. Blanco B. Martínar Cartinas A. Dérar Albanti A. 1000 Estimonitar de la
4008	Valcárcel, M., Blanco, R., Martínez-Cortizas, A., Pérez-Alberti, A., 1998. Estimación de las
4009	paleotemperaturas en Galicia durante el último ciclo glaciar a partir de datos geomorfologicos y
4010	
4011	

4014	
4015	climáticos. In: Gómez-Ortiz, A., Salvador-Franch, F., (Editors), Investigaciones recientes de la
4016	geomorfología española, Sociedad Española de Geomorfología, 767-770.
4017	geomonologia espanola, Sociedad Espanola de Geomonologia, 707-770.
4018	van Vliet-Lanoë, B.M.J., Hallegouët, B., 2001. European permafrost at the LGM and at its
4019	maximal extent. In: Paepe, R., Melnikov, V.P., Van Overloop, E., Gorokhov, V.D. (Editors),
4020	Permafrost response on economic development, environmental security and natural resources.
4021	Springer Netherlands, Dordrecht, 195-213.
4022	
4023	van Vliet-Lanoe, B., Magyarib, A., Meilliez, F., 2004. Distinguishing between tectonic and
4024	periglacial deformations of quaternary continental deposits in Europe. Global and Planetary
4025	Change, 43, 103-127.
4026	Vandenberghe, J., French, H.M., Gorbunov, A., Velichko, A.A., Jin, H., Cui, Z., Zhang, T.,
4027	Wan, X., 2014. The Last Permafrost Maximum (LPM) map of the northern hemisphere:
4028	permafrost extent and mean annual air temperatures, 25-17 ka BP. Boreas, 43, 652-666.
4029	permanosi extent and mean annual an temperatures, 23-17 ka Dr. Doreas, 45, 052-000.
4030	Velichko, A.A., 1982. Paleogeography of Europe during the last one hundred thousand years.
4031	In: Gerasimov, I.P. (Editor), 14 Planches. Moscow, 156.
4032	
4033	Vieira, G., 2004. Geomorphology of the high valleys and plateaus of Serra da Estrela.
4034	Pleistocene cold environments and present-day processes. PhD thesis, University of Lisbon.
4035	Vieira, G., Mora, C., Ali, F., 2017. New observations indicate the possible presence of
4036	permafrost in North Africa (Djebel Toubkal, High Atlas, Morocco). The Cryosphere, 11(4), 1691-
4037	1705.
4038	
4039	Vieira, G., Bockheim, J., Guglielmin, M., Balks, M., Abramov, A.A., Boelhouwers, J.,
4040	Cannone, N., Ganzert, L., Gilichinsky, D., Goryachkin, S., López-Martínez, J., Raffi, R., Ramos,
4041	M., Schaefer, C., Serrano, E., Simas, F., Sletten, R., Wagner, D., 2010. Thermal state of
4042	permafrost and active-layer monitoring in the Antarctic: advances during the international polar
4043	year 2007-2008. Permafrost and Periglacial Processes, 21, 182-197.
4044	
4045	Wiche, K., 1953. Klimamorphologische und talgeschichtliche studien im M'Goungebiet,
4046	Mitteilungen der geologischen Gesellschaft in Wien, 95, 4-41.
4047	Williams, C., Flower, B.P. Hastings, D.W., 2012. Seasonal Laurentide Ice Sheet melting
4048	during the Mystery Interval (15.5-14.5 ka). Geology, 40, 955-958.
4049	
4050	Witak, M., Wachnicka, A., Kuijpers, A., Troelstra, S., Prins, A., Witkowski, A., 2015.
4051	Holocene North Atlantic surface circulation and climatic variability: evidence from diatom
4052	records. The Holocene, 15(1), 85-96.
4053	Woodward, J.C., 2009. (Editor) The Physical Geography of the Mediterranean. Oxford,
4054	Oxforrd University Press.
4055	Oxford Oniversity Press.
4056	Woodward, J.C., Goldberg, P., 2001. The sedimentary records in Mediterranean rockshelters
4057	and caves: Archives of environmental change. Geoarchaeology: An International Journal, 16,
4058	327-354.
4059	
4060	Woodward, J.C., Lewin, J., Macklin, M.G., 1995. Glaciation, river behaviour and the
4061	Palaeolithic settlement of upland northwest Greece. In Lewin, J., Macklin, M.G., Woodward
4062	(Editors), Mediterranean Quaternary River Environments. Balkema, 115-129.
4062	Woodward, J.C., Hamlin, R.H.B., Macklin, M.G., Hughes, P.D., Lewin, J., 2008. Glacial
4063	activity and catchment dynamics in northwest Greece: Long-term river behaviour and the
4064 4065	slackwater sediment record for the last glacial to interglacial transition. Geomorphology, 101, 44-
4065 4066	67.
4066	07.
4068	
4069	
4070	
4071	

4073	
4074 4075	World Meteorological Organisation, 1998. 1961-1990 global climate normals. Electronic
4076	resource. National Climatic Data Center, US: Asheville, NC.
4077	Xoplaki, E., Maheras, P., Luterbacher, J., 2008. Variability of climate in meridional Balkans
4078	during the periods 1675-1715 and 1780-1830 and its impact on human life. Climatic Change, 48,
4079	581-615.
4080	
4081	Yavaşlı, D.D., Tucker, C.J., Melocik, K.A., 2015. Change in the glacier extent in Turkey
4082	during the Landsat Era. Remote Sensing of Environment, 163, 32-41.
4083	Yeşilyurt, S., Doğan, U., 2010. Munzur Dağları'nın buzul jeomorfolojisi: CBS ve uzaktan
4084	algılama yöntemleri ile bir değerlendirme, TÜCAUM VI. Ulusal Coğrafya Sempozyumu,
4085	Ankara, 287-288.
4086	Vasilaurt & Altaar N. Dažan II. Vanuz V. Jay Oaka & Vaalambuhar C. Sahlunagaar
4087	Yeşilyurt, S., Akçar, N., Doğan, U., Yavuz, V., Ivy-Ochs, S., Vockenhuber, C., Schlunegger, F., Schlüchter, C., 2016. Extensive Quaternary glaciations in eastern Turkey. EGU General
4088	
4089	Assembly 2016, Vol. 18, EGU2016-1014.
4090	Yeşilyurt, S., Doğan, U., Akçar, N., 2018. Narlıca Vadisi'nde Geç Kuvaterner buzullaşma
4091	izleri, Kavuşşahap Dağları. Türk Coğrafya Dergisi, (70), 99-108.
4092	Zahno, C., Akçar, N., Yavuz, V., Kubik, P.W., Schlüchter, C., 2009. Surface exposure dating
4093 4094	of Late Pleistocene glaciations at the Dedegöl Mountains (Lake Beyşehir, SW Turkey). Journal
4094	of Quaternary Science, 24, 1016-1028.
4095	of Quaternary Science, 24, 1010-1028.
4097	Zahno, C., Akçar, N., Yavuz, V., Kubik, P.W., Schlüchter, C., 2010. Chronology of Late
4098	Pleistocene glacier variations at the Uludağ Mountain, NW Turkey. Quaternary Science Reviews,
4099	29, 1173-1187.
4100	Zenklusen-Mutter, E., Blanchet, J., Phillips, M., 2010. Analysis of ground temperature trends
4101	in alpine permafrost using generalized least squares. Journal of Geophysical Research: Earth
4102	Surface, 115, F04009.
4103	
4104	Zreda, M., Çiner, A., Sarıkaya, M.A., Zweck, C., Bayarı, S., 2011. Remarkably extensive
4105	Early Holocene glaciation in Aladağlar, Central Turkey, Geology, 39, 11, 1051-1054.
4106	Zubrzycki, S., Kutzbach, L., Pfeiffer, E.M., 2014. Permafrost-affected soils and their carbon
4107	pools with a focus on the Russian Arctic. Solid Earth, 5, 595-609.
4108	
4109	Zumbühl, H.J., Steiner, D., Nussbaumer, S., 2008. 19th century glacier representations and
4110	fluctuations in the central and western European Alps: an interdisciplinary approach. Global and Planetern Change $(0(1, 2), 42, 57)$
4111	Planetary Change, 60(1-2), 42-57.
4112 4113	Zupan Hajna, N., 2007. Barka depression, a denuded shaft in the area of Snežnik Mountain.
4113	Southwest Slovenia. Journal of Cave and Karst Studies, 69/2. 266-274.
4114	Zupan Hajna, N., 2016. Interesting karst depression in the area of Snežnik Mountain; SW
4116	Slovenia. In: Mihevc, A., Zupan Hajna, N., Gostinčar, P. (Editors), Proceedings of the 7th
4117	International Workshop on Ice Caves, 76.
4118	international workshop on ice caves, 70.
4119	Žebre, M., Stepišnik, U., 2014. Reconstruction of Late Pleistocene glaciers on Mount Lovćen,
4120	Montenegro. Quaternary International, 353, 225-235.
4121	Žebre, M., Stepišnik, U., Colucci, R.R., Forte, E., Monegato, G., 2016. Evolution of a karst
4122	polje influenced by glaciation: the Gomance piedmont polje (northern Dinaric Alps).
4123	Geomorphology, 257, 143-154.
4124	ocomorphology, 257, 175-157.
4125	
4126	
4127	
4128	
4129	

Figure	captions
--------	----------

Figure 1. Location of the different study areas examined in this paper within the Mediterranean region (top), together with mean annual temperatures and altitudes where the 0 °C isotherm is located (middle), and annual precipitations with values for each of the mountain ranges considered in this study (bottom). Annual precipitation and mean annual temperatures for the period 1960-1990 was obtained from Hijmans et al. (2005), spatial resolution 30 arc-seconds, modified after WorldClim 1.4 (www.worldclim.org).

Figure 2. Distribution of permafrost-related features since the Last Glaciation in the Iberian Peninsula. The symbols of the legend are the same for all the other graphs.

Figure 3. Examples of permafrost-related landforms generated during different phases in different massifs of the Iberian Peninsula.

Figure 4. Distribution of permafrost-related features since the Last Glaciation in the southern Alps.

Figure 5. Minimum mean altitude of the relict rock glacier fronts in the southern side of the Alps, including data from (1) Bornet et al. (2014); 2) Seppi et al. (2012); (3) Colucci et al. (2016a).

Figure 6. Examples of periglacial and permafrost-related landforms generated during different phases in the southern Alps.

Figure 7. Distribution of permafrost-related features since the Last Glaciation in the Italian Peninsula.

Figure 8. Examples of permafrost-related landforms generated during different phases in the Apennines and Italian Peninsula.

Figure 9. Distribution of permafrost-related features since the Last Glaciation in the Balkan Peninsula.

Figure 10. Examples of permafrost-related landforms generated during different phases in different massifs of the Balkan Peninsula.

Figure 11. Distribution of permafrost-related features since the Last Glaciation in the Anatolia Peninsula.

Figure 12. Examples of permafrost-related landforms generated during different phases in different massifs of the Anatolia Peninsula.

Figure 13. Distribution of permafrost-related features since the Last Glaciation in northern Africa.

Figure 14. Examples of permafrost-related landforms generated during different phases in northern Africa.

Figure 15. Geomorphological sketch of the formation of different generations of permafrost-related features in Mediterranean mountains since the Last Glaciation.

Abstract

The relatively warm climate conditions prevailing today in the Mediterranean region limit cold geomorphological processes only to the highest mountain environments. However, climate variability during the Late Pleistocene and Holocene has led to significant spatio-temporal variations of the glacial and periglacial domain in these mountains, including permafrost conditions. Here, we examine the distribution and evolution of permafrost in the Mediterranean region considering five time periods: Last Glaciation, deglaciation, Holocene, Little Ice Age (LIA) and present-day. The distribution of inactive permafrost-derived features as well as sedimentary records indicates that the elevation limit of permafrost during the Last Glaciation was between 1000 m and even 2000 m lower than present. Permafrost was also widespread in non-glaciated slopes above the snowline forming rock glaciers and block streams, as well as meter-sized stone circles in relatively flat summit areas. As in most of the Northern Hemisphere, the onset of deglaciation in the Mediterranean region started around 19-20 ka. The ice-free terrain left by retreating glaciers was subject to paraglacial activity and intense periglacial processes under permafrost conditions. Many rock glaciers, protalus lobes and block streams formed in these recently deglaciated environments, though most of them became gradually inactive as temperatures kept rising, especially those at lower altitudes. Following the Younger Dryas glacial advance, the Early Holocene saw the last massive deglaciation in Mediterranean mountains accompanied by a progressive shift of permafrost conditions to higher elevations. It is unlikely that air temperatures recorded in Mediterranean mountains during the Holocene favoured the existence of widespread permafrost regimes, with the only exception of the highest massifs exceeding 2500-3000 m. LIA colder climate promoted a minor glacial advance and the spatial expansion of permafrost, with the development of new protalus lobes and rock glaciers in the highest massifs. Finally, post-LIA warming has led to glacial retreat/disappearance, enhanced paraglacial activity, shift of periglacial processes to higher elevations, degradation of alpine permafrost along with geoecological changes.

Key words: Mediterranean region, permafrost, Last Glacial Maximum, deglaciation, Holocene.

Permafrost conditions in the Mediterranean region since the Last Glaciation

M. Oliva¹; M. Žebre²; M. Guglielmin³; P.D. Hughes⁴; A. Çiner⁵; G. Vieira⁶; X. Bodin⁷; N. Andrés⁸; R.R. Colucci⁹; C. García-Hernández¹⁰; C. Mora⁶; J. Nofre¹¹; D. Palacios⁸; A. Pérez-Alberti¹²; A. Ribolini¹³; J. Ruiz-Fernández¹⁰; M.A. Sarıkaya⁵; E. Serrano¹⁴; P. Urdea¹⁵; M. Valcárcel¹²; J.C. Woodward⁴; C. Yıldırım⁵

- (1) Department of Geography, University of Barcelona, Spain
- (2) Geological Survey of Slovenia, Slovenia
- (3) Department of Theoretical and Applied Sciences, Insubria University, Italy
- (4) Department of Geography, The University of Manchester, United Kingdom
- (5) Eurasia Institute of Earth Sciences, Istanbul Technical University, Turkey
- (6) CEG Institute of Geography and Spatial Planning, Universidade de Lisboa, Portugal
- (7) Environment Dynamics and Territories of Mountains (EDYTEM), University of Grenoble, France
- (8) Department of Geography, Complutense University of Madrid, Spain
- (9) Department of Earth System Sciences and Environmental Technologies, ISMAR-CNR,
- Italy
- (10) Department of Geography, University of Oviedo, Spain
- (11) Interdisciplinary Centre of Social Sciences, New University of Lisbon, Lisbon
- (12) Department of Geography, University of Santiago de Compostela, Spain
- (13) Department of Earth Sciences, University of Pisa, Italy
- (14) Department of Geography, University of Valladolid, Spain
- (15) Department of Geography, West University of Timisoara, Romania

* Corresponding author

Marc Oliva, <u>oliva_marc@yahoo.com</u>

Department of Geography

Faculty of Geography and History, University of Barcelona

c/ Montalegre 6, 08001 - Barcelona, Spain

Tel: ++34 616104266

1. Introduction

Permafrost is one of the elements of the cryosphere with the widest global distribution. The area occupied by permafrost in both hemispheres varies according to different authors between 22.10⁶ km² (17% of the Earth's exposed land surface; Gruber, 2012) and 36.10⁶ km² (24%; French, 2007). Terrestrial ecosystems in many ice-free areas at high latitudes and in high mountains are conditioned by the presence of permafrost. Additionally, permafrost has an influence on the socioeconomic activities of these areas, especially those related to the construction and maintenance of all kinds of equipment and infrastructures (Nelson et al., 2001, 2002; Bommer et al., 2010). However, as a research topic, permafrost has received much less global attention than other elements of the cryosphere, such as glaciers, which are highly visible elements in the landscape and carry important hydrological and global sea level consequences (e.g. Favier et al., 2014; Smith et al., 2017), and sea ice due to its influence on ocean-atmospheric interactions (e.g. Curran et al., 2003; Robinson et al., 2012) and geopolitical implications across the Arctic (Østerud and Hønneland, 2014).

As a result of the International Polar Year 2007-2008, there has been an important development in the study of the thermal state and current distribution of permafrost (Lewkowicz, 2010) and the active layer (Oliva et al., 2017), along with their geoecological implications (Jorgenson et al., 2001; Jorgenson and Osterkamp, 2005; Genxu et al., 2006). Most studies have focused mainly on the Arctic (e.g. Mackay, 2000; Brown et al., 2001; Lantuit et al., 2012; Fritz et al., 2017), but also on Antarctica (e.g. Vieira et al., 2010; Bockheim et al., 2013; Guglielmin et al., 2014; Oliva and Ruiz-Fernández, 2015) and mountainous areas with increased population and tourism pressure (e.g. Alps, Haeberli and Beniston, 1998; Boeckli et al., 2012). Permafrost degradation as the consequence of recent global warming is already posing risks and problems to certain socio-economic activities in many areas (Nelson et al., 2001, 2002; Ravanel, et al., 2017). Besides, during the last decade, scientists have pointed out the importance of permafrost not only at the local and regional level, but also at global scale examining the role of permafrost thawing in the carbon cycle and greenhouse gas fixation, as well as its contribution to recent and future climatic evolution (e.g. Hugelius et al., 2014; Zubrzycki et al., 2014; Schuur et al., 2015).

From a geographical perspective, the thermal state and distribution of permafrost have been much less studied in environments such as mountain ranges in the mid-latitudes. This is the case of the high mountains of the Mediterranean basin, where knowledge about the thermal dynamics, depth and extent of permafrost is uneven across the region.

The Mediterranean region is a transition zone between the subtropical climatic area and temperate regions more characteristic of the middle latitudes (Woodward, 2009). This region has its own climatic characteristics, conditioned by the presence of a nearly closed sea (the Mediterranean), and a complex and mountainous landscape defined by the existence of large peripheral mountain ranges, rugged coasts, and many islands and archipelagos. Most research on cold processes in the Mediterranean mountains has focused on the Quaternary glaciations (Hughes et al., 2006a, 2007, 2013; Hughes and Woodward, 2008), while permafrost and periglacial processes have been less examined (Hughes and Woodward, 2009). Thus, knowledge of the distribution of permafrost in this basin in the past is limited to generic maps that represent the area occupied by permafrost in the Northern Hemisphere during the Last Glacial Maximum (LGM; 26.5-20/19 ka (Clark et al., 2009); 27.5-23.3 ka (Hughes and Gibbard, 2015), as a complement to glacial extent (Brown et al., 2001, Vandenberghe et al., 2014; Kitover et al., 2016). However, the Mediterranean region is loosely represented in these maps since permafrost areas are barely included, except for certain areas such as the Alps and the SE coast of France. Besides, knowledge of the distribution of permafrost permafrost following the LGM and throughout the Holocene is limited and geographically sparse.

As far as the current dynamics are concerned, the existing studies on permafrost and related periglacial morphodynamics mainly concentrate on the southern slope of the Alps and the Pyrenees (Guglielmin et al., 1994; Hoelzle, 1996; Dramis et al., 1995; Ikeda and Matsuoka, 2002; Lugon et al., 2004; Julián and Chueca, 2007; Serrano et al., 2009, 2010; Colucci et al., 2016a), and to a much lesser extent on other massifs, such as the Sierra Nevada (Gómez-Ortiz et al., 2001, 2014; Oliva et al., 2016b) and the Atlas (Vieira et al, 2017).

In consequence, permafrost studies in the Mediterranean region are spatially limited and temporally dispersed. Thus, it is essential to encourage detailed reflection on the state of knowledge of permafrost in this region, and identify the areas and periods in which research on this topic needs to be intensified. Accordingly, the general aim of this article is to fill this gap by looking into the spatial distribution of permafrost in the mountains of the Mediterranean region since the Last Glaciation, which is defined by the last cold stage (Weichselian/Würmian; marine isotope stage (MIS) 5d-2), to the present day. To meet this aim, the following specific objectives will be addressed:

- Reconstructing the spatio-temporal evolution of permafrost in this region since the Last Glaciation.
- Identifying the Mediterranean areas where permafrost has been studied.
- Determining the best-known permafrost stages and those with knowledge gaps.
- Pointing out future lines of work to the scientific community centred on the study of permafrost in the Mediterranean mountains.
- Discussing the distribution of the spatio-temporal pattern of the areas affected by permafrost and its associated geomorphological processes within the climatic and environmental evolution recognised on the European continent since the Last Glaciation.

2. Regional setting

Extending over a surface of ca. 2.5.10⁶ km² (Jeftic et al., 1989), the Mediterranean constitutes an almost enclosed basin between southern Europe (north), Anatolia (east), northern Africa (south) and the Iberian Peninsula (west), only connected to the Atlantic Ocean through the Strait of Gibraltar (ca. 15 km wide). Etymologically, Mediterranean derives from the Latin '*medius*' (middle) and '*terra*' (land), highlighting one of the main characteristics of the Mediterranean region: the presence of mountains next to the sea (Figure 1). Several volcanoes and mountain ranges with elevations exceeding 2500-3000 m asl stretch a few km off the coastline (Table 1).

Figure 1

Table 1

The Mediterranean basin is located in a boundary position between the mid-latitude westerlies and the influence of continental and subtropical high-pressure systems. The existence of multiple peninsulas, islands, rugged coastlines and mountain ranges determines a broad spectrum of climate regimes across the region, both in terms of temperatures and precipitation (Figure 1). This results in a wide range of hydrological, edaphic, geomorphological and biological processes prevailing in the Mediterranean region.

A broad variety of marine and terrestrial records preserve evidence of the nature and magnitude of Quaternary climate oscillations driving environmental changes in the Mediterranean basin (Woodward, 2009). Climate changes also determined large social transformations transitioning

from the prehistoric inhabitants to the first sedentary agricultural communities that settled in the fertile soils of the Mediterranean lowlands (Mithen, 2004). The topographic configuration of the Mediterranean and its relief, together with relatively warm climate conditions during the Holocene, favoured the development of early civilizations, agriculture flourishing and trade and cultural exchange. Human-induced activities, together with shifts on ecosystem dynamics promoted by climate fluctuations, substantially affected the Mediterranean landscape, particularly since the Mid-Holocene, accelerating over the last few centuries.

Quaternary climate variability has followed different spatio-temporal patterns across the Mediterranean basin, which resulted in changing cold-climate geomorphological processes occurring in the mountains of the region. Glacial and periglacial activity has shaped the highest environments during the Late Pleistocene (Hughes and Woodward, 2016). The timing and spatial extent of glacial processes was highly conditioned by the combination of cold and moisture regimes, with significant spatio-temporal differences between the areas (Hughes et al, 2006a,b; Hughes and Woodward, 2008). Periglacial activity followed a similar pattern, expanding down-valleys during glaciations and shifting to higher elevations during interglacial periods (Oliva et al., 2016b). Though periglacial processes in Mediterranean mountains are currently mostly related to seasonal frost, environments affected by permafrost conditions in the past were significantly larger as suggested by a wide range of records that will be examined in detail in this research.

3. Methodology

This paper presents a detailed analysis of the published scientific literature on permafrost evolution in the Mediterranean region since the Last Glaciation. To better examine spatial and temporal patterns of permafrost conditions within the region, the Mediterranean basin has been subdivided in the following areas: Iberian Peninsula, southern Alps, Italian Peninsula, Balkan Peninsula, Anatolian Peninsula, northern Africa and Mediterranean islands (Figure 1).

For each of the areas we have conducted a detailed review of all the existing knowledge on permafrost conditions focusing on five main periods: Last Glaciation, deglaciation, Holocene, LIA and present-day. We establish the chronological boundary between the Last Glaciation and the deglaciation at 19-20 ka, after the LGM, when Clark et al. (2009) proposed the onset of deglaciation in the Northern Hemisphere, including also the Mediterranean region. We recognise that glaciers reached their maxima at different times during the Last Glaciation and glaciers in some areas retreated to smaller positions earlier than others, but the widespread deglaciation occurred after 19-20 ka in all parts of the Mediterranean mountains. The deglaciation extends until the Holocene and is divided considering different colder/warmer periods, sometimes characterised by phases of glacier advance/retreat, namely the Oldest Dryas (OD; 17.5-14.7 ka, stadial GS-2.1a), Bølling-Allerød (BA; 14.7-12.9 ka, interstadial GI-1) and Younger Dryas (YD; 12.9-11.7 ka, stadial 1 - GS1). The Holocene is subdivided following Walker et al. (2012) who established the limit between Early-Middle Holocene at 8.2 ka BP and the boundary between the Middle-Late Holocene at 4.2 ka BP. The LIA is defined as a single period within the Late Holocene encompassing from the 14th to 19th centuries, followed by the post-LIA warming. The characterization of current permafrost distribution and associated geomorphic processes in Mediterranean mountains allows comparing present-day dynamics with past permafrost conditions.

All these data have been summarized in a table including the location of the massifs, topographic characteristics (elevation, aspect), geomorphic evidence, available chronology (if existing) and associated references for each region. The distribution of permafrost-related features in each of the areas for each of the study periods has been mapped in GIS environment.

Rock glaciers constitute the most frequent and reliable information on palaeo-permafrost occurrence in Mediterranean mountains (Oliva et al., 2016b). Several fossil rock glaciers have been dated by analyzing the exposure of surfaces to cosmogenic radiation, usually by the presence of 36 Cl or 10 Be isotopes in the rock surface (i.e. Ciner et al., 2017). Two approaches have been generally used for inferring the age of rock glaciers: (i) their maximum age of formation has been often determined from samples collected from polished bedrock outcrops in which the rock glacier lies, (ii) their minimum age of stabilization has been also established based on samples taken from the surfaces of boulders distributed from the front of the rock glacier to the roots in the slope. Therefore, following this approach the dated samples should yield younger ages from the rock bedrock outcrops towards the roots of the rock glacier, which in fact has happened in most cases. However, there are still many unsolved issues concerning the application of surface exposure dating on rock glaciers, mainly related to: (i) the timing between boulders (i.e. rock glacier) stabilization and permafrost disappearance, (ii) the paleoclimatic significance of rock glacier activity in very active geomorphological settings experiencing paraglacial readjustment (Ballantyne et al., 2009; Palacios et al., 2016, 2017b; Andrés et al., 2018), (iii) the problem of excessive inherited nuclides yielding too old ages (Ivy-Ochs et al., 2009; Ciner et al., 2017) contrary to the moraines where glacial carving removes the cosmogenic inheritance, and last but not least (iv) the problem related to toppling and/or erosion of boulders that result in too young ages (e.g. Moran et al., 2016).

4. Geomorphological and sedimentological evidence

4.1 Iberian Peninsula

The Iberian Peninsula constitutes the SW tip of the Eurasian continent between the Atlantic Ocean and the Mediterranean Sea. Relatively flat terrain is mostly located in the central plateaus and coastal plains, separated by several mountain ranges aligned W-E with the highest peaks exceeding 2000 m: NW ranges, Cantabrian Mountains, Pyrenees, Central Range, the Iberian Range and the Betic Range (Figure 2). The rough terrain together with the high elevations have conditioned the magnitude and extent of glacial and periglacial processes during the Quaternary, including substantial variations of the spatial domain of permafrost through time. Sierra Nevada, in the Betic Range (Mulhacén, 3478 m), and the Maladeta massif, in the Pyrenees (Aneto, 3404 m) encompass the highest elevations in Western Europe outside the Alps.

A wide range of lithologies is found across Iberia. While some mountain regions show a relatively homogeneous composition - such as the NW ranges, Central Iberian Range and Iberian Range with prevailing metamorphic and crystalline rocks - or the Cantabrian Mountains with widespread thick Mesozoic carbonates -, others include a variety of rocks – such as the Pyrenees and the Betic Range with alternating Palaeozoic crystalline rocks and Mesozoic carbonates.

Quaternary periglacial activity has been more or less intense and extensive in the Iberian Peninsula in response to prevailing climate conditions. The intensity and duration of the cold determined if periglacial processes were conditioned by the presence of permafrost or seasonal frost conditions. This is also reflected in the widespread geomorphological and sedimentological

features of periglacial origin in mid and high mountain environments in Iberia, but also at lower elevations such as in the NW corner and Cantabrian coast where periglacial activity almost reached sea level.

Last Glaciation

Although the chronology of periglacial activity in the Iberian Peninsula during the Last Glaciation is still uncertain (Oliva et al., 2016a), it is likely to consider that its extent and intensity followed periods of glacial advance and retreat. In this sense, the local Maximum Ice Extent (MIE) occurred asynchronously across Iberian mountain ranges: while the combination of cold and moisture was more effective for glacier development in NW Iberia between 35 and 45 ka cal BP (Valcárcel, 1998; Jiménez and Farias, 2002; Moreno et al., 2010; Serrano et al., 2012, 2013, 2015; Jiménez et al., 2013; Rodríguez-Rodríguez et al., 2014, 2016; Nieuwendam et al., 2016; Ruiz-Fernández et al., 2016), in the Central and some sectors of the Eastern Pyrenees it occurred prior to the LGM, probably at approximately 60 ka cal BP (García-Ruiz et al., 2003, 2010, 2013; Lewis et al., 2009; Delmas, 2015), in Sierra Nevada it took place around 30-32 ka (Gómez-Ortiz et al., 2012a, 2015; Oliva et al., 2014; Palacios et al., 2016) and in the rest of high mountain ranges, also in the Eastern Pyrenees, was slightly earlier or almost synchronous with the Last Glacial Maximum (LGM) (Pallàs et al., 2006; Domínguez-Villar et al., 2013; Hughes et al., 2013; Pedraza et al., 2013; Carrasco et al., 2015; Palacios et al., 2015). During the coldest stages of the Last Glaciation (e.g. MIS 2) glaciers extended across the highest mountain ranges in Iberia and periglacial processes expanded to the lowlands; warmer phases favoured periglacial activity only in mountain environments in parallel to glacier shrinkage.

Periglacial processes in mid and low environments were mainly driven by seasonal frost conditions, though some researchers have found evidence of ice wedge development in Pleistocene fluvial terraces between 200 and 1000 m in the Tajo and Duero basins, central Iberia, which may be related to very intense periglacial conditions but probably not associated with a permafrost regime (Badorrey et al., 1970; Asensio-Amor and González-Martín, 1974; Serrano et al., 2010a). Taking into account the presence of block streams and rock glaciers, the non-glaciated slopes of Iberian mountains were affected by permafrost conditions above 700-1300 m in northern mountain ranges (Figure 2), significantly higher in lower latitude mountain ranges, such as the Central Range (1800 m) and Sierra Nevada (2500 m) (Table 2). Sediments of periglacial origin, such as stratified and head deposits, could have been also produced under permafrost conditions, namely in the highest slopes and during the coldest stages. The presence of meter-sized patterned ground features, such as the sorted circles existing across the summit plateaus of most of the mountain ranges (Pyrenees, Sierra Nevada, Cantabrian Mountains), suggests also very intense periglacial conditions in these relatively flat areas where wind redistribution did not favour snow accumulation.

Figure 2

Deglaciation

As in many other glaciated environments in the Northern Hemisphere (Clark et al., 2009), a rapid deglaciation process started in Iberian mountains around 19-20 ka (Hughes and Woodward, 2008; García-Ruiz et al., 2010) at the same time as in mountain areas bordering the NE Atlantic to the north (Hughes et al., 2016). The terrain exposed by retreating glaciers was subject to paraglacial activity and intense periglacial processes under permafrost conditions. Many rock glaciers, protalus lobes and few block streams formed in recently deglaciated environments, though most

of them became gradually inactive as temperatures kept raising, namely those located at lower altitudes (Table 2).

Table 2

However, the deglaciation was not a linear process and glacial expansion occurred in the highest mountain ranges during two major cold periods before the Holocene, namely the OD and YD. Following each of these cold stages, rock glaciers developed inside the circues and highest slopes. As temperatures rose, rock glaciers became inactive at lower elevations with activity only at higher locations; in the case of the Pyrenees, rock glaciers formed during the OD at elevations above 2250 m with widespread permafrost above 2490 m, while during the YD rock glaciers developed above 2350 m and permafrost was limited to elevations above 2525 m (Oliva et al., 2016a). Many rock glaciers in the Cantabrian Mountains have been assigned to this period (Redondo et al., 2010; Gómez-Villar et al., 2011; Pellitero et al., 2011; García-Ruiz et al., 2016a,b), as well as in the Iberian Range, where several rock glaciers were also related to this period in the Cebollera Sierra (Ortigosa, 1986), and in the Demanda Sierra (García-Ruiz et al., 1979; Fernández-Fernández et al., 2017). Surface exposure dating suggests that rock glaciers were active in the Eastern Pyrenees between 15 and 10.5 ka (Palacios et al., 2015; García-Ruiz et al., 2016a,b) and in the Sierra Nevada from 12.8 to 6.4 ka (Gómez-Ortiz et al., 2012a; Palacios et al., 2016). Patterned ground probably related to permafrost conditions may have been active during the coldest stages of the OD and YD in the high lands of the highest mountain ranges.

Holocene

The onset of the Holocene saw the last massive deglaciation in Iberian mountains that was parallel to a progressive shift of periglacial conditions to higher elevations (Oliva et al., 2011). It is unlikely that the atmospheric temperatures recorded in Iberian mountains during the Holocene favoured the existence of widespread permafrost regimes (Oliva et al., 2016b), with the only exception of the highest massifs in the Pyrenees (Serrano, 1998). In the other highest mountain ranges permafrost conditions during the Holocene may have been marginal and only related to favourable geomorphological settings.

The Pyrenees, Cantabrian Mountains and Sierra Nevada were the only environments encompassing glaciers during the coldest stages of the present-day interglacial. Apart from the LIA glaciation, Gellatly et al. (1992) dated a cold phase in the Troumouse cirque (French Pyrenees) between 4.6 and 5.1 ka cal BP and García-Ruiz et al. (2014) reported evidence of glacier activity in the Pyrenees during the Neoglacial (5.1, 3.5 ka) and Dark Ages (1.4-1.2 ka) periods. Based on denudation rates, debris supply from circue walls and flow displacement rates, Serrano et al. (2006, 2011) suggested that some active rock glaciers today in the Pyrenees (i.e. Argualas, Bastampé, Besiberri and Guerreys) probably developed between 3.4 and 6.2 ka; therefore, during part of the Mid Holocene permafrost environments may have existed in the highest mountains. This stage of rock glacier development seems to correlate with Neoglacial cold phases favouring glacial expansion in the Troumouse cirque (Gellatly et al., 1995) and Monte Perdido massif (García-Ruiz et al., 2014). The morphology and internal stratigraphy of the rock glaciers, some of which reshaped by LIA glacial advance, suggests that at least seven currently active rock glaciers originated during the Mid Holocene (Serrano et al. 2002, 2010b, 2011). Ice caves in the Central Pyrenees also started forming during the Mid Holocene, namely between 6 and 2 ka cal BP (Sancho et al., 2016).

In Sierra Nevada, Oliva and Gómez-Ortiz (2012) also identified glacial advances during the Neoglacial period (2.8-2.7 ka cal BP) and Dark Ages (1.4-1.2 ka cal BP). These glacial conditions were accompanied by an extent of periglacial activity, enhanced erosion processes and decrease of vegetation cover (Oliva-Urcía et al., 2013), with permafrost conditions only in the highest parts of the glacial cirques (Oliva and Gómez-Ortiz, 2012). The existence of permafrost was confirmed by surface exposure dating in some areas such as in Sierra Nevada, where rock glaciers were active until the Mid Holocene in favourable topographic environments inside the YD glaciated cirques (Palacios et al., 2016). In some cases, the development of protalus lobes during the Holocene may be also indicative of permafrost conditions (Table 2).

LIA

In Iberia, colder than present-day climate conditions accompanied by fluctuating precipitation prevailed during the LIA (Barriendos, 1997; Rodrigo, 1999). These conditions led to glacial advance in the Pyrenees, as well as the appearance of small glacial spots in the Cantabrian Mountains and Sierra Nevada (González-Trueba, 2006, González-Trueba et al., 2008; Gómez-Ortiz et al., 2006, 2009; Oliva and Gómez-Ortiz, 2012). Periglacial conditions expanded down-valleys and more extensive snow fields remained during the summer season. Permafrost conditions reactivated and new protalus lobes and rock glaciers formed in the Pyrenees above 2560 m (Serrano et al., 2001, 2011; Fernandes et al., 2017). Several currently active rock glaciers are linked with LIA lateral moraines, suggesting their origin following the LIA in historical times. All of them are relatively small and influenced by glaciers, which indicates the elevation boundary of permafrost conditions above 2560 m (Serrano, 1998; Serrano et al., 2004, 2011; González-García, 2014). With the exception of the surroundings of the glaciated areas and highest periglacial environments, it is unlikely that permafrost existed in other areas.

Present-day

Temperature increase in Iberian mountains since the last decades of the XIX century has been quantified in about 1 °C (González-Trueba et al., 2008; Oliva and Gómez-Ortiz, 2012). The 0 °C isotherm lies today close to the top of the highest peaks in the Cantabrian Mountains (2500 m; González-Trueba et al., 2007) and Sierra Nevada (3400 m; Oliva et al., 2016b), which explains the inexistence of widespread permafrost conditions. In these massifs, the bottom of the northern cirques that held glaciers during the LIA encompasses buried ice and permafrost covered by debris left by paraglacial dynamics (Serrano et al., 2011b; Gómez-Ortiz et al., 2004; Ruiz-Fernández et al., 2016; Pisabarro et al. 2016). In the Veleta cirque, in Sierra Nevada, a rock glacier formed during post-LIA deglaciation shows multiple subsidence and collapses as a result of the accelerated melting of the frozen body existing in its interior (Gómez-Ortiz et al., 2014).

In the Pyrenees, BTS measurements, geophysical surveying and geomorphological observations made in several massifs indicate that mountain permafrost regime occurs today above 2630 m in northern aspects and 2800 m in southern ones (Serrano et al., 1999, 2001, 2002, 2006, 2009, 2011a; González-García et al., 2014). Possible permafrost conditions have been estimated above 2400 m in northern slopes and above 2650 m in southern ones, with high variability depending on the massifs. While possible permafrost in the Infierno massif is located above 2450 m, in the Maladeta it exists above 2760 m and in the Posets above 2800 m (Serrano et al., 2001, 2009; González-García, 2014). The same variability is detected in the probable permafrost areas, located generally above 2700 m, oscillating between 2630 m in north faces and above 2800 m in southern ones. While in the Infierno massif the probable permafrost lies above 2650, in the Maladeta it sits above 2890 m and in the Posets above 2950 m. Three types of high mountain permafrost have

been differentiated: (i) climatic origin, as suggested where MAAT are around -1/-2 °C; (ii) topoclimatic, located in lower environments where cirque walls condition low incident radiation; and (iii) morphodynamic, where buried ice existing below the debris cover favours permafrost aggradation (González-García, 2014). In recently deglaciated environments there are landforms linked to frozen bodies, such as protalus lobes and frost mounds, as well as other, such as patterned ground features and solifluction lobes located always around 2700-3000 m, which may be also associated with permafrost (Serrano et al., 2000, 2001; Feuillet, 2010; Feuillet and Mercier, 2012; González-García, 2014; González-García et al., 2017).

Both in the Cantabrian Mountains (Gómez-Lende et al., 2014) and the Pyrenees (Bartolomé et al., 2015) there are also other landforms including subsurficial frozen features, which are an inheritance from the LIA. Ice caves show bedrock recording below freezing mean annual ground temperatures in contact with the perennial ice, and therefore may be defined as permafrost. In the case of the Cantabrian Mountains, the organic remnants trapped in the ice provided ages between 200 and 600 cal yr BP (Gómez-Lende, 2015), whereas in the Pyrenees ranged between 200 and 1200 cal yr BP (Bartolomé et al., 2015; Leunda et al., 2015; Sancho et al., 2016).

Figure 3

4.2 Southern Alps

The Southern Alps constitute the south side of the European Alps and include only the southern slope of the highest summit of the European Alps like the Monte Bianco (4810 m), Monte Rosa (4634 m) but also entirely some other peaks around 4000 m (like Gran Paradiso 4061 m or Ortles 3905 m). The Southern Alps are crossed by large valleys mainly W-E oriented (Aosta Valley, Valtellina) or N-S (Ossola Valley, ValCamonica, Adige Valley; Piave Valley or Tagliamento Valley). The Southern Alps can be divided into four main sectors: the Southern sector or Maritime Alps located between Italy and France south of Maddalena Pass; the western sector located between Maddalena Pass and the Ossola Valley; the central sector between the Ossola Valley and Adige Valley and the Eastern sector eastward of Adige Valley. These sectors reflect different local climate and different prevailing lithologies.

The southern and western sectors are characterized mainly by prevailing metamorphic and crystalline rocks while in the eastern sector Mesozoic carbonates prevail. Within the central sector the southern areas are dominated by Mesozoic carbonates whereas the northern areas by metamorphic and crystalline rocks. The differences in climate of these sectors are mainly related to the variation in the precipitation regime that reflects the main orientation of the mountain belt. In general, the outer parts of the mountain belt (southern and the more eastern areas of the Eastern sector) are the wettest while the northern (and inner) areas of the central sector are the driest.

Last Glaciation

There is still considerable uncertainty about the timing of the last glacial stadials recorded in the Alpine end-moraines at about 18-21 ka cal BP before the onset of glacial termination (Ivy-Ochs et al., 2008), although the LGM culminations in the southern Alps may span from 26 to 21 ka cal BP (Monegato et al., 2007, 2017; Ravazzi et al., 2012; Mozzi et al., 2013; Rossato et al., 2013; Federici et al., 2017). Paleo-temperatures between 30 and 17 ka BP have been recently reconstructed in NE Italy through the analyses of chironomids of lacustrine sediments series (Lake della Costa, Samartin et al., 2016). These authors associated the lack of chironomids remains around 24 ka and 18 ka cal BP to very cold conditions correlated with Heinrich events (HE; Heinrich, 1988) HE-2 (24.2 \pm 3.8 ka cal BP) and HE-1 (16.9 \pm 3.3 ka cal BP) (Hemming, 2004). In these events possibly a weakening of the Mediterranean low-pressure systems occurred with a

higher aridity in the Mediterranean (Tzedakis et al., 2004; Kwiecien et al., 2009). On the other hand, a southward shift of the storm track between 26.5-23.5 ka cal BP has also been suggested, together with a change in the seasonal distribution of precipitation, predominantly occurring between spring and autumn (Luetscher et al., 2015).

Evidence of active periglacial processes at low elevations as well as in the Po plain are almost unknown. Nevertheless, two stratified scree deposits have been described in the Maritime Alps (Pappalardo, 1999) with stratified screes, partially cemented, on the southern slopes of M. Cornizzolo (1242 m) and on M. Barro (923 m) very close to Lake Como. Possible cryoturbations on the loess cover at Bagaggera (310 m), only few km south of Lake Como, have also been detected (Guglielmin, unpublished data). An interesting indicator of periglacial or cryotic conditions during the Late Pleistocene and LGM is the distribution of loess. According to Cremaschi et al. (2015) between 70 and 35 ka cal BP large loess deposits were deposited along the northern, western and southern margins of the Po plain. In the Julian Alps, between Italy and Slovenia, four rock glaciers have their front at 1076 m on average (Colucci et al., 2016a), which is very close to the estimated ELA during the LGM (1200 m, Colucci et al., 2014). This also suggests a temperature drop of at least 7.1-7.6 °C, which is in accordance with LGM temperature reconstructions for this sector of the Alps (Kuhlemann et al., 2008).

The presence of relict block streams and blockfields is also reported (Figure 4), and the largest area covered by such features (140 km²) is the Ultramafic Lanzo Complex a short distance from Turin, at an elevation of 1000 to 1650 m. These landforms could be related to permafrost conditions during the LGM (Fioraso and Spagnolo, 2009; Paro, 2011). Other block streams and blockfields are located in the internal margin of Piedmont between Sangone valley (50 km S Turin) and Oropa (150 km NE of Turin) (Paro, 2011).

Figure 4

Deglaciation

The onset of glacial retreat in the southern Alps is thought to have occurred at 20.8 ± 1.5 ka (Gianotti et al., 2008), almost simultaneously with the Fennoscandinavian Ice Sheet (FIS) (A.L. Hughes et al., 2016). Downwasting of the large piedmont glaciers back into the Alpine valleys during the Late Glacial promoted widespread paraglacial activity, although several glacial readvances took place between the OD and the YD (Ivy-Ochs et al., 2008, 2009). Remnants of moraines of the YD glacier advance have been morphologically associated to rock glaciers from the lowermost belt (Frauenfeder et al., 2001; Ivy-Ochs et al., 2009).

Rock glaciers constitute widespread periglacial landforms in the southern Alps, both in the form of active and inactive landforms (Table 3). At present, climatic conditions favourable for their activity range between 2400 and 2900 m (Guglielmin and Smiraglia, 1997; Seppi et al., 2012; Scotti et al., 2013; Colucci et al., 2016a). Relict forms are generally 400-500 m lower than the active ones, corresponding to a temperature drop of ca. 2.6-3.3 °C (Frauenfelder et al., 2001). Also for this reason, despite the low number of dated rock glaciers in the southern Alps, YD or early Holocene ages have been suggested for most of them. The mean altitude of the front of the YD rock glaciers in the Alps is found at the lowest elevations in the SE fringe of this mountain range, with fronts distributed at 1777 m (Colucci et al., 2016a).

Table 3

In the SW Alps (France), more than 1000 relict rock glaciers have been identified by Bornet et al. (2014). The mean altitude of their fronts is around 2260 m, whereas a few of them (7) reach

altitudes lower than 1800 m, with the lowest one lying at 1440 m. It is probable that most of those relict rock glaciers are of YD age, though no absolute dating is yet available. A YD age is in good agreement with the general scheme of Late Glacial rock glaciers formation further North (45°N) proposed by Cossart et al. (2010). Nevertheless, the authors emphasize the poor climatic significance of those permafrost-related landforms, because they developed at higher altitude than the local YD moraine and disconnected from talus slopes, therefore their extent has probably been limited by the availability of sediment sources. These conclusions are consistent with several geoelectrical resistivity soundings carried out on rock glaciers in different sectors, from the Col du Lautaret (near Briancon village) to the Mercantour area (data partly reviewed by Ribolini and Fabre, 2006). Overall, looking at the minimum altitude of the relict rock glacier fronts in the southern Alps (Guglielmin and Smiraglia, 1997; Seppi et al., 2012; Scotti et al., 2013; Bornet et al., 2014; Colucci et al., 2016a), there is a clear lowering trend from the western Alps (2260-2340 m) to the central Alps (2170-2281 m) and the southeastern Alps (1778 m) (Figure 5). Although the Maritime Alps do not follow this scheme, this overall pattern in rock glacier elevations follows the ELA depression observed in the eastern Alps compared to the western Alps at the LGM peak (Kuhlemann et al., 2008).

Figure 5

591 592 593

594

595

596

597

598

599

600

601

602

603

604

605

606

607 608

609

610 611

612 613

614

615

616

617

618

619

620

621

622

623

624

625

626 627 628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

Holocene

According to Finsinger and Tinner (2006), during the Early Holocene two cooling phases (8.8-7.3 and 6.1-5.2 ka cal BP) occurred in the western Alps. The cold event at 8.2 ka cal BP has also been documented in the eastern Alps with ca. 3°C below the early Holocene thermal maximum (Ilyashuk et al., 2011), which has been reconstructed between 9 and 5 ka BP with an estimated mean July temperature 1-2°C warmer than the recent pre-industrial period (Samartin et al., 2017). Since 4.5 ka BP, with the exception of the end of the 20th century, a progressive cooling trend occurred (Ilyashuk et al., 2011). During the Holocene glaciers showed several advance stages that were not synchronous within the Alps, although most of the glaciers at the onset of the Holocene recorded a rapid shrinkage to a size generally smaller than their late 20th century size until 3.3 ka cal BP (Ivy-Ochs et al., 2009). Subsequently, glaciers showed a widespread re-advance especially between 3.0 and 2.6 ka cal BP and between 1.4 and 1.2 ka cal BP with the final major last readvance during the LIA between 0.45 and 0.1 ka cal BP (Ivy-Ochs et al., 2009).

With regards to the chronology of Holocene periglacial activity in the southern Alps, there are only a few available ages for periglacial and permafrost landforms. A cooler and dryer period ca. 4.5 ka cal BP must have favoured permafrost aggradation and rock glaciers development in the southern Alps (Ilyashuk et al., 2011). The re-calibraton with OxCal 4.3.1 (Bronk Ramsey, 2009) of the available radiocarbon ages of inactive rock glaciers (Calderoni et al., 1998; Dramis et al., 2003) in the central and western Italian Alps using the IntCal 13 dataset, suggests that the period of maximum activity occurred between 2720 and 2850 cal yr BP with some older exceptions (all younger than 5900 cal yr BP). On the other hand, based on the existence of a paleosoil buried by the rock glacier front, Calderoni et al. (1998) and Scapozza et al. (2010) showed evidence of their activity between 929 and 1374 cal yr BP, a similar age to that reported by a Salix sp. leaf trapped within the ice of the Foscagno active rock glacier dated at 919-961 cal yr BP (Stenni et al., 2007). Recently, Krainer et al. (2015) found that the age of ice within an active rock glacier in the central Italian Alps ranged between 8960 and 2240 cal yr BP at 23.5 and 2.8 m depth, respectively, showing evidence that the ice preserved within the rock glaciers can be useful paleoclimate archives. The investigation in fact shows that frozen material, which had existed during most of the Holocene, is now thawing; this is strong evidence that temperatures during the past about 9 ka have never been as high as they are today.

- 646 647
- 648 649

LIA and present-day

650 651 652

653

654

655

656

657

658

659

660

661

662

663

664

665

666 667

668

669

670

671

672

673

674

675

676

677

678 679

680

681

682

683

684

685

686 687

688 689

690

691

692

693

694

695

696

697

698

699

700

701 702

703

704

705

Widespread wetter and cooler condition over the Alps promoted a well-documented glacier advance during the LIA (~1400-1860 AD; Ivy-Ochs et al., 2009). After the LIA, the warming trend in the Alps has been about twice the global trend over the time period 1906-2005 ($1.4^{\circ}C$; Brunetti et al., 2009) and in the SE Alps temperature at 2200 m increased by about 1.7°C from 1851 to 2012 (Colucci and Guglielmin, 2015) leading to a 96% reduction in volume of glacial bodies (Colucci and Žebre, 2016). In the French western Maritime Alps, geophysical investigations provided resistivity values coherent with permafrost existence at about 2550 m in the Mercantour sector (Evin and Fabre, 1990). In the Ubaye-Queyras sector, rock glaciers below 2400 m lack internal ice, while above 2500 m permafrost starts to be common (e.g. Marinet rock glacier; Evin and Fabre, 1990; Evin et al., 1990; Assier et al., 1996; Smiraglia et al., 1996; Ribolini et al., 2010). This indicates that 2500 m represents here the modern limit for the existence of active rock glaciers. In the Lautaret and Mt. Viso areas, active rock glaciers were found at 2400-2450 m (Evin, 1991; Francou and Reynaud, 1992; Bodin et al., 2009). According to Bornet et al. (2014) more than 50% of the active and inactive rock glaciers (following Barsch, 1996) in the SW French Alps, from a total number of 780 inventoried landforms, are located above 2600 m and 51% of them are lying on N and NW facing slopes. They cover 2% of the total surface (50 km²) and mostly develop between 2100 and 3000 m. Most of the active rock glaciers in the southern French Alps are smaller than 0.1 km², whereas the relict ones are generally larger (up to a few km²). More than 80% of the active and inactive rock glaciers are probably located below the regional mean annual 0°C-isotherm, raising the question of their stability under climate change (Bodin et al., 2015). This probable imbalance with the present climatic conditions may be responsible for the fast flow observed on some very active rock glaciers (Delalove et al., 2008), and may also have led to the collapse of the Bérard rock glacier during summer 2006 (Bodin et al., 2017).

In the western Italian Alps active rock glaciers reach with their fronts a mean elevation of 2647 m although a few active rock glaciers appear sporadically between 2000 m and 2300 m. In the Central Italian Alps the mean elevation reached by the active rock glaciers is lower (2526 m) but ice was found within rock glaciers locally also at very low elevation in ventilated talus (1000 m; Guglielmin, unpublished data). As well known the lower altitudinal limit of permafrost based on the elevation of the active rock glaciers, although investigated through geophysical methods, can be not representative of the real regional permafrost; in fact, the lower limit can decrease up to 200 m due to the local density-driven air flows (Balch, 1900). Several rock glaciers have developed since the LIA in the Adamello-Presanella area (eastern Italian Alps) where the current mean elevation of the fronts of active rock glaciers is 2527 m, around 400 m above the limit of the relict ones and where patches of sporadic permafrost can reach an elevation of 2200 m (Baroni et al., 2004). Only a few active rock glaciers occur in the western Alps within LIA deglaciated areas; this is the case of an active rock glacier in the Dolomites (SE Alps) at about 2400 m forming in an area previously occupied by the tongue of a LIA glacier and now dominated by periglacial processes. This study provides an example of how periglacial processes are replacing glacial processes under present climate change during the paraglacial stage (Seppi et al., 2014). Recently, possible sporadic permafrost in an area occupied by two protalus rampart have been deduced based on BTS measurements in the Carnic Prealps at 2258 m (Colucci et al., 2016a). Nine active protalus and pronival ramparts, located in front of permanent snow/firn bodies and ice patches, have been also reported in the Julian Alps and in the Kamnik-Savinja Alps at an average altitude of 2158 m (Colucci, 2016).

Although in the Alps permafrost is limited to the highest and driest areas, ground ice is also reported from several caves (Figure 6). Ice caves are generally widespread in high elevated karstic environments of the Alps, mainly in the central and eastern parts. The real distribution and size

of ground ice in Alpine caves is still very uncertain, although recently in the southeastern Italian Alps 1100 ice caves have been reported. Here, they are generally located between 1500 and 2200 m and their distribution is well-correlated with MAAT and altitude, being significantly more frequent for MAAT lower than 2 °C and 5°C; therefore, they are placed within the periglacial domain characterized by high precipitations (Colucci et al., 2016b). In Slovenia, 551 ice caves have been reported by Mihevc (2008). According to the Slovenian Cave Registry (2014), approximately 520 cryo caves, of which ca. 100 ice caves, can be found in the Slovenian Alps. Most of them have the entrance between 1000 and 2400 m (Mihevc, 2008). The radiocarbon age of an insect found in an ice core extracted in 2003 from the Abisso sul Margine dell'alto Bregai (central Alps) reported an age of 185 ± 30 cal yr BP (Citterio et al., 2005). In the cave *Ledena jama pri Planini Viševnik* (eastern Alps), an ice core was recently extracted and larch trapped in the ice yielded a radiocarbon age of 300 ± 45 cal yr BP (Staut et al., 2016). In the light of accelerated climate change, other important paleoclimate archives exploitable from ice caves are represented by *in-situ* coarse cryogenic cave carbonates, recently discovered for the first time in a vertical ice outcrop of a cave in the southeastern Alps (Colucci et al., 2017).

Figure 6

4.3 Italian Peninsula

The Italian Peninsula lies between the Tyrrhenian Sea on the west, the Ionian Sea on the south, and the Adriatic Sea on the east. It includes large plains of northern Italy (Po Plain and Venetian Plain) and extends over more than 1200 km crossing 8° of latitudes between 38 and 46 °N. The Apennine Mountains run along the entire peninsula and culminate in the Gran Sasso d'Italia (2912) and La Majella (2793 m). Geologically, the Apennines are quite homogeneous with a clear dominance of Mesozoic carbonates although sandstones, shales and flysch are also found, especially in the northern Apennines.

In the Italian Peninsula, from the Late Pliocene/Early Pleistocene transition the climate was characterized by rapid succession between xeric cool (glacials) and humid warm (interglacials) phases (Bertini, 2010). These alternating climatic conditions favoured the existence of "warm" steppes or coniferous forests alternated with subtropical to warm-temperate deciduous forests. During these periods, the paleogeography of the Italian coasts changed significantly due to sea level variations; indeed, the coastline of Adriatic Sea moved hundreds of km southward during the LGM and did not reach the current position until ca. 7 ka (Lambeck et al., 2011; Anzidei et al., 2014).

Last Glaciation

In the Apennines valley glaciers were only present on the highest mountains, with the maximum glacial expansion dated at 27.2 ± 0.9 ka cal BP in the Campo Imperatore valley and a rapid glacial retreat at around 21 ka cal BP (Giraudi and Frezzotti, 1997). Subsequently, lake level oscillations of Fucino Lake showed an aridity period between 20 and 17 ka cal BP and between 15 ka cal BP and the Early Holocene (Giraudi, 1998). More recently, at Campo Felice (central Apeninnes) Giraudi (2012) suggested that the maximum glacial advance was dated earlier than in other areas (33-27 ka cal BP) driven by a relatively milder and wetter period. Kuhlemann et al. (2008) modelled the air circulation and the ELA of the glaciers in the Mediterranean area indicating possible conditions for glaciers occurrence also on Mt. Pollino in Calabria and on Mt. Etna in Sicily.

Several landforms were related to periglacial or permafrost conditions during the LGM or during the deglaciation process, particularly during the OD in Italy (Figure 7). In the northern Apennines only a couple of relict rock glaciers described by Chelli and Tellini (2002) were associated to

LGM period on the northern slopes of the highest mountains of this belt between Mt. Cusna (2121 m) and Mt. Cimone (2165 m). Rock glaciers from this period are more frequent in the central Apennines, where 38 relict rock glaciers were identified by Giraudi (2002) almost all located along the eastern side of the central Apennines. They are mainly present on the Gran Sasso Massif (2912 m), the Maiella Massif (2793 m) and Mt. Velino (2486 m). In the southern Apennines only one relict rock glacier has been detected on the northern slope of Mt. Pollino (2267 m).

Figure 7

Block streams from this stage are located around Mt. Beigua (1287 m), few km far from the Ligurian Sea. These landforms are located between 900 and 1100 m on all the slopes and are characterized by an open-work texture in the upper 1.5 m thickness with angular or subangular blocks and frequent vertical dipping, or imbrication of the boulders (Firpo et al., 2006). Remarkably, none has any rock cliff or free face at their head and they show generally the smallest blocks in their frontal part. These landforms are all shaped on the same bedrock (serpentine and metabasalts) and they could have formed at a maximum age of 33 ka (Firpo et al., 2006). Moreover, in the upper parts of the Mt. Beigua thors and blockfields are also present, suggesting intense periglacial conditions (Firpo et al., 2006).

In the Apennines stratified scree deposits (gréeze litée) are the most widespread and studied periglacial sedimentary archives (Table 4). They were found in different localities of the Northern Apennines, such as Corniglio and Bratica Valley (Chelli and Tellini, 2002), Monte Prampa (Bernini et al., 1978), Alpi Apuane (Federici, 1981) and, above all, in the central Apennines (Coltorti and Dramis, 1988; Coltorti et al., 1983) and in different valleys in the Marche region. In the central Apennines stratified screes were described in the late 1970's mainly along the Adriatic side of Umbria-Marche Apennines (Coltorti et al., 1979, Castiglioni et al., 1979; Boenzi, 1980), where these deposits are particularly widespread and connected with outcrops of limestone and marly limestone bedrock (Coltorti et al., 1983). These deposits are documented at different elevations from the coast to more than 2000 m (Mt. Conero) generally at the foot of rectified slopes or down-slope ancient nivation hollows. Features identified as stratified scree were also found southward in Abruzzo (Maielama valley; Frezzotti and Giraudi, 1992; Sulmona valley, Miccadei et al., 1999), Molise (Coltorti, 1983; Scarciglia, 2000) and Puglia regions (Boenzi et al., 1977). In some cases, they were also found close to the coast of the western side of the Apennines on the Palmaria Island, close to La Spezia (Chelli and Pappalardo, 2006) and on the Sorrento Peninsula (Brancaccio, 1968). The southernmost stratified screes were found in Calabria (Mt. Pollino and Mt. Sila down to 500 m; Boenzi and Palmentola, 1975; Praia a Mare and Mormanno down to 700 m; Robustelli and Scarciglia, 2006). In most of the cases, they were probably associated to seasonal frost conditions, with no permafrost regime.

Table 4

Finally, cryoturbations have been also documented on soils of Mt. Beigua at 650 m (Rellini et al., 2014) and at even lower elevations in the Cilento hills (at 30 m asl; Scarciglia et al., 2003) where severe winter frost was hypothesized during the Last Glaciation. Only in one case, in the Sila Mountain at 1350 m, a fossil sand wedge, an ice wedge cast and some other cryogenic features within the soils were described by Dimase (2006).

Holocene

According to Giraudi et al. (2011), the onset of the Holocene in the Italian Peninsula and in Sicily was characterized by dramatic environmental and climatic changes. Between ca. 9.5 and ca. 6-5.5 ka cal BP the climate was generally warmer and wetter than present, although in some records

the wettest period seems to have occurred later at ca. 6-5 ka cal BP. Subsequently, a progressive cooling with higher precipitation variability started at 4.5 ka cal BP, with wet periods recorded at 2.8-2.6, 1.4-1.2 and 0.5-0.3 ka cal BP and an aridity peak between 3.7 and 3.2 ka cal BP (Calderoni et al., 1998; Giraudi, 1998). No dated evidence of glacial advances has been documented in the Italian Peninsula during the Holocene except for Gran Sasso area, where the Calderone glacier extends now over a few ha (Hughes et al., 2006a). Here, the glacier is thought to have persisted in this circue throughout the Early Holocene, although the circue was probably ice-free between ca. 4.3 and 3.9 ka cal BP (Giraudi, 2004; Hughes, 2006a). Subsequently this glacier experienced several phases of expansion, namely at ca.: 2.9- 2.7, 1.4-1.3 and 0.64-0.58 ka cal BP (Giraudi, 2003, 2004; Hughes, 2006a).

The ages for periglacial landforms developed during the Holocene are rare and limited to few rock glaciers in the central-eastern Apennines. According to these ages, it is possible that permafrost existed during the Early Holocene at elevations higher than 1900-2000 m and started to degrade at ca. 7 ka cal BP (Dramis et al., 2003). Nevertheless, a possible new phase of permafrost aggradation may have occurred at high elevations during the aridity phase that took place between 3.7 and 3.2 ka cal BP (Dramis et al., 2003).

LIA and present-day

It is reasonable to hypothesize that colder conditions prevailing during the LIA favoured the development of some sporadic permafrost at elevations above 2200 m in the central Apennine (Mt. Gran Sasso, Maiella, Mt. Velino). A still active rock glacier is located on the north face of Mt. Amaro, with its front reaching 2522 m (Figure 8) (La Maiella massif, Dramis and Kotarba, 1992). As documented by BTS measurements, at elevations higher than 2400 m in the same massif (Bisci et al., 2003) and locally lower in Mt. Velino permafrost occurrence was possible, until at least 15 years ago (Guglielmin, unpublished data).

Figure 8

4.4 Balkan Peninsula

The Balkan Peninsula (also referred to as Balkans) is situated in south-eastern Europe and is bounded by the Adriatic, Ionian, Aegean and Black Seas. Situated between the Eurasian and African lithospheric plates, the Balkan Peninsula constitutes a mosaic of several mountain systems: Dinaric, Balkan, Macedonia–Rhodopes and Pindus, separated by internal tectonic depressions and major valleys. This internal topographic variability, coupled with general orientation of the mountain ranges, NNW to SSE Dinaric and Pindus and W to E for Bulgarian Mountains, generates a wide diversity of local geographical conditions, reflected in the presence and evolution of permafrost through time. The highest peak of the Balkans is Musala (2925 m), found in the Rila Mountain.

The geology of the Balkan Peninsula is very diverse. For instance, the Dinaric Alps are dominated by up to 8000 m thick Mesozoic carbonates (Jurasic limestone, Triasic dolomite and Werfen sandstones and schists, and Wengen sandstones). The Šar Mountains and Mount Korab on the eastern Albania border consist of polymetamorphic metasedimentary sequence with Hercynian granitoid intrusions in its central part. The major Bulgarian mountains are composed largely of Precambrian and Palaeozoic crystalline rocks (crystalline schist, gneiss, amphibolites, metamorphosed sedimentary rocks etc.) intruded by the Rila-West Rodophian batholith (Sinnyovsky, 2015), in some areas also by crystalline limestone and marble. In Greece the Pindus Mountains and Olympos Massif are dominated by Mezozoic (Lower Jurassic - Upper Cretaceous)

sedimentary rock, especially limestone, dolomite and breccia, with ophiolithic rocks also present in some areas, such as at Mount Smolikas and Mount Vasilitsa.

The Balkan Peninsula is one of the Mediterranean regions where information on present and past permafrost conditions is very general and has a speculative character (King and Akermann, 1993; Dobiński, 2005). There is evidence that "isolated patches of permafrost" (Brown et al., 2001) are still present in the high mountain environment of the Balkan Peninsula. However, apart from ice caves (Bočić et al., 2014; Buzjak et al., 2014; Kern et al., 2006a) no other active permafrost features have been recognised in the study area. Relict permafrost features in the Balkan Peninsula have been recognised, although only recorded in detail in the Pindus, Prokletije, Rila and Pirin Mountains, where rock glacier inventories have been compiled (Palmentola et al., 1995; Hughes et al., 2003; Palmentola and Stamatopoulos, 2004; Dimitrov and Gikov, 2012; Gikov and Dimitrov, 2011; Magori et al., 2017). Sand wedges and cryoturbations present in the Pannonian Basin indicate a deep seasonal frost and perhaps isolated patches of sporadic permafrost (Ruszkiczay-Rüdiger and Kern, 2015) in the SW lowlands of the Pannonian Basin and in Getic Basin (Romanian Plain) (Frenzel et al., 1992) during the Pleistocene. However, there is no evidence of continuous permafrost as suggested by some previous studies (e.g., Poser, 1948; Velichko, 1982). At the LGM only the highest mountains of the Central Balkans were located in the discontinuous permafrost zone (Van Vliet-Lanoë and Hallegouët, 2001). Hence, it follows that rock glaciers are the main source of paleo-environmental information to infer past permafrost conditions in low-latitude areas of the Balkan Peninsula, while the ice caves are the best indicators for evaluating the present permafrost distribution in this area. Other elements of periglacial morphogenesis associated with permafrost conditions, such as large and medium size patterned ground and block streams, are very little-studied in the Balkan Peninsula. As is other parts of the Mediterranean region, thick Pleistocene stratified scree deposits are present across the Balkans especially in the uplands - and attest to active frost action under cold climate conditions. These sediments can be well preserved in limestone caves and rockshelters (e.g. Bailey and Woodward, 1997; Morley and Woodward, 2011), but establishing their paleoclimatic significance is not always straighforward (Woodward and Goldberg, 2001).

Last Glaciation and Deglaciation

The Last Glaciation in the Balkan Peninsula was characterised by the presence of ice fields and valley glaciers over some of the highest mountain massifs (e.g., Milivojević et al., 2008; Hughes et al., 2010, 2011; Kuhlemann et al., 2009, 2013; Žebre and Stepišnik, 2014; Sinnyovsky, 2015; Zebre et al., 2016). Late Pleistocene glaciers reached their maximum extents before the LGM in Pindus Mountains and this is recorded indirectly in the fluvial record downstream where glaciofluvial sediments have been dated at 25-30 ka (Lewin et al., 1991; Woodward et al. 1995; 2008; Hughes et al 2006b). In the Peloponnese, pre-LGM moraines have recently been dated to 30-40 ka using ³⁶Cl exposure dating (Pope et al., 2017). In the Rila Mountains, Bulgaria, it is most likely that two glacial advances occurred, one at the beginning (25-23 ka) and one at the end (16-18 ka) of the global LGM (Kuhlemann et al., 2013). However, the exact timing of the local LGM over the Balkan Peninsula is still a matter of debate with some of the best evidence coming from the fluvial record in NW Greece (Woodward et al., 2008). In the Dinaric Alps, relatively high moisture (Hughes et al., 2010; Žebre and Stepišnik, 2014) was more favourable for glacier development in the highest massifs, meanwhile the lowlands were likely characterised by periglacial environment (Table 5). Almost no research on permafrost features from the Pleistocene period has been presented until now from this area. According to the interpretation by van Vliet-Lanoe et al. (2004) and Ruszkiczay-Rüdiger and Kern (2015), the Dinaric Alps area

942 943 944

886 887 888

889

890 891

892

893

894 895

896

897

898

899

900

901

902

903 904

905 906

907

908

909

910

911

912

913 914

915

916

917

918

919

920 921

922 923

924

925

926

927

928

929

930

931

932 933

934

935

936

937

938

939

940

(at least its NW part) probably hosted discontinuous permafrost, bounded by a seasonal frost or even isolated patches of sporadic permafrost in the Pannonian basin to the NE. In fact, ice wedges and cryoturbations have been found in till in the Lovćen Mountain (Liedtke, 1962), supporting the idea of the permafrost presence in the Dinaric Alps. The presence of tors on the highest peaks indicates intensive periglacial processes in the ice-free areas above the local Equilibrium Line Altitude (ELA).

Table 5

In contrast, in the continental, more arid part of the Balkan Peninsula relict rock glaciers, and also block streams and patterned ground are widespread (Figure 9). Early periglacial studies from the Bulgarian mountains revealed a broad presence of scree deposits, block streams and blockfields (Stoyanov and Gachev, 2012). In addition, 27 and 55 rock glaciers were identified in Rila (Gikov and Dimitrov, 2011) and Pirin Mountains (Dimitrov and Gikov, 2012), respectively, though Magori et al. (2017) recently found new field evidence of the existence of 122 units in both massifs. Rock glaciers are distributed at elevations between 2080 and 2600 m, with a mean altitude of 2340 m in Rila Mountains and 2390 m in Pirin Mountains (Magori et al., 2017). They are considered to be from the end of Pleistocene and early Holocene (Dimitrov and Gikov, 2012; Gikov and Dimitrov, 2011; Kuhlemann et al., 2013), although the spatial relation between different altitudinal groups of landforms suggest other timing interpretation. In the Sar Mountains several rock glaciers, most of them in direct spatial connection with latero-frontal moraines, were recognized above 1700 m by Kuhlemann et al. (2009). Several generations of rock glaciers appear on the northern side of the ridge Bistra (2651 m) – Jezerski (2604 m) between 1750 and 2550 m. A similar situation is found on the north and north-western slope of Mount Korab, where relict rock glaciers are present at altitudes between 1480 and 2600 m. Relict rock glaciers are widespread also in the Pindus and other mountains in Greece. These features have been identified on Mount Parnassus (Pechoux, 1970) in central Greece, and Mount Tymphi (Hughes et al., 2003), Mount Smolikas (Hughes et al., 2006c) and Mount Lakmos-Peristeri (Palmentola and Stamatopoulos, 2004) in northwest Greece. The relict rock glaciers of the Pindus Mountains have wide-ranging elevations and occupy cirgues between 1330 and 2300 m (Hughes et al., 2003; Palmentola and Stamatopoulos, 2004; Hughes et al., 2006a) and are likely to represent different generations of rock glacier. Hughes et al. (2003) argued that the rock glaciers of Mount Tymphi must belong to the LGM and formed as climate became colder and drier forcing circue glaciers to retreat and become overwhelmed by debris. Further research is necessary to test the ages of the rock glaciers in the Balkans.

Figure 9

Besides rock glaciers other permafrost features can also be identified in the inland part of the Balkans (Figure 10). On the Vitosha Mountain, relict stone circles, tors and large blockfields were identified at the elevation range of 1850-1900 m. Some of the largest block streams in Europe, called Zlatnite Mostove (Golden Bridges) and Golyamata Gramada (Big Pile) are also present in this area. The first is 2.2 km long and 150 m wide, descending from 1800 to 1410 m, and the latter 1 km long and 300 m wide at the altitude between 1900 and 1550 m. Block streams are present in the Stara Planina (Balkan) Mountains, descending even down to 930 m in the northern slopes and 1130 m in the southern slopes. They can be found also in the granite part of Rila and Pirin Mountains where they descend down to 1500 m, and in Osogovo Mountain, where they reach 1700 m. Patterned ground and frost-shattered features were noted on Mount Tymphi by Hagedorn

(1969) and Hughes (2004). Separating active or recent periglacial activity from Pleistocene features is difficult for many of the landforms on the highest mountains, although the lower periglacial forms must be Pleistocene in age.

It is certainly true that some rock glaciers form during deglaciation when glacier retreat causes glaciers to become overloaded by debris and morphing into ice-cored rock glaciers (Morris and Olyphant, 1990). It is also true that rock glaciers are most likely to form when climate is cold and dry (Haeberli, 1985). The period characterised by "deglaciation" depends on the timing of the local LGM. In many parts of the world this predates the global LGM, with cold and dry conditions at the global LGM causing glacier retreat (Hughes et al., 2013).

Figure 10

In the Pindus Mountains, on Mount Smolikas (2632 m), a rock glacier occurs at much higher altitude (>2100 m) than on neighbouring Mount Tymphi (1800-2200 m) (Table 6). This led Hughes et al. (2006a) to argue for a YD age for the Smolikas rock glacier. Based on climate modelling, Hughes et al. (2006a) argued that this feature and the associated last ever glaciers on Mount Smolikas could not be Holocene in age. On Mount Tymphi Late-glacial rock glaciers are absent because the level of permafrost was above the cirque floors and consequently, rock glaciers only formed on higher mountains such as Mount Smolikas. On Mount Lakmos-Peristeri, just 25 km southeast of Mount Tymphi, Palmentola and Stamatopoulos (2004) argued for an OD age for the numerous relict rock glaciers in the cirques of these mountains. This was based on earlier suggestions made for similar relict rock glaciers in the Prokletije Mountains, where the study of 16 inactive rock glaciers located above 1700 m was presented by Palmentola et al. (1995). Formation of several relict rock glaciers in the inland Dinaric Alps of Bosnia and Herzegovina and Montenegro (never studied before, but clearly recognized from different satellite images), indicating past permafrost conditions at elevations above 1650 m, may also be related to one of the dry and cold periods of the late Pleistocene. This is in accordance with the recently compiled rock glacier inventory in the nearby SE Alps (Colucci et al., 2016a) where the formation of rock glaciers was related to the YD cold phase. However, in Greece Hughes et al. (2003) argued that similar elevation rock glaciers were older, forming during the LGM. The OD ELA in Sar Mountains was calculated to 2200-2350 m (Kuhlemann et al., 2009). Thus, it is likely that rock glaciers present in the altitudinal belt 1950-2060 m on the northern side of the ridge Bistra (2651 m) – Jezerski (2604 m) belong to this period. During YD, the ELA was placed at 2300-2400, so the rock glacier at 2260-2550 m could belong to this period. Relict rock glaciers on Mount Korab located above 2400 m appear to be fresher (without vegetation) and could belong also to one of these two periods. In the Rila Mountains, rock glaciers above 2200 m and below local ELA are likely to be formed in the deglaciation period. During the deglaciation period, the stadial moraines at 1700 m, 1850 m, and 2000 m point to gradual retreat of the glaciers in the Osogovo Mountain (Milevski, 2008). Embryonic rock glaciers at 1850 and 2030 m in the circue below the Ruen Peak (2251 m) were likely active during this period. However, none of the rock glaciers in the Balkans have been dated and therefore the competing geochronological hypotheses proposed by Palmentola et al. (1995), Hughes et al. (2003) and Palmentola and Stamatopoulos (2004) remain to be tested.

Holocene

1065 Holocene cooling periods in 8.2 ka cal BP (Tonkov et al., 2016), 7.5 ka cal BP (Stefanova et al., 1066 2006) and between 6.7 and 5 ka cal BP (Bozilova and Tonkov, 2000) based on pollen records 1067 were reported for the Rila and Pirin Mountains. It is likely that these cooling events triggered the 1068 formation of some newly rock glaciers, while the highest lying rock glaciers continued their 1069 existence. Rock glaciers in the Rila and Pirin Mountains situated above 2500 m were probably 1070 active also during Holocene. One example is the rock glacier on the northern slope of Polezhan 1071 1072 Peak (2851 m) with the front at 2490 m where at least three rock glacier generations can be 1073 recognised. Also in the Sar Mountains, on the northern slopes of the Bistra (2651 m) – Jezerski 1074 (2604 m) ridge, rock glaciers above ~2300 m likely persisted in their active mode during the 1075 Holocene, as suggested by Kuhlemann et al. (2009). 1076

> Some of the cirque and valley glaciers that were present during the YD likely persisted to Holocene in some areas of the Balkans. Calcite cements in cirque moraines, which provide minimum ages for the moraines, yield early Holocene ages in central Montenegro (Hughes et al., 2011). On Mount Olympus, in the north-facing cirque of Megali Kazania, large moraines were considered to be Holocene Neo-glacial moraines by Smith et al. (1997). This possibility has recently been advocated by Styllas et al. (2015). This would seem plausible given the presence of small glaciers today further north in the Balkans. It is possible that this was also the case in other inland mountains in the Balkan Peninsula, although there is very little known about the Holocene glacial history. Periglacial forms related to these small glaciers, such as nivation hollows, are also poorly understood. However, given the warmer conditions at the Holocene optimum it is arguable that smaller glaciers and snow patches nowadays present in Pirin, Prokletije and Durmitor Mountains (Gachev et al., 2016) would have been less than today.

LIA

Owing to cooling conditions during the LIA there were numerous small cirque glaciers (Hughes, 2010) in the highest massifs of the Balkan Peninsula. There would have also been many more perennial snow fields. Nival processes would have therefore been a significant geomorphological agent across the mountains in the Balkan Peninsula at this time. Rock glaciers above 2350 m in the Rila and Pirin Mountains probably reactivated during the LIA period.

Present-day

Because of relatively low altitude and low latitude, the mountain permafrost in the Balkan Peninsula is nearly inexistent in recent climate. Permafrost may be present in some niche localities on the highest peaks, and this possibility was highlighted in Dobinski (2005) who suggested that permafrost conditions may exist above ~2700 m on Mount Olympus (2912 m), and above ~2350 m on Rila Mountain (2925 m). This idea is partially supported by Brown et al. (2001) modelling results, suggesting that sporadic permafrost is present only in the highest peaks of the southern Dinaric Alps, Šar Mountains, and Rila and Pirin Mountains. In fact, Milivojević et al. (2008) mapped two active rock glaciers in the central Prokletije Mountains. According to Hughes (2009) these features may not be actively moving because they lack the clear lobate form. However, they may be described as patches of sporadic permafrost. Perennial snow fields and modern nival forms are widespread across the highest mountains of the Balkan Peninsula. For example, Styllas et al. (2016) reported perennial snow and ice masses in the north-facing circue of Megali Kazania (Olympus Mountain). Apart from this 16 glacierets and small circue glaciers exist in the Durmitor, Prokletije and Pirin Mountains (Hughes, 2008; Djurović, 2013; Milivojević et al., 2008; Hughes, 2009; Gachev and Stoyanov, 2012; Gachev et al., 2016). Some of these ice masses are debris-covered and exhibit similar geomorphology to the buried ice patches of the Corral

1119 1120 1121

1063 1064

1077

1078

1079

1080 1081

1082

1083

1084

1085

1086

1087

1088

1089

1090 1091 1092

1093

1094

1095

1096

1097

1098 1099 1100

1101

1102

1103

1104

1105

1106

1107

1108

1109 1110

1111

1112

1113

1114

1115

1116

1117

Veleta site in the Sierra Nevada, Spain (Gómez-Ortiz et al., 2001). Therefore, the possible presence of patches of sporadic permafrost below these perennial snow patches can not be excluded.

Instead ice caves are permafrost phenomena in carbonate massifs of the Balkan Peninsula which often exist at elevations where outside MAAT is well above 0 °C (Colucci et al., 2016b) owing to karstic topography which functions as cold air trap and thus promote the survival of permanent snow and ice. Majority of caves containing permanent frozen materials, the so-called cryo caves (sensu Colucci et al., 2016b), occur at elevations above 800-1000 m in the Dinaric Alps (Bočić et al., 2014; Kern et al., 2006b; Zupan Hajna, 2016) and mountains in Macedonia (Temovski, 2016), although some cryo caves in Slovenia were reported from lower altitudes (Mihevc, 2008). In the Dinaric karst of Slovenia about 100 cryo caves (Slovenian Cave Registry, 2014) and in the northern Velebit Mountain in Croatia 150 cryo caves (Buzjak et al., 2016) were explored by speleologists. Moreover, active patterned ground likely related to seasonal frost heaving was reported from some Slovenian caves by Zupan Hajna (2007), Mihevc (2009) and Obu et al. (2018).

Nevertheless, periglacial activity is a significant geomorphological agent in the highest areas of the Balkan Peninsula. In the Rila and Pirin Mountains, periglacial processes are active above 1900-2000 m (Stoyanov and Gachev, 2012).

4.5 Anatolian Peninsula

Located between one of the world's most seismically active areas, the Anatolian Peninsula constitutes a relatively small orogenic plateau that is bounded by the Mediterranean, Aegean, Marmara and Black Seas. Despite its modest average elevations just ~ 1200 m and low overall exhumation, the Anatolian Peninsula is a first-order morphotectonic feature that has fundamentally impacted the geologic, geomorphic, and climatic evolution of the Eastern Mediterranean (Ciner et al., 2013). The tectonically active boundaries of the plateau delineate the Anatolian plate, which has been extruding toward the west with respect to Eurasia since the Miocene as the result of extension in the Aegean and the Arabia-Eurasia collision (Sengör and Yılmaz, 1981; Bozkurt, 2001). The Eastern Black Sea Mountains (also known as the Pontides) and the Taurus Mountain Range bound the northern and southern flanks of the plateau respectively and attain elevations more than 3000 m in places. Several paleoglacial valleys with moraines, occasional small glaciers and periglacial features are preserved in these mountains (Palgrave, 1872; Luis, 1944; Kurter, 1991; Çiner, 2003; Sarıkaya et al., 2011; Çalışkan et al., 2012; Sarıkaya and Tekeli, 2012; Bayrakdar et al., 2015; Yavaşlı et al., 2015). In the central parts, high volcanoes such as Ağrı (also known as Ararat, 5137 m), Süphan (4058 m) and Erciyes (3917 m) also contain active glaciers and periglacial features (Penther, 1905; Erinç, 1951; Messerli, 1964; Kurter, 1991; Kesici, 2005; Sarıkaya et al., 2009; Sarıkaya, 2012).

The geology of the Anatolia Peninsula is rather complicated. However, the Taurus Mountains along the Mediterranean coast of Turkey are mainly made up of platform carbonate rocks with occasional presence of ophiolitic rocks emplaced as trust sheets (Monod, 1977). On the other hand, the Eastern Black Sea Mountains along the NE Black Sea coast of Turkey contain mostly quartz bearing lithologies composed of plutonic and volcanic rocks. The volcanoes scattered in the central parts of Anatolian Peninsula are generally andesitic to rhyolitic in composition.

Late Pleistocene glacial deposits in Turkey are now well described and constitute one of the bestdated records of its kind in the world (Hughes and Woodward, 2017) (see a review of glacial landforms and TCN dating chronologies by Sarıkaya and Çiner, 2015, 2017). On the other hand, periglacial landforms are only scarcely described, often in local journals and in Turkish and lack quantitative age results. Here, we present an overview of the distribution of mountains with periglacial landforms based mainly on literature but also on field observations on periglacial processes and landforms formed since the Last Glaciation (Table 7).

Table 7

Last Glaciation

There are no age data on the periglacial landforms related to the Last Glaciation in Turkey. However, moraines in the Taurus Range, particularly in Mt. Sandıras (2295 m) (Sarıkaya et al., 2008), Mt. Akdağ (3016 m) (Sarıkaya et al., 2014), Mt. Dedegöl (2992 m) (Zahno et al., 2009; Çılğın, 2015; Köse et al., 2017), Mt. Aladağlar (3756 m) (Zreda et al., 2011), Mt. Bolkar (3524 m) (Çiner and Sarıkaya, 2017) and Mt. Geyikdağ (2877 m) (Çiner et al., 2015, 2017; Sarıkaya et al., 2017) yield TCN ages that vary between ~50 to 5 ka. To the NW of Turkey, on Başyayla Valley of Mt. Kaçkar, (3937 m) along the Eastern Black Sea Mountain Range, the MIE is reported to be around 56 ka (Reber et al., 2014). It is therefore reasonable to assume that the extent of glacier advances and retreats also controlled the intensity of periglacial activity as well as the development of periglacial landforms in these areas.

The synchronicity of the LGM in the eastern Mediterranean region is under current debate (e.g., Clark et al., 2009; Hughes and Woodward, 2008; Hughes et al., 2013). However, there seems to be a consensus on the rather synchronous LGM extent and timing (centred to around 21 ka) on the Taurus Mountains (e.g., Sarıkaya and Çiner, 2017), Eastern Black Sea Mountains (Akçar et al., 2007, 2008), Lesser Caucasus Mountains (Dede et al., 2017) and the individual mountains in the central Anatolia such as Mt. Uludağ (2543 m) (Akçar et al., 2014, 2017; Zahno et al., 2010) and Mt. Erciyes (Sarıkaya et al., 2009). It is therefore very likely that during the Last Glaciation and at LGM, periglacial processes below LGM snowline, approximately between 2400-2600 m in the Taurus Mountains and 2300-2500 m in the Eastern Black Sea Mountains (Erinç, 1952; Messerli, 1967; Çiner, 2004), were active and permafrost mainly controlled the development of some relict rock glaciers as well as patterned ground features (Figure 11).

Figure 11

Deglaciation

Following the LGM, at around 21 ka a rapid deglaciation is documented throughout the Anatolia Peninsula (e.g., Sarıkaya and Çiner, 2015). As in other periglacial alpine environments (Barsch, 1992; Knight and Harrison, 2008), mountains in Anatolia also experienced increasing rockfall and mass movements, leading to rock glacier instability, formation of outwash plains and sediment release to the rivers. This deglaciation was interrupted by two cold intervals; OD, which was rather long compared to the relatively shorter YD, where glaciers regained momentum and descended down valleys (Çiner et al., 2015; Sarıkaya and Çiner, 2015). These two cold stages were followed by rock glacier development, especially in the Eastern Black Sea Mountains (e.g., Akçar et al., 2007) and in Mt. Mercan (also known as Mt. Munzur; 3463 m) in central Anatolia (Bilgin, 1972). A relict rock glacier terminus that lies around 2100 m was recently TCN dated to

15.7 ± 1.3 ka in the Mt. Karçal (3932 m) of the Lesser Caucasus Mountains (Dede et al., 2017) (Figure 12).

Figure 12

Holocene

The Holocene record of periglacial conditions is not well known in Turkey. Although the existence of glaciers in southeastern Taurus Mountains (e.g., Mt Cilo, 4135 m) (İzbıkak, 1951; Erinç, 1953) and high volcanoes such as Mt. Ararat are known (Sarıkaya, 2012), only few glacial deposits were TCN dated. For instance, on the Erciyes Volcano in central Anatolia, reported Early Holocene (9.3 ± 0.5 ka) and Late Holocene (3.8 ± 0.4 ka) glacial advances suggesting also periglacial conditions surrounding this mountain (Sarıkaya et al., 2009). On the other hand, rock glaciers probably were extensively developed during the Holocene especially in the northern parts of the Anatolia Peninsula. However, the development of rock glaciers is rather restricted in the Taurus Range probably because of the well-developed karst that restrained surface water flow. Nevertheless, rock glaciers were previously described in Mt. Geyikdağ in the central Taurus Mountains (Arpat and Özgül, 1972; Çiner et al., 1999) and recently Çiner et al. (2017) TCN dated a rock glacier to < 6 ka (Fig. 2c). On the other hand, a study carried out on the southern slopes of Mt. Ararat (Avc1, 2007) claimed that during the glacial/periglacial climates of the past, mass movements gave rise to debris on the slopes and blocky colluvium in the valley floor.

LIA

With the exception of Mt. Ararat ice cap that covers around 5.6 km² (Sarıkaya, 2012) and Mt. Cilo Uludoruk glacier (<3 km long), only few small glaciers are present today in Turkey, where two third are located in the southeastern Taurus Mountains (Kurter, 1991; Çiner, 2004; Akçar and Schlüchter, 2005; Sarıkaya and Tekeli, 2014). However, glaciers were more numerous and much larger during the LIA in Turkey and in the Mediterranean mountains in general (Hughes, 2014, 2017).

For instance, the highest moraines in Mt. Uludağ were attributed to LIA (Erinç, 1952). More recently Zahno et al. (2010) TCN dated a boulder from the innermost moraine (sample TRU-12 in Zahno et al., 2010) with negligible cosmogenic nuclide concentration supporting a probable LIA advance in Mt Uludağ. Birman (1968) also tentatively proposed a recent age for the formation of this moraine.

In Mt. Aladağlar in the central Taurus Mountains a small glacier covered by rock debris (Altın, 2006; Gürgen et al., 2010) is probably a remnant of LIA glacier development. Even though at least 12 glaciers exist in the Eastern Black Sea Mountains, moraines associated with a LIA advance are reported to be absent in Kavron and Verçenik valleys of Mt. Kaçkar probably because of dry and cold climatic conditions (Doğu et al., 1993; Akçar et al., 2007, 2008; Bayrakdar and Özdemir, 2010; Reber et al., 2014). We can therefore presume that periglacial conditions surrounding these glacial environments were more extensive during LIA compared to today's conditions in these areas with probable development of rock glaciers and protalus lobes.

Present-day

Although no active glaciers exist in Mt. Uludağ in western Turkey, it is probably one of the bestdescribed mountains concerning periglacial landforms. Studies carried out by Erinç (1949, 1957) identified two distinct periglacial levels on Mt. Uludağ. The first one lies between 1900-2300 m

and is characterised by garland soils that developed in slopes ranging between 2 and 40°. The second level lies above 2300 m and is mainly represented by stone accumulations, 40-50 cm in diameter, stone stripes and stone circles preserved over quasi-flat (0-10°) surfaces (Figure 12) (Öztürk, 2012). Additionally, Türkeş and Öztürk (2008, 2011) indicated that while several alpine plant species are effective in the formation of garlands, only two types of *Festuca* sp. are effective in the formation of circles. Although much less developed compared to Mt. Uludağ, Bilgin (1960) also reported garland soils at the summit and NE facing slopes of Mt. Kazdağ (~1700 m), in the westernmost part of the Anatolia Peninsula, near the Aegean Sea. This mountain composed of granite and schist was too low to be glaciated during the Last Glaciation but relict block streams were encountered at 1350 m facing northeast suggesting past permafrost conditions (Bilgin, 1960).

Mt. Ilgaz in central Anatolia also shows some periglacial features (Erinç et al., 1961). While large features such as block flows and cyroplanation surfaces are classified as inactive, smaller stone circles (50 cm in diameter) and garlands are thought to be active. Garlands and polygonal soils above 2500 m near Yedigöller Lake on the north-facing slopes of Mt. Esence (also known as Mt. Keşiş; 3549 m) are present (Akkan and Tuncel, 1993). Stone rings at 2650 m on Mt. Mescid (3239 m) are also reported (Atalay, 1983).

On the Eastern Black Sea Range at Mt. Karagöl (3107 m), stone circles ranging from 25 cm to 1 m in diameter and ovoid depressions 1 to 1.5 m in diameter and few decimetres in depth are reported at ca. 1800 and 1900 m, respectively (de Planhol and Bilgin, 1964). Turoğlu (2009) also reported recent solifluction, frost creep and mass movements such as rock falls, talus, talus creeps, rock avalanches and rock flows on the same mountain. In the nearby Mt. Karadağ (3331 m) periglacial features are also known to exist (Bilgin, 1969; Gürgen, 2001). On Elevit and Hacıvanak glacial valleys of Mt. Göller (3328 m) active garlands, stone circles and solifluction terraces related to seasonal frost conditions are best observed on the south facing slopes (Çiçek et al., 2006).

Active rock glaciers are mostly concentrated on the northeastern Turkey and central Anatolia. In a recent study, Gorbunov (2012) detected several active, inactive and fossil rock glaciers in Turkey using satellite imagery. Among around 600 rock glaciers located mainly between 2800-3400 m, of which about 200 are reported to be active, with some reaching 1200-1300 m in length. In some places, fossil rock glaciers descend downvalleys to 2200-2300 m. For instance, in the upper parts of the northern tributary of the Başyayla Valley in the Eastern Black Sea Mountains and in the Mt. Karçal in the Lesser Caucasus Mountains several active rock glaciers were reported (Çalışkan, 2016; Gürgen and Yeşilyurt, 2012; Reber et al., 2014; Dede et al., 2015). In Kavron Valley intensive rock glacier activity is responsible for the destruction of LIA moraines (Akçar and Schlüchter, 2005). In the so-called ski valley of Erciyes Volcano a rock glacier is also described as being active (Sarıkaya et al., 2003; Ünal and Sarıkaya, 2013) (Figure 12b). On the other hand, according to Yeşilyurt and Doğan (2010) several debris-covered glaciers were mistakenly interpreted as rock glaciers on Mt. Munzur.

Mt. Dedegöl is the only site in western Taurus Mountains where rock glaciers are developed (Dellanoy and Maire, 1983). Although some are not active, others situated between 2500 and 2800 m are active with calcareous blocks of 0.5 to 1.5 m in diameter. In Mt. Aladağlar in the central Taurus Mountains, speleologists discovered a karstic cave at ~3400 m, containing 120 m thick ice along a shaft that was probably inherited from LIA (Bayarı et al., 2003; Klimchouk et

al., 2006) (Figure 12). This is the only known ice occurrence within a cave system in Turkey. On the Yedigöller plateau of Mt. Aladağlar where the paleo-ice cap is known to have melted at the onset of the Holocene (Zreda et al., 2011), stone stripes are also reported at 3200 m (Figure 12). Rock glaciers also developed in front of the rapidly melting glaciers of Mt. İhtiyar Şahap (also known as Mt. Kavuşşahap; 3650 m) on the southeastern Taurus Mountains (Doğu, 2009; Yeşilyurt et al., 2018).

4.6 Northern Africa

Northern Africa mountainous regions are dominated by the Atlas, a series of ranges and plateaus, running eastwards from the Atlantic at ca. 31° N in coastal Morocco to 35 °N in the Mediterranean in northern Tunisia, across almost 2000 km. In Morocco, the Atlas is divided in the Middle Atlas (Djebel Bou Naceur, 3340 m), the High Atlas (Djebel Toubkal, 4167 m) and the Anti-Atlas (Djebel Sirwa, 3304 m), not analysed in this paper. The three major massifs in the High Atlas are, from west to east, the Djebel Toubkal massif (4167 m), the Irhil M'Goun massif (4071 m) and the Djebel Ayachi (3751 m). Towards the east, the High Atlas extends to the Saharian Atlas, culminating in the Aurès Massif in Algeria at 35°N (2324 m). North of the Atlas and close to the Mediterranean coast, lie the Rif (3445 m) and the Algerian Tell (2308 m) divided from the former by the Algerian high plateaus (1729 m). Further south, already in the interior Sahara Desert, lie two other large massifs, with a drier climate and with evidence of relict periglacial phenomena: the Hoggar (2981 m) in southern Algeria at 23°N, and the Tibesti (3445 m) in northern Chad at 21°N.

The major geological structures of the mountains in North Africa are fold-thrust belts formed by the collision between the African and the European plates (Gómez et al., 1977; Dewey et. al., 1989) along the plate boundary. The materials in the Rif-Tell Atlas are allochthonous, with the presence of flysch sequences and limestones covering African shield metamorphics and granitoids. The High Atlas – Saharan Atlas is an intracontinental fold-thrust belt in the foreland of the Rif (Arboleya et al., 2004), with autochthonous rocks. Mesozoic limestones prevail in the Middle Atlas, also with Cenozoic basaltic lava flows infilling pre-existing valleys (Arboleya et al., 2004). The High Atlas has three major morphostructures, with the western part showing limestone plateaus, the central zone showing Paleozoic magmatics from the African shield (granites, rhyolites, andesites and trachytes) and the eastern zone, a folded structure of carbonates (Joly, 1962; Hughes et al., 2004). The Saharan Atlas is composed by folded structures affecting mostly Cenozoic limestones.

The Hoggar massif is located in a cratonic setting, showing in its western part, middle-Proterozoic thick meta-sedimentary units and alkaline-peralkaline intrusives, magmatic complexes of basic to ultrabasic rocks and volcanoclastic deposits, andesites to dacites and calc-alkaline batholiths. The central Hoggar is mainly composed of gneisses and schist belts, while the eastern Hoggar shows mainly gneisses and granites (Bertrand and Kaby, 1978). The Tibesti massif is composed of Precambrian crystalline rocks, being formed by a core of intrusive and metamorphic rocks, which is bounded by Paleozoic and sedimentary sequences. These units are partially capped by Tertiary volcanics (Ghuma and Rogers, 1978, Permentier and Oppenheimer, 2007).

The mountains of North Africa mark strong climatic gradients between the Atlantic in the west, the Mediterranean in the north, and the Sahara influence in the south. This impacts essentially the precipitation amounts, varying from over 2,000 mm in the Rif mountains to145 mm in the Hoggar and 11 mm in the Tibesti, and are characterized by regimes, from the Mediterranean type, in the north, to semi-arid and arid regimes as one moves towards the Sahara. Air temperatures show both the effects of continentality and latitude, with striking impacts on the estimated altitudes of

the 0 °C MAAT, which range from slightly above 3000 m in the Rif to about 4900 m in the Hoggar, much higher than the maximum elevations in these ranges (Table 2).

Periglacial features in North African mountains have been described by several authors, but most through a classical naturalistic approach, lacking quantification, sedimentological studies and absolute dating of relict features (Table 8). Most features relate to evidence of frost shattering, talus slopes, stratified slope deposits and more sporadically, to rock glaciers, although lacking detailed observations. At least one case of the latter, in the High Atlas, has been recently reinterpreted as a catastrophic rock slope failure deposit, rather than as a rock glacier (Hughes et al., 2014), which calls for a need for encompassing detailed studies and reinterpretation. Presentday periglacial activity has been vaguely described by the presence of solifluction landforms and ground frost features at high altitude localities, but again the observations lack modern objective assessments and monitoring data are lacking almost everywhere. A recent study by Vieira et al. (2017) based on geomorphological evidence and ground surface temperature data indicates the possible presence of permafrost in the upper reaches of the High Atlas. Both relict and presentday periglacial features reflect the climatic gradient, with the evidence showing an increasing moisture content from SE to NW and a decrease of temperatures.

Table 8

Last Glaciation

No absolute age records exist from periglacial deposits or landforms in North Africa and the only chronological framework for the cold event derives from glacial evidence, which have been especially well-studied in the High Atlas (De Martonne, 1924; Dresch, 1949; Wiche, 1953; Messerli, 1967; Messerli and Winiger, 1992; Chardon and Riser, 1981; Hughes et al., 2004, 2011, 2018; Hannah et al., 2017). In the Djebel Toubkal region, Hughes et al. (2018) have identified three phases of glacier advance or sustained stabilisation, with ages of ca. 50 ka, 22 ka and 12 ka, pointing to a pre-LGM maximum and to the presence of glaciers during both the LGM and the YD. These relate to several valley glaciers that descended in some areas down to 1900 m, with typical glacier lengths of 2 to 9 km. Other ranges showing glacier evidence are the Rif (Mensching, 1960) and the Middle Atlas (Dresch and Raynal, 1953; Raynal et al., 1956; Awad, 1963) in Morocco, and the Tell Atlas (Barbier and Cailleux, 1950) and the Aurès mountains (Ballais, 1981) in Algeria, but with no known absolute age records.

Relict periglacial deposits in northern Africa mountains have been attributed by the different authors mostly to the Last Glaciation (Figure 13). The most frequent reference to periglacial features are probably slope deposits, which vary from head-type deposits to stratified slope deposits and grèzes in some limestone areas. They were identified in the Algerian Tell above 1400 m and in the Aurés Massif above 1800 m (Tihay, 1973), and are widespread in the High Atlas (Chardon and Riser, 1981). We have observed a good outcrop at the Middle Atlas southeast of the Djebel Bou Iblane at 2350 m. Other references to slope processes relate essentially to a diffuse concept of solifluction, which has to be accounted for with great care due to the difficulty relating to the identification of processes, but also to the variability of the interpretation of the concept. As such, relict solifluction features have been identified in the High and Middle Atlas (Awad, 1963) and Messerli (1973) associates frost action in the Hoggar and Tibesti to the presence of slope deposits and filling of hollows, which are present even below 2000 m. Nivation forms (presumably hollows), as a set of geomorphic processes, have been identified by Messerli (1973) in the Hoggar (above 2400 m), in the Tibesti (above 3000 m), by Tihay (1973) in the Aurés above 1800 m and in the Algerian Tell above 1500 m, by Marre and Quinif (1981) in the Algerian High Plateaux above 1500 m, and in the Rif by Mensching (1960). Rock glaciers, which are the single landform identified which is an indicator of the presence of permafrost, have been reported for

the Algerian Tell (possible) above 1100 m by Tihay (1973) (an altitude that seems excessively low), for the Middle Atlas between 2100 and 2500 m (Awad, 1963) and for the Rif by Mensching (1960). Nivation forms would have been widespread marginal to glaciated areas of the High Atlas during the Last Glaciation. Patterned ground can be observed on plateau surfaces in the High Atlas, especially between 3000 and 3600 m over the extensive high plateaus of Iouzagner (3502 m) and Tazaghart (3980 m). Hannah et al. (2017) described large polygonal and linear patterned ground (10-20 m wide and up to 1000 m long) as well as extensive covering of thick regolith, blockfields, blockstreams and smaller-scale stone stripes on these high plateaus. The plateaus were covered in ice during the most extensive glacial phase of the Last Glaciation (before ~50 ka based on dating in Hughes et al. 2018) and the periglacial features formed afterwards and are probably still active today given the high altitude of the plateau.

Figure 13

Deglaciation

Few observations exist for the deglaciation phase. However, the rock glaciers reported for the M'Goun Massif by Wiche (1953) which are located inside the valleys well-within the glacier limit can be included in this phase. These features are probably derived from frontal moraines in the cirques, as suggested by Hughes et al. (2006). It is also possible that the rock glaciers described by Awad (1963) for the Middle Atlas, close to the Djebel Bou Naceur, as well as some of the High Atlas rock glaciers described by Dresch (1941) and Wiche (1953) also correspond to this phase.

Present-day

Observations on present-day periglacial processes and landforms are scarce and lack quantitative data. The lack of a common methodology by the different authors limits a regional analysis. Messerli (1973) shows that the Tibesti and Hoggar lack present-day frost activity, a fact that they attribute more to the dryness than to the lack of sub-zero temperatures. At the Aurés Massif, Tihay (1973) indicates that frost action occurs above 2300 m, while Ballais (1981) mentions solifluction between 1300 and 1800 m. For the Algerian Tell, Tihay (1973) lowers these limits, putting frost action above 1500 m. In the Middle Atlas, Dresch and Raynal (1952) and Raynal et al. (1956) indicate active frost shattering. Above 2700 m a marginal periglacial zone starts to be evident in the eastern part of the Bou Naceur massif, with vegetation crescents and very shallow solifluction.

The most consistent reports on present-day periglacial activity in North Africa are from the Djebel Toubkal massif in the High Atlas, the highest peak in north Africa. Periglacial features are widespread (Hughes et al., 2011) and were described for the Central High Atlas by Couvreur (1966), who reported active solifluction above 2200 m (Figure 14). For the western High Atlas, Chardon and Riser (1981) indicate the limit of frost activity to be around 2500 m and considered that frost action dominates the morphogenesis above 3000 m. Chardon and Riser (1981), seemingly were the first to interpret a lobate feature in the Irhzer Ikhibi south at 3800 m as an active rock glacier. Vieira et al. (2017) installed a series of ground surface temperature and air temperature dataloggers during one full year, from 3210 to 4160 m altitude. The authors analysed the ground temperature regimes and snow cover and identified a hot season from late-May to late-September and a long cold season from mid-October to mid-April. Freeze-thaw regimes were analysed and the most important finding was the possible presence of permafrost at a location close to the rock glacier identified by Chardon and Riser (1981). This interpretation was based on the very low temperatures (c. -5.8 °C) measured at the ground surface beneath a stable snow pack that lasted from mid-December until late-March. Other lobate rock debris features are found at similar altitudes in other circues nearby and it is possible that these are also associated with sporadic patches of permafrost (Hughes, 2018). Permanent snowfields were present in the High Atlas in the mid-20th century and were probably widespread in the LIA (Hughes, 2018).

4.7 Mediterranean islands

Figure 14

The Mediterranean Sea encompasses several archipelagos and some major islands, some of which exceed 10,000 km² (Sicily, Sardinia, Corsica, Crete). Some of the islands are very mountainous, with elevations exceeding 2000 m in Sicily (Etna, 3350 m), Corsica (Monte Cinto, 2706 m), Crete (Lefka Ori, 2452 m). Lithologies are highly variable, with abundant limestones and granites and also volcanic rocks in the case of the highest elevation within the limits of the Mediterranean Sea, the Etna. While past glacial activity in Mediterranean islands has received some attention (e.g. Hughes et al., 2006a, Hughes and Woodward, 2016), periglacial processes have been less examined.

Last Glaciation

Glaciation has affected the mountains of Corsica, and the active volcano of Mt. Etna in Sicily, and the mountains of Crete. In the highest mountains in Corsica, Kuhlemann et al. (2008) dated *roches moutonnées* at 18 ka BP. In Crete, Bathrellos et al. (2014) found 17 glacial cirques between 1870 and 2360 m distributed around the two main mountains groups: Mt. Lefka Ori (2453 m) and Mt. Idi (2456 m). However, the ages of the Cretan glaciations remain untested and could potentially be older than the Late Pleistocene as in parts of mainland Greece (cf. Hughes et al., 2007).

Past periglacial activity has been documented in several Mediterranean islands associated in most of the cases to seasonal frost regime. In Corsica, despite the quite extensive glaciation during the LGM periglacial landforms are not common if we exclude granite weathering features like tafoni, weathering pits or grooves that are extensively widespread in the island and that occur largely also in modern cryotic conditions in Antarctica (i.e Guglielmin et al., 2005; Strini et al., 2008). Kuhlemann et al. (2009) recorded blockfields and tors above 2200 m and describe them as possible periglacial landforms, even reporting less common similar features at lower altitudes.

Landforms associated to intense periglacial conditions are also observed in Sardinia as indicated by Ginesu (1990) who described several blockfields and block streams composed by basalts in the centre of the island (Pranu Mannu plateau) at an altitude of about 600 m. Ginesu and Sias (2006) suggested a periglacial origin also for other block accumulations on different lithologies in the higher reliefs of Sardinia (Gennargentu, Limbara, Perdasdefogu). More recently, Ginesu et al. (2014) interpreted some block deposits found on Asinara island as block streams. In this case, block streams are composed by granites subrounded blocks and located close to the coast and even below the present sea level (4 m depth) in Cala Arena. Block streams and block slopes close to Tyrrenian coast have been described in the Pisani Mountains between 400 and 800 m on quarzites by Casarosa and Pappalardo (2006).

Poser (1957) found patterned ground and solifluction lobes above 1800 m in Crete, suggesting that the lower limit of periglacial activity in this island was represented by boulder pavements extending down to elevations of 800 m. Cemented stratified scree of unknown age are present on the southern slope of Mt. Idi (Guglielmin, unpublished), probably related to the coldest phases of the Last Glaciation.

In the Balearic Islands there is evidence of periglacial activity during the Last Glaciation, with scree deposits located at elevations above 1200 m in the limestone Tramuntana massif (Rosselló, 1977) though no evidence of permafrost conditions was detected at this altitude.

Deglaciation

The temperature increase recorded following the LGM conditioned the deglaciation of Mediterranean mountains, with only the possible existence of minor glaciers during the OD and YD in the highest mountains in Corsica. No evidence of permafrost conditions has been reported for this stage, though periglacial processes driven by seasonal frost may have existed during the coldest stages in the highest mountains.

Holocene

It is very unlikely that climate conditions prevailing during the Holocene allowed the existence of permafrost even in the high lands of the major islands.

LIA and present-day

LIA cold-climate conditions probably reactivated periglacial processes in the highest mountains in Sardinia and Sicily. In fact, evidence of permanent ice deposits in lava tubes has been found at 2043 m on the north flank of Mt Etna volcano (*Grotta del Gelo*, Cave of Frost), in Sicily. It is probably the southernmost European ice cave (Marino, 1992; Hughes and Woodward, 2009; Scoto et al., 2016). The lava tube formed during the historic long-lasting eruption of 1614-24 and despite its geological setting and latitude, after about twenty years from the last phases of the eruption (coinciding with the Minimum Maunder, 1645-1715), subterranean freezing inside the cave started to take place. Beside the development of seasonal ice formations (seasonal lake ice, ice stalactites, stalagmites and columns generally located close to the entrance), perennial ground ice is present in the deepest zone. The ice extension reaches about 240 m², and the volume is estimated at about 220-260 m³ (Scoto et al., 2016). On Mt. Etna, at elevations above 2900 m, nivo-aeolian deposits were found with frozen ground beneath that can persist for more than 2 years, and therefore can be considered as current permafrost (Guglielmin, unpublished).

5. Discussion

Climate variability during the Quaternary has conditioned the spatial distribution of glacial and periglacial processes in the Mediterranean region, and therefore the area under permafrost conditions (Figure 15). Glacial stages favoured a substantial expansion of glaciers in the currently still glaciated mountain ranges and the formation of glaciers in presently deglaciated mountain environments (Woodward, 2009). The glaciation in the Mediterranean mountains has been long debated and several reviews have focused on the calendar and geography of the maximum glacial expansion in the different mountain regions (i.e. Allen et al., 1999; Hughes et al., 2006a, 2008, 2013; Hughes and Woodward, 2016). The temperature increase recorded during interglacial phases - such as the Holocene - conditioned the complete disappearance or substantial retreat of glaciers and the migration of permafrost and periglacial processes to higher elevations (i.e. Oliva et al., 2016b).

Figure 15

5.1 Last Glaciation

The calendar of the maximum glacial expansion of the Last Glaciation shows a diachronous pattern among the massifs, which must be also framed with the dating method used in each study (Hughes et al., 2013). Whereas radiocarbon, U-series and OSL indicate an early glacial advance that occurred several thousand to tens of thousands of years earlier than the global LGM in the Sierra Nevada, Cantabrian Mountains, Central Pyrenees, Italian Apennines and Pindus Mountains, cosmogenic exposure ages suggest a local MIE in the Iberian Central Range, Maritime Alps and Anatolia mountains (almost) synchronous to the LGM (Hughes et al., 2008).

The FIS extended over northern Europe until latitude 50°N in its southern fringe (Hughes et al., 2015; Stroeven et al., 2016). Therefore, the Mediterranean region was not extensively glaciated by comparison, with glaciers concentrated in mountain environments in the form of small ice caps and mountain glaciers filling the valleys. The ELA decrease in Mediterranean mountains during the LGM compared to present-day was about 800 and 1200 m, which is translated in a minimum temperature difference of ca. 6-10 °C (Allen et al., 2008; Kuhlemann et al., 2008). The glaciated environments in the western and central Mediterranean region was associated with ELAs above 1500-2000 m in most of mountain ranges (Hughes et al., 2006a, 2008), slightly increasing towards the easternmost fringe in mountains of Turkish and Lebanon where the ELA was located around 2500-3000 m (Messerli, 1967).

The southern ice-free land surrounding the large FIS was underlain by permafrost, which extended across the lowlands in much of central Europe as well as the northern fringe of the Mediterranean region, in areas such as central France and the northern Balkan region (Brown, 2001; Vandenberghe et al., 2014). Dry and cold climate conditions prevailing in these permafrost areas during the LGM promoted intense aeolian activity, with the deposition of thick loess deposits in non-glaciated environments from central-northern Europe (Antoine et al., 2009) and northern Italy (Cremaschi et al., 2015). In the Mediterranean region, the presence of ice wedges and cryoturbations features in some basins, such as in the Pannonian basin (van Vliet-Lanoe et al., 2004; Ruszkiczay-Rüdiger and Kern, 2015) or in some basins in the Spanish Meseta (Badorrey et al., 1970; Asensio-Amor and González-Martín, 1974; Serrano et al., 2010a) has been related to deep seasonal frost conditions or even isolated patches of sporadic permafrost. Despite few data in areas surrounding the valley glaciers in the southern Alps, environments at the foot of the northern Apennines and even at the Po plain should have been affected by permafrost conditions as suggested by loess deposits and the existence of some cryoturbation features (Cremaschi et al., 2015). In the Mediterranean mountains, immediately below the glaciated environments was the periglacial belt affected by permafrost regime at high elevations and seasonal frost at the foot of the mountains and high-altitude plateaus (e.g. 600-1200 m).

Permafrost was also widespread in non-glaciated environments above the snowline as revealed by the present-day distribution of inactive permafrost-derived features. Rock glaciers formed during the Last Glaciation have been described in several Mediterranean mountains at a wide range of altitudes (e.g. Figure 3 and Table 5). Block streams, some km long and hundreds of meters wide, also developed during this stage at elevations between 700 and 1800 m. In relatively flat summit areas where wind action did not favour snow and ice accumulation, meter-sized stone circles developed in several massifs except for the Italian Peninsula where there are no evidences of large stone circles in the LGM ice-free areas. Similar patterned ground features are observed today in present-day polar environments where permafrost conditions are widespread with mean annual temperatures below -6 °C (French, 2007). It is therefore feasible to relate the formation of these currently inactive features to permafrost occurrence. Concurrently, very intense periglacial conditions favoured the development of large blockfields and tors, which are remnants of original surfaces in the highest lands. The thermal regime of the ground in the nunataks standing out the glaciated slopes must have been also characterized by permanent frozen conditions well below 0 °C.

5.2 Deglaciation

During the most important phases of the last deglaciation, the evolution of the glaciers of the different Mediterranean mountains shows a much more homogenous pattern than during the LGM. The latest studies indicate interruptions during the deglaciation process and even some important glacial advances, in full synchrony within the Mediterranean region and with the mountainous systems of central Europe, as well as with the FIS. The onset of a massive retreat of the FIS is dated at 19 ka and accelerated at 18 ka (Marks, 2015; Stroeven et al., 2015; Toucanne et al., 2015; A.L. Hughes et al., 2016; Petrini et al., 2018), in parallel to most European mountains. For example, some of the largest glaciers in the Alps had lost ca. 80% of their mass at 18 ka (Ivy-Ochs et al., 2004, Ivy-Ochs, 2015) and glaciers could almost have disappeared completely in the Pyrenees at that time, as probably occurred in many other Mediterranean mountains (Palacios et al., 2017a).

The first glacial advance within the deglaciation took place during the OD, when advances have been detected in numerous sectors of the FIS (Marks, 2015; Stroeven et al., 2015; Toucanne et al., 2015; A.L. Hughes et al., 2016). In the Alps, glaciers expanded along the valley bottoms with their fronts reaching elevations only 400 m above the LGM moraines (Kerschner and Ivy-Ochs, 2008; Ivy-Ochs et al., 2009; Ivy-Ochs, 2015). Similar glacial advances occurred during this period in the Tatra Mountains (Makos, 2015) as well as Mediterranean glaciers that also experienced important advances, as in the Iberian Peninsula (Palacios et al., 2017a), Southern Alps (Federici et al., 2012), Apennines (Giraudi, 2015), Balkan Peninsula (Kuhlemann et al., 2013) and Anatolian Peninsula (Sarıkaya et al., 2008, Akçar et al., 2014). A significant drop of the North Atlantic temperature induced a significant reduction of the meridional overturning circulation (Bard et al., 2000; McManus et al., 2004), with extreme seasonality of cold winters and mild summers (Denton et al., 2005; Williams et al., 2012) favouring glacial expansion during this period. Similar conditions have also been detected in southern Europe and in the Mediterranean region (Fletcher et al., 2010). For example, glaciological models indicate that during the OD the MAAT in the Alps was 10 °C lower than present-day, and precipitation was one-third less (Ivy-Ochs, 2015). Undoubtedly, these conditions would have favoured a substantial expansion of permafrost conditions in mountain environments. Many fossil periglacial landforms existing in Mediterranean regions, such as patterned ground, protalus lobes or rock glaciers, could have originated at this time. But these climatic conditions changed drastically during the BO, when the environmental conditions shifted abruptly and become very similar to present in the Mediterranean region (Fletcher et al., 2010). Consequently, there was a massive glacial retreat in Europe, including the FIS and British-Irish Ice Sheet (Marks, 2015; Stroeven et al., 2015; Toucanne et al., 2015; Hughes et al., 2016), central European mountains (Ivy-Ochs, 2015; Makos, 2015) and Mediterranean mountains (Sarıkaya et al., 2008; Federici et al., 2012; Kuhlemann et al., 2013; Akçar et al., 2014; Giraudi, 2015; Palacios et al., 2017a).

The recent application of absolute dating methods, fundamentally cosmogenic, to fossil rock glaciers is allowing a better comprehension of the timing of their formation and stabilization, remaining therefore exposed to cosmogenic radiation. In many European mountains, this method is showing that numerous rock glaciers developed on polished glacial surfaces that were deglaciated just at the end of OD. In many cases, the fronts of these rock glaciers were stabilized soon after formation, although their roots remained active during thousands of years (Oliva et al., 2016b, Palacios et al., 2017a,b). This fact shows evidence that most fossil rock glaciers in different Mediterranean mountain ranges developed under paraglacial conditions (Ballantyne, 2002; Mercier, 2008; Oliva et al., 2016b). They occupied the formerly glaciated cirques, extending over very active geomorphological areas at the end of the OD. Subsequently, as

temperatures increased during the OD permafrost conditions migrate to higher elevations and rock glaciers became relict. This process has been mostly described in many Iberian mountain environments (Rodríguez-Rodríguez, 2016; Fernández-Fernández, 2017; Palacios et al., 2017a,b), and should be tested in the future in other Mediterranean ranges. Noteworthy, a similar pattern has been also reported in other mountains, such as in the British Isles (Ballantyne et al., 2009) and the Alps (Hippolyte et al., 2009).

During the YD, in full agreement with the last major advance of the FIS (Greenwood et al., 2015; A.L. Hughes et al., 2016; Stroeven et al., 2015), Mediterranean glaciers advanced again for the last time during the Pleistocene, but only in the highest massifs. Glaciers rarely exceeded the limits of the cirques in the Pyrenees (García-Ruiz et al., 2016a,b) and were moderately longer in the southern Alps (Ivy-Ochs et al., 2008, 2009). This glacial advance was related to a cold and arid period during the YD in the Mediterranean region that ended abruptly at 11.8 ka cal BP (Fletcher et al., 2010). In the Alps, where glaciers had virtually disappeared during the BO, they formed again during the YD and progressed considerably (Ivy-Ochs, 2015) due to 3.5-5 °C lower MAAT than present and precipitation was up to 30% less (Kerschner and Ivy-Ochs, 2008). A similar pattern was also detected in the Tatra Mountains (Makos, 2015).

As occurred at the end of the OD, the end of the YD favoured the rapid retreat of glaciers and, in some cases, the reactivation of paraglacial processes in the walls of the cirques and the formation of rock glaciers and protalus lobes. Again, their fronts became inactive soon after formation, while the roots could have remained active even until the warmest Holocene periods (García-Ruiz et al., 2016a,b; Oliva et al 2016b). Many generations of Mediterranean rock glaciers have been considered to form during or at the end of the YD, as reported in many Iberian mountains (Palacios et al., 2015, 2016; Andrés et al., 2018) and southern Alps (Colucci et al., 2016a), though in other high mountain Mediterranean regions this fact still needs to be confirmed.

Therefore, the cold periods interrupting the long-term deglaciation process showed both glacial and periglacial evidence in the Mediterranean mountains, mainly with the formation of permafrost-related features associated with paraglacial dynamics. The existence of these inactive landforms suggests the minimum altitude for the presence of permafrost during these stages.

5.3 Holocene

The northern Atlantic region has been subjected to significant climate shifts during the Holocene, as revealed by marine sediment records (Witak et al., 2015) and Greenland ice cores (Masson-Delmotte et al., 2005). Climate variability has been also significant across the Mediterranean region, where Holocene temperature oscillations of the order of ca. ± 2 °C have caused significant disruptions in early civilizations (Mayewski et al., 2004). During the Holocene, temperature and moisture shifts have also affected the type and intensity of cold-climate geomorphological processes prevailing in Mediterranean mountains.

The onset of the Holocene saw an accelerated shrinking of the glaciers, which disappeared until nowadays in many massifs during the Early Holocene (Gómez-Ortiz et al., 2012a; García-Ruiz et al., 2016a,b; Palacios et al., 2016). The formerly glaciated environments became occupied by periglacial dynamics, which expanded gradually upvalleys (Oliva et al., 2016b). In many mid-altitude mountain ranges – with highest peaks around 2000 m in the central and western Mediterranean and 2500-3000 m in the eastern part of the region – the periglacial belt disappeared during the Holocene, and significantly shrunk in the highest ranges, particularly during the

warmest stages, such as the Holocene Warm Period (HWP) and the Medieval Climate Anomaly (MCA). In the southern Alps, even during warmer Holocene stages some currently active rock glaciers were still active (Calderoni et al., 1998; Stenni et al., 2007; Scapozza et al., 2010); indeed, the major part of the dated rock glaciers reported an age between 2720 and 2850 cal yr BP with some older exceptions (all younger than 5900 cal yr BP; Calderoni et al., 1998; Guglielmin et al., 2001; Dramis et al, 2003). During the warmest phases, only the environments above 2500-3000 m included a periglacial belt mostly related to seasonal frost conditions, with permafrost regime limited to the highest ranges in the Maritime Alps and the highest mountains in Anatolia.

Most of the active periglacial features during the YD became gradually inactive, and only reactivated during the coldest stages of the Holocene. Permafrost-related features showed activity until the Early Holocene in many of the highest Mediterranean massifs (Kuhlemann et al., 2009; Gómez-Ortiz et al., 2012a; Palacios et al., 2016, 2017a,b). Some authors proposed the initial formation of currently active rock glaciers synchronously to the HWP, such as in the central Taurus Mountains (Çiner et al., 2017) and the Pyrenees at ca. 6 ka (Serrano et al., 2010c). Periglacial landforms related to seasonal frost conditions, such as solifluction landforms located today in the present-day periglacial belt of Sierra Nevada at elevations between 2500 and 3000 m, were inactive during the HWP until 5 ka cal BP but reactivated later during cold and wet phases, namely at 5-4, 3.6-3.4, 3-2.8, 2.5-2.3, 1.8-1.6, 0.85-0.7, 0.4-0.15 ka cal BP (Oliva et al., 2011). Therefore, the alternation between cold and warm phases during the Holocene accompanied also by changing precipitation regimes must have also influenced the intensity of periglacial processes and the spatial distribution of permafrost conditions.

5.4 Little Ice Age

The LIA has been defined as the coldest most recent period where many glaciers reached their largest volume over the last 10,000 years (Bradley and Jones, 1992), and, thus, it has been widely employed in mid-latitude mountain environments as the reference for Holocene cold stages (Grove, 2004; Oliva et al., 2018). In the Mediterranean region, colder and (generally) wetter than present-day climate conditions prevailing during the LIA also favoured the presence of larger and more numerous glaciers (Hughes, 2014). Consequently, the spatial domain of periglacial dynamics expanded down-valleys and cryogenic processes reappeared in some areas where seasonal frost activity was limited during the MCA and is no longer active at present.

During the LIA permafrost features such as rock glaciers and protalus lobes formed and/or reactivated in the highest slopes of the main massifs, above 2350 m in some areas of the Balkan region and 2560 m in the Pyrenees (Tables 6 and 2). In the southern Alps, especially in the eastern part several rock glaciers developed since the LIA around 2400-2500 m (Baroni et al., 2004; Seppi et al., 2014) while only a few active rock glaciers formed in the western Alps and central Alps.

Ice caves, namely natural caves formed in bedrock containing perennial accumulations of ice, are considered as sporadic permafrost phenomena (Holmlund et al., 2005; Luetscher et al., 2005; Hausmann and Behm, 2011; Luetscher et al., 2013). As part of the cryosphere, ice caves occurrence is closely linked to cold climates, even if they do also exist in different kind of environments, often at an altitude with an outside mean annual air temperature well-above 0°C (Holmlund et al., 2005; Stoffel et al., 2009; Obleitner and Spötl, 2012; Colucci et al., 2016b). Ice caves existing in several high karstic mountains have been examined for paleoenvironmental purposes. In most cases these ice caves are several hundreds of meters below the glaciated environments during the LIA, reaching elevations even below 1000 m in the Dinaric Alps (Kern

et al., 2006b; Bočić et al., 2014). The dating of the organic remnants preserved in the ice suggests that it accumulated during the coldest centuries of the LIA (Bayarı et al., 2003; Kern et al., 2006b; Klimchouk et al., 2006; Bočić et al., 2014; Gómez-Lende, 2015; Bartolomé et al., 2015; Temovski, 2016; Zupan-Hajna, 2016; Sancho et al., 2016), and even during the MCA and HWP (Sancho et al., 2016). Interestingly, the frozen ground in contact with the ice inside the caves has been also described as permafrost (Gómez-Lende, 2015; Colucci et al., 2016b), which in many cases still persist in environments with MAAT well above 0 °C due to specific microtopographic conditions (very low solar radiation, existence of stable temperature inversion or density driven air flows and chimney effects).

In all Mediterranean massifs, long-lasting and perennial snow-patches were more extensive than today, which also enhanced nival processes that left some small well-preserved landforms such as protalus ramparts at the foot of slopes.

5.5 Present-day

In the western Mediterranean region, the temperature increase since the last cold stages of the LIA has been estimated at ca. 1 °C (González-Trueba, 2006; González-Trueba et al., 2008; Oliva and Gómez-Ortiz, 2012) and ca. 2 °C since the Minimum Maunder (Oliva et al., 2018). A similar increase has been inferred for other parts of the Mediterranean, such as in the Balkans (Repapis and Philandras, 1988 Xoplaki et al., 2001; Hughes, 2010). This temperature increase has led to glacial retreat/disappearance (Zumbühl et al., 2008), enhanced paraglacial activity (Cossart and Fort, 2008), shift of periglacial processes to higher elevations (Oliva et al., 2011), geoecological changes (Cannone et al., 2007, 2008; Pauli et al., 2012; García-Ruiz et al., 2015; Camarero et al., 2016), as well as degradation of alpine permafrost in mid-latitude high mountain environments, e.g. the Alps (Harris et al., 2003; Gruber et al., 2004; Lugon et al., 2004; Zenklusen-Mutter et al., 2010).

A wide range of approaches have been used to infer the current altitudinal limit of permafrost conditions, such as geomorphological techniques, geophysical surveying and monitoring activities (BTS measurements, boreholes, terrain deformation). Today, permafrost conditions generally increase in elevation towards the eastern part of the region and from north to south. In the western and central Mediterranean, permanently frozen ground is rarely found below 2500 m, discontinuous permafrost is generally detected between 2500 and 2800/3000 m and continuous permafrost is distributed in ice-free environments above this level. An alpine permafrost belt is detected above 2630 m in northern aspects and 2800 m in southern ones in the Pyrenees (Serrano et al., 1999, 2001, 2002, 2006, 2009, 2011a; González-García et al., 2014), above 2400 m in the Southern Alps (Bodin et al., 2009), above ~2350 m on Rila Mountain and ~2700 m on Mount Olympus (Dobinski, 2005) and above 2800-3400 m in NE Turkey and central Anatolia (Gorbunov, 2012). No permafrost belt is found in the highest mountains in southern Europe (i.e. Sierra Nevada) and northern Africa (i.e. Atlas) where permanent frozen conditions are only found in form of isolated patches at the highest elevations at 3000-3100 m (Oliva et al., 2016a) and 3800 m (Vieira et al., 2017), respectively. Certain climate conditions (i.e. reduced snow cover) can favour the presence of permafrost patches at relatively low elevations in the Central Apennines on La Majella and M. Velino massifs (ca. 2400 m) or by lithological conditions (i.e. volcanic sediments), as detected in the highest active European volcano (Mt. Etna) at elevations above 2900 m.

Scientific papers and international reports coincide in anticipating that the Mediterranean basin will be one of the areas on Earth where annual and seasonal climate variations will be more pronounced, with significant warming and reduced rainfall (e.g. IPCC, 2013). These climate conditions would lead to a migration of permafrost conditions to upper elevations, even disappearing in those areas where isolated patches persist but undergo a rapid degradation process (e.g. Atlas, Sierra Nevada Cantabrian Mountains), possibly triggering large rock avalanches or other mass wasting processes with important socio-economic impacts.

6. Conclusions

 The present and past distribution of cold-climate geomorphological processes in the Mediterranean region is conditioned by the topography and wide spectrum of microclimatic conditions prevailing in the region. Both glacial and periglacial processes (including permafrost conditions) since the Last Glaciation have been almost exclusively restricted to mountain environments.

Since the Last Glaciation there has been a long-term decrease in the area occupied by permafrost in the Mediterranean mountains. The existence of abundant inactive permafrost-derived landforms (rock glaciers, block streams, patterned ground features, ice wedges) formed during the last Pleistocene glacial cycle suggests that ice-free slopes in mid-altitude mountain environments and high summit plateaus together with the lowlands of the northernmost fringe of the Mediterranean region could have been underlain by permafrost conditions to a greater or lesser extent during that stage. The thermal increase following the LGM meant that, after that time, periglacial conditions were limited to mountain areas. The gradual upward shift of the snowline in all Mediterranean massifs conditioned a massive deglaciation that was only interrupted by brief periods of glacial readvance. Paraglacial dynamics during the deglaciation process favoured the development of most of the rock glaciers distributed in the majority of the massifs, almost all of which are inactive under present-day climate conditions. Therefore, their formation is primarily associated with adjustment of the circue walls to a new morphodynamic setting and not strictly related to a climatic origin. Warmer temperatures during the onset of the Holocene saw a shrinking of periglacial activity to the highest elevations. Many rock glaciers and protalus lobes became inactive during the Early Holocene as temperatures rose. Permafrost disappeared from most of the massifs and only reappeared in some mountains during the coldest stages of the Holocene, such as the LIA. Since then, post-LIA warming led to the spatial confinement of continuous/discontinuous permafrost conditions in the highest mountain areas, such as some areas in the Pyrenees, Southern Alps, Apennines and Anatolian mountains, or as isolated patches in north-facing circues that were glaciated during the LIA in the Sierra Nevada, Atlas Mountains and the Balkan region.

In contrast to neighbouring mountain environments where there has been a richer analysis of permafrost history (i.e. Alps), permafrost research in the Mediterranean basin still has some gaps:

- The improvement of the glacial chronology that has taken place over the last decade in many Mediterranean massifs has not been paralleled by a strengthening of the chronology of periglacial activity, and therefore of permafrost evolution in the Mediterranean region.
- Data about periglacial dynamics and spatial domains of permafrost are substantial for certain periods (i.e. the last deglaciation), though current knowledge is still poor for others (i.e. Holocene).

- Knowledge of permafrost evolution in some mountain environments is still limited, particularly in North Africa ranges, Apennines and Mediterranean islands.
- Future studies should focus on precise descriptions of landforms and quantitative age proxy data, especially on rock glaciers as indicators of present and past permafrost conditions.

Finally, permafrost scientists in the Mediterranean region should focus on these gaps in order to better understand the spatio-temporal evolution of permafrost conditions in the region. A better characterization of the evolution of permafrost - a key component of the cryosphere in landscape dynamics in mid-latitude high mountain ranges – may be also helpful to anticipate the future geoecological response towards the changing climate scenarios forecasted in these highly sensitive mountain ecosystems.

Acknowledgements

This research was supported by the project CTM2017-87976-P of the Spanish Ministry of Economy, Industry and Competitiveness. Marc Oliva is supported by the Ramón y Cajal Program of the Spanish Ministry of Economy and Competitiveness (RYC-2015-17597) and the Research Group ANTALP (Antarctic, Arctic, Alpine Environments; 2017-SGR-1102) funded by the Government of Catalonia through the AGAUR agency. Attila Çiner and M. Akif Sarıkaya are grateful to TÜBİTAK (Project no: 101Y002, 107Y069, 110Y300, 112Y139, 114Y548T and 116Y155) for continuous support to the glacial/periglacial research in Turkey. The authors are grateful to Prof. Dr. Wilfried Haeberli for his valuable comments and suggestions that improved the manuscript.

7. References

Akçar, N., Schlüchter, C., 2005. Paleoglaciations in Anatolia: A schematic review and first results. Eiszeitalter und Gegenwart, 55, 102-121.

Akçar, N., Yavuz, V., Ivy-Ochs, S., Kubik, P.W., Vardar, M., Schlüchter, C., 2007. Paleoglacial records from Kavron Valley, NE Turkey: Field and cosmogenic exposure dating evidence. Quaternary International, 164-165, 170-183.

Akçar, N., Yavuz, V., Ivy-Ochs, S., Kubik, P.W., Vardar, M., Schlüchter, C., 2008. A Case for a down wasting Mountain Glacier during the Termination-I, Verçenik Valley, NE Turkey. Journal of Quaternary Science, 23, 273-285.

Akçar, N., Yavuz, V., Ivy-Ochs, S., Reber, R., Kubik, P.W., Zahno, C., Schlüchter, C., 2014. Glacier response to the change in atmospheric circulation in the eastern Mediterranean during the Last Glacial Maximum. Quaternary Geochronology, 19, 17-41.

Akçar, N., Yavuz, V., Yeşilyurt, S., Ivy-Ochs, S., Reber, R., Bayrakdar, C., Kubik, P.W., Zahno, C., Schlunegger, F., Schlüchter, C., 2017. Synchronous Last Glacial Maximum across the Anatolian Peninsula. Geological Society, London, Special Publications, 433, 251-269. doi: 10.1144/SP433.7.

Akkan, E., Tuncel, M., 1993. Esence (Kesiş) Dağlarında Buzul Şekilleri, A.Ü. Coğrafyası Araştırma ve Uygulama Merkezi Dergisi, 2, 225-240.

Allen, J.R.M., Brandt, U., Brauer, A., Hubberten, H.W., Huntley, B., Keller, J., Kraml, M., Mackensen, A., Mingram, J., Negendank, J.F.W., Nowaczyk, N.R., Oberhansli, H., Watts, W.A., Wulf, S., Zolitschka, B., 1999. Rapid environmental changes in southern Europe during the last glacial period. Nature, 400, 740-743.

Allen, R., Siegert, M.J., Payne, A.J., 2008. Reconstructing glacier-based climates of LGM Europe and Russia - Part 2: A dataset of LGM precipitation/temperature relations derived from degree-day modelling of palaeo glaciers. Climate of the Past, 4, 249-263.

Alonso, V., 1989. Glaciares rocosos fósiles en el área Degaña-Leitariegos (Occidente de Asturias, Cordillera Cantábrica). Cuaternario y Geomorfolología, 3(1-4), 9-15.

Alonso, V., Trombotto, D., 2009. Periglacial geomorphology of El Miro area, Cantabrian Mountains, NW Spain. Zeitschrift für Geomorphologie, 53, 335-357.

Altın, T., 2006. Aladağlar ve Bolkar dağları üzerinde görülen periglasiyal jeomorfolojik şekiller. Türk Coğrafya Dergisi, 46, 105-122.

Andrés, N., Gómez-Ortiz, A., Fernández-Fernández, J.M., Tanarro, L.M., Salvador, F., Oliva, M., Palacios, D., 2018. Timing of deglaciation and rock glacier origin in the southeastern Pyrenees: a review and new data. Boreas, doi: 10.1111/bor.12324.

Antoine, P., Rousseau, D., Moine, O., Kunesch, S., Hatte, C., Lang, A., Tissoux, H., Zoller, L., 2009. Rapid and cyclic aeolian deposition during the Last Glacial in European loess: A high-resolution record from Nussloch, Germany. Quaternary Science Reviews 28(25-26), 2955-2973.

Anzidei, M., Lambeck, K., Antonioli, F., Furlani, S., Mastronuzzi, S., Serpelloni, E., Vannucci, G., 2014. Coastal structure, sea level changes and vertical motion of the land in the Mediterranean. In: Martini I.P., Wanless H.R. (Editors), Sedimentary coastal zones from High to low latitudes: Similarities and Differences. Geological Society, London, Special Publications, 388.

Arboleya, M. L., Teixell, A., Charroud, M., Julivert, M., 2004. A structural transect through the High and Middle Atlas of Morocco. Journal of African Earth Sciences, 39, 319-327.

Arnáez, J., 1987. Formas y procesos de evolución de vertientes de la Sierra de la Demanda, Sistema Ibérico. Cuadernos de Investigación Geográfica, 13(1-2), 1-153.
Arnáez, J., García Ruíz, J.M., 2000. El periglaciarismo en el Sistema Ibérico Noroccidental.
In: Peña, J.L., Sánchez- Fabre, M., Lozano, M.V. (Editors), Procesos y formas periglaciares en la montaña mediterránea. Instituto de Estudios Turolenses, Teruel, 113-126.

Arpat, E., Özgül, N., 1972. Orta Toroslar'da Geyik dağı yöresinde kaya buzulları. Bulletin of the Mineral Research and Exploration, 78, 30-35.

Asensio-Amor, I., 1974. Contribución al estudio de acciones periglaciares en el límite galaicoastur. Boletín del Instituto de Estudios Asturianos, 83, 805-809.

Asensio-Amor, I., González-Martín, J.A., 1974. Formas de crioturbación en altos niveles cuaternarios del valle del Jarama. Estudios Geográficos, 137, 579-591.

Assier, A., Fabre, D., Evin, M., 1996. Prospection électrique sur les glaciers rocheux du cirque de Sainte-Anne (Queyras, Alpes du Sud, France). Permafrost and Periglacial Processes, 7(1), 53-67.

Atalay, I., 1983. Mescid dağının glasyal morfolojisi. Ege Coğrafya Dergisi, 2(1), 31-48.

Avcı, M., 2007. Noah's Ark: its relationship to the Telçeker earthflow, Mount Ararat, Eastern Turkey. Bulletin of Engineering Geology and the Environment, 66, 377-380.

Awad, H., 1963. Some aspects of the geomorphology of Marocco related to the Quaternary climate. Geographical Journal, 129, 129-139.

Badorrey, T., Guerra, A., Pinilla, A., 1970. Fenómenos de periglaciarismo en paleosuelos de la meseta castellana. Anales de Edafología y Agrobiología, 11-12, 931-940.

Bailey, G.N., Woodward, J.C., 1997. The Klithi deposits: Sedimentology, stratigraphy and chronology. In: G.N. Bailey (Editor), Klithi: Paleolithic settlement and Quaternary landscapes in northwest Greece. Volume 1: Excavation and intra-site analysis at Klithi. Cambridge: McDonald Institute for Archaeological Research, 61-94.

Balch, E.S., 1900. Glacières or Freezing Caverns. Philadelphia Allen, Lane & Scott reprinted in 1970 by Johnson Reprint Corp., New York, 38 pp.

Ballantyne, C.K., 2002. Paraglacial geomorphology. Quaternary Science Reviews, 21(18-19), 1935-2017.

Ballantyne, C.K., Schnabel, C., Xu, S., 2009. Exposure dating and reinterpretation of coarse debris accumulations ('rock glaciers') in the Cairngorm Mountains, Scotland. Journal of Quaternary Science, 24(1), 19-31.

Ballais J.L., 1981. Recherches géomorphologiques dans les Aurès (Algérie). PhD thesis, University of Paris I.

Barbier, A., Cailleux, A., 1950. Glaciaire et périglaciaire dans le Djurdjura occidental (Algérie). Comptes Rendus des Séances de l'Académie des Sciences, Paris. Juillet-Décembre 1950, 365-366.

Bard, E., Rostek, F., Turon, J.L., Gendeau, S., 2000. Hydrological impact of Heinrich Events into the subtropical Northeast Atlantic. Science, 289, 1321-1324.

Baroni, C., Carton, A., Seppi, R., 2004. Distribution and behaviour of rock glaciers in the Adamello-Presanella Massif (Italian Alps) Permafrost and Periglacial Processes, 15, 243-259.

Barriendos, M., 1997. Climatic variations in the Iberian Peninsula during the late Maunder Minimum (AD 1675-1715): an analysis of data from rogation ceremonies. The Holocene, 7(1), 105-111.

Barsch, D., 1992. Permafrost creep and rockglaciers. Permafrost and Periglacial Processes, 3, 175-163.

Barsch, D., 1996. Rockglaciers: indicators for the present and former geoecology in high mountain environments. Springer, Berlin, 331 pp.

Bartolomé, M., Sancho, C., Osácar, M.C., Moreno, A., Leunda, M., Spötl, C., Luetscher, M., López-Martínez, J., Belmonte, A., 2015. Characteristics of cryogenic carbonates in a Pyrenean ice cave (northern Spain). Geogaceta, 58, 107-110.

Bayarı, S., Zreda, M., Çiner, A., Nazik, L., Törk, K., Özyurt, N., Klimchouk, A., Sarıkaya, M.A., 2003. The Extent of Pleistocene Ice Cap, glacial deposits and glaciokarst in the Aladağlar Massif: Central Taurids Range, Southern Turkey. Proceedings of the XVI INQUA Congress, Geological Society of America, 144-145.

Bayrakdar, C., Özdemir, H., 2010. Kaçkar Dağı'nda bakı faktörünün glasiyal ve periglasiyal topografya gelişimi üzerindeki etkisi. Türk Coğrafya Dergisi, 54, 1-13.

Bayrakdar, C., Çılgın, Z., Döker, M.F., Canpolat, E., 2015. Evidence of an active glacier in the Munzur Mountains, eastern Turkey. Turkish Journal of Earth Sciences, 24, 56-71.

Bernini, M., Carton, A., Castaldini, D., Cremaschi, M., 1978. Segnalazione di un deposito di versante di tipo Grèzes liteès a sud di M. Prampa (alto Appennino reggiano). Gruppo Studio del Quaternario Padano, 4, 153-172.

Bertini, A., 2010. Pliocene to Pleistocene palynoflora and vegetation in Italy: State of the art. Quaternary International, 225, 5-24.

Bertrand, J.M.L., Caby, R., 1978. Geodynamic evolution of the Pan-African orogenic belt: A new interpretation of the Hoggar shield (Algerian Sahara). Geol Rundschau, 67, 357.

Bilgin, T., 1960. Kazdağı ve üzerindeki periglasiyal şekiller hakkında. Türk Coğrafya Dergisi, 20, 114-123.

Bilgin, T., 1969. Gavurdağ kütlesinde glasiyal ve periglasiyal topoğrafya şekilleri. İstanbul Üniversitesi Yayınları, 1494, 58 pp.

Bilgin, T., 1972. Munzur Dağları doğu kısmının glasiyal ve periglasiyal morfolojisi, İstanbul Üniversitesi Yayınları, 1757, 85 pp.

Birman, J.H., 1968. Glacial reconnaissance in Turkey. Geological Society of America Bulletin, 79, 1009-1026.

Bisci, C., Dramis, F., Fazzini, M., Guglielmin, M., 2003. Climatic conditions and sporadic permafrost in the Maiella Massif (Central Apennines, Italy). Geografia Fisica e Dinamica Quaternaria, 26(1), 3-13.

Bočić, N., Kern, Z., Buzjak, N., 2014. Some new potential subterranean glaciation research sites from Velebit Mt. (Croatia). In: Land, L., Kern, Z., Maggi, V., Turri, S. (Editors), Proceedings of the 6th international workshop on ice caves, 72-76.

Bockheim, J.G., Vieira, G., Ramos, M., López-Martínez, J., Serrano, E., Guglielmin, M., Wilhelm, K., Nieuwendam, A., 2013. Climate Warming and Permafrost Dynamics in the Antarctic Peninsula Region. Global and Planetary Change, 100, 215-223.

Bodin, X., Thibert, E., Fabre, D., Ribolini, A., Schoeneich, P., Francou, B., Reynaud, L., Fort, M., 2009. Two decades of responses (1986-2006) to climate by the laurichard rock glacier, French Alps. Permafrost and Periglacial Processes, 20(4), 331-344.

Bodin, X., Schoeneich, P., Deline, P., Ravanel, L., Magnin, F., Krysiecki, J.M., Echelard, T., 2015. Mountain permafrost and associated geomorphological processes: recent changes in the French Alps. Revue de Géographie Alpine, 103(2), 2885.

Bodin, X., Krysiecki, J.M., Schoeneich, P., Le Roux, O., Lorier, L., Echelard, T., Peyron, M., Walpersdorf, A., 2017. The 2006 collapse of the Bérard Rock Glacier (Southern French Alps). Permafrost and Periglacial Processes, 28(1), 209-223.

Boeckli, L., Brenning, A., Gruber, S., Noetzli, J., 2012. Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics. The Cryosphere, 6, 807-820.

Boenzi, F., 1980. Some evidence of Quaternary cold periods in Southern Italy: data and reflections. Rivista di Geografia Fisica e Dinamica Quaternaria, 3, 16-20.

Boenzi, F., Palmentola, G., 1975. Effetti di fenomeni glaciali quaternari nella Calabria nordoccidentale. Bollettino della Società Geologica Italiana, 94(4), 871-887.

Boenzi, F., Pennetta, L., DiGennaro, M.A., 1977. Osservazioni geologiche e morfologiche sul bordo occidentale delle Murge tra Fermata di Acquatetta e Lamapera (Bari). Bollettino della Società Geologica Italiana, 96, 169-180.

Boixadera, J., Antúnez, M., Poch, R.M., 2008. Soil evolution along a toposequence on glacial and periglacial materials in the Pyrenees Range. In: Kapur, S., Mermut, A, Stoops, G. (Editors), New Trends in Soil Micromorphology. Springer Verlag, Berlin, 39-65.

Bommer, C., Phillips, M., Arenson, L.U., 2010. Practical recommendations for planning, constructing and maintaining infrastructure in mountain permafrost. Permafrost and Periglacial Processes, 21, 97-104.

Bornet, D., Bodin X., Schoeneich P., Charvet R., Bouvet P., Caubet D, Andréis N., Riguidel A., 2014. The rock glaciers inventory in the Southern French Alps. In: Vieira, G., Pina, P., Mora, C., Correia, A. (Editors), Proceedings of the Fourth European Conference On Permafrost, University of Lisbon and University of Évora, 503.

Bozilova, E., Tonkov, S., 2000. Pollen from Lake Sedmo Rilsko reveals southeast European postglacial vegetation in the highest mountain area of the Balkans. New Phytologist, 148, 315-325.

Bozkurt, E., 2001. Neotectonics of Turkey - a synthesis. Geodinamica Acta, 14, 3-30.

Bradley, R.S., Jones, P.D., 1992. Climate since 1500 A.D. Routeledge, London, 679 pp.

Brancaccio, L., 1968. Genesi e caratteri delle forme costiere nella Penisola Sorrentina. Bollettino della Società Geologica Italiana, 96, 169-180.

Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337-360.

Brown, J., Ferrians, O.J., Heginbottom, J.A., Melnikov, E.S., 2001. Circum-arctic map of permafrost and ground ice conditions. Circum-pacific map series. Reston, VA: US Geological Survey.

Brunetti, M., Lentini, G., Maugeri, M., Nanni, T., Auer, I., Böhm, R., Schöner, W., 2009. Climate variability and change in the Greater Alpine Region over the last two centuries based on multi-variable analysis. International Journal of Climatology, 29, 2197-2225.

Burić, D., Micev, S., 2008. Kepenova podjela klima u Crnoj gori prikazana klimadijagramima po Valteru.

Buzjak, N., Bočić, N., Paar, D., Dubovečak, V., 2016. Geographical distribution and ice cave types in Croatia. In: Mihevc, A., Zupan Hajna, N., Gostinčar, P. (Editors), Proceedings of the 7th International Workshop on Ice Caves, 37-38.

Buzjak, N., Dubovečak, V., Paar, D., Bočić, N., 2014. The influence of karst topography to ice cave occurrence - Example of Ledena jama in Lomska duliba (Croatia). In: Land, L., Kern, Z., Maggi, V., Turri, S. (Editors), Proceedings of the 6th International Workshop on Ice Caves, 17-23.

Calderoni, G., Guglielmin, M., Tellini, C., 1998. Radiocarbon dating and postglacial evolution, upper Valtellina and Livignese area (Sondrio, central Italian Alps). Permafrost and Periglacial Processes, 9(3), 275-284.

Çalışkan, O., 2016. Dört farklı soğuk ortam topoğrafyası tek bir buzullaşma alanı üzerinde gözlenebilir mi? Karçal Dağları örneği (Doğu Karadeniz Bölümü/Türkiye). Marmara Coğrafya Dergisi, 33, 368-389.

Çalışkan, O., Gürgen, G., Yılmaz, E., Yeşilyurt, S., 2012. Bolkar Dağları kuzeydoğusunun glasyal morfolojisi ve döküntüyle örtülü buzulları. Uluslararası İnsan Bilimleri Dergisi, 9(1), 890-911.

Cannone, N, Sgorbati, S, Guglielmin, M. 2007. Unexpected impacts of climate change on Alpine vegetation. Frontiers in Ecology and the Environment, 5, 360-364.

Cannone, N., Diolaiuti, G., Guglielmin, M., Smiraglia, C. 2008. Accelerating climate change impacts on alpine glacier forefield ecosystems in the European Alps, Ecological Applications, 18(3), 637-648.

Carrasco, R.M., Pedraza, J., Domínguez-Villar, D., Villa, J., Willenbring, J.K., 2012. The plateau glacier in the Sierra de Béjar (Iberian Central System) during its maximum extent. Reconstruction and chronology. Geomorphology, 196, 83-93.

Carrasco, R.M., Pedraza, J., Domínguez-Villar, D., Willenbring, J.K, Villa, J., 2015. Sequence and chronology of the Cuerpo de Hombre paleoglacier (Iberian Central System) during the Last Glacial Cycle. Quaternary Science Reviews, 129, 163-177.

Casarosa, N., Pappalardo, M., 2006. I Monti Pisani (Toscana settentrionale). In: Chelli, A., D'Aquila, P., Firpo, M., Ginesu, S., Guglielmin, M., Pappalardo, M., Pecci, M., Piacentini, T., Queirolo, C., Robustelli, G., Scarciglia, F., Sias, S., Tellini, C. (Editors), Testimoni di una montagna scomparsa. Contributo alle metodologie d'indagine delle forme periglaciali relitte. Problematiche e applicazioni in differenti ambienti morfodinamici. Collana «Quaderni della Montagna», vol. 8, Bologna: Bonomia University Press, 55-63.

Castañón, J.C., Frochoso, M., 1994. El periglaciarismo de la Cordillera Cantábrica. In: Gómez-Ortiz, A., Simón-Torres, M., Salvador-Franch, F. (Editors), Periglaciarismo en la Península Ibérica, Canarias y Baleares. Sociedad Española de Geomorfología, Universidad de Granada and Servei de Gestió i Evolució del Paisatge de la Universitat de Barcelona, Granada, 75-91.

Castañón, J.C., Frochoso, M., 1998. La alta montaña cantábrica: condiciones térmicas y morfodinámicas en los Picos de Europa. In: Gómez-Ortiz, A., Salvador-Franch, F., Schulte, L., García-Navarro, A. (Editors), Procesos biofísicos actuales en medios fríos. Publicacions de la Universitat de Barcelona, 113-132.

2361	
2362	
2363	Castiglioni, G.B., Girardi, A., Sauro, U., Tessari, F., 1979. Grézes Litées e falde detritiche
2364	stratificate di origine crionivale. Rivista di Geografia Fisica e Dinamica Quaternaria, 2, 64-82.
2365	Charden M. Disen I. 1001 Ferrura et masserer a ferrembalarismer dens la Unit Atlas
2366	Chardon, M., Riser, J., 1981. Formes et processus géomorphologiques dans le Haut-Atlas
2367	marocain, Revue de Geographie Alpine, 69, 561-582.
2368	Chelli, A., Pappalardo, M., 2006. Geomorphological mapping, a basic tool for interpreting
2369	rock coasts landforms: An example from Eastern Liguria (Italy). Geografia Fisica e Dinamica
2370	Quaternaria, 31(1), 13-19.
2371	
2372	Chelli, A., Tellini, C., 2002. Geomorphological features of the Bratica Valley (Northern
2373 2374	Apennines, Italy). Geografia Fisica e Dinamica Quaternaria, 25(1), 45-60.
2375	Chueca, J., 1992. Análisis geomorfológico de la fenomenología glaciar y periglaciar en el
2375	Macizo del Turbón-Sierra de Ballabriga (Pirineo oscense). Instituto de Estudios Altoaragoneses,
2377	Huesca, 212 pp.
2378	
2379	Chueca, J., Gómez-Ortiz, A., Lampre, F., Peña, J.L., 1994. El periglaciarismo heredado y
2380	actual de la cordillera pirenaica y del sistema costero catalán. In: Gómez-Ortiz, A., Simón-Torres,
2381	M., Salvador-Franch, F. (Editors), Periglaciarismo en la Península Ibérica, Canarias y Baleares.
2382	Sociedad Española de Geomorfología, Universidad de Granada and Servei de Gestió i Evolució
2383	del Paisatge de la Universitat de Barcelona, Granada, 93-117.
2384	Chueca, J., Julián, A., 2008. Geomorphological map of the Alta Ribagorza (Central Pyrenees,
2385	Spain). Journal of Maps, 4, 235-247.
2386	
2387	Chueca, J., Julián, A., Peña, J.L., 2000. El periglaciarismo funcional en las Sierras Exteriores
2388	Oscenses. In: Peña, J.L., Sánchez-Fabre, M., Lozano, M.V. (Editors), Procesos y formas
2389	periglaciares en la montaña mediterránea. Instituto de Estudios Turolenses, Teruel, 97-112.
2390	Chueca, J., Julián, A., Saz, M.A., Creus J., López, J.I., 2005. Responses to climatic changes
2391	since the Little Ice Age on Maladeta Glacier (Central Pyrenees). Geomorphology, 68, 167-82.
2392	
2393	Çiçek, İ., Gürgen, G., Tunçel, H., Doğu, A.F., 2006. Doğu Karadeniz dağları'nın glasyal
2394	morfolojisi. Proceedings of the symposium of International studies of the Mountainous Areas of
2395	Caucasus and Anatolia on Pleistocene and today, 28-42.
2396	Çılğın, Z., 2015. Dedegöl Dağı Kuvaterner buzullaşmaları. Türk Coğrafya Dergisi, 64, 19-37.
2397	
2398	Çiner, A., 2003. Türkiye'nin güncel buzulları ve Geç Kuvaterner buzul çökelleri. Türkiye
2399	Jeoloji Bülteni, 46(1), 55-78.
2400	Çiner, A., 2004. Turkish glaciers and glacial deposits. In: Ehlers, J., Gibbard, P.L. (Editors),
2401	Quaternary Glaciations: Extent and Chronology, Part I: Europe. Elsevier Publishers, Amsterdam,
2402	419-429.
2403	
2404	Çiner, A., Deynoux, M., Çörekçioğlu, E., 1999. Hummocky moraines in the Namaras and
2405	Susam valleys, Central Taurids, SW Turkey. Quaternary Science Reviews, 18, 4-5, 659-669.
2406	Çiner, A., Sarıkaya, M.A., 2017. Cosmogenic 36Cl Geochronology of late Quaternary glaciers
2407	on the Bolkar Mountains, south central Turkey. In: Hughes, P., Woodward, J. (Editors),
2408	Quaternary Glaciation in the Mediterranean Mountains, Geological Society of London Special
2409	Publications, 433, 271-287.
2410 2411	
2411	Çiner, A., Sarıkaya, M.A., Yıldırım, C., 2015. Late Pleistocene piedmont glaciations in the
2412	Eastern Mediterranean; insights from cosmogenic 36Cl dating of hummocky moraines in
2413	southern Turkey. Quaternary Science Reviews, 116, 44-56.
2415	
2416	
2417	
2418	
2419	

2420	
2421	
2422	
2423	Çiner, A., Sarıkaya, M.A., Yıldırım, C., 2017. Misleading old age on a young landform? The
2424	dilemma of cosmogenic inheritance in surface exposure dating: moraines vs. rock glaciers.
	Quaternary Geochronology, 42, 76-88.
2425	
2426	Citterio, M., Turri, S., Perșoiu, A., Bini, A., Maggi, V., 2005. Radiocarbon ages from two ice
2427	caves in the Italian Alps and the Romanian Carpathians and their significance. In: Mavlyudov,
2428	B.R. (Editor), Glacier Caves and Glacial Karst in High Mountains and Polar Regions, Institute of
2429	geography of the Russian Academy of Sciences, Moscow, 87-92.
2430	
2431	Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X.,
2432	Hostetler, S.W., McCabe, A.M., 2009. The Last Glacial Maximum. Science, 325, 710-714.
2433	Climate Atlas of Croatia 1961-1990, 1971-2000, 2008. Zaninović, K. (Editor), Zagreb,
2434	
2435	Državni hidrometeorološki zavod, 199 pp.
2436	Coltorti, M., Dramis, F., 1988. The significance of stratified slope-waste deposits in the
	Quaternary of Umbria-Marche Apennines, central Italy. Zeitschrift für Geomorphologie,
2437	
2438	Supplementband, 71, 59-70.
2439	Coltorti, M., Dramis, F., GentiIi, B., Pambianchi, G., 1979. Stratified slope waste deposits in
2440	the Umbria-Marche Apennines. Proceedings of the 15th Meeting Geomorphological Survey &
2441	Mapping, Modena, 207-212.
2442	Mapping, Modena, 207-212.
2443	Coltorti, M., Dramis, F., Pambianchi, G., 1983. Stratified slope-waste deposits in the Esino
2444	River basin, Umbria-Marche Apennines, central Italy. Polarforschung, 53(2), 59-66.
2445	
2446	Colucci, R.R., 2016. Geomorphic influence on small glacier response to post Little Ice Age
2447	climate warming: Julian Alps, Europe. Earth Surface Processes and Landforms, 41, 1227-1240.
2448	Columpi B.B. Cualialmin M. 2015. Draginitation tomporature alanges and evolution of a
2449	Colucci, R.R., Guglielmin, M., 2015. Precipitation-temperature changes and evolution of a
	small glacier in the southeastern European Alps during the last 90 years. International Journal of
2450	Climatology, 35(10), 2783-2797.
2451	Colucci, R.R., Žebre M., 2016. Late Holocene evolution of glaciers in the southeastern Alps
2452	-
2453	Journal of Maps, 12, 289-299.
2454	Colucci, R.R., Monegato, G., Žebre, M., 2014. Glacial and proglacial deposits of the Resia
2455	Valley (NE Italy): new insights on the onset and decay of the last alpine glacial maximum in the
2456	Julian Alps. Alpine and Mediterranean Quaternary, 27, 85-104.
2457	
2458	Colucci, R.R., Boccali, C., Žebre, M., Guglielmin, M., 2016a. Rock glaciers, protalus ramparts
2459	and pronival ramparts in the south-eastern Alps. Geomorphology, 269, 112-121.
2460	
2461	Colucci, R.R., Fontana, D., Forte, E., Potleca, M., Guglielmin, M., 2016b. Response of ice
2462	caves to weather extremes in the southeastern Alps, Europe. Geomorphology, 261, 1-11.
2463	Colucci, R.R., Luetscher, M., Forte, E., Guglielmin, M., Lanza, D., Princivalle, F., Vita, F.,
2464	
	2017. First alpine evidence of in situ coarse cryogenic cave carbonates (CCCcoarse). Geografia
2465	Fisica e Dinamica Quaternaria, 40, 53-59.
2466	Copóns, R., Bordonau, J., 1994. La Pequeña Edad de Hielo en el Macizo de la Maladeta (Alta
2467	cuenca del Ésera, Pirineos Centrales). In: Martí-Bono, C., García-Ruiz, J.M. (Editors), El
2468	
2469	glaciarismo surpirenaico: nuevas aportaciones. Geoforma Ediciones, Zaragoza, 111-124.
2470	Cossart, E., Fort, M., Bourles, D., Carcaillet, J., Perrier, R., Siame, L., Braucher, R., 2010.
2471	Climatic significance of glacier retreat and rockglaciers re-assessed in the light of cosmogenic
2472	dating and weathering rind thickness in Clarée Valley (Briançonnais, French Alps). Catena, 80(3),
2473	
2474	204-219.
2475	
2476	
2477	

2480	
2481	Conversur C. 1066 Los formations párialogiairos du Haut Atlas control maragain. Davas de
2482	Couvreur, G., 1966. Les formations périglaciaires du Haut Atlas central marocain. Revue de
2483	Géographie du Maroc, 10, 47-50.
2484	Cremaschi, M., Zerboni, A., Nicosia, C., Negrino, F., Rodnight, H., Spötl, C., 2015. Age, soil-
2485	forming processes, and archaeology of the loess deposits at the Apennine margin of the Po plain
2486	
	(northern Italy): New insights from the Ghiardo area. Quaternary International, 376, 173-188.
2487	Ćurić, M., 1996. Climate of Durmitor national park. In: Lješević, M. (Editor), The nature of
2488	National Park Durmitor. Geografski fakultet: Beograd, 151-162.
2489	
2490	Curran M.A.J., van Ommen, T.D., Morgan, V.I., Phillips K.L., Palmer, A.S., 2003. Ice core
2491	evidence for Antarctic sea ice decline since the 1950s. Science, 302(5648), 1203-1206.
2492	Descent S. 1072 Occlasses encounter d'anchetien another in des anothers to Bartand
2493	Daveau, S., 1973. Quelques exemples d'evolution quaternaire des versants au Portugal.
2494	Finisterra, 8, 5-47.
2495	Daveau, S., 1978. Le periglaciaire d'altitude au Portugal. Colloque sur le periglaciaire
2496	d'altitude du domaine mediterraneen et ses abords, Estrasburgo, 63-78.
2497	u annude du domaine mediterrancen et ses aborus, Estrasourgo, 03-78.
2498	Daveau, S., Ferreira, A.B., Ferreira, N., Vieira, G., 1997. Novas observações sobre aglaciação
2499	da Serra da Estrela, Portugal. Estudos do Quaternário, 1, 41-51.
2500	
2500	De Martonne, E., 1924. Les formes glaciaires sur le versant nord du Haut Atlas, Annales de
	Géographie , 33, 296-302.
2502	Dada V. Ciasle İ. Haav I. 2015. Formations of reals classer in Kanad Mauntains (in
2503	Dede, V., Çiçek, İ., Uncu, L., 2015. Formations of rock glacier in Karçal Mountains, (in
2504	Turkish), Bulletin of the Earth Sciences Application and Research Centre of Hacettepe
2505	University, 36(2), 61-80.
2506	Dede, V., Çiçek, İ., Sarıkaya, M.A., Çiner, A., Uncu, L., 2017. Late Pleistocene Glaciation in
2507	the Lesser Caucasus; Cosmogenic 36Cl geochronology of the Karçal Valley, NE Turkey.
2508	
2509	Quaternary Science Reviews, 164, 54-67.
2510	Delaloye, R., Perruchoud, E., Avian, M., Kaufmann, V., Bodin, X., Hausmann, H., Ikeda, A.,
2511	2008. Recent interannual variations of rock glacier creep in the European Alps. In: Kane, D.L.,
2512	Hinkel, K.M. (Editors), Proceedings of the 9th International Conference on Permafrost,
2513	
2514	Fairbanks, USA, 343-348.
2515	Delannoy, J.J., Maire, R., 1983. Le Massif de Dedegöl dag (Taurus Occidental, Turquie).
2516	Recherches de géomorphologie glaciaire et karstique. Bulletin de l'Association de Géographie.
2517	Française, 491, 43-53.
2518	
2519	Delmas, M., 2015. The last maximum ice extent and subsequent deglaciation of the Pyrenees:
	an overview of recent research. Cuadernos de Investigación Geográfica, 41(2), 359-387.
2520	Denten C.H. Aller D.D. Comer C.C. Dreeden W.G. 2005 The relevation
2521	Denton, G.H., Alley, R.B., Comer, G.C., Broecker, W.S., 2005. The role of seasonality in
2522	abrupt climate change. Quaternary Science Reviews, 24, 1159-1182.
2523	Desanges, J., Riser, J., 1989, Atlas, Encyclopédie berbère, 7 - Asarakae - Aurès, Aix-en-
2524	Provence, Edisud, 1013-1026.
2525	110venee, Edisud, 1013-1020.
2526	Dewey, J.F., Helman, M.N.L., Turco, E., Hutton, D.H.W., and Knott, S.D., 1989. Kinematics
2527	of the western Mediterranean. In: Coward M, (Editor), AlpineTectonics. Geological Society,
2528	London, Special Publication, 45, 265-283.
2529	
2530	Dimase, A.C., 2006. Fossil cryogenic features in paleosols of southern Italy: Characteristics
2531	and paleoclimatic significance. Quaternary International, 156-157, 32-48.
2532	Dimitrary D. Cilcons A. 2012 Delict media decisions 11 (10 (1) 1) (1)
2533	Dimitrov, P., Gikov, A., 2012. Relict rock glaciers identification and mapping in Pirin
2534	Mountain using aerial and satellite images. In: Mardirossian, G., Srebrova, T., Jelev, G. (Editors),
2535	
2536	
2537	

2539	
2540	
2541	Proceedings of the Seventh Scientific Conference on Space, Ecology, Safety, Sofia, Bulgaria,
	256-263.
2542	Diversió D. 2012. The Deheli Nemet classics from the second half of the 20th contains to the
2543	Djurović P., 2013. The Debeli Namet glacier from the second half of the 20th century to the
2544	present. Acta Geographica Slovenica, 52(2), 277-301.
2545	Dobiński, W., 2005. Permafrost of the Carpathian and Balkan Mountains, Eastern and
2546	Southeastern Europe. Permafrost and Periglacial Processes, 16, 395-398.
2547	Southeastern Europe. I enhanost and I englacial i locesses, 10, 375-378.
2548	Doğu, A.F., 2009. İhtiyar Şahap Dağları-Van'ın Buzulları, Yeşil Atlas Dergisi, 66-71.
2549	
2550	Doğu, A.F., Somuncu, M., Çiçek, İ., Tuncel, H., Gürgen, G., 1993. Kaçkar Dağı'nda buzul
2551	şekilleri, yaylalar ve turizm. Ankara Üniversitesi Türkiye Coğrafyası Araştırma ve Uygulama
2552	Merkezi Dergisi, 157-183.
2553	Demánguez Viller D. Corresco D.M. Dedroze I. Chang II. Edwards D.I. Willerhring
2554	Domínguez-Villar, D., Carrasco, R.M., Pedraza, J., Cheng, H., Edwards, R.L., Willenbring,
2555	J.K., 2013. Early maximum extent of paleoglaciers from Mediterranean mountains during the last
	glaciation. Scientific Reports, 3, 20-34.
2556	Dramis, F., Kotarba, A., 1992. Southern limit of relict rock glaciers, Central Apennines, Italy.
2557	Permafrost and Periglacial Processes, 3, 257-260.
2558	Permanost and Penglacial Processes, 5, 257-200.
2559	Dramis, F., Govi, M., Guglielmin, M., Mortara, G., 1995. Mountain permafrost and slope
2560	instability in the Italian Alps: The Val Pola Landslide. Permafrost and Periglacial Processes, 6(1),
2561	73-81.
2562	75-61.
2563	Dramis, F., Giraudi, C., Guglielmin, M., 2003. Rock glacier distribution and paleoclimate in
2564	Italy. In: Philips, M., Springman, S.M., Arenson, L.U. (Editors), Permafrost. Taylor & Francis,
2565	London, 199-204.
2566	
2567	Dresch, J., 1941. Recherches sur l'evolution du relief dans le Massif Central du Grand Atlas
2568	le Haouz et le Sous. Arrault et Cie, Maitres imprimeurs, 653 pp.
2569	Dresch, J., 1949. Sur des formations de remblaiement continental et la presence de forms
2570	1
2571	glaciaires dans le Haut Atlas calcaire. Computes Rendus Somm. Séances Societé Géologique Fr.,
2572	9-10, 169-171.
	Dresch, J., Raynal, R., 1953. Les formes glaciaires et periglaciaires dans le Moyen Atlas.
2573	Comptes Rendus Somm. Seances Societ e Geologique Fr. 11-12, 195-197.
2574	Comptes Rendus Somm. Seances Societ e Ocologique 11. 11-12, 195-197.
2575	Erinç, S., 1949. Uludağ üzerinde glasyal morfoloji araştırmaları. Türk Coğrafya Dergisi, 79-
2576	94.
2577	
2578	Erinç, S., 1951. Glasiyal ve postglasiyal safhada Erciyes glasiyesi. İstanbul Üniversitesi
2579	Coğrafya Enstitüsü Dergisi, 1(2), 82-90.
2580	Erinç, S., 1952. Glacial evidences of the climatic variations in Turkey. Geografiska Annaler,
2581	Series A, Physical Geography, 34(1-2), 89-98.
2582	Series A, Physical Geography, 54(1-2), 89-98.
2583	Erinç, S., 1953. Van'dan Cilo Dağlarına. Türkiye Coğrafya Bülteni, Ankara Üniversitesi
2584	Yayınları, 3-4, 84-106.
2585	<u> </u>
2586	Erinç, S., 1957. Uludağ periglasiyali hakkında. İstanbul Üniv. Coğrafya Enst. Dergisi, 4(8),
2587	91-94.
2588	Fring S Bildin T Banar M 1061 Ildaz üzarinda narialasiyal sabillar Türk Cažrafus
2589	Erinç, S., Bilgin, T., Bener, M., 1961. Ilgaz üzerinde periglasiyal şekiller, Türk Coğrafya
2590	Dergisi, 12, 151-160.
2590	Evin, M., Fabre, D., 1990. The distribution of permafrost in rock glaciers of Southern Alps
	(France). Geomorphology, 3, 57-71.
2592	(1 mile). Security 1005, 5, 5, 7, 71.
2593	
2594	
2595	

2597	
2598	
2599	Evin M. Assist A. Eshas D. 1000 Les clasier rechenne du Marinet Heurt Liberra France.
2600	Evin, M., Assier, A., Fabre, D., 1990. Les glacier rocheux du Marinet, Haut Ubaye, France.
2601	Revue de Géomorphologie Dynamique, 4, 139-155.
2602	Evin, M., 1991. Une moraine de refoulement au Viso (Italie). Zeitschrift für Gletscherkunde
2603	und Glazialgeologie, 27-28, 11-24.
2604	
2605	Favier, L., Durand, G., Cornford, S.L., Gudmundsson, G.H., Gagliardini, O., Gillet-Chaulet,
2606	F., Zwinger, T., Payne, A.J., Le Brocq, A.M., 2014. Retreat of Pine Island Glacier controlled by
	marine ice-sheet instability. Nature Climate Change, 4, 117-121.
2607	
2608	Federici, P.R., Ribolini, A., Spagnolo, M., 2017. Glacial History of the Maritime Alps from
2609	the Last Glacial Maximum to the Little Ice Age. Geological Society Special Publications, 443(1),
2610	137-159.
2611	Federici, P.R., Granger, D.E., Riobolini, A., Spagnolo, M., Pappalardo, M., Cyr, A.J., 2012.
2612	
2613	Last glacial Maximum and the Gschnitz stadial in ther Maritime Alps according to 10Be
2614	cosmogenic dating. Boreas, 41, 277-291.
2615	Fernandes, M., Oliva, M., Palma, P., Ruiz-Fernández, J., Lopes, L., 2017. Glacial stages and
2616	post-glacial environmental evolution in the Upper Garonne valley, Central Pyrenees. Science of
2617	the Total Environment, 584, 1282-1299.
2618	the Total Environment, 384, 1282-1299.
2619	Fernández-Fernández J.M., Palacios D., García-Ruiz, J.M., Andrés, N., Schimmelpfennig, I.,
2620	Gómez-Villar, A., Santos-González, J., Álvarez-Martínez, J., Arnáez, J., Úbeda, J., Léanni, L.,
2621	ASTER Team., 2017. Age and geomorphological context of fossil debris-covered glaciers in
2622	relation to deglaciation processes: a case study in the Sierra de la Demanda, Northern Spain.
2623	Quaternary Science Reviews, 170, 232-249.
2624	Quaternary Science Reviews, 176, 252-24).
2625	Ferreira, A.B., Rodrigues, M.L., Vieira, G.T., 2000. Manifestações herdadas e actuais de
2626	climas frios em Portugal. In: Peña, J.L., Sánchez- Fabre, M., Lozano, M.V. (Editors), Procesos y
2627	formas periglaciares en la montaña mediterránea. Instituto de Estudios Turolenses, Teruel, 161-
2628	190.
2629	
2630	Feuillet, T., 2010. Les formes périglaciaires dans les Pyrénées centrales francaises: analyse
2631	spatiale, chronologique et valorisation. PhD Thesis, University of Nantes.
2632	Feuillet, T., Mercier, D., 2012. Post-Little Ice Age patterned ground development on two
2633	Pyrenean proglacial areas: from deglaciation to periglaciation. Geografiska Annaler, Series A,
2634	Physical Geography, 94, 363-376.
2635	Filysical Geography, 94, 505-570.
	Finsinger, W., Tinner, W., 2006. Holocene vegetation and land-use changes in response to
2636	climatic changes in the forelands of the southwestern Alps, Italy. Journal of Quaternary Science,
2637	21(3), 243-258.
2638	
2639	Fioraso, G., Spagnolo, G., 2009. I block stream del Massiccio Peridotitico di Lanzo (Alpi nord-
2640	occidentali). Il Quaternario, 22(1), 3-22.
2641	Firpo, M., Guglielmin, M., Queirolo, C., 2006. Relict blockfields in the Ligurian Alps (Mount
2642	Beigua, Italy). Permafrost and Periglacial Processes, 17, 71-78.
2643	Dergua, rury). Fermanost and Ferngracian Frocesses, 17, 71-70.
2644	Fletcher, W.J., Sánchez-Goñi, M.F., Peyron, O., Dormoy, I., 2010. Abrupt climate changes of
2645	the last deglaciation detected in a Western Mediterranean forest record. Climate of the Past, 6,
2646	245-264.
2647	
2648	Fotiadi, A.K., Metaxas, D.A., Bartzokas, A., 1999. A statistical study of precipitation in
2649	northwest Greece. International Journal of Climatology, 19, 1221-1232.
2650	Francou, B., Reynaud, L., 1992. 10-year surficial velocity on a rock glacier (Laurichard,
2651	French Alps). Permafrost Periglacial Processes, 3, 209-213.
2652	1 1 mpo). 1 official of 1 official 1 10000000, 5, 207 215.
2653	
2654	
2655	

2657	
2658	Frauenfelder, R., Haeberli, W., Hoelzle, M., Maisch, M., 2001. Using relict rockglaciers in
2659	
2660	GIS-based modelling to reconstruct Younger Dryas permafrost distribution patterns in the err-
2661	Julier area, Swiss Alps. Norsk Geografisk Tidsskrift, 55, 195-202.
2662	French, H.M., 2007. The periglacial environment. John Wiley & Sons, Third Edition.
2663	Chichester, England.
2664	Chichester, England.
2665	Frenzel, B., Pecsi, B., Velichko, A.A., 1992. Atlas of Palaeoclimates and Palaeoenvironments
	of the Northern Hemisphere. Budapest: INQUA/Hungarian Academy of Sciences.
2666	
2667	Frezzotti, M., Giraudi, C., 1992. Late Pleistocene and Holocene geological evolution of the
2668	Majelama Valley alluvial fan (Velino Massi, Abruzzo). Alpine and Mediterranean Quaternary,
2669	5(1), 33-50.
2670	Eritz M. Varle I.E. Lantvit II. 2017. Callenging Anotic coastlines. Nature Climate Change
2671	Fritz, M., Vonk, J.E., Lantuit, H., 2017. Collapsing Arctic coastlines. Nature Climate Change,
2672	7(1), 6-7.
2673	Gachev E., Stoyanov K., 2012. Present day small prerennial firn-like patches in the mountains
2674	of the western Balkan Peninsula. Studia geomorphologica Carpatho-Balcanica, vol. XLVI, 51-
2675	70.
2676	70.
2677	Gachev, E., Stoyanov, K., Gikov, A., 2016. Small glaciers on the Balkan Peninsula: State and
2678	changes in the last several years. Quaternary International, 415, 33-54.
2679	
2680	García de Celis, A., 1991. Los glaciares rocosos de la Sierra del Suspirón (León). Polígonos,
2681	1, 9-20.
2682	García de Celis, A., 2002. Formas periglaciares relictas en la Sierra de Suspirón (Cordillera
2683	
	Cantábrica, León): campos de bloques. In: Serrano, E., García de Celis, A. (Editors),
2684	Periglaciarismo en montaña y altas latitudes, Universidad de Valladolid, Valladolid, 37-52.
2685	García-Ruiz, J.M., 1979. El glaciarismo cuaternario en la Sierra de la Demanda (Logroño-
2686	Burgos, España). Cuadernos de Investigación. Geografía e Historia, 5(2), 3-25.
2687	
2688	García-Ruiz, J.M., Martí-Bono, C., 2001. Mapa geomorfológico del Parque Nacional de
2689	Ordesa y Monte Perdido. Ministerio de Medio Ambiente, Madrid, 106 pp.
2690	García-Ruiz, J.M., Alvera, B., del Barrio, G., Puigdefábregas, J., 1988. Geomorphic processes
2691	
2692	above the timberline in the Spanish Pyrenees. Mountain Research and Development, 10(3), 201-
2693	214.
2694	García-Ruiz, J.M., Ortigosa, L., Pellicer, F., Arnáez, J., 1998. Geomorfología glaciar del
2695	Sistema Ibérico. In: Gómez-Ortiz, A., Pérez-Alberti, A. (Editors), Las huellas glaciares de las
2696	montañas españolas. Universidad de Santiago de Compostela, 347-381.
2697	montanas espanolas. Oniversidad de Santiago de Composicia, 547-561.
2698	García-Ruiz, J.M., Beguería, S., Lorente, A., 2000. Eventos hidrológicos de baja frecuencia
2699	en el Pirineo Central español y sus efectos geomorfológicos. Serie Geográfica, 9, 163-176.
2700	
2701	García-Ruiz, J.M., Gómez-Villar, A., Ortigosa, L., Martí-Bono, C., 2000. Morphometry of
2702	glacial cirques in the Central Spanish Pyrenees. Geografiska Annaler. Series A, Physical
2703	Geography, 82(4), 433-442.
2704	Correio Duiz IM Martí Dana C. Valara D. Correilar Sametria D. 2005 Control S.
2705	García-Ruiz, J.M., Martí-Bono, C., Valero B., González-Sampériz, P., 2005. Central Spanish
	Pyrenees: glacial and periglacial landforms. Proceedings of the Sixth International Conference on
2706	Geomorphology, Field trip guides t-1, SEG-University of Zaragoza, 311-340.
2707	García-Ruiz, J.M., Moreno, A., González-Sampériz, P., Valero-Garcés, B., Martí-Bono, C.,
2708	*
2709	2010. La cronología del último ciclo glaciar en las montañas del sur de Europa. Una revisión.
2710	Cuaternario & Geomorfología, 24(1-2), 35-46.
2711	
2712	
2713	

español: una revisión a distintas escalas espaciales y temporales. Pirineos, 170, e012. the Younger Dryas. Quaternary Science Reviews, 138, 16-30. (12,9-11,7 ka BP) en la Península Ibérica. Cuaternario y Geomorfología, 30(1-2), 9-21. Quaternary Science, 18, 61-72. Pyrenees. The Holocene, 2(3), 266-270. 1156-1169. 1358. International, 190(1), 123-135. 259. Geografia Fisica e Dinamica Quaternaria 13(2), 179-181. University Press, 73-80. Analyses, 2(1), 19-32. Palaoklimaforschung- Palaeoclimate Research, 25, 1-18.

García-Ruiz, J.M., Palacios, D., de Andrés, N., Valero-Garcés, B.L., López-Moreno, J.L., Sanjuán, Y., 2014. Holocene and Little Ice Age glacial activity in the Marboré cirque, Monte Perdido Massif, Central Spanish Pyrenees. The Holocene, 24(11), 1439-1452.

2715 2716 2717

2718

2719

2720 2721

2722 2723

2724

2725

2726

2727

2728 2729

2730

2731

2732

2733

2734

2735 2736

2737

2738

2739 2740

2741

2742

2743

2744

2745 2746

2747

2748

2749

2750

2751 2752

2753 2754

2755

2756 2757

2758

2759

2760

2761

2762

2763

2764

2765

2766 2767

2768

2769

García-Ruiz, J.M., López-Moreno, J.I., Lasanta, T., Vicente-Serrano, S.M., González-Sampériz, P., Valero-Garcés, B.L., Sanjuán, Y., Beguería, S., Nadal-Romero, E., Lana-Renault, N., Gómez-Villar, A., 2015. Los efectos geoecológicos del cambio global en el Pirineo Central

García-Ruiz, J.M., Palacios, D., González-Sampériz, P., Andrés, N., Moreno, A., Valero-Garcés, B., Gómez-Villar, A., 2016a. Mountain glacier evolution in the Iberian Peninsula during

García-Ruiz, J.M., Palacios, D., González-Sampériz. P., de Andrés, N., Moreno, A., Valero-Garcés, B., Gómez-Villar, A., 2016b. Evidencias de actividad glaciar durante el Dryas Reciente

García-Ruiz, J.M., Valero-Garcés, B.L., Martí-Bono, C., González-Sampériz, P., 2003. Asynchroneity of maximum glacier advances in the central Spanish Pyrenees. Journal of

Gellatly, A.F., Grove, J.M., Switsur, V.R., 1992. Mid Holocene glacial activity in the

Genxu, W., Yuanshou, L., Qingbai, W., Yibo, W., 2006. Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau. Science in China Series D: Earth Sciences, 49(11),

Ghuma M.A., Rogers, J.J.W., 1978. Geology, geochemistry, and tectonic setting of the Ben Ghnema batholith, Tibesti massif, southern Libya. Geological Society of America, 89, 1351-

Gianotti, F., Forno, M.G., Ivy-Ochs, S., Kubik, P.W., 2008. New chronological and stratigraphical data on the Morainic Amphiteatre of Ivrea (Piedmont, NW Italy). Quaternary

Gikov, A., Dimitrov, P., 2011. Relict rock glaciers identification and mapping in Rila mountain using aerial and satellite images. In: Mardirossian, G., Srebrova, T., Jelev, G. (Editors), Proceedings of the Sixth Scientific Conference on Space, Ecology, Safety, Sofia, Bulgaria, 252-

Ginesu, S., 1990. Periglacial deposits in Sardinia: the blockstreams near Pranu Mannu.

Ginesu, S., Sias, S., 2006. La Sardegna. In: Chelli, A., D'Aquila, P., Firpo, M., Ginesu, S., Guglielmin, M., Pappalardo, M., Pecci, M., Piacentini, T., Queirolo, C., Robustelli, G., Scarciglia, F., Sias, S., Tellini, C. (Editors), Testimoni di una montagna scomparsa. Contributo alle metodologie d'indagine delle forme periglaciali relitte. Problematiche e applicazioni in differenti ambienti morfodinamici. Collana «Quaderni della Montagna», vol. 8, Bologna: Bonomia

Ginesu, S., Carboni, D., Congiatu, P.P., 2014. Relict forms of disappeared mountain. The periglacial deposits in Asinara Island-Sardinia (Italy). Journal of Environmental and Tourism

Giraudi, C., 1998. Late Pleistocene and Holocene lake level variations in Fucino Lake (Abruzzo - Central Italy) inferred from geological, archaeological and historical data.

2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2803
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827

2828 2829

2830 2831

2832

Giraudi, C., 2002. I rock glacier tardo-pleistocenici ed oloceni dell'appennino: età, distribuzione, significato paleoclimatico. Alpine and Mediterranean Quaternary, 15(1), 45-52.

Giraudi, C., 2003. Middle Pleistocene to Holocene Apennine glaciations (Italy). Alpine and Mediterranean Quaternary, 16(1), 37-48.

Giraudi, C., 2004. The Apennine glaciations in Italy. Developments in Quaternary Science, 2(1), 215-223.

Giraudi, C., 2012. The Campo Felice late Pleistocene Glaciation (Apennines, central Italy). Journal of Quaternary Science, 27(4), 432-440.

Giraudi, C., 2015. The Upper Pleistocene deglaciation on the Apennines (Peninsular Italy). Cuadernos de Investigación Geográfica, 41(2), 87-105.

Giraudi, C., Frezzotti, M., 1997. Late Pleistocene glacial events in the Central Apennines, Italy. Quaternary Research, 48(3), 280-290.

Giraudi, C., Magny, M., Zanchetta, G., Drysdale, R.N., 2011. The Holocene climatic evolution of Mediterranean Italy: A review of the continental geological data. The Holocene, 21(1), 105-115.

Gómez, F., Allmendinger, R., Barazangi, M., Beauchamp, W., 2000. Role of the Atlas Mountains (northwest Africa) within the African-Eurasian plate boundary zone. Geology, 28, 769-864.

Gómez-Lende M., 2015. Las cuevas heladas en Picos de Europa: clima, morfologías y dinámicas. PhD thesis, University of Valladolid.

Gómez-Lende, M., Berenguer, F., Serrano, E., 2014. Morphology, ice types and thermal regime in a high mountain ice cave. First studies applying terrestrial laser scanner in the Peña Castil Ice Cave (Picos de Europa, Northern Spain). Geografía Fisica e Dinamica Quaternaria, 37, 141-150.

Gómez-Ortiz, A., 1980. Estudio geomorfológico del Pirineo catalán: morfogénesis glacial y periglacial de los altos niveles y vertientes merdionales de los macizos de Calmquerdós, Tossa Plana de Llés y Port Negre (Cerdanya-Alt Urgell). PhD thesis, University of Barcelona.

Gómez-Ortiz, A., 1987. Morfología glaciar en la vertiente meridional de Sierra Nevada (área Veleta-Mulhacén). Estudios Geográficos, 193, 527-558.

Gómez-Ortiz, A., Serrat, D., 1977. Las formaciones geométricas periglaciares de los altos niveles del Pirineo Oriental. V Coloquio de Geografía. Universidad de Granada, Granada, 75-81.

Gómez-Ortiz, A., Salvador-Franch, F., 1992. Aportaciones significativas al conocimiento del glaciarismo y periglaciarismo de Sierra Nevada. Notes de Geografía Física, 20-21, 89-101.

Gómez-Ortiz, A., Díaz del Olmo, F., Simón-Torres, M., 1994. Periglaciarismo en las Cordilleras Béticas. In: Gómez-Ortiz, A., Simón-Torres, M., Salvador-Franch, F. (Editors), Periglaciarismo en la Península Ibérica, Canarias y Baleares. Estudios significativos, SEG-Universidad de Granada, Granada, 165-188.

Gómez-Ortiz, A., Palacios, D., Ramos, M., Tanarro, L.M., Schulte, L., Salvador, F., 2001. Location of permafrost in marginal regions: Corral del Veleta, Sierra Nevada, Spain. Permafrost and Periglacial Processes, 12, 93-110.

Gómez-Ortiz, A., 2002. Mapa geomorfológico de Sierra Nevada. Consejería de Medio Ambiente de la Junta de Andalucía, Granada.

Series A, Physical Geography, 91, 279-289. Agricultura, Alimentación y Medio Ambiente. Madrid, 25-43. Boletín de la Asociación de Geógrafos Españoles, 61, 139-162. the Veleta cirque (Sierra Nevada, Spain) from 2006-2013. Solid Earth, 5, 979-993. knowledge and new contributions. Cuadernos de Investigación Geográfica, 41(2), 409-426. 37(2), 49-80. Procesos, formas y condiciones ambientales. PhD thesis, University of Málaga. 689-700. Cantábrica Leonesa). University of León. Annaler: Series A, Physical Geography, 95, 15-32. Zeitschrift für Gletscherkunde und Glazialgeologie, 39, 115-125.

Gómez-Ortiz, A., Palacios, D., Ramos, M., 2004. Permafrost, evolution of associated landforms and thermal control in the Veleta Cirque (Sierra Nevada, Spain). New results. Boletín de la Real Sociedad Española de Historia Natural, 99(1-4), 47-63.

2833 2834 2835

2836

2837

2838

2839 2840

2841

2842

2843

2844

2845

2846 2847

2848

2849

2850

2851

2852

2853

2854 2855

2856

2857

2858

2859 2860

2861

2862

2863

2864

2865

2866 2867

2868

2869

2870

2871 2872

2873

2874

2875

2876 2877

2878

2879

2880

2881

2882 2883

2884

2885

Gómez-Ortiz, A., Plana Castellví, J.A., 2006. La Pequeña Edad del Hielo en Sierra Nevada a partir de los escritos de la época (siglos XVIII y XIX) y relaciones con el progreso de la geografía física y geomorfología española. Boletín de la Asociación de Geografos Españoles, 42, 71-98.

Gómez-Ortiz, A., Palacios, D., Schulte, L., Salvador-Franch, F., Plana, J.A., 2009. Evidences from historical documents of landscape evolution after Little Ice Age of a Mediterranean high mountain area, Sierra Nevada, Spain (eighteenth to twentieth centuries). Geografiska Annaler,

Gómez-Ortiz, A., Palacios, D., Palade, B., Vázquez-Selem, L., Salvador-Franch, F., 2012a. The deglaciation of the Sierra Nevada (Southern Spain). Geomorphology, 159-160, 93-105.

Gómez-Ortiz, A., Salvador-Franch, F., Sanjosé, J.J., Palacios, D., Oliva, M., Salvà, M., Tanarro, L., Raso, J., Atkinson, A., Schulte, L., Plana, J., Milheiro, B., Serrano, D., 2012b. Degradación de hielo fósil y permafrost y cambio climático en Sierra Nevada. In: Ramírez, L., Asensio, B. (Editors), Proyectos de investigación en parques nacionales: 2008-2011. Colección Naturaleza y Parques Nacionales. Organismo Autónomo Parques Nacionales, Ministerio de

Gómez-Ortiz, A., Palacios, D., Palade, B., Vázquez-Selem, L., Salvador, F., Tanarro, L., Oliva, M., 2013. La evolución glaciar de Sierra Nevada y la formación de glaciares rocosos.

Gómez-Ortiz, A., Oliva, M., Salvador, F., Salvà, M., Palacios, D., Sanjosé, J.J., Tanarro, L., Galindo-Zaldívar, J., Sanz de Galdeano, C., 2014. Degradation of buried ice and permafrost in

Gómez-Ortiz, A., Oliva, M., Palacios, D., Salvador-Franch, F., Vázquez-Selem, L., Salvà-Catarineu, M., de Andrés, N., 2015. The deglaciation of Sierra Nevada (Spain), synthesis of the

Gómez-Villar, A., González-Gutiérrez, R.B., Redondo, J.M., Santos, J., 2011. Distribución de glaciares rocosos relictos en la Cordillera Cantábrica. Cuadernos de Investigación Geográfica,

González-García, M., 2014. La alta montaña periglaciar en el Pirineo Central español.

González-García, M., Serrano, E., Sanjosé, J.J., González-Trueba, J.J., 2017. Surface dynamic of a protalus lobe in the temperate high mountain, Western Maladeta, Pyrenees. Catena, 149(3),

González-Gutiérrez, R.B., 2002. El relieve de los valles del Torío y Curureño (Montaña

González-Sampériz, P., Moreno, A., 2013. Glacial and fluvial deposits in the Aragón Valley, central-western Pyrenees: chronology of the Pyrenean late Pleistocene glaciers. Geografiska

González-Trueba, J.J., 2006. Topoclimatical factors and very small glaciers in Atlantic mountain of SW Europe: Little Ice Age glacial advance in Picos de Europa (NW Spain).

2893	
2894	González-Trueba, J.J., 2007a. El paisaje natural del Macizo Central de los Picos de Europa:
2895	Geomorfología y sus implicaciones geoecológicas en la alta montaña cantábrica. CIMA-Medio
2896	
2897	Ambiente de Cantabria, Santander.
2898	González-Trueba, J.J., 2007b. Geomorfología del macizo central del Parque Nacional de Picos
2899	de Europa. OAPN-Ministerio de Medio Ambiente, Madrid.
2900	•
2901	González-Trueba, J.J., Martín, R., Martínez de Pisón, E., Serrano, E., 2008. Little Ice Age and
2902	current glaciers, Iberian Peninsula. The Holocene, 18, 551-568.
2903	Gorbunov, A.P., 2012. Rock glaciers, kurums, glaciers and permafrost in the mountains of
2904	
2905	Turkey (Geographical review). Earth Cryosphere, 16, 2, 3-8.
2906	Greenwood, S.L., O'Regan, M., Swärd, H., Flodén, T., Ananyev, R., Chernykh, D., Jakobsson,
2907	M., 2015. Multiple re-advances of a Lake Vättern outlet glacier during Fennoscandian Ice Sheet
2908	retreat, south-central Sweden. Boreas, 44(4), 619-637.
2909	
	Grove, J.M., 2004. Little Ice Ages: Ancient and Modern. Routledge, London (2 volumes).
2910	Grove, J.M., Gellatly, A.F., 1995. Little Ice Age fluctuations in the Pyrenees. Zeitschrift für
2911	Gletcherkunde und Glacialgeologie, 31, 199-206.
2912	Oletenerkunde und Olaciaigeologie, 51, 199-200.
2913	Gruber, S., 2012. Derivation and analysis of a high-resolution estimate of global permafrost
2914	zonation. The Cryosphere, 6, 221-233.
2915	
2916	Gruber, S., Hoelzle, M., Haeberli, W., 2004. Permafrost thaw and destabilization of Alpine
2917	rock walls in the hot summer of 2003. Geophysical Research Letters, 31, 13, 504.
2918	Grünewald, K., Scheithauer, J., 2008. Bohrung in einen Mikrogletscher. Zeitschrift für
2919	Gletscherkunde und Glazialmorphologie, 42, 3-18.
2920	Oleischerkunde und Olaziannorphologie, 42, 3-18.
2921	Grunewald, K., Scheithauer, J., 2010. Europe's southernmost glaciers: response and
2922	adaptation to climate change. Journal of Glaciology, 42, 3-18.
2923	
2924	Grünewald, K., Scheitchauer, J., Gikov, A., 2008. Microglaciers in the Pirin Mountains
2925	(Mikrolednitsi v Pirin Planina). Problems of Geography, Bulgarian Academy of Sciences, 1-2.
2926	Guglielmin, M., Smiraglia, C. (Editors), 1997. Catasto dei rock glaciers delle Alpi Italiane.
2927	Archivio Comitato Glaciologico Italiano, 3, 1-103.
2928	
2929	Guglielmin, M., Lozej, A., Tellini, C., 1994. Permafrost distribution and rock glaciers in the
2930	Livigno area (northern Italy). Permafrost and Periglacial Processes, 5, 1-12.
2931	Custialmin M. Commons N. Dramis E. 2001. Demusfrost alosial suchtion during the
2932	Guglielmin, M., Cannone, N, Dramis, F., 2001. Permafrost-glacial evolution during the
2933	Holocene in the Italian Central Alps. Permafrost and Periglacial Processes, 12, 111-124.
2934	Guglielmin, M., Cannone, N, Strini, A, Lewkowicz, A., 2005. Biotic and abiotic processes on
2935	granite weathering landforms in a cryotic environment, Northern Victoria Land, Antarctica.
2936	Permafrost and Periglacial Processes, 16, 69-85.
2937	remanost and remandrar rocesses, ro, 09-05.
2938	Guglielmin, M., Dalle Fratte, M., Cannone, N., 2014. Permafrost warming and vegetation
	changes in continental Antarctica. Environmental Research Letters, 9, 045001.
2939	Cürzen C. 2001 Kanadaž (Cürzüshana) astronomia alegual marfalaiigi va turiem natargivali
2940	Gürgen, G., 2001. Karadağ (Gümüşhane) çevresinin glasyal morfolojisi ve turizm potansiyeli.
2941	AÜ Türkiye Coğrafyası Dergisi, 8, 109-132.
2942	Gürgen, G., Yeşilyurt, S., 2012. Karçal Dağı Buzulları (Artvin). Coğrafi Bilimler Dergisi,
2943	10(1), 91-104.
2944	
2945	Gürgen, G., Çalışkan, O., Yılmaz, E., Yeşilyurt, S., 2010. Yedigöller platosu ve Emli vadisinde
2946	(Aladağlar) döküntü örtülü buzullar, E-Journal of New World Sciences Academy, NEWSSA,
2947	(www.newwsa.com), 5, 98-116.
2948	
2949	
2950	

2952	
2953	Gutierrez, M., Peña, J.L., 1977. Las acumulaciones periglaciares del Macizo del Tremedal
2954	
2955	(Sierra de Albarracín). Boletín Geológico y Minero, 88(2), 109-115.
2956	Haeberli, W., 1985. Creep of mountain permafrost: internal structure and flow of alpine rock
2957	glaciers. Mitteilungen der Versuchsanstalt Conference with International Participation Space, 77,
2958	142 pp.
2959	Haeberli, W., Beniston, M., 1998. Climate change and its impacts on glaciers and permafrost
2960	in the Alps. Ambio, 27(4), 258-265.
2961	In the rups. runolo, $27(4)$, $230-203$.
2962	Hagedorn J., 1969. Beiträge zur Quartärmorphologie griechischer Hochgebirge. Göttinger
2963	Geographische Abhandlungen, 50, 135 pp.
2964	
2965	Hall-Riaza, J.F., Valcárcel, M., Blanco-Chao, R., 2016. Caracterización morfométrica de
2966	formas glaciares en cuña en las Sierras de Xistral, Teleno y Cabrera. Polígonos. Revista de
2967	Geografía, 28, 55-71.
2968	
	Hannah, G., Hughes, P.D., Gibbard, P. L., 2017. Pleistocene plateau ice fields in the High
2969	Atlas, Morocco. In: Hughes, P., Woodward, J. (Editors), Quaternary Glaciation in the
2970	Mediterranean Mountains, Geological Society of London Special Publications, 433, 25-53.
2971	
2972	Harris, C., Vonder-Mühll, D., Isaksen, K., Haeberli, W., Sollid, J.L., King, L., Holmlund, P.,
2973	Dramis, F., Guglielmin, M., Palacios, D., 2003. Warming permafrost in European mountains.
2974	Global and Planetary Change, 39(3-4), 215-225.
2975	
2976	Hausmann, H., Behm, M., 2011. Imaging the structure of cave ice by ground penetrating radar.
2977	The Cryosphere, 5, 329-340.
2978	Heinrich, 1988. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean
2979	
2980	during the past 130,000 years. Quaternary Research, 29(2), 142-152.
	Hemming, S.R., 2004. Heinrich events: Massive late Pleistocene detritus layers of the North
2981	Atlantic and their global climate imprint. Reviews of Geophysics, 42(1), 1-43.
2982	
2983	Hempel, L., 1991. Forschungen zur Physischen Geographie der Insel Kreta im Quartär. Ein
2984	Beitrag zur Geoökologie des Mittelmeerraumes. Vandenhoeck & Ruprecht in Göttingen.
2985	
2986	Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G., Jarvis, A., 2005. Very high resolution
2987	interpolated climate surfaces for global land areas. International Journal of Climatology, 25,
2988	1965-1978.
2989	
2990	Hippolyte, J.C., Bourlès, D., Braucher, R., Carcaillet, J., Léanni, L., Arnold, M., Aumaitre, G.,
2991	2009. Cosmogenic 10Be dating of a sackung and its faulted rock glaciers, in the Alps of Savoy
2992	(France). Geomorphology, 108, 312-320.
	Uirash E. Dash T. 2014 Coonductical prograstion on Late Ousternary addiments in the
2993	Hirsch, F., Raab, T., 2014. Geophysical prospection on Late Quaternary sediments in the
2994	Gállego Valley, Central Spanish Pyrenees. Zeitschrift für Geomorphologie, 58, 47-62.
2995	Hoelzle, M., 1992. Permafrost occurrence from BTS measurements and climatic parameters
2996	in the eastern Swiss Alps. Permafrost and Periglacial Processes, 3(2), 143-147.
2997	in the eastern Swiss Aips. Fernanost and Fenglacian Flocesses, 5(2), 145-147.
2998	Hoelzle, M., 1996. Mapping and modelling of mountain permafrost distribution in the Alps.
2999	Norwegian Journal of Geography, 50, 11-15.
3000	
3001	Höllermann, P., 1985. The periglacial belt of midlatitude mountains from a geoecological
3002	point of view. Erdkunde 39, 259-270.
3003	Holmburd D. Once D.D. Hongson M. Holmonen V. Mäult M. Norres M. D. '
3004	Holmlund, P., Onac, B.B., Hansson, M., Holmgren, K., Mörth, M., Nyman, M., Perşoiu, A.,
3005	2005. Assessing the palaeoclimatic potential of cave glaciers: the example of the Scarisoara Ice
	Cave (Romania). Geografiska Annaler, Series A, Physical Geography, 87(1), 193-201.
3006	
3007	
3008	

3010	
3011	
3012	
3013	Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J.W., Schuur, E.A.G., Ping, C.L.,
3014	Schirrmeister, L., Grosse, G., Michaelson, G.J., Koven C.D., O'Donnell, J.A., Elberling, B.,
3015	Mishra, U., Camill, P., Yu, Z., Palmtag, J., Kuhry, P., 2014. Estimated stocks of circumpolar
	permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences,
3016	11, 6573-6593.
3017	
3018	Hughes, A.L.C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J., Svendsen, J. I., 2016. The last
3019	Eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1. Boreas,
3020	45(1), 1-45.
3021	
3022	Hughes, P.D., 2004. Quaternary Glaciation in the Pindus Mountains, Northwest Greece. Ph.D.
3023	thesis, University of Cambridge, 341 pp.
3024	Unchas D.D. 2008 Decrements of a Montanagra closics to autrama summer heatways in 2002
3025	Hughes, P.D., 2008. Response of a Montenegro glacier to extreme summer heatwaves in 2003
3026	and 2007. Geografiska Annaler, Series A, Physical Geography, 192, 259-267.
3027	Hughes, P.D., 2009. Twenty-first Century Glaciers and Climate in the Prokletije Mountains,
	Albania. Arctic Antacrtic and Alpine Research, 41, 455-459.
3028	Albania. Aretic Antactite and Alpine Research, 41, 455-459.
3029	Hughes, P.D., 2010. Little Ice Age glaciers in the Balkans: Low altitude glaciation enabled by
3030	cooler temperatures and local topoclimatic controls. Earth Surface Processes and Landforms, 35,
3031	229-241.
3032	
3033	Hughes, P.D., 2014. Little Ice Age glaciers on the Mediterranean mountains. Mediterranée.
3034	112, 63-79.
3035	
3036	Hughes, P.D., 2018. Little Ice Age glaciers and climate in the Mediterranean mountains: a new
3037	analysis. Cuadernos de Investigación Geográfica, 44, 15-46.
3038	Hughon D.D. Cibbord D.L. 2015. A stratigraphical basis for the Last Classic Maximum
3039	Hughes, P.D., Gibbard, P.L. 2015. A stratigraphical basis for the Last Glacial Maximum
	(LGM). Quaternary International, 383, 174-185.
3040	Hughes, P.D., Woodward, J.C., 2008. Timing of glaciation in the Mediterranean mountains
3041	during the last cold stage. Journal of Quaternary Science, 23(6-7), 575-588.
3042	during the last cold stage. Journal of Quaternally Science, 25(0-7), 575-500.
3043	Hughes, P.D., Woodward, J.C., 2009. Glacial and periglacial environments. In: Woodward,
3044	J.C. (Editor), The Physical Geography of the Mediterranean. Oxford University Press, Oxford,
3045	353-383.
3046	
3047	Hughes, P.D., Woodward, J., 2017. Quaternary glaciation in the Mediterranean mountains: a
3048	new synthesis. In: Hughes, P., Woodward, J.C., (Editors), Quaternary Glaciation in the
3049	Mediterranean Mountains, Geological Society of London Special Publication, 433, 1-23.
3050	
3051	Hughes, P.D., Gibbard, P.L., Woodward, J.C., 2003. Relict rock glaciers as indicators of
3052	Mediterranean palaeoclimate during the Last Glacial Maximum (Late Würmian) in northwest
3053	Greece. Journal of Quaternary Science, 18, 431-440.
3054	Hughes, P.D., Gibbard, P.L., Woodward, J.C., 2004. Quaternary glaciation in the Atlas
3055	mountains, North Africa. In: Ehlers, J., Gibbard, P.L. (Editors), Quaternary Glaciations: Extent
3056	and Chronology, Volume 3: Asia, Latin America, Africa, Australia, Antarctica. Elsevier
3057	Publishers, Amsterdam, 255-260.
3058	
3059	Hughes, P.D., Woodward, J.C., Gibbard, P.L., 2006a. Quaternary glacial history of the
3060	Mediterranean mountains. Progress in Physical Geography, 30(3), 334-364.
3061	Hughes, P.D., Woodward, J.C., Gibbard, P.L., 2006b. Late Pleistocene glaciers and climate in
3062	
3063	the Mediterranean region. Global and Planetary Change, 50(1-2), 83-98.
3064	
3065	
3066	
3067	
0001	

3069	
3070	
3071	Hacker D.D. Westward I.C. Cithard D.I. 2007 Middle Distances and store director
3072	Hughes, P.D., Woodward, J.C., Gibbard, P.L., 2007. Middle Pleistocene cold stage climates
3073	in the Mediterranean: new evidence from the glacial record. Earth and Planetary Science Letters,
3074	253, 50-56.
	Under DD Weidered LC and Colstern DC. Therese LE Adamsen KD 2010
3075	Hughes, P.D., Woodward, J.C., van Calsteren, P.C., Thomas, L.E., Adamson, K.R., 2010.
3076	Pleistocene ice caps on the coastal mountains of the Adriatic Sea. Quaternary Science Reviews,
3077	29, 3690-3708.
3078	Unches D. D. Fonton C. D. Cikhard D. I. 2011 Quaternamy Clasicitiens of the Atlas
3079	Hughes, P. D., Fenton, C.R., Gibbard, P. L., 2011. Quaternary Glaciations of the Atlas
3080	Mountains, North Africa, in: Developments in Quaternary Science, Elsevier, USA, 15, 1065-
3081	1074.
3082	Unchas D.D. Woodward I.C. von Colstoren D.C. Themes I.E. 2011 The closed history
3083	Hughes, P.D., Woodward, J.C., van Calsteren, P.C., Thomas, L.E., 2011. The glacial history
3084	of the Dinaric Alps, Montenegro. Quaternary Science Reviews, 30, 3393-3412.
	Hughes, P.D., Gibbard, P.L., Ehlers, J., 2013. Timing of glaciation during the last glacial cycle:
3085	evaluating the concept of a global "Last Glacial Maximum" (LGM). Earth Science Reviews, 125,
3086	
3087	171-198.
3088	Hughes, P.D., Fink, D., Fletcher, W.J., Hannah, G., 2014. Catastrophic rock avalanches in a
3089	glaciated valley of the High Atlas, Morocco: ¹⁰ Be exposure ages reveal a 4.5 ka seismic event.
3090	
3091	Geological Society of America Bulletin 126, 1093-1104.
3092	Hughes, P.D., Glasser, N.F., Fink, D., 2016. Rapid thinning of the Welsh Ice Cap at 20-19 ka
3093	based on ¹⁰ Be ages. Quaternary Research 85, 107-117.
3094	based on The ages. Quaternary Research 85, 107-117.
	Hughes, P.D., Fink, D., Rodés, Á., Fenton, C. R., Fujiyoka, T., 2018. Timing of Pleistocene
3095	glaciations in the High Atlas, Morocco: New ¹⁰ Be and ³⁶ Cl exposures ages. Quaternary Science
3096	Reviews, 180, 193-213.
3097	Reviews, 160, 195-215.
3098	Ikeda, A., Matsuoka, N., 2002. Degradation of talus-derived rock glaciers in the Upper
3099	Engadin, Swiss Alps. Permafrost and Periglacial Processes, 13(2), 145-161.
3100	
3101	Ilyashuk, E.A., Koinig, K.A., Heiri, O., Ilyashuk, B.P., Psenner, R., 2011. Holocene
3102	temperature variations at a high-altitude site in the Eastern Alps: A chironomid record from
3103	Schwarzsee ob Sölden, Austria. Quaternary Science Reviews, 30(1-2), 176-191.
3104	
3105	IPCC Climate Change 2013, 2013. The Physical Science Basis. Contribution of Working
	Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
3106	Cambridge University Press, Cambridge, 1535 pp.
3107	
3108	Ivy-Ochs, S., 2015. Glacier variations in the European Alps at the end of the Last Glaciation.
3109	Cuadernos de Investigación Geográfica, 4(2), 295-315.
3110	Ive Oaba S. Sahöffar I. Kubik D.W. Sunal H.N. Sahlüahtar C. 2004 Timing of
3111	Ivy-Ochs, S., Schäffer, J., Kubik, P.W., Synal, H.N., Schlüchter, C., 2004. Timing of
3112	deglaciation on the northern Alpine foreland (Switzerland). Eclogae Geologicae Helvetiae, 97,
3113	47-55.
3114	Ivy-Ochs, S., Kerschner, H., Reuther, A., Preusser, F., Heine, K., Maisch, M., Kubik, P.W.,
3115	•
3116	Schlüchter, C., 2008. Chronology of the last glacial cycle in the European Alps. Journal of
	Quaternary Science, 23, 559-573.
3117	Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P.W., Schlüchter, C., 2009.
3118	Latest Pleistocene and Holocene glacier variations in the European Alps. Quaternary Science
3119	
3120	Reviews, 28(21-22), 2137-2149.
3121	İzbırak, R., 1951. Cilo Dağı ve Hakkari ile Van Gölü çevrelerinde coğrafya araştırmaları,
3122	Ankara Üniversitesi Dil Tarih Coğrafya Fakültesi yayınları, 67(4), 149.
3123	Ankara Oniversitesi Dir Farm Cografya Fakurtesi yayıman, 07(4), 142.
3124	
3125	
3126	
3127	
- • - •	

Park (Cantabrian Mountains, NW Spain). Geodinamica Acta, 15, 93-101. Jiménez, M., Rodríguez-Rodríguez, L., García-Ruiz, J.M., Domínguez-Cuesta, M.J., Farias, glacial cycle. Geomorphology, 196, 50-64. Chérifien, série géologie et géographie physique, 10, 578 pp. Jorgenson, M.T., Osterkamp, T.E., 2005. Response of boreal ecosystems to varying modes of permafrost degradation. Canadian Journal of Forest Research, 35(9), 2100-2111. Jorgenson, M.T., Racine, C.H., Walters, J.C., Osterkamp, T.E., 2001. Permafrost degradation 48(4), 551-579. Joughin, I., Smith, B.E., Holland, D.M., 2010. Sensitivity of 21st century sea level to ocean-Julián, A., Chueca, J., 1998. Le Petit Âge Glaciaire dans les Pyrénées Centrales Meridionales: 3, 79-88. shaded mountainous area. Permafrost and periglacial Processes, 18(2), 137-149. and Karst Research Institute of the Slovenian Academy of Science and Arts. 2nd international workshop on ice caves, Demänovská dolina, Slovak Republic, 70-73. Kerschner, H., Ivy-Ochs, S., 2008. Paleoclimate from glaciers: examples from the Eastern araştırmaları. TÜBİTAK proje raporu No: 101Y131. King, L., Akerman J., 1993. Mountain permafrost in Europe. In: Proceedings of the Sixth Guangzhou, Vol. 2, 1022-1027. Kitover, D.C., van Balen, R.T., Vandenberghe, J., Roche, D.M., Renssen, H., 2016. LGM Model iLOVECLIM. Permafrost and Periglacial Processes, 27, 31-42. Klimchouk, A., Bayarı, S., Nazik, L., Törk, K., 2006. Glacial destruction of cave systems in Carsologica, 35, 2, 111-121.

Jeftic, L., Bernhard, M., Demetropoulos, A., Fernex, F., Gabrielides, G.P., Gasparovic, F., Halim, Y., Orhon, D., Saliba, L.J., Fukai, R., 1989. State of the Mediterranean Marine Environment. MAP Technical Reports Series No. 28. UNEP, Athens.

3128 3129 3130

3131

3132

3133

3134

3135 3136

3137

3138

3139

3140

3141 3142

3143

3144

3145

3146 3147

3148

3149

3150

3151 3152

3153

3154

3155

3156 3157

3158

3159

3160

3161

3162 3163

3164

3165

3166

3167

3168 3169

3170

3171 3172

3173

3174

3175

3176

3177

3178 3179

3180

3181

Jiménez, M., Farias, P., 2002. New radiometric and geomorphologic evidences of a Last Glacial Maximum older than 18 ka in SW European mountains: the example of Redes Natural

P., Valero-Garcés, B., Moreno, A., Rico, M., Valcárcel, M., 2013. A review of glacial geomorphology and chronology in northern Spain: timing and regional variability during the last

Joly, F., 1962. Etude sur le relief du Sud-Est morocain: Rabat, Travaux Institut Scientifique

and ecological changes associated with a warming climate in Central Alaska. Climatic Change,

induced thinning of Pine Island Glacier, Antarctica. Geophysical Research Letters, 37, L20502.

estimation des paléotempératures à partir d'inférences géomorphologiques. Sud-Ouest Europeen.

Julián, A., Chueca, J., 2007. Permafrost distribution from BTS measurements (Sierra de Telera, Central Pyrenees, Spain): assessing the importance of solar radiation in a mid-elevation

Slovenian Cave Registry, 2014. Jointly managed by Speleological Association of Slovenia

Kern, Z., Surányi, G., Molnár, M., Nagy, B., Balogh, D., 2006a. Investigation of natural perennial ice deposits of Durmitor Mts, Montenegro. In: Zelinka, J. (Editor), Proceedings of the

Alps during the Alpine Lateglacial and early Holocene. Global and Planetary Change, 60, 58-71.

Kesici, O., 2005. Küresel ısınma cerçevesinde Süphan ve Cilo dağlarında buzul morfolojisi

International Conference on Permafrost. South China University of Technology Press, Wushan,

permafrost thickness and extent in the Northern Hemisphere derived from the Earth System

high mountains, with a special reference to the Aladağlar massif, central Taurus, Turkey. Acta

Knight, J., Harrison, S., 2008. Periglacial and Paraglacial Processes and Environments. Geological Society of London Special Publications, 320.

Köse, O., Sarıkaya, M.A., Çiner, A., Şen, Ö.L., Candaş, A. 2017. Cosmogenic 36Cl Geochronology of the Northern Valleys of Mount Dedegöl, Western Taurus Mountains (Turkey). EGU General Assembly, Vienna, Geophysical Research Abstracts, Vol. 19, EGU2017-1377.

Košutnik, J., Gostinčar, P., Mihevc, A., 2014. Ledene jame in nekatere geomorfološke značilnosti Kočevske: vodnik po ekskurziji. (Ice caves and some geomorphological characteristics of Kočevska: field trip guide). 8 November 2014 Geomorphological Society of Slovenia, Ljubljana, pp. 37.

Krainer, K., Bressan, D., Dietre, B., Haas, J.N., Hajdas, I., Lang, K., Mair, V., Nickus, U., Reidl, D., Thies, H., Tonidandel, D., 2015. A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy). Quaternary Research, 83, 2(1), 324-335.

Kuhlemann, J., Rohling, E.J., Krumrei, I., Kubik, P., Ivy-Ochs, S., Kucera, M., 2008. Regional synthesis of Mediterranean atmospheric circulation during the last glacial maximum. Science, 321, 1338-1340.

Kuhlemann, J., Milivojević, M., Krumrei, I., Kubik, P.W., 2009. Last glaciation of the Šara Range (Balkan Peninsula): Increasing dryness from the LGM to the Holocene. Austrian Journal of Earth Science, 102, 146-158.

Kuhlemann, J., Gachev, E., Gikov, A., Nedkov, S., Krumrei, I., Kubik, P., 2013. Glaciation in the Rila Mountains (Bulgaria) during the Last Glacial Maximum. Quaternary International, 293, 51-62.

Kurter, A., 1991. Glaciers of Middle East and Africa - Glaciers of Turkey. In: Williams, R.S., Ferrigno, J.G. (Editors), Satellite Image Atlas of the World. USGS Professional Paper 1386-G-1, 1-30.

Kwiecien, O., Arz, H.W., Lamy, F., Plessen, B., Bahr, A., Haug, G.H., 2009. North Atlantic control on precipitation pattern in the eastern Mediterranean/Black Sea region during the last glacial. Quaternary Research, 71, 375-384.

Lambeck, K., Antonioli, F., Anzidei, M., Ferranti, L., Leoni, G., Scicchitano, G., Silenzi, S., 2011. Sea level change along the Italian coast during the Holocene and projections for the future. Quaternary International, 232, 250-257.

Lantuit, H., Overduin, P.P., Couture, N., Wetterich, S., Are, F., Atkinson, D., Brown, J., Cherkashov, G., Drozdov, D., Forbes, D., Graves-Gaylord, A., Grigoriev, M., Hubberten, H.W., Jordan, J., Jorgenson, T., Ødegård, R S., Ogorodov, S., Pollard, W., Rachold, V., Sedenko, S., Solomon, S., Steenhuisen, F., Streletskaya, I., Vasiliev, A., 2012. The Arctic Coastal Dynamics database. A new classification scheme and statistics on arctic permafrost coastlines. Estuaries and Coasts, 35(2), 383-400.

Leunda. M., Bartolomé. M., Sancho. C., Moreno. A., Oliva-Urcia. B., González-Sampériz. P., Gil-Romera. G., Gomollón. A., 2015. La Cueva Helada de Casteret (PNOMP, Huesca): Primeras aportaciones del registro del hielo. In: Gómez Zotano, J., Arias García, J., Olmedo Cobo, J.A., Serrano Montes, J.L. (Editors), Avances en Biogeografía. Areas de distribución: entre puentes y barreras, Universidad de Granada, Editorial Universidad de Granada, 78-81.

Lewin, J., Macklin, M.G., Woodward, J.C., 1991. Late Quaternary fluvial sedimentation in the Voidomatis Basin, Epirus, northwest Greece. Quaternary Research, 35(1), 103-115.

3247	
3247	
3248	
3249	
3250	
3251	
3252	
3253	
3254	
3255	
3256	
3257	
3258	
3259	
3260	
3261	
3262	
3263	
3264	
3265	
3266	
3267	
3268	
3269	
3270	
3271	
3272	
3273	
3274	
0075	
3275	
3275	
3276	
3276 3277	
3276 3277 3278	
3276 3277 3278 3279	
3276 3277 3278	
3276 3277 3278 3279 3280	
3276 3277 3278 3279 3280 3281	
3276 3277 3278 3279 3280	
3276 3277 3278 3279 3280 3281 3282	
3276 3277 3278 3279 3280 3281 3282 3283	
3276 3277 3278 3279 3280 3281 3282	
3276 3277 3278 3279 3280 3281 3282 3283	
3276 3277 3278 3279 3280 3281 3282 3283 3283 3284 3285	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286	
3276 3277 3278 3279 3280 3281 3282 3283 3283 3284 3285	
3276 3277 3278 3279 3280 3281 3282 3283 3283 3284 3285 3286 3286 3287	
3276 3277 3278 3279 3280 3281 3282 3283 3283 3284 3285 3286 3287 3288	
3276 3277 3278 3279 3280 3281 3282 3283 3283 3284 3285 3286 3286 3287	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3285 3286 3287 3288 3288	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3286 3287 3288 3289 3290	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3286 3287 3288 3289 3290 3291	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3286 3287 3288 3289 3290	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3286 3287 3288 3289 3290 3291 3292	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3286 3287 3288 3289 3290 3291 3292	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294	
3276 3277 3278 3279 3280 3281 3282 3283 3283 3284 3285 3286 3287 3288 3287 3288 3289 3290 3291 3292 3293 3294 3295	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294	
3276 3277 3278 3279 3280 3281 3282 3283 3283 3284 3285 3286 3287 3288 3287 3288 3289 3290 3291 3292 3293 3294 3295	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3291 3292 3293 3294 3295 3296 3297	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3293 3294 3295 3296 3297 3298	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3291 3292 3293 3294 3295 3296 3297	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3294 3295 3296 3297 3298 3299	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3294 3295 3296 3297 3298 3299 3299 3299 3300	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3294 3295 3296 3297 3298 3299	
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3294 3295 3296 3297 3298 3299 3299 3299 3300	

Lovcen östlich von Kotor. Eiszeitalter und Gegenwart, 13, 15-18. Rundschau, 34, 7-8, 447-481. evolution: a case study from the Jura Mountains. The Holocene, 15, 982-993. The Cryosphere, 7, 1073-1081. recorded by Alpine speleothems. Nature Communications, 6, 6344. Permafrost and Periglacial Processes, 15(3), 207-220. coast: a long-term study. Géographie physique et Quaternaire, 54(1), 41-68. development. Geoadria, 7, 1, 51-81. International Conference on Geomorphology, New Delhi, abstract 302. Geográfica, 41(2), 317-335. Etna). Geografia Fisica e Dinamica Quaternaria, 15, 127-132. Geográfica, 41(2), 279-293. en el Pirineo Español. MOPU, Madrid, 29-98. A. (Editors), Atlas Climático de Galicia. Xunta de Galicia, 167-185. Masson-Delmotte, V., Landais, A., Stievenard, M., Cattani, O., Falourd, S., Jouzel, J., D14102.

Lewis, C.J., McDonald, E.V., Sancho, C., Peña, J.L., Rhodes, E.J., 2009. Climatic implications of correlated Upper Pleistocene glacial and fluvial deposits on the Cinca and Gállego Rivers (NE Spain) based on OSL dating and soil stratigraphy. Global and Planetary Change, 67, 141-152.

Lewkowicz, A. 2010. The lasting impacts of the fourth international polar year on permafrost science. Permafrost and Periglacial Processes, 21, 105.

Liedtke, V.H., 1962. Vergletscherungsspuren und Periglazialerscheinungen am Südhang des

Louis, H.L., 1944. Evidence for Pleistocene glaciation in Anatolia (in German). Geologische

Luetscher, M., Jeannin, P., Haeberli, W., 2005. Ice caves as an indicator of winter climate

Luetscher, M., Borreguero, M., Moseley, G.E., Spotl, C., Edwards, R.L., 2013. Alpine permafrost thawing during the Medieval Warm Period identified from cryogenic cave carbonates.

Luetscher, M., Boch, R., Sodemann, H., Spotl, C., Cheng, H., Edwards, R.L., Frisia, S., Hof, F., Muller, W., 2015. North Atlantic storm track changes during the Last Glacial Maximum

Lugon, R., Delaloyé, R., Serrano, E., Reynard, E., Lambiel, C., González, J.J., 2004. Permafrost and Little Ice Age glacier relationships, Posets Massif, Central Pyrenees, Spain.

Mackay, J.R., 2000. Thermally induced movements in ice-wedge polygons, western Arctic

Magaš, D., 2002. Natural-geographic characteristics of the Boka Kotorska area as the basis of

Magori, B., Onaca, A., Gachev, E., Urdea, P., 2017, The geomorphological characteristics of rock glaciers and protalus ramparts in the Rila and Pirin Mountains. Proceedings of the 9th

Makos, M., 2015. Deglaciation of the High Tatra Mountains. Cuadernos de Investigación

Marino, A., 1992. Nota preliminaire sul fenomeno glaciologico della Grotta del Gelo (Monte

Marks, L., 2015. Last deglaciation of northern continental Europe. Cuadernos de Investigación

Martínez de Pisón, E., Arenillas, M., 1988. Los glaciares actuales del Pirineo español. La nieve

Martínez-Cortizas, Valcárcel, M., Pérez-Alberti, A., Castillo-Rodríguez, F., Blanco-Chao, R., 1999. Cambio climático e paleoambientes cuaternarios. In: Martínez-Cortizas. A., Pérez-Alberti,

Johnsen, S.J., Dahl-Jensen, D., Sveinbjörnsdottir, A.E., White, J.W.C., Popp, T., Fischer, H., 2005. Holocene climatic changes in Greenland: Different deuterium excess signals at Greenland Ice Core Project (GRIP) and NorthGRIP. Journal of Geophysical Research - Oceans, 110,

3305	
3306	
3307	McManus, J.F., Francois, R., Gherardi, J.M., Keigwin, L.D., Brown-Leger, S., 2004. Collapse
3308	
3309	and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes.
3310	Nature, 428, 834-837.
3311	Mensching, H., 1960. Bericht und gedanken zur tagung der kommission für
3312	
	periglazialforschung in der IGU in Marokko vom 19. bis 31. Oktober 1959. Zeitschrift für
3313	Geomorpholohie, 159-170.
3314	Mercier, D., 2008. Paraglacial and paraperiglacial landsystems; concepts, temporal scales and
3315	spatial distribution. Géomorphologie. Relief, Processus, Environnement 14(4), 223-233.
3316	spatial distribution. Geomorphologic. Renet, 1 rocessus, Environmentent 14(4), 225-255.
3317	Messerli, B., 1964. Der Gletscher am Erciyas Dagh und das Problem der rezenten
3318	Schneegrenze im anatolischen und mediterranen Raum. Geographica Helvetica, 19(1), 19-34.
3319	
3320	Messerli, B., 1965. Beiträge zur Geomorphologie der Sierra Nevada (Andalusien). Juris
3321	Verlag. Zürich.
3322	Messerli, B., 1967. Die eiszeitliche und die gegenwartige Vergletscherung in Mittelmeerraum.
3323	
3324	Geographica Helvetica, 22, 105-228.
3325	Messerli, B., 1973. Problems of vertical and horizontal arrangement in the high mountains of
3326	the extreme arid zone (central Sahara). Artic and alpine Research, 5, 139-147.
3327	the externe and zone (central Sanara). Aftic and alphic Research, 5, 159 117.
	Messerli, B., Winiger, M., 1992. Climate, environmental change and resources of the African
3328	mountains from the Mediterranean to the Equator. Mountain Research and Development, 12, 315-
3329	336.
3330	
3331	Miccadei, E., Barberi, R., Cavinato, G.P., 1998. La geologia quaternaria della conca di
3332	Sulmona (Abruzzo, Italia centrale). Geologica Romana, 34(1), 59-86.
3333	Mihevc, A., 2009. Cryoturbation of the sediments at the cave entrances-case studies from
3334	
3335	Skednena jama, Potočka zijalka and Bestažovca cave. Proceedings of the 51st Annual Meeting in
3336	Ljubljana, 26-27.
3337	Mihevc, A., 2008. Distribution and characteristics of ice caves in Slovenia. In: Kadebskaya,
3338	Olga, Mavljudov, B.R., Mikhail, P. (Editors), Proceedings of the 3rd international workshop on
3339	
3340	ice caves, Kungur Ice Cave, Russia, 61-64.
3341	Milevski, I., 2008. Fossil glacial landforms and periglacial phenomena on the Osogovo
3342	Mountain massif. Annual Report No. 37 of the Institute of Geography, Faculty of Natural
3343	Sciences and Mathematics, Skopje, 25-49.
3344	
	Milivojević, M., Menković, L., Ćalić, J., 2008. Pleistocene glacial relief of the central part of
3345	Mt. Prokletije (Albanian Alps). Quaternary International, 190, 112-122.
3346	
3347	Mithen, S., 2004. After the ice: a global human history 20,000-5,000 BC. Cambridge, MA:
3348	Harvard University Press, 664 pp.
3349	Monegato, G., Ravazzi, C., Donegana, M., Pini, R., Calderoni, G., Wick, L., 2007. Evidence
3350	of a two-fold glacial advance during the last glacial maximum in the Tagliamento end moraine
3351	
3352	system (eastern Alps). Quaternary Research, 68, 284-302.
3353	Monegato, G., Scardia, G., Hajdas, I., Rizzini, F., Piccin, A., 2017. The Alpine LGM in the
3354	boreal ice-sheets game. Scientific Reports, 7, doi: 10.1038/s41598-017-02148-7.
3355	
3356	Monod, O., 1977. Recherches géologiques dans le Taurus occidental au sud de Beyşehir
3357	(Turquie). PhD Thesis, Universitity Paris Sud, Orsay.
3358	
3359	
3360	
3361	
3362	
0002	

3365 3366 Moran, A.P., Ivy Ochs, S., Vockenhuber, C., Kerschner, H., 2016. Rock glacier development 3367 in the Northern Calcareous Alps at the Pleistocene-Holocene boundary. Geomorphology, 273, 3368 178-188. 3369 3370 Moreno, A., Valero-Garcés, B.L., Jiménez-Sánchez, M., Domínguez-Cuesta, M.J., Mata, M.P., Navas, A., González-Sampériz, P., Stoll, H., Farias, P., Morellón, M., Corella, J.P., Rico, 3371 3372 M., 2010. The last deglaciation in the Picos de Europa National Park (Cantabrian Mountains, 3373 Northern Spain). Journal of Quaternary Science, 25(7), 1076-1091. 3374 Morley, M.W. and Woodward, J.C. (2011) The Campanian Ignimbrite (Y5) tephra at Crvena 3375 Stijena Rockshelter, Montenegro, Quaternary Research, 75, 683-696, 3376 3377 Morris, S.E., Olyphant, G.A., 1990. Alpine lithofacies variation: working towards a physically 3378 based model. Geomorphology, 3, 73-90. 3379 Mozzi, P., Ferrarese, F., Fontana, A., 2013. Document integrating Digital Elevation Models 3380 and stratigraphic data for the reconstruction of the post-LGM unconformity in the brenta alluvial 3381 megafan (north-eastern Italy). Alpine and Mediterranean Qiuaternary, 26(1), 41-54. 3382 3383 Nelson, F.E., Anisimov, O.A., Shiklomanov, N.I., 2001. Subsidence risk from thawing 3384 permafrost. Nature, 410, 889-90. 3385 Nelson, F.E., Anisimov, O.A., Shiklomanov, N.I., 2002. Climate change and hazard zonation 3386 in the circum-Arctic permafrost regions. Natural Hazards, 3, 203-225. 3387 3388 Nieuwendam, A., Ruiz-Fernández, J., Oliva, M., Freitas, C., Paio, V., Cruces, A., 2015. 3389 Postglacial landscape changes and cryogenic processes in the Picos de Europa (Northern Spain) 3390 reconstructed from geomorphological mapping and microstructures on quartz grains. Permafrost 3391 and Periglacial Processes, 27, 96-108. 3392 3393 Nojarov, P., 2012a. Changes in air temperatures and atmosphere circulation in high 3394 mountainous parts of Bulgaria for the period 1941-2008. Journal of Mountain Science, 9, 185-3395 200. 3396 Nojarov, P., 2012b. Variations in precipitation amounts, atmosphere circulation, and relative 3397 humidity in high mountainous parts of Bulgaria for the period 1947-2008. Theoretical and 3398 Applied Climatology, 107, 175-187. 3399 3400 Obleitner, F., Spötl, C., 2011. The mass and energy balance of ice within the Eisriesenwelt 3401 cave, Austria. The Cryosphere, 5, 245-257. 3402 Obu, J., Košutnik, J., Overduin, P.P., Boike, J., Blatnik, M., Zwieback, S., Gostinčar, P., 3403 3404 Mihevc, A., 2018. Sorted patterned ground in a karst cave, Ledenica pod Hrušico, Slovenia. 3405 Permafrost and Periglacial Processes, doi: 10.1002/ppp.1970. 3406 Oliva, M., 2009. Holocene alpine environments in Sierra Nevada (Southern Spain). PhD 3407 thesis. University of Barcelona. 3408 3409 Oliva, M., 2011. Evolución cuaternaria del paisaje de cumbres en Sierra Nevada. Cuaternario 3410 & Geomorfología, 25(1-2), 21-44. 3411 Oliva, M., Gómez-Ortiz, A., 2011. Holocene slope dynamics in Sierra Nevada (Southern 3412 Spain). Sedimentological analysis of solifluction landforms and lake deposits. In: Martini, I.P., 3413 French, H.M., Pérez-Alberti, A. (Editors), Ice-Marginal and Periglacial Processes and Sediments. 3414 Geological Society, London, Special Publications, 354, 227-239. 3415 3416 Oliva, M., Gómez-Ortiz, A., 2012. Late Holocene environmental dynamics and climate 3417 variability in a Mediterranean high mountain environment (Sierra Nevada, Spain) inferred from 3418 lake sediments and historical sources. The Holocene, 22(8), 915-927. 3419 3420 3421 3422

3423	
3424	
3425	Oliva, M., Ruiz-Fernández, J., 2015. Coupling patterns between para-glacial and permafrost
3426	
3427	degradation responses in Antarctica. Earth Surface Processes and Landforms, 40(9), 1227-1238.
3428	Oliva, M., Schulte, L., Gómez-Ortiz, A., 2011. The role of aridification in constraining the
3429	elevation range of Holocene solifluction processes and associated landforms in the periglacial belt
3430	of the Sierra Nevada (Southern Spain). Earth Surface Processes and Landforms, 36, 1279-1291.
3431	of the Sterra Wevada (Southern Spani). Earth Surface Processes and Eandronnis, 50, 1279-1291.
3432	Oliva, M., Gómez-Ortiz, A., Palacios, D., Salvador-Franch, F., Salvà-Catarineu, M., 2014.
	Environmental evolution in Sierra Nevada (South Spain) since the Last glaciation based on multi-
3433	proxy records. Quaternary International, 353, 195-209.
3434	prony records. Quaternary international, 505, 195 209.
3435	Oliva, M., Gómez-Ortiz, A., Salvador-Franch, F., Salvá-Catarineu, Palacios, D., Tanarro, L.,
3436	Ramos, M., Pereira, P., Ruiz-Fernández, J., 2016a. Inexistence of permafrost at the top of the
3437	Veleta peak (Sierra Nevada, Spain). Science of the Total Environment, 550, 484-494.
3438	
3439	Oliva, M., Serrano, E., Gómez-Ortiz, A., González-Amuchástegui, M.J., Nieuwendam, A.,
3440	Palacios, D., Pérez-Alberti, A., Pellitero, R., Ruiz-Fernández, J., Valcárcel, M., Vieira, G.,
3441	Antoniades, D., 2016b. Spatial and temporal variability of periglaciation of the Iberian Peninsula.
3442	Quaternary Science Reviews, 137, 176-199.
3443	
3444	Oliva, M., Pereira, P., Ruiz-Fernández, J., Nieuwendam, A., 2017. Recent advances in the
3445	study of active layer thermal regime and seasonal frost dynamics in cold climate environments.
	Catena, 149(2), 515-518.
3446	
3447	Oliva, M., Ruiz-Fernández, J., Barriendos, M., Benito, G., Cuadrat, J.M., García-Ruiz, J.M.,
3448	Giralt, S., Gómez-Ortiz, A., Hernández, A., López-Costas, O., López-Moreno, J.I., López-Sáez,
3449	J.A., Martínez-Cortizas, A., Moreno, A., Prohom, M., Saz, M.A., Serrano, E., Tejedor, E., Trigo,
3450	R., Valero-Garcés, B., Vicente-Serrano, S., 2018. The Little Ice Age in Iberian mountains. Earth
3451	Science Reviews, 177, 175-208.
3452	
3453	Oliva-Urcía, B., Moreno, A., Valero-Garcés, B., Mata, P., Grupo HORDA, 2013. Magnetismo
3454	y cambios ambientales en registros terrestres: el lago de Marboré, Parque Nacional de Ordesa y
3455	Monte Perdido (Huesca). Cuadernos de Investigación Geográfica, 39(1), 117-140.
3456	
3457	Ontañón, J., 1985. Evolución cuaternaria del valle del Paular. Publicaciones de la Universidad
3458	Complutense de Madrid, Madrid.
3459	Ontañón, J., Asensio-Amor, I., 1973. Observaciones sobre los frentes morrenicos en el alto
3460	valle del Lozoya. Estudios Geográficos, 29, 559-562
3461	Ortigosa, L., 1986. Geomorfología glaciar de la Sierra Cebollera (Sistema Ibérico). Instituto
3462	de Estudios Riojanos, Logroño, 77 pp.
3463	
3464	Osmaston, H.A., Harrison, S.P., 2005. The late Quaternary glaciation of Africa: a regional
3465	synthesis. Quaternary International, 138, 32-54.
3466	
3467	Østerud, Ø., Hønneland, G., 2014. Geopolitics and International Governance in the Arctic.
3468	Arctic Review on Law and Politics, 5(2), 156-176.
3469	Öztürk, M., 2012. Uludağ'daki periglasiyal süreçlerin, periglasiyal yerşekillerinin ve bunları
3470	denetleyen etmenlerin incelenmesi, Nilüfer Akkılıç Kütüphanesi Yayınları, 10, 161 pp.
3471	denetieyen etinemenni meelenmesi, witatei Akkinç Kutapitanesi Tayınları, 10, 101 pp.
3472	Palacios, D., Andrés, N., Luengo, E., 2003. Distribution and effectiveness of nivation in
3473	Mediterranean mountains: Peñalara (Spain). Geomorphology, 54(3-4), 157-178.
3474	
	Palacios, D., Andrés, N., Marcos, J. Vázquez-Selem, J., 2011a. Glacial landforms and their
3475	paleoclimatic significance in Sierra de Guadarrama, Central Iberian Peninsula. Geomorphology,
3476	139-140, 67-78.
3477	
3478	
3479	
3480	

3482 3483 3484 Palacios, D., Marcos, J. Vázquez-Selem, L., 2011b. Last Glacial Maximum and deglaciation 3485 of Sierra de Gredos, Central Iberian Peninsula. Quaternary International, 233, 16-26. 3486 Palacios, D., Andrés, N., Marcos, J. Vázquez-Selem, J., 2012. Maximum glacial advance and 3487 3488 deglaciation of the Pinar Valley (Sierra de Gredos, Central Spain) and its significance in the 3489 Mediterranean context. Geomorphology, 177-178, 51-61. 3490 Palacios, D., Gómez-Ortiz, A., de Andrés, N., Vázquez-Selem, L., Salvador-Franch, F., Oliva, 3491 M., 2015. Maximum extent of Late Pleistocene glaciers and last deglaciation of La Cerdanya 3492 mountains, Southeastern Pyrenees. Geomorphology, 231, 116-129. 3493 3494 Palacios, D., Gómez-Ortiz, A., Andrés, N. Salvador, F., Oliva, M., 2016. Timing and new 3495 geomorphologic evidence of the Last Deglaciation stages in Sierra Nevada (southern Spain). 3496 Quaternary Science Reviews, 150, 110-129. 3497 Palacios D., Andrés N., Gómez-Ortiz A., García-Ruiz G., 2017a. Evidence of glacial activity 3498 during the Oldest Dryas in the Mountain of Spain. In: Hughes, P., Woodward, J. (Editors), 3499 Quaternary Glaciation in the Mediterranean Mountains, Geological Society of London Special 3500 Publications, 433, 87-110. 3501 3502 Palacios, D., Andrés, N., García-Ruiz, J.M., Schimmelpfennig, I., Campos, N., Léanni, L., 3503 Aster Team, 2017b. Deglaciation in the central Pyrenees during the Pleistocene-Holocene 3504 transition: timing and geomorphological significance. Quaternary Science Reviews, 150, 110-3505 129. 3506 3507 Palade, B., Gómez-Ortiz, A., Palacios, D., 2011. Glaciares rocosos de Sierra Nevada y su 3508 significado paleoclimático: una primera aproximación. Cuadernos de Investigación Geográfica, 3509 37, 95-118. 3510 Palgrave, W.G., 1872. Vestiges of the glacial period in northeastern Anatolia. Nature, 5, 444-3511 445. 3512 3513 Pallàs, R., Rodés, A., Braucher, R., Carcaillet, J., Ortuño, M., Bordonau, J., Bourlès, D., 3514 Vilaplana, J.M., Masana, E., Santanach, P., 2006. Late Pleistocene and Holocene glaciation in the 3515 Pyrenees: a critical review and new evidence from 10Be expoisure ages, south-central Pyrenees. 3516 Quaternary Science Reviews, 25 (21-22), 2937-2963. 3517 Palma, P., Oliva, M., García-Hernández, C., Ruiz-Fernández, J., Gómez-Ortiz, A., Salvador-3518 3519 Franch, F., Salvà-Catarineu, F., 2017. Spatial characterization of glacial and periglacial landforms in the high lands of Sierra Nevada (Spain). Science of the Total Environment, 584, 1256-1267. 3520 3521 Palmentola, G., Stamatopoulos, L., 2004. Preliminray data about sporadic permafrost on 3522 Peristeri and Tzoumerka massifs (pindos Chain, Northwestern Greece). Revue de 3523 Geomorphologie, 8, 17-23. 3524 3525 Palmentola, G., Baboci, K., Gruda, G.J., Zito, G., 1995. A note on rock glaciers in the Albanian 3526 Alps. Permafrost and Periglacial Processes, 6, 251-257. 3527 Pappalardo, M., 1999. Observations on stratified slope deposits, Gesso Valley, Italian 3528 Maritime Alps. Permafrost and Periglacial Processes, 10, 107-111. 3529 3530 Paro, L., 2011. Il ruolo dei processi criotici nell'evoluzione del paesaggio alpino: il caso di 3531 studio dei block stream del Complesso Ultrabasico di Lanzo (Alpi occidentali italiane). PhD 3532 thesis, University of Torino. 3533 Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Benito-Alonso, J.L., 3534 Coldea, G., Dick, J., Erschbamer, B., Fernández-Calzado, R., Ghosn, D., Holten, J.I., Kanka, R., 3535 Kazakis, G., Kollár, J., Larsson, P., Moiseev, P., Moiseev, D., Molau, U., Molero-Mesa, J., Nagy, 3536 3537 L., Pelino, G., Puscas, M., Rossi, G., Stanisci, A., Syverhuset, A.O., Theurillat, J.P., Tomaselli, 3538 3539

302, 88-10	ry stages in the Gredos mountains (Iberian Central system). Quaternary Internation 00.
Pellice	r, F., 1980. El periglaciarismo del Moncayo. Geographicalia, 7-8, 3-25.
mountain	o, R., 2009. Application of an alpine geomorphological mapping system to an Atla environment: the Curavacas Massif (Cantabrian Range, northest Spain). Journa), 194-205.
	o, R., 2012. Geomorfología, paleoambiente cuaternario y geodiversidad en el Ma s Carrionas-Montaña Palentina. PhD thesis. University of Valladolid.
	o, R., 2014. Geomorphology and geomorphological landscapes of Fuentes Carrie Maps, 10(2), 313-323.
	o, R., Serrano, E., González-Trueba, J.J., 2011. Glaciares rocosos del sector centra a Cantábrica: indicadores paleoambientales. Cuadernos de Investigación Geográ -144.
	r, A., 1905. Eine Reise in das Gebiet des Erdschias-Dagh (Kleinasien), 1 ngen der k. k. Geography Gesellschaft in Wien, 6, 1.
Centrorier	J.L., Lozano, M.V., 1998. Las formas periglaciares de la Cordillera Ib- atal. In: Peña, J.L. (Editor), Geomorfología de campo de la Sierra de Albarra ad de Verano de Teruel, 159-177.
J., Julián, la Cordill	L., Lozano, M.V., Sánchez-Fabre, M., Jiménez-Martínez, A., Longares, L.A., Chu A., 2000. Las acumulaciones de clima frío de la Sierra de Albarracín en el context era Ibérica Oriental. In: Peña, J.L., Sánchez- Fabre, M., Lozano, M.V. (Edit y formas periglaciares en la montaña mediterránea. Instituto de Estudios Turolet 7-147.
	Alberti, A., 1979. Nuevas observaciones sobre glaciarismo y periglaciarismo en el nsula Ibérica. La Galicia sud oriental. Acta Geológica Hispana, 14, 441-444.
manifestac In: Pérez-	Alberti, A., Rodríguez-Guitián, M., 1993. Formas y depósitos de macroclasticiones actuales de periglaciarismo en las sierras septentrionales y orientales de Gal Alberti, Guitián, L., Ramil, P. (Editors), La evolución del paisaje en las montañas el Camino de Santiago. Xunta de Galicia, 91-105.
Galicia or	Alberti, A., Valcárcel, M., 2000. Depósitos de ladera de estructura estratificada e iental (Noroeste Ibérico). In: Peña, J.L., Sánchez- Fabre, M., Lozano, M.V. (Edit / formas periglaciares en la montaña mediterránea. Instituto de Estudios Turoler -44.
Noroeste o	Alberti, A., Martínez-Cortizas, A., Moares, C., 1994. Los procesos periglaciares de la Península Ibérica. In: Gómez-Ortiz, A., Simón Torres, M., Salvador-Franc riglaciarismo en la Península Ibérica, Canarias y Baleares. Monografías de la S
, ,	Estudios significativos, 7, 33-54.

M., Unterluggauer, P., Villar, L., Vittoz, P., Grabherr, G., 2012. Recent plant diversity changes on Europe's mountain summits. Science, 336, 353-355.

Pechoux, P.Y., 1970. Traces of glacial action in the Mountains of Central Greece. Revue de Géographie Alpine, 58, 211-224.

Pedraza J Carrasco R.M. Domínguez-Villar, D., Villa, J., 2013. Late Pleistocene glacial onal, 3600 3601 3602 datos climáticos, geomorfológicos y botánicos. In: Gómez-Ortiz, A., Salvador-Franch, F., 3603 Schulte, L., García-Navarro, A. (Editors), Procesos biofísicos actuales en medios fríos. 3604 Publicacions de la Universitat de Barcelona, 245-261. 3605 3606 Pérez-Alberti, A., Valcárcel, M., Martini, I.P. Pascucci, V., Andreucci, 2011. Upper Pleistocene glacial valley-junction sediments at Pias, Trevinca Mountains, NW Spain. In: Martini, 3607 3608 I.P., French, H., Pérez-Alberti, A. (Editors), Ice-Marginal and Periglacial Processes and 3609 Sediments. The Geological Society. Special Publication, London, 354, 93-110. 3610 Permenter, J.L., Oppenheimer, C., 2007. Volcanoes of the Tibesti massif (Chad, northern 3611 Africa). Bulletin of Volcanology, 69, 609–626. 3612 3613 Petrini M., Colleoni F., Kirchner N., Hughes L.C.A., Camerlenghi A., Rebesco M., Lucchi 3614 R.G., Forte E., Colucci R.R., Noormets R., 2018. Interplay of grounding-line dynamics and sub-3615 shelf melting during the last retreat of Bjørnøyrenna Ice Stream. Scientific Reports, 8, 7196. 3616 Planhol, X. de, Bilgin, T., 1964. Glaciaire et périglaciaire quaternaires et actuels dans le massif 3617 du Karagöl (Chaines pontiques, Turquie). Revue de Géographie Alpine, 52, 3, 497-512. 3618 3619 Pope, R.J., Hughes, P.D., Skourtsos, E., 2017. Glacial history of Mt Chelmos, Peloponnesus, 3620 Greece. In: Hughes, P.D., Woodward, J.C. (Editors), Quaternary glaciation in the Mediterranean 3621 Mountains. Geological Society of London Special Publications 433, 211-236. 3622 Poser, H., 1948. Boden- und Klimaverhaltnisse in Mittel- und Westeuropa wahrend der 3623 3624 Würmeiszeit. Erdkunde, 2, 53-68. 3625 Poser, J., 1957. Klimamorphologische Probleme auf Kreta. Zeitschrift für Geomorphologie, 3626 2, 113-142. 3627 3628 Pučnik, J., 1980. Velika knjiga o vremenu. Ljubljana, Cankarjeva založba, 367. 3629 Radovanović, M., 1994. Pluviometrijske karakteristike NP - Lovćen. In: Mijušković, M. 3630 (Editor), Nacionalni park Lovćen - prirodna i kulturna dobra. Cetinje, 17-18 September 1993. 3631 Podgorica, Crnogorska akademija nauka i umjetnosti, 27-37. 3632 3633 Raynal, R., Dresch, J., Joly, F., 1956. Deux exemples regionaux de glaciation quaternaire au 3634 Maroc: Haut Atlas Oriental, Moyen Atlas Septentrional. IV Congres INQUA, Rome-Pisa, 108-3635 117. 3636 Ravanel, L., Magnin, F., Deline, P., 2017. Impacts of the 2003 and 2015 Summer Heatwaves 3637 on Permafrost-Affected Rock-Walls in the Mont Blanc Massif. Science of the Total Environment, 3638 609, 132-143. 3639 3640 Ravazzi, C., Badino, F., Marsetti, D., Patera, G., Reimer, P.J., 2012. Document Glacial to 3641 paraglacial history and forest recovery in the Oglio glacier system (Italian Alps) between 26 and 3642 15 ka cal BP. Quaternary Science Reviews, 58, 146-161. 3643 3644 Reber, R., Akcar, A., Yesilvurt, S., Yavuz, V., Tikhomirov, D., Kubik, P.W., Schlüchter, C., 3645 2014. Glacier advances in northeastern Turkey before and during the global Last Glacial 3646 Maximum. Quaternary Science Reviews, 101, 177-192. 3647 Redondo, J.M., Carrera, P., González-Gutiérrez, R.B. Gómez-Villar, A., 2002. 3648 Caracterización de los Macizos que dominan los glaciares rocosos fósiles de la Sierra de Gistredo 3649 (León): influencia de la fracturación en la génesis y desarrollo de esas formas periglaciares. In: 3650 Serrano, E., García de Celis, A. (Editors), Periglaciarismo en montaña y altas latitudes. University 3651 of Valladolid, Valladolid, 27-36. 3652 3653 3654 3655 3656 3657

3659 3660 3661 Redondo, J.M., Gómez-Villar, A., González-Gutiérrez, R.B., 2004. Localización y 3662 caracterización morfométrica de los glaciares rocosos relictos de la Sierra de Gistredo (Montaña 3663 Cantábrica, León). Cuadernos de Investigación Geográfica, 30, 35-60. 3664 3665 Redondo, J.M., Gómez-Villar, A., González-Gutiérrez, R.B., Santos, J., 2010. Los glaciares 3666 rocosos de la Cordillera Cantábrica. University of León, León, 158 pp. 3667 Redžić, S., Barudanović, S., Trakić, S., Kulijer, D., 2011 Vascular plant biodiversity richness 3668 and endemo-relictness of the karst mountains Preni, Cvrsnica and Cabulja in Bosnia and 3669 Herzegovina (W. Balkan) = Biodiverziteta in endemo-reliktnost vaskularnih rastlin kraških 3670 gorovij Prenj, Čvrsnica in Čabulja, Bosna in Hercegovina. Acta Carsologica, 40, 3, 527-555. 3671 3672 Rellini, I., Trombino, L., Rossi, P.M., Firpo, M., 2014. Frost activity and ice segregation in a 3673 palaeosol of the Ligurian Alps (Beigua Massif, Italy): Evidence of past permafrost? Geografia 3674 Fisica e Dinamica Quaternaria, 37(1), 29-42. 3675 Repapis, C.C., Philandras, C.M., 1988. A note on the air temperature trends of the last 100 3676 years as evidenced in the Eastern Mediterranean time series. Theoretical and Applied 3677 Climatology, 39, 93-97. 3678 3679 Ribolini, A., Fabre, D., 2006. Permafrost existence in the rock glaciers of the Argentera Massif 3680 (Maritime Alps, Italy). Permafrost and Periglacial Processes, 17, 49-63. 3681 Ribolini, A., Guglielmin, M., Fabre, D., Bodin, X., Marchisio, M., Sartini, S., Spagnolo, M., 3682 3683 Schoeneich, P., 2010. The internal structure of rock glaciers and recently-deglaciated slopes as 3684 revealed by geoelectrical tomography: insights on permafrost and recent glacial evolution in the 3685 Central and Western Alps (Italy-France). Quaternary Sciences Reviews, 29, 507-521. 3686 Robinson, A., Calov, R., Ganopolski, A., 2012. Multistability and critical thresholds of the 3687 Greenland ice sheet. Nature Climate Change, 2, 429-432. 3688 3689 Robustelli, G., Scarciglia, F., 2006. Mormanno, 2006, e Praia a Mare (Calabria settentrionale). 3690 In: Chelli, A., D'Aquila, P., Firpo, M., Ginesu, S., Guglielmin, M., Pappalardo, M., Pecci, M., 3691 Piacentini, T., Queirolo, C., Robustelli, G., Scarciglia, F., Sias, S., Tellini, C. (Editors), Testimoni 3692 di una montagna scomparsa. Contributo alle metodologie d'indagine delle forme periglaciali 3693 relitte. Problematiche e applicazioni in differenti ambienti morfodinamici. Collana Quaderni della 3694 Montagna, vol. 8, Bologna, Bonomia University Press, 81-92. 3695 3696 Rodrigo, F.S., Esteban-Parra, M.J., Pozo-Vázquez, D., Castro-Díaz, Y., 1999. A 500-year precipitation record in southern Spain. International Journal of Climatology, 19, 1233-1253. 3697 3698 Rodríguez-Pérez, C., 1995. Estudio geomorfológico del Puerto de San Isidro. Ería, 36, 63-87. 3699 3700 Rodríguez-Pérez, C., 2009. Geomorfología de la montaña astur-leonesa entre los puertos de 3701 Ventana y de Somiedo. PhD thesis, University of Oviedo. 3702 Rodríguez-Rodríguez, L., Jiménez-Sánchez, M., Domínguez-Cuesta, M.J., Aranburu, A., 3703 2014. Research history on glacial geomorphology and geochronology of the Cantabrian 3704 Mountains, north Iberia (43-42°N/7-2°W). Quaternary International, 364, 6-21. 3705 3706 Rodríguez-Rodríguez, L., Jiménez-Sánchez, M., Domínguez-Cuesta, M.J., Rinterknecht, V., 3707 Pallàs, R., Bourlès, D., 2016. Chronology of glaciations in the Cantabrian Mountains (NW Iberia) 3708 during the Last Glacial Cycle based on in situ-produced 10Be. Quaternary Science Reviews, 138, 3709 31-48. 3710 Rossato, S., Monegato, G., Mozzi, P., Cucato, M., Gaudisoso, B., Miola, A., 2013. Late 3711 Quaternary glaciations and connections to the piedmont plain in the prealpine environment: The 3712 middle and lower Astico Valley (NE Italy). Quaternary International, 288, 8-24. 3713 3714 3715 3716 3717

Rosselló, V., 1977. Screes periglaciares en la montaña mallorquina. V Coloquio de Geógrafos Españoles. AGE-Universidad de Granada, Granada, 83-92.

Ruiz-Fernández, J., 2013. Las formas de modelado glaciar, periglaciar y fluviotorrencial del Macizo Occidental de los Picos de Europa (Cordillera Cantábrica). PhD thesis, University of Oviedo.

Ruiz-Fernández, J., Poblete, M.A., García, C., 2014. Características morfoclimáticas y procesos y formas periglaciares actuales en el Macizo Occidental de los Picos de Europa (Cordillera Cantábrica). In: Gómez-Ortiz, A., Salvador, F., Oliva, M., Salvà, M. (Editors), Avances, métodos y técnicas en el estudio del periglaciarismo. University of Barcelona, Barcelona, 91-103.

Ruiz-Fernández, J., Oliva, M., Cruces, A., Lopes, V., Freitas, C., Andrade, C., García-Hernández, C., López-Sáez, J.A., Geraldes, M., 2016. Environmental evolution in the Picos de Europa (Cantabrian Mountains, SW Europe) since the Last Glaciation. Quaternary Science Reviews, 138, 87-104.

Ruszkiczay-Rüdiger, Z., Kern, Z., 2015. Permafrost or seasonal frost? A review of paleoclimate proxies of the last glacial cycle in the East Central European lowlands. Quaternary International, 415, 241-252.

Salvador-Franch, F., Gómez-Ortiz, A., Palacios, D., 2010. Comportamiento térmico del suelo en un enclave de alta montaña mediterránea con permafrost residual: Corral del Veleta (Sierra Nevada, Granada. España). In: Blanco, J.J., de Pablo, M.A., Ramos, M. (Editors), Ambientes periglaciares, permafrost y variabilidad climática. Publicaciones de la Universidad de Alcalá, Alcalá de Henares (Spain), 61-68.

Salvador-Franch, F., Gómez-Ortiz, A., Salvà-Catarineu, M., Palacios, D., 2011. Caracterización térmica de la capa activa de un glaciar rocoso en medio periglaciar de alta montaña mediterránea: El ejemplo del Corral del Veleta (Sierra Nevada, España). Cuadernos de Investigación Geográfica, 37(2), 25-48.

Samartin, S., Heiri, O., Kaltenrieder, P., Kühl, N., Tinner, W., 2016. Reconstruction of full glacial environments and summer temperatures from Lago della Costa, a refugial site in Northern Italy. Quaternary Science Reviews, 143, 107-119.

Samartin, S., Heiri, O., Joos, F., Renssen, H., Franke, J., Brönnimann, S., Tinner, W., 2017. Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages. Nature Geoscience, 10, 207-212.

Sancho, C., Bartolomé, M., Moreno, A., Belmonte, A., Leunda, M., Oliva-Urcia, B., López-Martínez, J., Delgado-Huertas, A., 2016. Las cuevas heladas del Pirineo como sensores paleoambientales: estado de la cuestión. Geo-Temas, 16(1), 311-314.

Santos-González, J., 2010. Glaciarismo y periglaciarismo en el Alto Sil, provincia de León (Cordillera Cantábrica). PhD thesis. University of León.

Sanz, E., Pellicer, F., 1994. El periglaciarismo de la Sierra Cebollera (Soria y La Rioja). Cuaternario & Geomorfología, 8(1-2), 123-138.

Sanz-Herráiz, C., 1988. El relieve del Guadarrama Oriental. Consejería de Política Territorial, Madrid.

Sarıkaya, M.A., 2012. Recession of the ice cap on Mount Ağrı (Ararat), Turkey, from 1976 to 2011 and its climatic significance. Journal of Asian Earth Sciences, 46, 190-194.

3777	
3778	
3779	Sarıkaya, M.A., Tekeli, A.E., 2014. Satellite inventory of glaciers in Turkey. In: Kargel, J.S.,
3780	Leonard, G.J., Bishop, M.P., Kääb, A., Raup, B. (Editors), Global Land Ice Measurements from
3781	Space, Praxis-Springer (Publisher), Berlin Heidelberg, 465-480.
3782	
3783	Sarıkaya, M.A., Çiner, A., 2015. Late Pleistocene glaciations and paleoclimate of Turkey.
3784	Bulletin of Mineral Research and Exploration (MTA), 151, 107-127.
3785	Sarıkaya, M.A., Çiner, A., 2017. The late Quaternary glaciation in the Eastern Mediterranean.
3786	
3787	In: Hughes, P.D., Woodward, J.C. (Editors), Quaternary Glaciation in the Mediterranean
3788	Mountains, Geological Society of London Special Publication, 433, 289-305.
3789	Sarıkaya, M.A., Çiner, A., Zreda, M., 2003. Erciyes volkanı Geç Kuvaterner buzul çökelleri.
3790	HU Yerbilimleri, 27, 59-74.
3791	
3792	Sarıkaya, M. A., Zreda, M., Çiner, A., 2009. Glaciations and paleoclimate of Mount Erciyes,
3793	central Turkey, since the Last Glacial Maximum, inferred from 36Cl cosmogenic dating and
3794	glacier modelling. Quaternary Science Reviews, 28(23-24), 2326-2341.
3795	Combrand M.A. Cimer A. Zarda M. 2011 Quatermany classificant of Tanlary In Ebland I
3796	Sarıkaya, M.A., Çiner, A., Zreda, M., 2011. Quaternary glaciations of Turkey. In: Ehlers, J.,
3797	Gibbard, P.L., Hughes, P.D. (Editors), Quaternary Glaciations - extent and chronology; a closer
3798	look, Elsevier Publications, Developments in Quaternary Science, Amsterdam, 15, 393-403.
3799	Sarıkaya, M.A., Çiner, A., Yıldırım, C. 2017. Cosmogenic ³⁶ Cl glacial chronologies of the
3800	Late Quaternary glaciers on Mount Geyikdağ in the Eastern Mediterranean. Quaternary
3801	
3802	Geochronology, 39, 189-204.
3803	Sarıkaya, M.A., Zreda, M., Çiner, A., Zweck, C., 2008. Cold and wet Last Glacial Maximum
	on Mount Sandiras, SW Turkey, inferred from cosmogenic dating and glacier modelling.
3804	Quaternary Science Reviews, 27(7-8), 769-789.
3805	
3806	Sarıkaya, M.A., Çiner, A., Haybat, H., Zreda, M., 2014. An early advance of glaciers on Mount
3807	Akdağ, SW Turkey, before the global Last Glacial Maximum; insights from cosmogenic nuclides
3808	and glacier modeling. Quaternary Science Reviews, 88, 96-109.
3809	Scapozza, C., Lambiel, C. Reynard, E., Fallot, JM., Antognini, M., Schoeneich, P., 2010.
3810	Radiocarbon Dating of Fossil Wood Remains Buried by the Piancabella Rock Glacier, Blenio
3811	6
3812	Valley (Ticino, Southern Swiss Alps): Implications for rock glacier, treeline and climate history,
3813	Permafrost and Periglacial Processes, 21, 90-96.
3814	Scarciglia, F., 2000. Variazioni tardo-quaternarie delle morfodinamiche di versante in
3815	Appennino meridionale: il contributo della paleopedologia. PhD thesis, University of Napoli.
3816	
3817	Scarciglia, F., Terribile, F., Colombo, C., Cinque, A., 2003. Late Quaternary climatic changes
3818	in Northern Cilento (Southern Italy): an integrated geomorphological and paleopedological study.
3819	Quaternary International, 106-107, 141-158.
3820	Sahuur EAC McCuira AD Sahädal C Crassa C Harden IW Havas DI Hugalius
3821	Schuur, E.A.G., McGuire, A.D., Schädel, C. Grosse, G., Harden, J.W., Hayes, D.J., Hugelius,
3822	G., Koven, C.D., Kuhry, P., Lawrence, D.M., Natali, S.M., Olefeldt, D., Romanovsky, V.E.,
3823	Schaefer, K., Turetsky, M.R., Treat, C.C., Vonk, J.E., 2015. Climate change and the permafrost
3824	carbon feedback. Nature, 520(7546), 171-179.
3825	Scoto, F., Giudice, G., Randazzo, L., Maggi, V., 2016. Air circulation model and topographic
3826	survey of the "grotto del gelo", Mt. Etna Italy. In: Mihevc, A., Zupan Hajna, N., Gostinčar, P.
3827	(Editors), Proceedings of the 7th International Workshop on Ice Caves, pp. 71-73.
3828	(Lenois), i roccoungs of the /th international workshop on ice Caves, pp. /1-/3.
3829	Scotti, R., Brardinoni, F., Alberti, S., Frattini, P., Crosta, G.B., 2013. A regional inventory of
3830	rock glaciers and protalus ramparts in the central Italian Alps. Geomorphology, 186, 136-149.
3831	
3832	
3833	
3834	
3835	

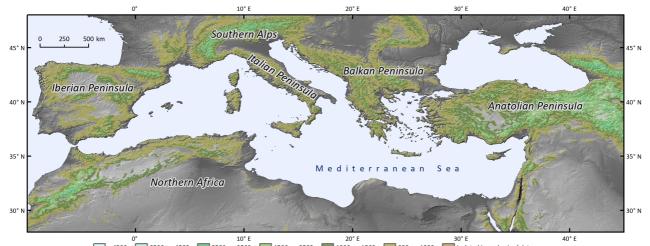
3836 3837 3838 Sengör, A.M.C., Yilmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. 3839 Tectonophysics, 75, 181-241. 3840 Seppi, R., Carton, A., Zumiani, M., Dall'Amico, M., Zampedri, G., Rigon, R., 2012. Inventory, 3841 3842 distribution and topographic features of rock glaciers in the southern region of the eastern Italian 3843 Alps (Trentino). Geografia Fisica e Dinamica Quaternaria, 35, 185-197. 3844 Seppi, R., Zanoner, T., Carton, A., Bondesan, A., Francese, R., Carturan, L., Zumiani, M., 3845 Giorgi, M., Ninfo, A., 2014. Current transition from glacial to periglacial processes in the 3846 Dolomites (South-Eastern Alps). Geomorphology, 228, 71-86. 3847 3848 Serrano, E., 1998. Geomorfología del Alto Gállego (Pirineo aragonés). Fundación Fernando 3849 El Católico, Zaragoza. 3850 Serrano, E., Agudo, C., 1998. Los glaciares rocosos de los Pirineos. Implicaciones 3851 ambientales. In: Gómez-Ortiz, A., Salvador-Franch, F., Schulte, L., García-Navarro, A. (Editors), 3852 Procesos biofísicos actuales en medios fríos. Publicacions de la Universitat de Barcelona, 133-3853 154. 3854 3855 Serrano, E., Agudo, C., 2004. Glaciares rocosos y deglaciación en la alta montaña de los 3856 Pirineos aragoneses (España). Boletín de la Real Sociedad Española de Historia Natural, 99, 159-3857 172. 3858 3859 Serrano, E., Agudo, C., Martínez De Pisón, E., 1999. Rock glaciers in the Pyrenees. Permafrost 3860 and Periglaclacial Processes, 10, 101-106. 3861 Serrano, E., Martínez de Pisón, E., Agudo, C., 2000. El medio periglaciar de alta montaña en 3862 el Pirineo central: aportaciones recientes. In: Peña, J.L., Sánchez- Fabre, M., Lozano, M.V. 3863 (Editors), Procesos y formas periglaciares en la montaña mediterránea. Instituto de Estudios 3864 Turolenses, Teruel, 45-62. 3865 3866 Serrano, E., Agudo, C., Delaloyé, R., González-Trueba, J.J., 2001. Permafrost distribution in 3867 the Posets massif, Central Pyrenees. Norwegian Journal of Geography, 55(4), 245-252. 3868 Serrano, E., Agudo, C., González Trueba, J.J., 2002. La deglaciación de la alta montaña del 3869 macizo del Posets (Pirineo aragonés). Morfología, evolución y fases morfogenéticas glaciares. 3870 Cuaternario y Geomorfología, 16, 111-126. 3871 3872 Serrano, E., San José, J.J., Agudo, C., 2006. Rock glacier dynamics in a marginal periglacial 3873 high mountain environment: flow, movement (1991-2000) and structure of the Argualas rock 3874 glacier, the Pyrenees. Geomorphology, 74, 285-296. 3875 Serrano, E., Pellitero, R., Otero, M., 2010a. Huellas pleistocenas de frío intenso en la Cuenca 3876 3877 del Duero: cuñas de arena relictas en las terrazas del Pisuerga. In: Úbeda, X., Vericat, D., Batalla, 3878 R.J. (Editors), Avances de la Geomorfología en España, 2008-2010. SEG-Universitat de 3879 Barcelona, Barcelona, 417-420. 3880 Serrano, E., Agudo, C., Delaloyé, R., González, J.J., 2010b. Permafrost distribution in the 3881 Posets massif, Central Pyrenees. Norsk Geografisk Tidsskrift, 55(4), 245-252. 3882 3883 Serrano, E., Sanjosé, J.J., González Trueba, J.J., 2010c. Rock glaciers dynamics in marginal 3884 periglacial environments. Earth Surface Processes and Landforms, 35(11), 1302-1314. 3885 Serrano, E., González-Trueba, J.J., San José, J.J., 2011a. Dinámica, evolución y estructura de 3886 los glaciares rocosos de los Pirineos. Cuadernos de Investigación Geográfica, 37, 145-169. 3887 3888 Serrano, E., Morales, C., González Trueba, J.J., Martín, R., 2009. Cartografía del permafrost 3889 de montaña en los Pirineos españoles. Finisterra, 87, 45-54. 3890 3891 3892 3893

Serrano, E., González-Trueba, J.J., San José, J.J., Del Río, L.M., 2011b. Ice patch origin, evolution and dynamics in a temperate maritime high mountain: the Jou Negro, Picos De Europa (NW Spain). Geographiska Annaler, 9(2), 57-70. Serrano, E., González-Trueba, J.J., González-García, M., 2012. Mountain glaciation and paleoclimate reconstruction in the Picos de Europa (Iberian Peninsula, SW Europe). Quaternary Research, 78, 303-314. Serrano, E., González-Trueba, J.J., Pellitero, R., González-García, M., Gómez, M., 2013. Quaternary glacial evolution in the Cantabrian Mountains (Northern Spain). Geomorphology, 196, 65-82. Serrano, E., Gómez-Lende, M., González-Amuchastegui, M.J., González-García, M., González-Trueba, J.J., Pellitero, R., Rico, I., 2015. Glacial chronology, environmental changes and implications for human occupation during the upper Pleistocene in the eastern Cantabrian Mountains. Quaternary International, 364, 22-34. Simón, M., Sánchez, S., García, I., 2000. Soil-landscape evolution on a Mediterranean high mountain. Catena, 39, 211-231. Sinnyovsky, D., 2015. Wurm glacier formations and mountain landscapes in Rila Mountain, Bulgaria. Proceedings of the 15th International Multidisciplinary Scientific GeoConference SGEM 2015, 1, 529-536. Smiraglia, C., Fabre, D., Evin, M., Assier, A., 1994. The rock glaciers of the Manzina, Valfurva, Stelvio National Park, Italy. Geoelectrical soundin, Geografia Fisica e Dinamica Quaternaria, 17(1), 79-85. Smith, G.W., Nance, R.D., Genes, A.N., 1997. Quaternary glacial history of Mount Olympus. Geological Society of America Bulletin, 109, 809-824. Smith, J.A., Andersen, T.J., Shortt, M., Gaffney, A.M., Truffer, M., Stanton, T.P., Bindschadler, R., Dutrieux, P., Jenkins, A., Hillenbrand, C.D., Ehrmann, W., Corr, H.F.J., Farley, N., Crowhurst S., Vaughan, D.G., 2017. Sub-ice-shelf sediments record history of twentiethcentury retreat of Pine Island Glacier. Nature, 541, 77-80. Soutadé, G., 1980. Modelé et dynamique actualle des versants supraforestiers des Pyrénées Orientales. Imp. Coop. du Sud-Ouest, Albi, 452 pp. Staut, M., Vreča, P., Merela, M., Brenčič, M., 2016. Recent fluctuations of ice deposits in the cave Ledena jama pri Planini Viševnik, NW Slovenia. In: Mihevc, A., Zupan Hajna, N., Gostinčar, P. (Editors), Proceedings of the 7th International Workshop on Ice Caves, 73-74.

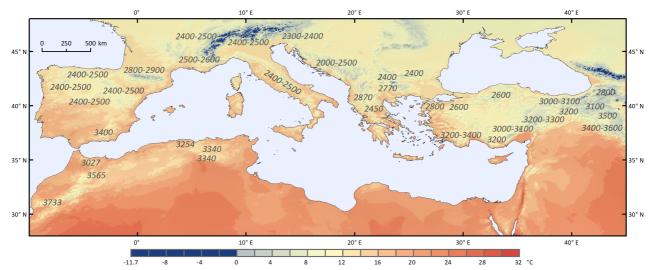
Stefanova, I., Atanassova, J., Delcheva, M., Wright, H. E., 2006. Chronological framework for the Lateglacial pollen and macrofossil sequence in the Pirin Mountains, Bulgaria: Lake Besbog and Lake Kremensko-5. The Holocene, 16, 6, 877-892.

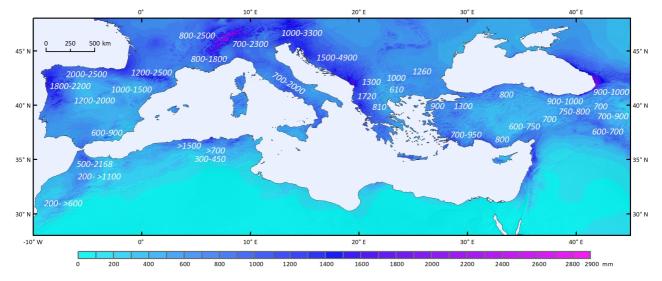
Stenni, B., Genoni, L., Flora, O., Guglielmin, M., 2007. An oxygen isotope record from the Foscagno rock-glacier ice core, upper Valtellina, Italian central Alps. The Holocene, 17, 1033-1039.

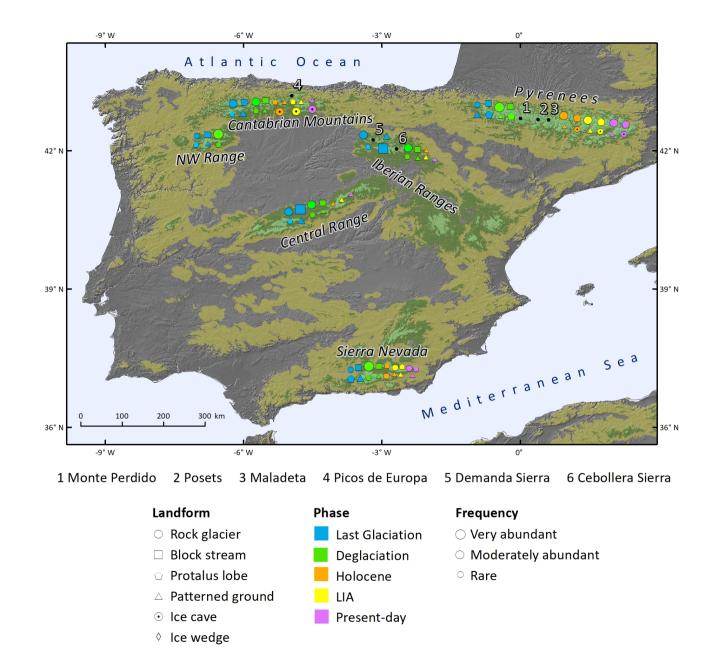
Stoffel, M., Luetscher, M., Bollschweiler, M., Schlatter, F., 2009. Evidence of NAO control on subsurface ice accumulation in a 1200 yr old cave-ice sequence, St Livres ice cave, Switzerland. Quaternary Research, 72, 16-26.


Stoyanov, K., Gachev, E., 2012. Recent Landform Evolution in Bulgaria. In: Lóczy, D., Stankoviansky, M., Kotarba, A. (Editors), Recent Landform Evolution: The Carpatho-Balkan-Dinaric Region, Springer, Dordrecht, New York, 377-412.

3955	
3956	Stroeven, A.P., Hättestrand, C., Kleman, J., Heyman, J., Fabel, D., Fredin, O., Goodfellow,
3957	•
3958	B.W., Harbor, J.M., Jansen, J.D., Olsen, L., Caffee, M.W., Fink, D., Lundqvist, J., Rosqvist, G.C.,
3959	Strömberg, B., Jansson, K.N., 2016. Deglaciation of Fennoscandia. Quaternary Science Reviews,
3960	147, 91-121.
3961	Styllas, M., Schimmelpfennig, I., Ghilardi, M., Benedetti, L., 2016. Geomorphologic and
3962	palaeoclimatic evidence of Holocene glaciation on Mount Olympus, Greece. The Holocene, 26,
3963	709-721.
3964	/09-/21.
	Tanarro, L.M., Palacios, D., Zamorano, J.J., Gómez-Ortiz, A., 2010. Cubierta nival,
3965	permafrost y formación de flujos superficiales en un talud detrítico de alta montaña (Corral del
3966	Veleta, Sierra Nevada, España). Cuadernos de Investigación Geográfica, 36(2), 39-60.
3967	vereta, Sierra Nevada, España). Edadernos de investigación Geogranica, 50(2), 57-60.
3968	Temovski, M., 2016. Ice caves in Macedonia. In: Mihevc, A., Zupan Hajna, N., Gostinčar, P.
3969	(Editors), Proceedings of the 7th International Workshop on Ice Caves, 74.
3970	
3971	Tihay, J.P., 1973. Note sur quelques paléoformes periglaciaires observées en Algérie orientale.
3972	Méditerranée, 13(2), 37-47.
3973	Thornes, J.B., 1968. Glacial and periglacial features in the Urbión Mountains. Spain. Estudios
3974	Geológicos, 24, 249-258.
3975	Geologicos, 24, 249-238.
3976	Tonkov, S., Bozilova, E., Possnert, G., 2016. Lateglacial to Holocene vegetation development
3977	in the Central Rila Mountains, Bulgaria. The Holocene, 26, 17-28.
3978	
3979	Toucanne, S., Soulet, G., Freslon, N., Silva, R., Dennielou, B., Zaragosi, S., Eynaud, F.,
3980	Bourillet, J.F., Bayon, G., 2015. Millennial-scale fluctuations of the European Ice Sheet at the
3981	end of the last glacial, and their potential impact on global climate. Quaternary Science Reviews,
3982	123, 113-133.
3983	Türkeş, M., Öztürk, M.Z., 2008. Uludağ periglasiyal jeomorfolojisi. Ulusal jeomorfoloji
3984	Sempozyumu, 387-395.
3985	Türkeş, M., Öztürk, M.Z., 2011. Uludağ'da girland ve çember oluşumları, Coğrafi Bilimler
3986	Dergisi, 2, 239-257.
3987	Dergisi, 2, 237-237.
3988	Turoğlu, H., 2009. Aksu Deresi Havzası (Giresun) Periglasiyal Sahasında Kütle Hareketleri.
3989	Türk Coğrafya Dergisi, 52, 41-54.
3990	
3991	Tzedakis, P.C., Frogley, M.R., Lawson, I.T., Preece, R.C., Cacho, I., de Abreu, L., 2004.
3992	Ecological thresholds and patterns of millennial-scale climate variability: The response of
3993	vegetation in Greece during the last glacial period. Geology, 32, 109-112.
3994	Ugarte, F. M., 1992. Glacial and periglacial morphogenesis in the Basque mountains. The Late
3995	
3996	Quaternary in the Western Pyrenean Region, University of of the Basque Country, 235-250.
3997	Ünal, A., Sarıkaya, M.A., 2013. Erciyes kaya buzulunun uzaktan algılama ile incelenmesi
3998	(2001-2012). Coğrafyacılar Derneği Yıllık Kongresi Bildiriler Kitabı, İstanbul, 1-5.
3999	
4000	Valcárcel, M., 1998. Evolución geomorfológica y dinámica de vertientes en el NE de Galicia.
4001	Importancia de los procesos de origen frío en un sector de las montañas lucenses. PhD thesis,
4002	University of Santiago de Compostela.
4003	
4003	Valcárcel, M., Pérez-Alberti, A., 2002. Los campos de bloques en montañas del noroeste de
	la Península Ibérica: Génesis y significado paleoambiental. In: Serrano, E., García de Celis, A.
4005	(Editors), Periglaciarismo en montaña y altas latitudes. University of Valladolid, Valladolid, 13-
4006	26.
4007	Valaéraal M. Blanco B. Martínar Cartinas A. Dérez Albanti A. 1000 Estimonita de las
4008	Valcárcel, M., Blanco, R., Martínez-Cortizas, A., Pérez-Alberti, A., 1998. Estimación de las
4009	paleotemperaturas en Galicia durante el último ciclo glaciar a partir de datos geomorfologicos y
4010	
4011	

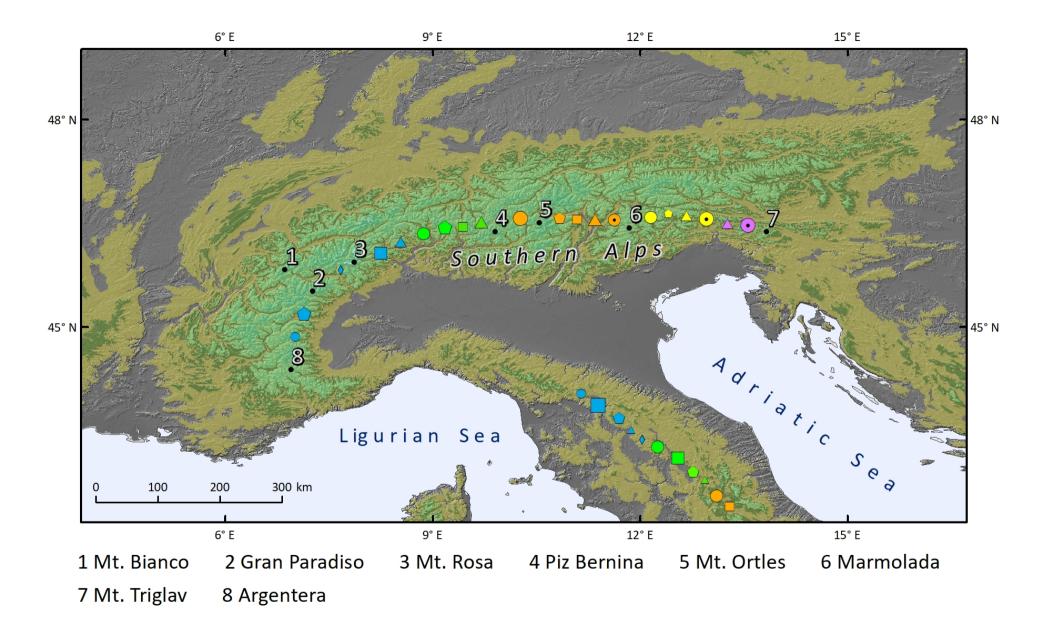

4013	
4014	
4015	alia (diana Ing Change Ontin A. Salardan Franch F. (Editara) Jamatian ing maintan da la
4016	climáticos. In: Gómez-Ortiz, A., Salvador-Franch, F., (Editors), Investigaciones recientes de la
4017	geomorfología española, Sociedad Española de Geomorfología, 767-770.
4018	van Vliet-Lanoë, B.M.J., Hallegouët, B., 2001. European permafrost at the LGM and at its
4019	maximal extent. In: Paepe, R., Melnikov, V.P., Van Overloop, E., Gorokhov, V.D. (Editors),
4020	Permafrost response on economic development, environmental security and natural resources.
4021	Springer Netherlands, Dordrecht, 195-213.
4022	van Vliet-Lanoe, B., Magyarib, A., Meilliez, F., 2004. Distinguishing between tectonic and
4023	periglacial deformations of quaternary continental deposits in Europe. Global and Planetary
4024	
4025	Change, 43, 103-127.
4026	Vandenberghe, J., French, H.M., Gorbunov, A., Velichko, A.A., Jin, H., Cui, Z., Zhang, T.,
4027	Wan, X., 2014. The Last Permafrost Maximum (LPM) map of the northern hemisphere:
4028	permafrost extent and mean annual air temperatures, 25-17 ka BP. Boreas, 43, 652-666.
4029	permanost extent and mean annual an temperatures, 23-17 ka Dr. Doreas, 43, 032-000.
4030	Velichko, A.A., 1982. Paleogeography of Europe during the last one hundred thousand years.
4031	In: Gerasimov, I.P. (Editor), 14 Planches. Moscow, 156.
4032	
	Vieira, G., 2004. Geomorphology of the high valleys and plateaus of Serra da Estrela.
4033	Pleistocene cold environments and present-day processes. PhD thesis, University of Lisbon.
4034	
4035	Vieira, G., Mora, C., Ali, F., 2017. New observations indicate the possible presence of
4036	permafrost in North Africa (Djebel Toubkal, High Atlas, Morocco). The Cryosphere, 11(4), 1691-
4037	1705.
4038	Vieira, G., Bockheim, J., Guglielmin, M., Balks, M., Abramov, A.A., Boelhouwers, J.,
4039	
4040	Cannone, N., Ganzert, L., Gilichinsky, D., Goryachkin, S., López-Martínez, J., Raffi, R., Ramos,
4041	M., Schaefer, C., Serrano, E., Simas, F., Sletten, R., Wagner, D., 2010. Thermal state of
4042	permafrost and active-layer monitoring in the Antarctic: advances during the international polar
4043	year 2007-2008. Permafrost and Periglacial Processes, 21, 182-197.
4044	
4045	Wiche, K., 1953. Klimamorphologische und talgeschichtliche studien im M'Goungebiet,
4046	Mitteilungen der geologischen Gesellschaft in Wien, 95, 4-41.
	Williams, C., Flower, B.P. Hastings, D.W., 2012. Seasonal Laurentide Ice Sheet melting
4047	during the Mystery Interval (15.5-14.5 ka). Geology, 40, 955-958.
4048	during the Mystery Interval (15.5-14.5 ka). Geology, 40, 555-558.
4049	Witak, M., Wachnicka, A., Kuijpers, A., Troelstra, S., Prins, A., Witkowski, A., 2015.
4050	Holocene North Atlantic surface circulation and climatic variability: evidence from diatom
4051	records. The Holocene, 15(1), 85-96.
4052	
4053	Woodward, J.C., 2009. (Editor) The Physical Geography of the Mediterranean. Oxford,
4054	Oxforrd University Press.
4055	
4056	Woodward, J.C., Goldberg, P., 2001. The sedimentary records in Mediterranean rockshelters
4057	and caves: Archives of environmental change. Geoarchaeology: An International Journal, 16,
4058	327-354.
4059	Wardward IC Lowin I Marklin MC 1005 Clasifian river habevieur and the
4060	Woodward, J.C., Lewin, J., Macklin, M.G., 1995. Glaciation, river behaviour and the
4061	Palaeolithic settlement of upland northwest Greece. In Lewin, J., Macklin, M.G., Woodward
	(Editors), Mediterranean Quaternary River Environments. Balkema, 115-129.
4062	Woodward, J.C., Hamlin, R.H.B., Macklin, M.G., Hughes, P.D., Lewin, J., 2008. Glacial
4063	
4064	activity and catchment dynamics in northwest Greece: Long-term river behaviour and the
4065	slackwater sediment record for the last glacial to interglacial transition. Geomorphology, 101, 44-
4066	67.
4067	
4068	
4069	
4070	
4071	

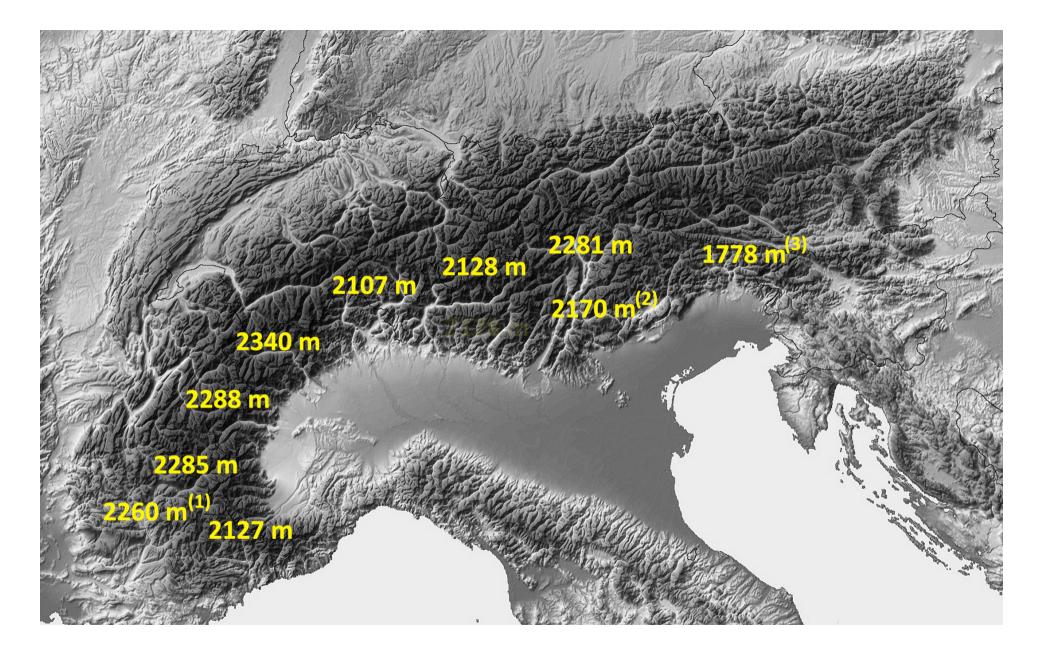

4073	
4074	World Meteorological Organisation, 1998. 1961-1990 global climate normals. Electronic
4075	resource. National Climatic Data Center, US: Asheville, NC.
4076	resource. National Chinatic Data Center, 05. Ashevine, NC.
4077	Xoplaki, E., Maheras, P., Luterbacher, J., 2008. Variability of climate in meridional Balkans
4078	during the periods 1675-1715 and 1780-1830 and its impact on human life. Climatic Change, 48,
4079	581-615.
4080	
4081	Yavaşlı, D.D., Tucker, C.J., Melocik, K.A., 2015. Change in the glacier extent in Turkey
4082	during the Landsat Era. Remote Sensing of Environment, 163, 32-41.
4083	Yeşilyurt, S., Doğan, U., 2010. Munzur Dağları'nın buzul jeomorfolojisi: CBS ve uzaktan
4084	algılama yöntemleri ile bir değerlendirme, TÜCAUM VI. Ulusal Coğrafya Sempozyumu,
4085	Ankara, 287-288.
4086	
4087	Yeşilyurt, S., Akçar, N., Doğan, U., Yavuz, V., Ivy-Ochs, S., Vockenhuber, C., Schlunegger,
4088	F., Schlüchter, C., 2016. Extensive Quaternary glaciations in eastern Turkey. EGU General
4089	Assembly 2016, Vol. 18, EGU2016-1014.
4090	Yeşilyurt, S., Doğan, U., Akçar, N., 2018. Narlıca Vadisi'nde Geç Kuvaterner buzullaşma
4091	
4092	izleri, Kavuşşahap Dağları. Türk Coğrafya Dergisi, (70), 99-108.
4093	Zahno, C., Akçar, N., Yavuz, V., Kubik, P.W., Schlüchter, C., 2009. Surface exposure dating
4094	of Late Pleistocene glaciations at the Dedegöl Mountains (Lake Beyşehir, SW Turkey). Journal
4095	of Quaternary Science, 24, 1016-1028.
4096	
4097	Zahno, C., Akçar, N., Yavuz, V., Kubik, P.W., Schlüchter, C., 2010. Chronology of Late
4098	Pleistocene glacier variations at the Uludağ Mountain, NW Turkey. Quaternary Science Reviews,
4099	29, 1173-1187.
4100	Zenklusen-Mutter, E., Blanchet, J., Phillips, M., 2010. Analysis of ground temperature trends
4101	in alpine permafrost using generalized least squares. Journal of Geophysical Research: Earth
4102	
4103	Surface, 115, F04009.
4104	Zreda, M., Çiner, A., Sarıkaya, M.A., Zweck, C., Bayarı, S., 2011. Remarkably extensive
4105	Early Holocene glaciation in Aladağlar, Central Turkey, Geology, 39, 11, 1051-1054.
4106	Zuhrzuski S. Kutzhach I. Dfaiffar E.M. 2014 Darmafrast affasted sails and their earbon
4107	Zubrzycki, S., Kutzbach, L., Pfeiffer, E.M., 2014. Permafrost-affected soils and their carbon
4108	pools with a focus on the Russian Arctic. Solid Earth, 5, 595-609.
4109	Zumbühl, H.J., Steiner, D., Nussbaumer, S., 2008. 19th century glacier representations and
4110	fluctuations in the central and western European Alps: an interdisciplinary approach. Global and
4111	Planetary Change, 60(1-2), 42-57.
4112	
4113	Zupan Hajna, N., 2007. Barka depression, a denuded shaft in the area of Snežnik Mountain.
4114	Southwest Slovenia. Journal of Cave and Karst Studies, 69/2. 266-274.
4115	Zupan Hajna, N., 2016. Interesting karst depression in the area of Snežnik Mountain; SW
4116	Slovenia. In: Mihevc, A., Zupan Hajna, N., Gostinčar, P. (Editors), Proceedings of the 7th
4117	International Workshop on Ice Caves, 76.
4118	international workshop on rec caves, 70.
4119	Žebre, M., Stepišnik, U., 2014. Reconstruction of Late Pleistocene glaciers on Mount Lovćen,
4120	Montenegro. Quaternary International, 353, 225-235.
4121	Žebre, M., Stepišnik, U., Colucci, R.R., Forte, E., Monegato, G., 2016. Evolution of a karst
4122	· ·
4123	polje influenced by glaciation: the Gomance piedmont polje (northern Dinaric Alps).
4124	Geomorphology, 257, 143-154.
4125	
4126	
4127	
4128	
4129	
4130	


4131	
4132	
4133	Figure captions
4134	
4135	Figure 1. Location of the different study areas examined in this paper within the Mediterranean
4136	region (top), together with mean annual temperatures and altitudes where the 0 °C isotherm is
4137	located (middle), and annual precipitations with values for each of the mountain ranges
4138	considered in this study (bottom). Annual precipitation and mean annual temperatures for the
4139	period 1960-1990 was obtained from Hijmans et al. (2005), spatial resolution 30 arc-seconds,
4140	modified after WorldClim 1.4 (www.worldclim.org).
4141	modified after worldenin 1.4 (<u>www.worldenin.org</u>).
4142	Figure 2. Distribution of permafrost-related features since the Last Glaciation in the Iberian
4143	Peninsula. The symbols of the legend are the same for all the other graphs.
4144	remissing. The symbols of the legend are the same for an the other graphs.
4145	
4146	Figure 3. Examples of permafrost-related landforms generated during different phases in different
4147	massifs of the Iberian Peninsula.
4148	
4149	Figure 4. Distribution of permafrost-related features since the Last Glaciation in the southern
4150	
4151	Alps.
4152	
4153	Figure 5. Minimum mean altitude of the relict rock glacier fronts in the southern side of the Alps,
4154	including data from (1) Bornet et al. (2014); 2) Seppi et al. (2012); (3) Colucci et al. (2016a).
4155	
4156	Figure 6. Examples of periglacial and permafrost-related landforms generated during different
4157	phases in the southern Alps.
4158	F
4159	Figure 7. Distribution of permafrost-related features since the Last Glaciation in the Italian
4160	Peninsula.
4161	i chinistitu.
	Figure 8. Examples of permafrost-related landforms generated during different phases in the
4162 4163	
	Apennines and Italian Peninsula.
4164	
4165	Figure 9. Distribution of permafrost-related features since the Last Glaciation in the Balkan
4166	Peninsula.
4167	
4168	Figure 10. Examples of permafrost-related landforms generated during different phases in
4169	different massifs of the Balkan Peninsula.
4170	
4171	Figure 11. Distribution of permafrost-related features since the Last Glaciation in the Anatolia
4172	Peninsula.
4173	
4174	Figure 12. Examples of permafrost-related landforms generated during different phases in
4175	different massifs of the Anatolia Peninsula.
4176	
4177	Figure 13. Distribution of permafrost-related features since the Last Glaciation in northern Africa.
4178	
4179	Figure 14. Examples of permafrost-related landforms generated during different phases in
4180	northern Africa.
4181	
4182	Figure 15. Geomorphological sketch of the formation of different generations of permafrost-
4183	related features in Mediterranean mountains since the Last Glaciation.
4184	
4185	
4186	
4187	
4188	

Last Glaciation (block streams; Iberian Range)

Deglaciation (protalus lobes; Sierra Nevada)


Holocene (rock glacier; Sierra Nevada)

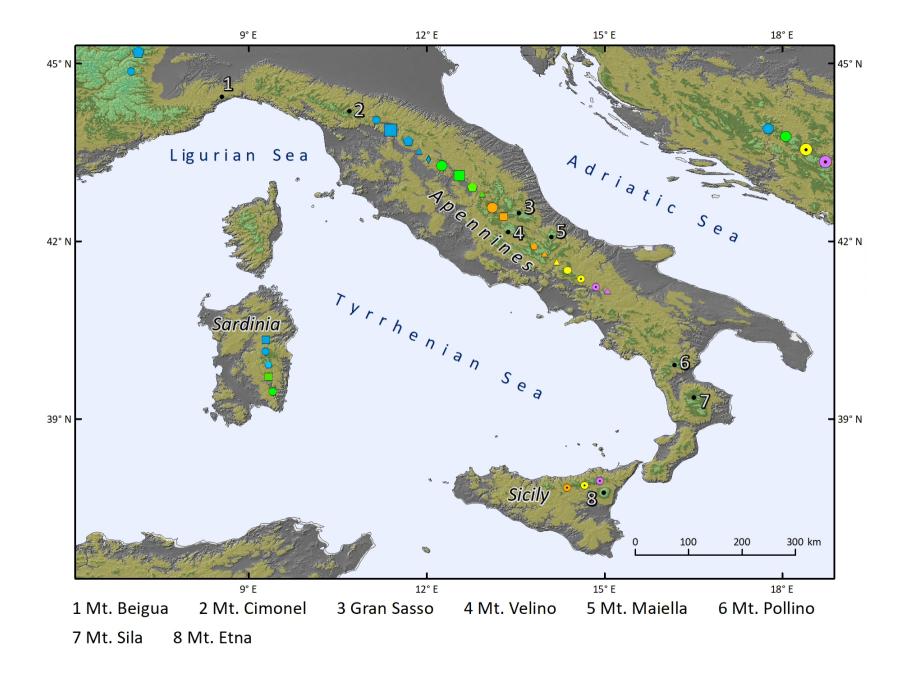


LIA (rock glacier; Pyrenees)

Present-day (rock glacier; Sierra Nevada)

LGM (relict rock glacier, central Alps) Photo: M.Guglielmin

Deglaciation (patterned ground; central Alps) Photo: M. Guglielmin

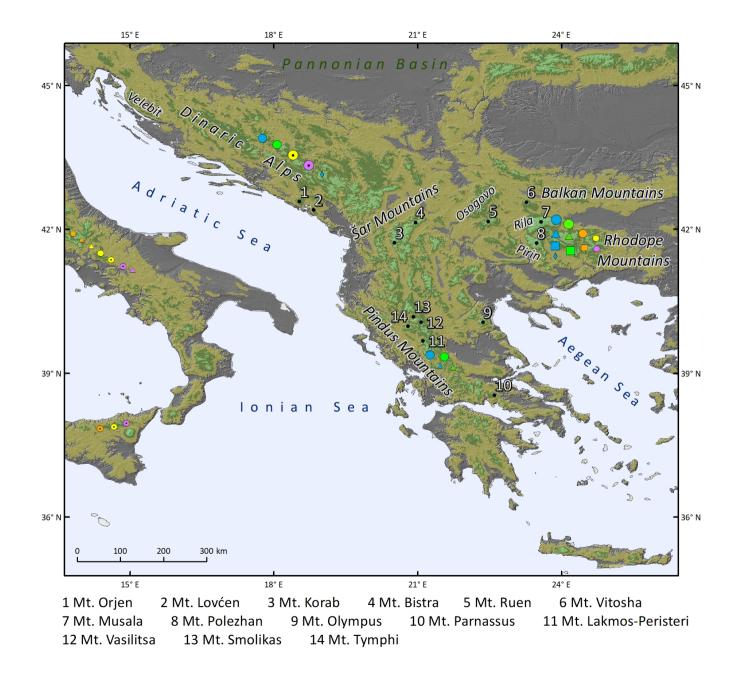

Holocene (active rock glacier; central Alps) Photo: R.R.Colucci

LIA (active rock glacier; Dolomites) aerial view from free BingMaps

Present-day (ground ice, ice cave; eastern Alps Photo: R.R.Colucci)

LGM (block stream; Apennines Photo: M.Guglielmin)

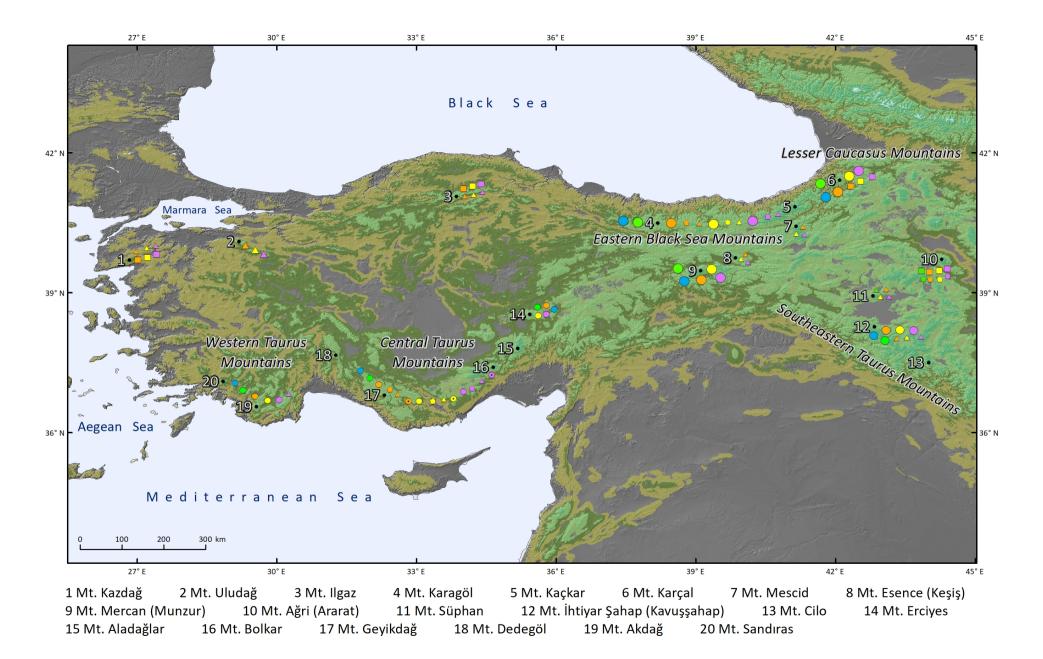
Deglaciation (relict rock glacier; Apennines) aerial view from free BingMaps


Holocene (protalus lobe; Apennines) Photo: R.R.Colucci

LIA (active rock glacier; Apennines) Photo: M.Leoni

Present-day (ground ice, ice cave; Sicily) Photo: M.Restivo

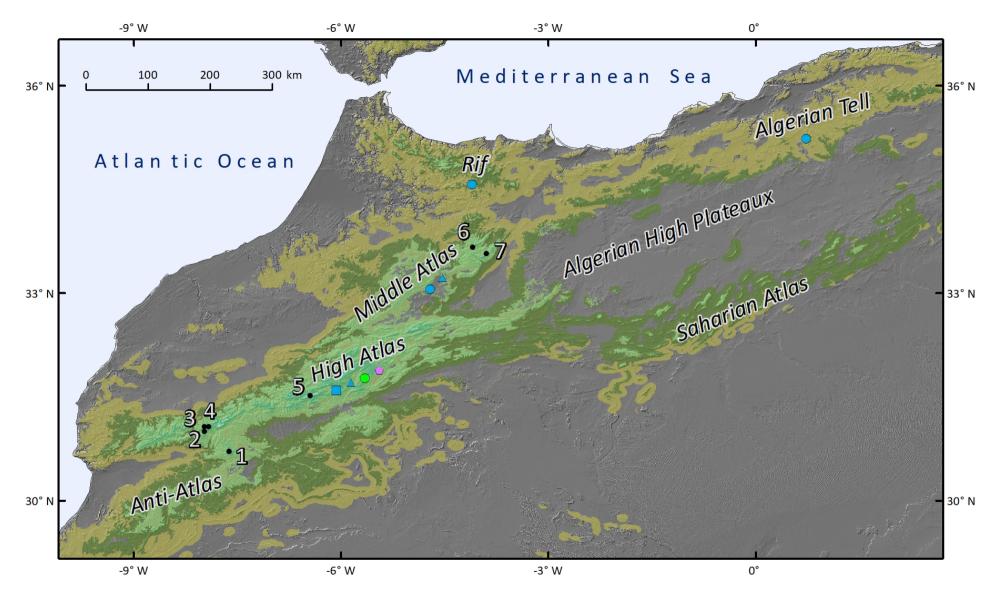
Last Glaciation (rock glacier; Pindus Mountain) Photo: P.D. Hughes


Deglaciation (rock glacier; Rila Mountain) Photo: B. Magori

Holocene (rock glacier; Pirin Mountain) Photo: B. Magori

LIA (glacieret; Pirin Mountain) Photo: B. Magori

Present-day (ice cave; Trnovski gozd, Dinaric Alps) Photo: R.R. Colucci



1 Djebel Sirwa 2 Iouzagner 3 Tazaghart 4 Djebel Toubkal 5 M'Goun 6 Djebel Bou Iblane 7 Djebel Bou Naceur

Table 1. Study areas of this research together with the main massifs and altitude distribution of present-day climate conditions and elevation of the lower periglacial belt.

Region	Mountain range (highest peaks, m asl)	Annual precipitation (mm)	*Altitude of 0 °C isotherm (m asl)	Lower altitude periglacial belt (m)
	Pyrenees (Aneto, 3404; Posets, 3371)	1200-2500	2800-2900	2100 (N), 2300 (S)
	Cantabrian Mountains (Torre Ceredo, 2650; Torre del Llambrión, 2642)	2000-2500	2400-2500	1900 (N), 2100 (S)
Iberian	NW ranges (Peña Trevinca, 2127)	1800-2200	2400-2500	1900 (N), 2100 (S)
Peninsula	Central Range (Pico Almanzor, 2591)	1200-2000	2400-2500	2100 (N), 2300 (S)
	Iberian Range (Moncayo, 2313; San Lorenzo)	1000-1500	2400-2500	2100 (N), 2300 (S)
	Betic Range (Mulhacén, 3478; Veleta, 3398)	600-900	3400	2500 (N), 2650 (S)
	Western Alps (Monte Bianco, 4810; Monte Rosa, 4634)	800-2500	2400-2500	2200 (N);2500 (S)
Southern	Central Alps (Piz Bernina, 4059; Cima de Piazzi, 3439)	700-2300	2300-2400	2200 (N); 2400 (S)
Alps	Eastern Alps (Ortles, 3905; Triglav, 2869)	1000-3300	2400-2500	2100 (N); 2400 (S)
	Maritime Alps (Argentera, 3297)	800-1800	2500-2600	2200 (N); 2500 (S)
	Northern Apennine (Cimone, 2165)	1100-2300	-	-
Italian	Central Apennine(Gran Sasso, 2912; La Majella, 2793)	700-1300	2400-2500	2200 (N)
Peninsula	Southern Apennine (Pollino, 2233; Sila, 1930)	700-1600	-	-
	Dinaric Alps (Maja Jezercë, 2694)	1500-4900	2000-2500	
	Pirin Mountains (Vihren, 2914)	610	2770	
	Stara Planina (Botev, 2376)	1260	2400	
Balkan Peninsula	Rila Mountains (Musala, 2925)	> 1000	2400	
i chilisula	Pindus Mountains (Smolikas, 2637)	1720	2870	
	Mount Olympus (Mount Olympus , 2917)	810	2450	
	Šar Mountains (Titov Vrv, 2747)	1300	-	
	Western Taurus Mountains (Akdağ, 3016; Dedegöl, 2992; Geyikdağ, 2877)	700-950	3200-3400	2500
	Central Taurus Mountains (Aladağlar, 3756; Bolkar, 3524)	800	3200	3200
	Southeastern Taurus Mountains (Cilo, 4135)	600-700	3400-3600	?
	Eastern Black Sea Mountains (Kaçkar, 3937)	900-1000	3000-3100	1800-2200 (N)
	Karçal (Lesser Caucasus Mts.) (Karçal, 3932)	900-1000	2800	2100
Anatolia	Kazdağ (Kazdağ, 1774)	900	2800	1350 (N)
	Uludağ (Uludağ, 2543)	1300	2600	1900
	Ilgaz (Ilgaz, 2546)	800	2600	?
	Esence (Keşiş, 3549)	750-800	3200	2500 (N)
	Mercan (Munzur, 3463)	700	3200-3300	?
	Mescid (3239)	700	3100	2650
	Erciyes (Erciyes, 3917)	600-750	3000-3100	2950
	Ağrı (Ararat, 5137)	700-900	3500	3000
	Hoggar (Mount Tahat, 2981)	145	4904	NA
	Tibesti (Emi Koussi, 3445)	11	4516	NA
	Rif Mountains (Tidirhine, 2456)	500 - 2168	3027	NA
Northern	Middle Atlas (Djebel Bou Naceur, 3340)	200 - >1100	3565	2500
Africa	High Atlas (Djebel Toubkal, 4167)	200 - >600	3733	2500-3000
	Algerian Tell (Djurdjura, 2308)	>1500	3254	1500-1800 (?)
	Algerian High Plateaux (Djebel Guerioun, 1729)	>700	3340	NA
	Aurès Massif (Aurès, 2324)	300-450	3340	2300

*Extrapolated used on a lapse rate of 0.6 C per 100 m altitude.

Phase	Areas	Environment: landforms and processes	Chronology (ka BP)	References
	Pyrenees	Non-glaciated summit plateaus: patterned ground with meter-sized sorted circles Mid-low slopes: rock glaciers, block streams Valleys: fragipan and permafrost evidences >1130 m Stratified debris above 800-1000 m	> 32 18-20 20-22	Gómez-Ortiz and Serrat (1979), Gómez-Ortiz (1980), Chueca et al. (1994), Peña et al. (1998, 2000), Serrano (1998), García-Ruiz et al. (2001, 2005), Chueca and Julián (2008), Boixadera et al. (2008)
	Cantabrian Mountains	Summit plateaus: patterned ground with sorted circles Mid slopes > 1300 m: rock glaciers, block streams, <mark>blockfields</mark> Stratified debris above 400 m Ice wedge cast above 700 m		García de Celis (1991, 2002), Ugarte (1992), Pérez-Alberti et al. (1994), Pérez-Alberti and Rodríguez-Gutián (1993), Castañón and Frochoso (1994, 1998), Valcárcel (1998), Pérez-Alberti and Valcárcel (2000), Válcárcel and Pérez-Alberti (2002), González-Gutiérrez (2002), González-Trueba (2007a,b), Pellitero (2009, 2012), Rodríguez-Pérez (2009), Santos-González (2010), Pellitero et al. (2011), Serrano et al. (2013), Ruiz-Fernández (2013)
Last Glaciation	NW ranges	Slopes > 700 m: rock glaciers, block streams; > 1500 m: block slopes	> 44 to 16	Pérez-Alberti (1979), Pérez-Alberti and Rodríguez-Guitián (1993), Pérez-Alberti et al. (1994, 1998, 2011), Valcárcel (1998), Valcárcel (1998), Valcárcel et al. (1998), Martínez-Cortizas et al. (1999), Valcárcel and Pérez-Alberti (2002), Hall-Riaza et al. (2016)
Glaciation	Central Range	Non-glaciated summit plateaus: blockfields, tors Mid slopes > 1500 m: scarce rock glaciers, block slopes, solifluction Low slopes 700-1200 m: periglacial slope deposits (stratified and head), with possible permafrost conditions	<30	Ontañón and Asensio-Amor (1973), Daveau (1973, 1978) Daveau et al. (1997), Ontañón (1985), Sanz-Herráiz (1988), Ferreira et al. (2000), Palacios et al. (2003), Vieira (2004), Carrasco et al. (2012)
	Iberian Range	High slopes > 1800 m: block streams, rock glaciers Slopes > 1100 m: stratified debris Non-glaciated summit plateaus: patterned ground, cryoturbation, blockfields		Thornes (1968), Asensio-Amor (1974), Gutiérrez-Elorza and Peña (1977), García-Ruiz (1979), Pellicer (1980), Ortigosa (1986), Arnáez (1987), Sanz and Pellicer (1994), Peña and Lozano (1998), Arnáez and García-Ruiz (2000)
	Sierra Nevada	Non-glaciated summit plateaus > 3000 m: development of patterned ground with meter-sized sorted circles Non-glaciated high slopes (2500 m): formation of three rock glacier	20-30	Messerli (1965), Gómez-Ortiz (1987, 2002), Simón et al. (2000), Gómez-Ortiz and Salvador (1992), Gómez-Ortiz et al. (1994), Oliva (2011), Palma et al. (2017)
	Lowlands	Ice-wedges in Pleistocene fluvial terraces (200-1000 m)		Badorrey et al. (1970), Asensio-Amor and González-Martín (1974), Serrano et al. (2010a)
		Glacial cirques and summits: rock glacier formation >2250 m, with widespread permafrost >2490 m, patterned ground formation	15-17	Gómez-Ortiz (1980), Soutadé (1980), Chueca et al. (1994), Serrano
Deglaciation .	Pyrenees	Glacial cirques and summits: rock glaciers becoming gradually inactive <2300 m and new ones forming >2350 m, permafrost widespread >2525 m Stratified debris > 700 m	11.5-12.9	(1998), García-Ruiz et al (2000, 2001, 2005, 2015, 2016), Hirsch and Raab (2014), Palacios et al. (2015)
	Cantabrian Mountains	Summit plateaus: patterned ground formation Glacial cirques: rock glaciers, block streams		Alonso (1989), Redondo et al. (2002, 2004, 2010), González-Trueba (2007a,b), Alonso and Trombotto (2009), Rodríguez-Pérez (1995, 2009), Santos-González (2010), Pellitero et al. (2011), Pellitero (2012), Serrano et al. (2013), Ruiz-Fernández (2013)
	NW ranges	High slopes: rock glaciers		Valcárcel (1998), Valcárcel and Pérez-Alberti (2002)

Table 2. Periglacial processes and landforms in the Iberian Peninsula since the Last Glaciation until today.

	Central Range	Glacial cirques: formation of rock glaciers Slopes: solifluction lobes	15-17	Palacios et al. (2011a,b, 2012), Carrasco et al. (2012, 2015)
	Iberian Range	Glacial cirques: formation of rock glaciers and block streams		García-Ruiz (1979), Ortigosa (1986), Pellicer (1980), Sanz and Pellicer (1994), García-Ruiz et al. (1998)
	Sierra Nevada	Glacial cirques: formation of rock glaciers and protalus lobes	12.8-7.4	Palade et al. (2011), Gómez-Ortiz et al. (2012a, 2013), Oliva (2009), Oliva et al. (2014), Palacios et al. (2016)
	Pyrenees	Glacial cirques and high slopes: degradation of permafrost in the highest areas and probable complete deglaciation, elevation rise of snow patches, formation of rock glaciers, development of ice caves		Grove and Gellatly (1995), Serrano (1998), García-Ruiz et al. (2005), Serrano et al. (2010b, 2011), Sancho et al. (2016)
Holocene	Cantabrian Mountains	Glacial cirques: active rock glaciers becoming gradually inactive	Cold stages	Alonso and Trombotto (2009), Pellitero et al. (2011), Serrano et al. (2013)
	Sierra Nevada	Glacial cirques: rock glaciers and protalus lobes becoming gradually inactive	Until 7.4	Gómez-Ortiz et al. (2012a, 2013), Oliva and Gómez-Ortiz (2011)
	Pyrenees	Glacial cirques and high slopes: glacial advance, greater abundance of snow patches, formation and reactivation of rock glaciers and protalus lobes, permafrost >2560 m, patterned ground formation, development of ice caves	XIV-XIX centuries	Martínez de Pisón and Arenillas (1988), García-Ruiz et al. (1988), Copons and Bordonau (1994), Grove and Gellatly (1995), Julián and Chueca (1998), Lugon et al. (2004), Serrano (1998), Serrano et al. (2001, 2002), García-Ruiz and Martí-Bono (2001), Chueca et al. (2005), González-Trueba et al. (2008); Fernandes et al. (2017), Leunda et al. (2015), Bartolomé et al. (2015), Sancho et al. (2016)
LIA	Cantabrian Mountains	Highest circues > 2200 m: development of small glaciers, greater abundance of snow patches, frost mounds, probable permafrost > 2400 m in northern circues with seasonal ground ice above 1600 m, development of ice caves		González-Trueba (2007a,b), Serrano et al. (2013), Pellitero (2014)
	Sierra Nevada	Highest cirques > 3000 m: presence of glaciers in the highest northern cirques, more extensive snow fields >2500 m, possible permafrost conditions near glaciers	XVII to XIX centuries	Gómez-Ortiz and Plana-Castellví (2006), Gómez-Ortiz et al. (2009, 2012b), Oliva and Gómez-Ortiz (2012), Oliva et al. (2011)
Present-day	Pyrenees	Cirques and high slopes ≥ 2500 m: probable permafrost above ~2630 m (N), ~2800 m (S), active rock glaciers above 2510 m, protalus lobes, ice patches, active ice cave processes, frost mounds, patterned ground formation	since the late XIX century	Soutadé (1980), Gómez-Ortiz (1980), Höllermann (1985), Chueca (1992), Serrano and Agudo (1998, 2004), Serrano et al. (1999, 2000, 2001, 2002, 2006, 2009, 2010b, 2010c, 2011a), Chueca et al. (2000), Julián and Chueca (2007), Feuillet (2010), Feuillet and Mercier (2012), Bartolomé et al. (2015), González-García (2014), García-Ruiz et al. (2015), González-García et al. (2017)
		Highest cirques > 2200 m: degradation of buried ice and sporadic permafrost (e.g. Jou Negro, Forcadona), ice patches, active ice cave processes, frost mounds	since the late XIX century	Castañón and Frochoso (1998), González-Trueba (2007a,b), Serrano et al. (2011b), Ruiz-Fernández (2013), Gómez-Lende et al. (2014), Ruiz-Fernández et al. (2014), Pisabarro et al. (2016)
	Sierra Nevada	Highest cirques > 3000 m: formation of rock glaciers, degradation of buried ice and permafrost, with subsidence and collapses of the rock glacier of the Veleta cirque (accelerating during the last decade)		Gómez-Ortiz et al. (2001, 2004, 2014), Salvador-Franch et al. (2010, 2011), Tanarro et al. (2010), Oliva et al. (2016b)

Phase	Areas	Environment: landforms and processes	Chronology (ka BP)	References
	Po plain	Cryoturbations, stratified slope deposits, loess cover	35-LGM	Cremaschi et al. (2005), Guglielmin (unpublished data)
Last Glaciation	Piedmont	Block streams, blockfields	LGM	Fioraso and Spagnolo, (2009), Paro (2011)
	Julian Alps	Rock glacier at 1076 m on average	LGM	Colucci et al. (2016a)
	Southern Alps	Rock glaciers at 2260 m on average	YD	Bornet et al. (2014)
Deglaciation	Western Alps	Rock glaciers at 2340-2260 m on average	YD	Guglielmin and Smiraglia (1997), Bornet et al. (2014)
	Central Alps Julian Alps	Rock glaciers at 2280-2160 m on average Rock glaciers at 1778 m on average	YD YD	Guglielmin and Smiraglia (1997), Seppi et al. (2012), Scotti et al. (2013), Colucci et al. (2016a)
	Western Alps	Rock glaciers at different altitudes		Dramis et al. (2003)
Holocene	Central Alps	Rock glaciers at different altitudes	8.9, 2.2 2.7-2.9 0.9-1.4	Krainer et al. (2015) Calderoni et al. (1998), Dramis et al. (2003) Calderoni et al. (1998), Stenni et al. (2007), Scapozza et al. (2010)
	Southern Alps	Active rock glaciers at 2500 m on average	LIA-present	Ribolini et al. (2010)
LIA	Western Alps	Active rock glaciers at 2647 m on average	LIA-present	Guglielmin and Smiraglia (1997)
	Central Alps Julian Alps	Active rock glaciers at 2526 m on average	LIA-present	Guglielmin and Smiraglia (1997), Seppi et al. (2012)
	Southern Alps	Active rock glaciers at 2500 m on average		Ribolini et al. (2010)
Present-day	Western Alps	Active rock glaciers at 2647 m on average		Guglielmin and Smiraglia (1997)
	Central Alps Julian Alps	Active rock glaciers at 2526 m on average BTS measurements suggest permafrost at 2258 m		Guglielmin and Smiraglia (1997), Seppi et al. (2012), Colucci et al. (2016a)

Table 3. Periglacial processes and landforms in the Southern Alps since the Last Glaciation until today.

Table 4. Periglacial processes and landforms in the Italian Peninsula since the Last Glaciation until today.

Phase	Areas	Environment: landforms and processes	Chronology (ka BP)	References
		Rock glaciers around 2000 m. Block streams at Mt. Beigua,		
	Northern Appenines	Stratified scree slopes	LGM-YD	Chelli and Tellini (2002), Firpo et al. (2006), Federici (1981), Rellini et al.
Last		Several rock glaciers around the highest mountain. Stratified scree		(2014)
Glaciation	Central Appenines	slope from the coast upward; cryoturbation in the Mt. Beigua area	LGM-YD	Coltorti et al. (1979), Castiglioni et al. (1979), Boenzi (1980), Giraudi
Giaciation		One rock glacier at Mt. Pollino and several stratified scree slopes		(2002)
	Southern Appenines	and one sand wedge at 1350 m at Sila Mountain. Cryoturbation at	LGM-YD	Dimase (2006), Scarciglia et al. (2003)
		Cilento Mountains at 30 m		
Deglaciation				
Holocene	Central Appenines	A few rock glaciers developed at 1900-2000 m around the highest	> 7	Dramis et al. (2003)
Holocelle	Central Appennies	mountains	- 1	Diamis et al. (2003)
		One rock glacier is still active at 2520 m at La Majella Mountain.		
LIA	Central Appenines	Permafrost can be present around the highest mountains at more than		Dramis and Kotarba (1992), Dramis et al. (2003)
		2200 m		
Present-day	Central Appenines	Permafrost is documented at more than 2300 m around La Majella and Mt. Velino by BTS measurements		Bisci et al. (2003), Guglielmin (unpublished)

Phase	Areas	Environment: landforms and processes	Chronology (ka BP)	References
	Dinaric Alps*	Probable discontinuous permafrost, ice wedges, cryoturbations		Liedtke (1962), van Vliet-Lanoe et al. (2004), Ruszkiczay-Rüdiger and Kern (2015)
Last Glaciation	Bulgarian Mountains	Discontinuous and sporadic permafrost above 1200 m, rock glaciers, block streams, patterned ground		King and Akerman (1993), Van Vliet-Lanoë and Hallegouët (2001), Dobinski (2005), Gikov and Dimitrov (2011), Dimitrov and Gikov (2012), Kuhlemann et al. (2013)
	Mountains in Greece	Probable discontinuous permafrost, ice wedges, cryoturbations, patterned ground Glacial cirques: possible rock glacier formation above ~1800 m		Hughes et al. (2003)
	Dinaric Alps*	Glacial cirques: possible rock glacier formation above ~1700 m		Palmentola et al. (1995)
Declasistics	Bulgarian Mountains	Discontinuous and sporadic permafrost above 1950-2000 m, rock glaciers, block streams, patterned ground	OD, YD	King and Akerman (1993), Dobinski (2005), Gikov and Dimitrov (2011), Dimitrov and Gikov (2012), Kuhlemann et al. (2013)
Deglaciation	Mountains in Greece	Glacial cirques: possible rock glacier formation above ~2100 m (age uncertain, probably multiple generations of rock glacier in Greece with altitudinal ranges of 1330-2300 m)	age uncertain	Palmentola and Stamatopoulos (2004), Hughes et al. (2006a)
Halanaa	Bulgarian Mountains	Discontinuous and sporadic permafrost, rock glaciers, block streams (?)		Gikov and Dimitrov (2011), Dimitrov and Gikov (2012), Kuhlemann et al. (2013)
Holocene	Mountains in Greece	Perennial snowfields, possible sporadic permafrost		Styllas et al. (2015)
	Dinaric Alps*	Highest cirques: presence of small cirque glaciers above ~1850 m, greater abundance of snow patches		Hughes (2010, 2014)
LIA	Bulgarian Mountains	Discontinuous and sporadic permafrost, rock glaciers, glacierets and small cirque glaciers, perennial snow patches		Grünewald et al. (2008), Gachev et al. (2016)
	Mountains in Greece	Perennial snowfields, greater abundance of snow patches. Sporadic permafrost. Possibly small cirque glaciers on Mt Olympus		Styllas et al. (2015)
	Dinaric Alps*	Karst depressions: cryo and ice caves above ~800 m Highest cirques: permanent firn/ice features above 1910 m Probable sporadic permafrost above 2300 m		Brown et al. (2001), Dobinski (2005), Kern et al. (2006), Mihevc (2008), Milivojević et al. (2008), Hughes (2009), Bočić et al. (2014), Košutnik et al. (2014), Gachev et al. (2016), Buzjak et al. (2016), Zupan Hajna (2016)
Present-day	Bulgarian Mountains	Sporadic permafrost, glacierets and small cirque glaciers, perennial snow patches		Grünewald et al. (2008), Grünewald and Scheithauer (2010), Nojarov (2012a,b), Gachev et al. (2016)
	Mountains in Greece	Perennial snowfields, probable sporadic permafrost above 2700 m		Styllas et al. (2015)

Table 5. Periglacial processes and landforms in the Balkan Peninsula since the Last Glaciation until today.

*Slovenia, Croatia, Bosnia and Herzegovina, Montenegro, Albania

Table 6. Altitudinal range of rock glaciers in the Balkan Peninsula.

Location	Min altitude (m)	Max altitude (m)	Data source
Pindus Mountains	1330	2300	Hughes et al. (2003), Palmentola and Stamatopoulos (2006)
Pirin Mountains	2090	2700	Dimitrov and Gikov (2012)
Rila Mountains	2140	2690	Gikov and Dimitrov (2011)
Prokletije Mountains	1700	2120	Palmentola et al. (1995)
Mount Korab	1480	2600	this paper
Šar Mountains	1750	2250	Kuhlemann et al. (2009)
Dinaric Alps (without Prokletije)	1650	2150	this paper

Phase	Areas	Environment: landforms and processes	Chronology (ka BP)	References
	Western Taurus Mts.	Glaciated summit plateaus above 2400 m: strong glacial and karst control on the intensity of periglacial activities Periglacial processes below LGM snowline (2000-2500 m)		Messerli (1967), Çiner (2004), Sarıkaya et al. (2008, 2014), Zahno et al. (2009), Çılğın (2015), Çiner et al. (2015), Köse et al. (2017), Sarıkaya and Çiner (2017), Sarıkaya et al. (2017)
Last Glaciation	Central Taurus Mts.	Glaciated summit plateaus above 3000 m: strong glacial and karst control on the intensity of periglacial activities Periglacial processes below LGM snowline (2650-2700 m)		Zreda et al. (2011), Çiner and Sarıkaya (2017), Sarıkaya and Çiner (2017)
	Southeastern Taurus Mts.	Periglacial processes below LGM snowline (2100-2800 m)		Sarıkaya and Çiner (2015), Yeşilyurt et al. (2016)
	Eastern Black Sea Mts.	Periglacial processes below LGM snowline (2300-2500 m), relict rock glaciers		Erinç, (1952), Messerli (1967), Çiner, (2004), Akçar et al. (2007, 2008), Reber et al. (2014)
	Karçal (Lesser Caucasus Mts.)	Relict rock glaciers (2540-2430 m)		Dede et al. (2015, 2017)
	Western Taurus Mts.	Strong glacial and karst control on the intensity of periglacial activities		Zahno et al. (2009), Çiner et al. (2015), Sarıkaya et al. (2008, 2014), Sarıkaya and Çiner (2017)
	Central Taurus Mts.	Glaciated summit plateaus Strong glacial and karst control on the intensity of periglacial activities (rock falls, mass movements, rock glaciers, patterned grounds)		Çılğın (2015), Sarıkaya et al. (2008, 2014, 2017), Çiner et al. (2015), Zreda et al. (2011), Çiner and Sarıkaya (2017), Sarıkaya and Çiner (2017)
Deglaciation	Southeastern Taurus Mts.	Relict rock glaciers		Çiner (2003), Sarıkaya and Çiner (2015)
	Eastern Black Sea Mts.	Relict rock glaciers		Akçar et al. (2007, 2008), Reber et al. (2014)
	Karçal (Lesser Caucasus Mts.)	Relict rock glaciers (2540-2400 m), protalus lobes	15	Dede et al. (2015, 2017)
	Mercan	Relict rock glaciers		Bilgin (1972)
	Western Taurus Mts.	Non-glaciated summit plateaus: strong karst control on the intensity of periglacial activities		Arpat and Özgül (1972), Çiner et al. (1999, 2015), Çılğın (2015), Sarıkaya et al. (2008, 2014), Zahno et al. (2009), Sarıkaya and Çiner (2017)
	Central Taurus Mts.	Non-glaciated summit plateaus: strong karst control on the intensity of periglacial activities, rock glaciers (1800 m)	> 6	Arpat and Özgül (1972), Çiner et al. (1999, 2015, 2017), Zreda et al. (2011) Çiner and Sarıkaya (2017), Sarıkaya et al. (2017)
	Southeastern Taurus Mts.	Strong glacial control on the intensity of periglacial activities		İzbıkak (1951), Erinç (1953)
Holocene	Eastern Black Sea Mts.	Non-glaciated summit plateaus, rock glaciers		Akçar et al. (2007, 2008), Reber et al. (2014)
	Karçal (Lesser Caucasus Mts.)	Rock glaciers (2935-2730 m)		Dede et al. (2015, 2017)
	Ilgaz	Block flows, cyroplanation surfaces		Erinç et al. (1961)
	Erciyes	Early to late Holocene glacial advances implying periglacial conditions surrounding the glaciers		Sarıkaya et al. (2009)
	Ağrı (Ararat)	Debris on the slopes and blocky colluvium in the valley floor		Avcı (2007), Sarıkaya (2012), Azzoni et al. (2017)

Table 7. Periglacial processes and landforms in the Anatolia Peninsula since the Last Glaciation until today.

	Western Taurus Mts.	Rock glaciers		Çiner et al. (2015), Sarıkaya et al. (2014, 2017) Sarıkaya and Çiner (2017)
	Central Taurus Mts.	Rock debris on glaciers, rock glaciers (1800 m)	>6	Altın (2006), Gürgen et al. (2010), Çiner and Sarıkaya (2017), Sarıkaya et al. (2017)
LIA	Eastern Black Sea Mts.	Rock glaciers, protalus lobes		Doğu et al. (1993), Akçar et al. (2007, 2008), Bayrakdar and Özdemir (2010), Reber et al. (2014)
	Karçal (Lesser Caucasus Mts.)	Rock glaciers (2935-2730 m), protalus lobes		Dede et al. (2015, 2017)
	Uludağ	Moraines in cirque areas with periglacial landforms		Erinç (1952), Birman (1968), Zahno et al. (2010), Akçar et al. (2014, 2015)
	Western Taurus Mts.	Non-glaciated summit plateaus; active karst influence on periglacial landforms, rock glaciers (2500-2800 m)		Dellanoy and Maire (1983), Sarıkaya et al. (2014), Sarıkaya and Çiner (2015)
	Central Taurus Mts.	Debris covered glaciers Cave ice at 3000 m Stone stripes at 3200 m		Bayarı et al. (2003), Klimchouk et al. (2006), Çalışkan et al. (2012)
	Southeastern Taurus Mts.	Rock glaciers		Doğu (2009)
	Eastern Black Sea Mts.	Stone circles (1800 m) and ovoid depressions (1900 m) Solifluction terraces, frost creep and mass movements (rock falls, talus, talus creeps, rock avalanches and rock flows) Garland soils, rock glaciers		de Planhol and Bilgin (1964), Bilgin (1969), Gürgen (2001), Akçar and Schlüchter (2005), Çiçek et al. (2006), Turoğlu (2009), Gorbunov (2012), Reber et al. (2014)
	Karçal (Lesser Caucasus Mts.)	Rock glaciers between 2935-2730 m Protalus lobes at ca. 2000 m		Dede et al. (2015, 2017), Çalışkan (2016)
Present-day	Kazdağ	Relict block streams (1350 m) Garland soils (1700 m)		Bilgin (1960)
	Uludağ	The best-described mountain concerning periglacial landforms Garland soils (1900-2300 m) Stone accumulations >2300 m		Erinç (1949, 1957), Zahno et al. (2010), Türkeş and Öztürk (2008, 2011), Öztürk (2012), Akçar et al. (2014, 2015)
	Ilgaz	Small stone circles and garlands		Erinç et al. (1961)
	Esence	Garlands and polygonal soils >2500 m		Akkan and Tuncel (1993)
	Mercan	Debris covered glaciers mistakenly interpreted as rock glaciers		Yeşilyurt and Doğan (2010)
	Mescid	Stone rings >2650 m		Atalay (1983)
	Erciyes	Rock glacier (2950 m)		Sarıkaya et al. (2003, 2009), Ünal and Sarıkaya (2013)
	Ağrı (Ararat)	Ice cap of which 1.82 km ² is debris-covered >4000 m: a large recently deglaciated area 3000 to 4000 m; gravitational processes (mass wasting)		Sarıkaya (2012), Yavaşlı et al. (2015), Azzoni et al. 2017)

Table 8. Periglacial processes and landforms in northern Africa since the Last Glaciation un	til today.	
--	------------	--

Phase	Areas	Environment: landforms and processes	Chronology (ka BP)	References
	Hoggar	Nivation forms (> 2400 m), frost action (< 2000 m)		Messerli (1973)
	Tibesti	Nivation forms (> 3000 m), frost action (< 2000 m)		Messerli (1973)
	Aurès Massif	Nivation forms (> 1800 m), stratified slope deposits (> 1800 m)		Tihay (1973)
Last Glaciation	Algerian High Plateaux	Nivation (> 1500 m)		Marre and Quinif (1981)
	Algerian Tell	Nivation forms (> 1500 m), stratified slope deposits (> 1400 m), possible rock glaciers (> 1100 m)		Tihay (1973)
	Rif	Rock glaciers, perennial snowpatches		Mensching (1960)
	Middle Atlas	Possible rockglaciers (2100-2500 m), stone circles (?), solifluction features (?), stratified slope deposits		Dresch and Raynal (1953), Raynal et al. (1956), Awad (1963), this paper
	High Atlas	Stratified slope deposits		Chardon and Riser (1981)
Deglaciation	High Atlas	Possible rock glaciers (M'Goun Massif) (but possibly also in the Middle Atlas)		Wiche (1953)
	Hoggar	No active periglacial processes		Messerli (1973)
	Tibesti	No active periglacial processes		Messerli (1973)
	Aurès Massif	Frost action (2300 m), solifluction (1300-1800 m)		Tihay (1973), Ballais (1981)
Present-day	Algerian Tell	Nivation (1800 m), frost action (1500 m)		Tihay (1973)
	High Atlas	Possibly active talus rock glaciers/lobe (> 3700 m), possible permafrost (3800 m), frost shattering (> 2500 m), solifluction lobes (3900 m)		Chardon and Riser (1981), Hughes et al. (2011), Hughes (2017), Vieira et al. (2017)
	Middle Atlas	Frost shattering, terracettes/vegetation crescents, shallow solifluction (2700 m at Djebel Bou Naceur)		Dresch and Raynal (1952), Raynal et al. (1956), this paper