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Abstract— Traffic flow pattern identification, as well as
anomaly detection, is known to be an important component for
traffic operations and control. Alongside classical applications,
mainly, to improve the safety and the comfort of drivers, more
recently there is a growing interest in gathering personalised
route information to provide customised services. With this
latter application in mind, in this paper we investigate the
ability of simple macroscopic information (i.e., time varying
junction turning probabilities) to identify changes in nominal
urban traffic flows, most likely due to the occurrence of
external events (e.g., road works or traffic congestions). Some
preliminary results obtained with the use of a realistic mobility
simulator are also illustrated and discussed, and some candidate
applications are briefly outlined.

I. INTRODUCTION

The ability to know vehicular flows in urban contexts
has a number of benefits, among others (i) it gives the
possibility to predict traffic or pollution build-ups and take
pre-emptive countermeasures in advance; (ii) it gives the
possibility to plan the construction of new infrastructure to
improve the driving experience (e.g., roundabouts, parking
or charging stations, new roads, improved traffic lights); (iii)
it gives the possibility to deliver customised advertisement.

In particular, some of such facilities can be particularly
convenient when the knowledge of a specific vehicle driving
along a given road is associated with the knowledge of the
specific characteristics of the owner of the vehicle (e.g.,
to deliver customised services). Note that for this purpose
simple detector loops, or other sensors that only count the
number of vehicles that take a given road, are ineffective as
they do not keep track of what specific vehicles are actually
driving in the area.

An alternative approach to keep track of the history
of trips of single vehicles is to use on-board electronic
equipment to register the sequence of roads that is taken
by a vehicle. Assuming that the drivers are then willing
to share their own historical information with a central
infrastructure, then it is possible to centrally aggregate all
the data, that can be used to provide the aforementioned
services.
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The possibility to aggregate historical data of single
drivers to create a database of trips (i.e., not only Origin-
Destination (OD) matrices, but actually all the sequences
of roads taken to get to the destination as well) poses
a number of interesting problems to the transportation
community, namely, (i) the ability to handle big data;
(ii) privacy concerns; (iii) how classic transportation
optimisation problems (e.g., routing problems) can be
improved by the knowledge of such data; (iv) development
of new customised services to fully exploit the available data.

In this paper we are interested in addressing one specific
problem: how the available data should be cleaned to avoid
biased information being included in the aggregated data.
As an explanatory example, let us assume that one road is
closed due to road works, or due to a car accident. Then
vehicles are duly re-routed along other alternative roads.
Such trips do not correspond to nominal patterns (i.e., under
nominal regular circumstances the drivers would have taken
different trips to reach their destination) and thus should
not be considered and aggregated as they would introduce
wrong information in the cumulative historical database.

This paper is organised as follows: the next section
briefly overviews the state of the art in the subject of
interest. Section III explains how we formulate the problem
in order to identify when non-nominal patterns occur.
Trips associated with non-nominal patterns can then be
disregarded and not considered in the historical aggregated
database. In Section IV we show some preliminary results
that we have obtained in realistic simulations performed
with the mobility simulator SUMO [1]. Some preliminary
applications are described in Section V. Finally, in Section
VI we conclude the paper and briefly outline how we plan
to extend the work presented here.

II. STATE OF THE ART

Traffic flow pattern identification, as well as anomaly
detection, is known to be an important component for
traffic operations and control [2]. In paper [3] the authors
identify and classify different traffic flow patterns at single
intersections using a fuzzy c-means clustering algorithm
to identify the different peaks of traffic during the same
day. In [2] the authors used massive data-sets collected
by traffic loop detectors in the urban network of Northern
Virginia to identify recurrent traffic flow patterns. In this
work, the authors also proved that there exists almost no
correlation between spatial and temporal anomaly degrees,
and that changes of land use and travel modes, due to



major municipal constructions, do cause shifts in traffic
flow patterns. Microscopic traffic variables, such as the
relative speed, inter-vehicle time gap and lane changing,
were used by [4] to infer, and classify, traffic anomalies;
here the authors were interested in identifying the traffic
anomalies that can lead to traffic incidents, also known as
incident precursors. Vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communications may be also used to
obtain the classification of anomalies in a distributed way
[5]. A large database of truck road data, collected in several
European countries by Volvo Group Trucks Technology
was used in [6] with the ultimate goal again of preventing
car accidents from occurring. Finally in [7] an interactive
visual platform was developed to explore historical data and
predict the future traffic. The platform was also equipped
with the ability to visualise and cluster road behaviours,
detect anomalies, predict traffic, explore the behavioral
similarities between different roads, test hypotheses, and
predict traffic flows after hypothetical incidents imposed by
the human operator.

None of the papers previously mentioned addresses
exactly the problem of our interest, i.e., identify when the
sequence of roads taken to reach the destination of interest
is a nomimal sequence, or is the consequence of some
other event (e.g., road works, car accidents, usage of a car
navigator, etc). Similar problems are however encountered in
other contexts as well, e.g., control theory [8] or economics
[9]. In this context a closely related paper is [10] where the
authors developed mathematical tools to separate data-sets
between the nominal data and the data affected by the
exogenous actions of operators/controllers. More in detail
in [10] the authors assumed that the observed time series
was produced by a regular Markov chain, that corresponded
to the nominal behaviour of the driver, which in turn was
modulated by another latent random variable, produced
itself by another Markov chain, to take into account the
probability of external events coming into play (e.g., the use
of a recommender system). In the end, the authors of [10]
proposed a modified Baum-Welch algorithm to estimate
the parameters of the Markov Modulated Markov Chain
(MMMC) with a closed loop effect that seems to work well
in practice, although formal justifications of the algorithm
were not given. Also, the methodology was not tested for
a transportation application. Our objective in this paper is
to evaluate the ability of a very simple approach, namely,
the monitoring of junction turning probabilities, to correctly
identify the occurrence and the impact of some typical
traffic anomalies.

III. PROBLEM FORMULATION

In this paper we shall use macroscopic traffic variables,
i.e. junction turning probabilities, to infer when anomalous
patterns occur. If one considers a roundabout (but the same
philosophy may be used for junctions regulated with signals
or traffic lights as well) connected with four two-way roads,
then junction turning probabilities may be expressed through

a 4 × 4 matrix M whose rows correspond to the incoming
roads and columns correspond to the outgoing roads. Here
we briefly note that this approach can also be used to model
other types of roundabouts, e.g., a roundabout connected
with three two-way roads (T-intersection), which leads to a
3 × 3 matrix M. Each entry Mij of the matrix M denotes
the probability to choose the j′th exit of the roundabout after
having entered from the i′th entrance. With this in mind,
it is not difficult to observe that matrix M is essentially a
row-stochastic matrix (i.e. sum of each row of the matrix M
equals 1). In practice, matrix M can be either estimated by
using detector loops appropriately placed in the roundabout,
or can be estimated by aggregating data of trips of several
vehicles. However, once a matrix M is constructed, it
can not be disaggregated to retrieve information of single
vehicles. Also, note that so-built matrices M correspond to
sub-matrices of the transition matrix in Markov-chain based
models of urban traffic, as described in [11] and [12].

When external events occur for some reasons, local choices
of drivers at roundabouts may change correspondingly as
well. We shall evaluate such changes at every roundabout i
in the area of interest by evaluating the local quantity∥∥Mi(k + ∆T )−Mi(k)

∥∥
F
, ∀i = 1, ..., R (1)

at each time step k, where Mi(k) denotes the matrix of
junction turning probabilities at the i′th roundabout, and R
is the number of observed roundabouts in the area of interest.
‖·‖F denotes the Frobenius norm of a matrix, and we have
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where di denotes the number of incoming or outgoing roads
connected to roundabout i. The choice of ∆T represents
the interval of time used to identify changes in the patterns.
Small values of ∆T allow one to quickly detect abrupt
changes in mobility (e.g., the city centre may be closed at
a specific time), but events occurring at a slower time scale
may be regarded as noise. On the other hand, higher values
of ∆T allow one to better appreciate events occurring at
a slower time scale, while instantaneous changes may be
noticed with some delay. Moreover, it may be convenient
in some cases to consider the metric (i.e. equation (1)) in
the whole area by summing the contributions of each local
roundabout i as follows:

R∑
i=1

∥∥Mi(k + ∆T )−Mi(k)
∥∥
F
. (3)

The new indicator provides a single curve (i.e., as a function
of the time step k) that allows one to detect anomalies in a
wide area by simple visual inspection. However, anomalies
in this pattern do not allow one to infer if all roundabouts, or
only a subset of them, have seen different junction turning
probabilities occurring. In this case, the local indicator (1)
may be used instead, as will be illustrated in the following
section.



IV. SUMO SIMULATIONS

A. Simulation Set-up

In this section, we evaluate the performance of the pro-
posed method in a realistic traffic scenario. The vehicular
flows are simulated using the popular mobility simulator
SUMO [1]. All the simulations are performed over the road
network of a small area in Dublin city, Ireland, depicted in
Figure 1, imported from OpenStreetMap [13].

Fig. 1. Road network of a small area in Dublin city, Ireland. The
network used in the SUMO simulation is imported from OpenStreetMap.
All roundabouts in the network are marked with blue roundabout symbols
and have been denoted with different ID numbers reported in the map.

We assume that there are 160 vehicles with personalised
origin and destination pairs travelling in the network during
a period 24 hours. We assume that vehicles may choose
different routing strategies to get to their destination, e.g.,
shortest path [14], [15] or minimum expected travelling time
[16], [17]. In our simulations, we always considered one
time step equal to one second, and chose ∆T equal to 100
seconds. In the following sections we investigate the ability
of the proposed methodology to detect the arising of different
anomalies in the nominal driving patterns of the vehicles.

B. Road access control

In some circumstances the number of vehicles entering a
given road, or area, may be controlled. A classic example
is to control the number of vehicles entering the city centre
to mitigate polluting emissions. We simulate the occurrence
of such a situation by limiting the number of vehicles that
are allowed to take a given exit at a roundabout (i.e., this
corresponds to assuming that only a fraction of vehicles,
for instance low-polluting vehicles, have the permission to
enter a given area at a given time). Note also that access
control may be used in other circumstances as well, for
instance due to road maintenance or as a consequence
of a car accident. Accordingly, in the first simulation we
assume that all roundabouts operate normally in the first
twelve hours. During this interval of time the system learns
nominal patterns of vehicles. Then we assume that 20%

of the vehicles (randomly chosen) is forced not to take
a given exit road at Roundabout 3 between hour 12 and
hour 15. Similarly, an outgoing road at Roundabout 6 is
closed to 60 % of the vehicles between hour 16 and hour 18.

Simulation results are shown in Figure 2 and Figure
3. Figure 2 shows a single curve that aggregates the effects
of all roundabouts. Both anomalies occurring at Roundabout
3 and 6 are clearly detected, but the second one is obviously
more evident as more vehicles are involved in the detours.
Figure 3 distinguishes the effects of single roundabouts, so
one can clearly identify which specific roundabout has been
affected by a road access control.
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Fig. 2. Aggregated effect when anomalies occur. Effects are more evident
when anomaly 2 occurs as more vehicles are detoured from their nominal
patterns.
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Fig. 3. Aggregated detection effect of all roundabouts in the first scenario.

C. Road access control and minimum time routing

In the new simulation, similarly from before, we assume
that one exit road of Roundabout 3 is closed between hour
12 and hour 15, this time to 40 % of the vehicles. Between



hour 16 and hour 18, we assume that all vehicles change
their routing strategy to the minimum time routing path
(i.e., this is automatically estimated in SUMO by using the
travel time information along each edge). Note that this does
imply that all vehicles change their path, as in practice the
minimum time path may coincide with their nominal choice
anyway. This event simulates the possibility that vehicles
are recommended to follow a car navigator (e.g., to respond
in real-time to external events, like traffic build-ups). Here
we consider a “minimum time path” routing strategy, but
in principle any other routing choice may be considered.
The important aspect is that we wish to detect the fact that
after hour 15 some vehicles will modify their usual paths.
Results are now given in Figure 4, and both events are
correctly captured in the figure. Furthermore, it is possible
to note that the first anomaly involves a single roundabout
(correctly, Roundabout 3), while the single anomaly involves
all roundabouts.
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Fig. 4. In the second simulation, only Roundabout 3 correctly detects a
local effect, while all roundabouts recognise a global effect (i.e., the use of
a possibly different routing strategy).

D. Minimum time routing
In our last simulation, we assume that at hour 12 a

different percentage of vehicles (i.e., 20%, 40% and 60%)
start following a minimum time routing strategy. Again, this
corresponds to assuming that vehicles are recommended to
follow a car navigator to respond to some external events, but
only a fraction of vehicles follows the recommendation while
the others neglect the recommendation. Sub-plots (a), (b) and
(c) in Figure 5 show that all roundabouts detect the new
behaviour of the vehicles in the three scenarios respectively.
Obviously, the anomalous behaviour is more recognisable
when more vehicles follow the recommendation as seen in
sub-plot (c). Figure 6 shows the aggregate effect in the three
scenarios. In both figures it is possible to see that at steady-
state the effect of the anomaly tends to disappear.

V. APPLICATIONS

In this section, we give examples and outline several di-
rections where our method can be useful in real applications.
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Fig. 5. All roundabouts detect that some changes in the nominal patterns
occur after 12 hours. These are more evident when a larger percentage of
vehicles follow the new recommendation (figure below).
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Fig. 6. Aggregated detection effect of all roundabouts when different
percentages of vehicles change their routing path from the nominal one.

A. Identification of Driver’s Travelling Intentions

As we have briefly mentioned, the ultimate objective of
our approach is to gain the ability to distinguish nominal and
induced (i.e., by external events) patterns of drivers in urban
mobility. In this subsection, we shall show that the nominal
patterns of the users may be significantly different from
those that would have been observed without pre-filtering
the data to remove trips taken in anomalous situations. For
this purpose we simulate a vehicle driving in the same
urban network depicted in Figure 1 for two hours per day,
on average, for 70 days. We further assume that one road
accessible through Roundabout 3 gets actually closed to
traffic (for instance, to simulate that due to pollution build-
up some roads in the city centre are closed to conventional
traffic). This happens for some hours during the simulation,
up to 40 % of the overall time of the simulation (in all
cases, connectivity of the graph is preserved, as it is still
possible to reach each node in the graph taking different
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Fig. 7. The transition matrices of the nominal behaviours of single drivers and the one affected by outer events may be quite different.

paths). In the cases that such a road was indeed included in
the nominal route, then the vehicle has to re-route along a
different path. Figure 7 shows that the nominal behaviour
of the driver would be rather different from the one that is
inferred by averaging the choices of the driver during the
whole observed time.

More in detail, we are now comparing the nominal matrix
Pn, whose entries Pn

ij represent the true probabilities with
which a driver would turn into road j at the end of road
i, with the matrix Pt where probabilities are computed
over the total time of observation (i.e., also including when
one road was closed to traffic). In the first case, when the
system detects a non-nominal situation, then some routing
data are filtered out, and not aggregated to estimate the
nominal behaviours. The so-built matrices are row-stochastic
matrices, and correspond to the Markov chain matrices of
single vehicles as defined in [12] after setting to zero the
diagonal entries (i.e., neglecting travel times along roads).
In Figure 7 the red lines refer to the incoming roads of
Roundabout 3, while the blue lines are the outgoing roads
of the same Roundabout. As can be seen in the figure, if
the two matrices are subtracted entry-wisely, then only the

entries involved in the roundabout (i.e., at the intersections
between the red and the blue line) are characterised by
a value that is clearly different from zero. On the other
hand, the other entries of the nominal and total matrices
practically coincide.

B. Other applications

Growing concerns regarding a sustainable mobility
infrastructure together with an ever-increasing level of
connectivity among vehicles are reshaping current mobility
paradigms. In this framework, several applications may
benefit of the ideas that we described previously, particularly
including:

Customised services: Many companies are now starting
to provide customised services to drivers. For this purpose
the historical travelling data of vehicles are used to infer
the characteristics and typical patterns of single vehicles.
Little attention is however paid to distinguish through
patterns from drivers’ choices that are a consequence of
external events (e.g., traffic rerouting from municipalities
for whatever reasons).



Combating traffic “fake news”: As news from single
drivers are getting embedded in real-time and off-line
routing advisers, there is a growing concern among routing
companies that people are starting providing some wrong
news (e.g., regarding car accidents or regular traffic
build-ups, see [18], [19]) to influence the way routing
recommendations are delivered (e.g., to prevent the roads
where they live from being included in typical recommended
routes).

Identification of the use of car navigators: The plethora
of currently existing car navigators, often not installed
within the vehicle but used through a smart-phone, makes
it challenging to infer what vehicles, and when, are in fact
using a car navigator. By aggregating data it would become
possible to cross-correlate data to identify when they are
used (e.g., to communicate the availability of ancillary
services via app).

While the previous applications, and many similar others,
are starting getting popular, it is our opinion that little
care has been posed to so far in separating the effects
of the nominal behaviours of drivers and those induced
by recommender systems or municipalities in response to
the behaviours of the drivers themselves. The monitoring
of some macroscopic quantities, like junction turning
probabilities, may be of help as illustrated in this paper.

VI. CONCLUSIONS

This paper investigates the ability of simple macroscopic
traffic information, namely, junction turning probabilities, to
infer the occurrence of anomalies in traffic patterns. Such
changes may be due to several external events, e.g., road
works, impact of traffic congestion on navigator systems,
car accidents, that affect individual routes and in turn
introduce a bias in nominal patterns. More in general,
while many companies are getting interested in developing
customised services to connected drivers, little attention has
been posed so far in trying to separate the effects of the
nominal behaviours of the drivers, and those induced by
recommender systems, or municipalities, in response to the
behaviours of the drivers themselves. This paper attempts
to take a first step in this direction, and a popular mobility
simulator was used to validate some preliminary results in
a realistic fashion.

This work only represents a preliminary step towards
an automatic procedure to process data from individual
vehicles to autonomously split traffic patterns into nominal
and anomalous patterns, where the second ones should not
be used for aggregation purposes in this context. The ability
to tune the parameter ∆T may be used to evaluate different
patterns evolving at different time scales. However, the
procedure can not be applied in a complete unsupervised
fashion as it is, while it may be convenient to further
include other macroscopic features, in addition to junction
turning probabilities, to infer more complete information;

for instance, to infer when an anomalous situation finishes
and nominal patterns are restored. In addition, we are
interested in including the possibility to recognise the
specific anomalies that have occurred, and to correlate (both
in time and space) the occurring induced patterns among
different vehicles as well. Also correlations among different
junctions have not been considered here either. Finally,
other applications along the same lines of research may be
developed as well, as briefly outlined in V-B.
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