Annals of Applied Biology

Environment-driven selection of *Candidatus* Phytoplasma solani' strain populations associated with bois noir disease in Tuscan vineyards

Journal:	Annals of Applied Biology
Manuscript ID	AAB-2018-0080
Manuscript Type:	Original Article
Date Submitted by the Author:	02-Mar-2018
Complete List of Authors:	Pierro, Roberto; University of Pisa, Department of Agriculture, Food and Environment (DAFE) Passera, Alessandro; University of Milan, Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DiSAA) Panattoni, Alessandra; University of Pisa, Department of Agriculture, Food and Environment (DAFE) Rizzo, Domenico; Regional Phytosanitary Service, Laboratory of Phytopathological Diagnostics and Molecular Biology Stefani, Luciana; Regional Phytosanitary Service, Laboratory of Phytopathological Diagnostics and Molecular Biology Bartolini, Linda; Regional Phytosanitary Service, Laboratory of Phytopathological Diagnostics and Molecular Biology Casati, Paola; University of Milan, Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DiSAA) Luvisi, Andrea; University of Salento, Department of Biological and Environmental Sciences - Production, Landscape, Agroenergy (DiSAA) Materazzi, Alberto; University of Milan, Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DiSAA) Materazzi, Alberto; University of Pisa, Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DiSAA) Materazzi, Alberto; University of Pisa, Department of Agricultural, Food and Environmental Sciences - Production, Landscape, Agroenergy (DiSAA)
Key Words:	grapevine yellows, stolbur, multi-locus sequence analysis, <i>Vitis vinifera</i> , <i>Hyalesthes obsoletus</i>
	•

2

3

4

5

1 ว

2	
3	
4	
с С	
07	
/	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53 54	
54	
55	
50	
5/	
58	

Environment-driven selection of '*Candidatus* Phytoplasma solani' strain populations associated with bois noir disease in Tuscan vineyards

Pierro R.¹, Passera A.², Panattoni A.¹, Rizzo D.³, Stefani L.³, Bartolini L.³, Casati P.²,

Luvisi A.⁴, Quaglino F.², Materazzi A.¹ 6 7 ¹Department of Agriculture, Food and Environment (DAFE), University of Pisa, via del Borghetto 8 80, 56124 Pisa, Italy 9 ²Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy 10 (DiSAA), University of Milan, via Celoria 2, 20133 Milano, Italy 11 ³Regional Phytosanitary Service, Laboratory of Phytopathological Diagnostics and Molecular 12 Biology, via Ciliegiole 99, 51100 Pistoia, Italy 13 ⁴Department of Biological and Environmental Sciences and Technologies - University of Salento, 14

15 via Provinciale Monteroni, 73100 Lecce, Italy

16

17 Correspondence: Fabio Quaglino, Department of Agricultural and Environmental Sciences -

18 Production, Landscape, Agroenergy (DiSAA), University of Milan, via Celoria 2, 20133 Milano,

19 Italy. Tel : +39-02-50316789; fax : +39-02-50316781; e-mail: <u>fabio.quaglino@unimi.it</u>

20

22

23

24

25

60

21 Running title: Environment-driven selection of BNp strain populations

26 SUMMARY

Due to its complex epidemiological cycle, including several polyphagous insect vectors and host plants, and the absence of efficient control strategies, Bois noir (BN) disease of grapevine is encroaching wider territories in the main viticultural areas worldwide. Molecular approaches allowed to increase the knowledge about its etiological agent (Bois noir phytoplasma, BNp), revealing interesting features concerning BNp population structure and dynamics and transmission routes in vineyard agro-ecosystems. In the present study, a multi-locus sequence typing approach (tufB, vmp1 and stamp genes) was utilized for describing the genetic diversity among BNp strain populations in 17 vineyards localized in five districts of Tuscany (central Italy). The results confirmed that BNp ecology in Tuscan vineyards is mainly associated to the bindweed-related host system, and allowed the identification of 13 collective BNp genotypes. Interestingly, the prevalent BNp genotype was never found in grapevines outside of Tuscany. Moreover, statistical analyses showed significant differences between the composition of BNp strain populations identified in grapevines from distinct weather condition zones (north-western and central-eastern Tuscany). These results reinforce the hypothesis that environmental conditions can drive the selection of BNp strains, also favouring the entrance of unusual genotypes, in vineyards.

Keywords: grapevine yellows; stolbur; multi-locus sequence analysis; *Vitis vinifera*; *Hyalesthes obsoletus*

52 INTRODUCTION

Bois Noir (BN), one of the most important diseases of the grapevine yellows (GY) phytoplasma-associated complex, causes severe crop losses in vine growing areas in Euro-Mediterranean countries (Belli et al., 2010), and in restricted zones of South America (Chile) (Gajardo et al., 2009) and Asia (China, Middle East) (Choueiri et al., 2002; Duduk et al., 2010; Salem et al., 2013; Mirchenari et al., 2015). In almost all varieties of Vitis vinifera L., BN induces typical GY symptoms, including desiccation of inflorescences, berry shrivel, leaf discolorations, reduction of growth and irregular ripening of wood (Belli et al., 2010). On the basis of unique biological properties and exclusive molecular markers within multiple genes (16S rRNA, tufB, rplV-rpsC, secY), the etiological agent of BN (BN phytoplasma, BNp) has been attributed to the species 'Candidatus Phytoplasma solani' (subgroup 16SrXII-A) (Quaglino et al., 2013).

In Europe and Mediterranean basin, 'Ca. P. solani' strains are transmitted from plant-to-plant mainly by Hyalesthes obsoletus Signoret (Homoptera: Cixiide), a polyphagous leafhopper living preferentially on nettle (Urtica dioica L.), bindweed (Convolvulus arvensis L.), mugworth (Artemisia vulgaris L.), and chaste tree (Vitex agnus-castus L.) (Alma et al., 1988; Maixner, 1994; Langer & Maixner 2004; Sharon et al., 2005). Further studies reported the presence of other insect vectors (e.g. Reptalus panzeri and R. quinquecostatus) and host plants (Cvrković et al., 2014; Landi et al., 2015; Marchi et al., 2015; Mori et al., 2015; Oliveri et al., 2015; Chuche et al., 2016; Kosovac *et al.*, 2016), indicating that this phytoplasma species exists in varied ecosystems, where selection conceivably alters strain populations. This hypothesis implies that ecological relationships of BNp ('Ca. P. solani' strains associated with BN), possibly influenced by climatic and geographic features of vineyard agro-ecosystems in different regions, may be reflected in intra-species strain diversity (Quaglino et al., 2009, 2017).

Sequence analysis of *tufB* gene revealed that three *tuf*-types of BNp were present in diseased
grapevines, as well as in specific plant hosts, determining two natural ecologies of BNp mainly
related to nettle (BNp type *tufB*-a) and bindweed (BNp type *tufB*-b) (Langer & Maixner, 2004).

Annals of Applied Biology

Multi-locus sequence typing (MLST), based on molecular characterization of more variable genes, such as *secY*, *vmp1* and *stamp*, evidenced a large variability among BNp strains within the *tuf*-types (Foissac *et al.*, 2013; Quaglino *et al.*, 2016). Molecular approaches, using novel *vmp1*- and *stamp*based molecular markers of BNp diversity, allowed to increase the knowledge of the BNp population structure and dynamics (Murolo & Romanazzi, 2015; Quaglino *et al.*, 2016) and their transmission routes throughout vineyards and their surroundings (Mori *et al.*, 2015; Kosovac *et al.*, 2016).

In the present study, a multi-locus sequence typing approach, based on the molecular characterization of *tufB*, *vmp1* and *stamp* genes, was utilized for describing the genetic diversity among BNp strain populations in 17 vineyards localized in five districts of Tuscany. Moreover, further analyses were carried out to investigate the possible influence of environmental conditions in determining the strain composition of BNp populations.

> . Peli

91 MATERIALS AND METHODS

93 Field surveys

During a field surveys for grapevine yellows (GY), carried out in the late summer of 2016 in 17 vineyards located in the districts of Arezzo, Firenze, Lucca, Massa, and Siena (Tuscany Region), 75 GY-affected grapevine (Vitis vinifera L.) plants, cv. Chardonnay (36) and Sangiovese (37), were selected for phytoplasma detection and characterization (Table 1). For each symptomatic plant, 10-15 leaves were collected and their fresh central midribs were dissected and stored at -20°C until DNA extraction. Leaves collected in the screenhouse of the Department of Agriculture, Food and Environment (DAFE, University of Pisa, Italy) from V. vinifera cv. Chardonnay and Sangiovese were used as healthy control plants (HC), while leaves collected by V. vinifera plants, previously found infected by 'Ca. P. solani' (subgroup 16SrXII-A) and Flavescence dorée phytoplasmas (FDp) (subgroups 16SrV-C or -D) were used as infected controls (ICs).

1		
2 3	104	
4	105	Devtoplasma dataation
6	102	r nytopiasina detection
7 8	106	DNA was extracted with 2% cetyltrimethylammonium bromide (CTAB) based buffer from leaf
9 10	107	veins according to the protocol described by Li et al. (2008), with some modifications according to
11 12	108	Pierro <i>et al.</i> (2018).
13 14	109	Specific detection of phytoplasmas associated with BN (BNp) and FD (FDp), the GY mainly
15 16 17	110	present in Europe, was carried out by amplification of 16S ribosomal DNA through TaqMan assay
17 18 19	111	using the Rotor-Gene Q (Qiagen, Germany) following reaction conditions as described by Angelini
20 21	112	et al. (2007). The template used in the assay was a 1:10 dilution of the DNA extracted from the
22 23	113	samples. The grapevine chloroplast chaperonin 21 gene and DNA extracted from HC plants and
24 25	114	ICs were used as endogenous, negative and positive controls, respectively. Threshold cycle (Ct) <
26 27	115	37 was associated with the presence of GY phytoplasmas (Mori et al., 2015).
28 29	116	
30 31 22	117	BNp characterization by MLST
32 33 34	118	Nucleotide sequence analyses of the non-ribosomal genomic regions tufB, vmpl and stamp
35 36	119	were carried out on BNp strains detected in symptomatic grapevine plants.
37 38	120	Identification of the two main <i>tufB</i> -types, currently reported in Italy (<i>tufB</i> type-a and <i>tufB</i> type-
39 40	121	b) (Mori et al., 2015), was performed using the TaqMan allelic discrimination assay according to
41 42	122	Berger et al. (2009).
43 44 45	123	Direct PCR using StolH10F1/StolH10R1 primer pair (Cimerman et al., 2009) followed by
43 46 47	124	nested PCR with the TYPH10F/TYPH10R primer pair, using mixtures and PCR conditions as
48 49	125	described by Fialová et al. (2009) were utilized to obtain the amplification of the vmp1 gene in an
50 51	126	automated thermal cycler C1000 Cycler Touch (Bio-Rad, USA). The presence of the nested PCR
52 53	127	products were verified through electrophoresis on 1% agarose gels in Tris-borate-EDTA (TBE)
54 55	128	buffer and then singly digested with RsaI restriction enzyme (Pacifico et al., 2009), according to the
56 57 58 59 60	129	manufacturer's instructions (New England BioLabs, USA). Digested products were separated by 5

electrophoresis on 3% agarose gels in TBE buffer stained with Gel-Red (Biotum, USA) and visualized under UV transilluminator. The Φ X174 DNA-Hae III Digest was used as size marker. Attribution of BNp strains identified to *vmp1 RsaI*-RFLP profiles (V-types) was determined by comparing V-types obtained in accordance with SEE-ERANET nomenclature (Foissac *et al.*, 2013). *vmp1* amplicons, representative of the identified V-types, were sequenced (5X coverage per base position) by a commercial service (Eurofins Genomics, Germany). Nucleotide sequences were assembled by the Contig Assembling Program and trimmed to the annealing sites of the nested PCR primer pair in the software BioEdit, version 7.2.6 (Hall, 1999). To confirm the attribution to V-types, trimmed nucleotide sequences were virtually restricted for single nucleotide polymorphisms in recognition sites of the enzyme RsaI through virtual RFLP analyses using the software Serial Cloner 2.6.1 (http://serialbasics.free.fr/Serial Cloner.html).

Direct PCR using StampF/StampR0 primer pair followed by nested PCR with the StampF1/ StampR1 primer pair, using mixtures and PCR conditions as described by Fabre *et al.* (2011) were utilized to obtain the amplification of the *stamp* gene in an automated thermal cycler C1000 Cycler Touch. The presence of the nested PCR products were verified through electrophoresis on 1% agarose gels in Tris-borate-EDTA (TBE) buffer. *stamp* amplicons were sequenced and assembled as described above for the gene *vmp1*.

Nucleotide sequences of the genes *vmp1* and *stamp*, amplified from the BNp strains identified in the examined vineyards, were aligned using the software BioEdit in ClustalW Multiple Alignment program and analysed by Sequence Identity Matrix to estimate their genetic diversity. *vmp1* and *stamp* sequence variants, identified in the present study, were aligned and compared with representative sequences of previously defined sequence variants (updated from Pierro *et al.*, 2018) (Table S1 and S2); a nucleotide sequence identity of 100% was necessary for the attribution to such sequence variants.

54
55
154 Based on *tufB* type, V-type, *vmp1* and *stamp* sequence variant, each BNp strains were attributed
56
57 155 to collective *tufB/V*-type/*vmp1/stamp* genotypes.

2 3	156	
4	157	RNn nhvlogenetic analysis
6	157	Drup phylogenetic analysis
7 8	158	<i>vmp1</i> and <i>stamp</i> gene nucleotide sequences of BNp representative strains of Vm (<i>vmp1</i>) and St
9 10	159	(stamp) sequence variants, identified in this (Table 2 and 3) and in previous studies (Table S1 and
11 12	160	S2), were aligned and used for generating unrooted phylogenetic trees by minimum evolution
13 14 15	161	method carried out using the Jukes-Cantor model and bootstrap replicated 1000 times in the
15 16 17	162	MEGA6 software (Tamura et al., 2013). Moreover, representative nucleotide sequences of vmp1
17 18 19	163	and stamp genes were concatenated by BioEdit and employed for phylogenetic analyses. All
20 21	164	positions with less than 95.0% site coverage were eliminated. That is, fewer than 5% alignment
22 23	165	gaps, missing data, and ambiguous bases were allowed at any position.
24 25	166	
26 27	167	Statistical analyses
28 29 30	168	In order to investigate which parameter(s) can influence the genetic diversity among BNp strain
30 31 32	169	populations, chi square test (χ^2 test) was performed in SPSS statistical package for Windows, v.
33 34	170	24.0 (IBM Corporation, Armonk, NY). In detail, statistical analyses were carried out to estimate
35 36	171	possible statistically significant differences in the distribution of <i>tufB</i> types, V-types, <i>vmp1</i> and
37 38	172	stamp sequence variants, tufB/V-type/vmp1/stamp collective genotypes, and BNp strains grouped in
39 40	173	distinct <i>vmp1</i> , <i>stamp</i> and <i>vmp1/stamp</i> phylogenetic clusters, identified in the present study, in: (i)
41 42 43	174	the two grape varieties (Vitis vinifera cv. Chardonnay and Sangiovese); (ii) the vineyards under
44 45	175	conventional or organic management; (iii) the geographic origins (districts of Arezzo, Firenze,
46 47	176	Lucca, Massa, and Siena); (iv) the two statistically significant different weather condition zones [C1
48 49	177	(Arezzo-Firenze-Siena) and C2 (Lucca-Massa)] (Table 4), determined on the basis of data available
50 51	178	at the website (<u>https://www.politicheagricole.it</u>).
52 53	179	
54 55 56	180	RESULTS
57 58 59 60	181	7

182 Bois Noir phytoplasma identification and *tufB* type determination

TaqMan assay, performed using specific primer pairs for the amplification of BNp 16S rDNA in Real-time PCR, detected BNp in all the 75 symptomatic grapevine plants analysed, while FDp was not found. In details, the BN infection percentage for *Vitis vinifera* cv. Chardonnay and Sangiovese plants was 50.7% and 49.3%, respectively. Assay reliability was validated by the amplification signals of the ICs (30<Ct<32 for both), while HC and reaction mixtures gave no amplification signals.

tufB characterization analysis, carried out on the 75 grapevine plants infected by BN using the
TaqMan allelic discrimination assay, revealed that the Tuscan vineyards were mainly infected by
BNp strains *tufB* type-b (84.0%), while *tufB* type-a was fewer identified (16.0%) (Table 1). Chi
square test analyses showed no statistically significant differences in the distribution of *tufB* types in
different varieties, vineyard management strategies, and geographic origins (Table 5).

195 Multiple gene sequence typing of BNp strains

Among the 75 BNp strains identified, 37 yielding *vmp1* nested-PCR fragments of the expected size, amplified using the specific primer pair TYPH10F/R, were digested using the RsaI enzyme. Results obtained showed the presence of five V-types. The most abundant was V11 (64.9%), followed by V3 (13.5%), V1 (10.9%), V15 (8.1%) and V4 (2.7%) (Table 1). The software Serial Cloner 2.6.1, utilized for the virtual restriction analysis selecting *Rsa*I as restriction enzyme, confirmed the presence of such profiles (Figure 1). According to V-types, TYPH10F/R nested-PCR products of 34 BNp strains were sequenced. Based on sequence identities, eight distinct *vmp1* sequence variants (VmTus1 to VmTus8) were detected (Table 2). Comparison with *vmp1* sequence variant updated dataset (Table S1) revealed that sequence variants VmTus1, VmTus2 and VmTus3 shared 100% sequence identity with previously described sequence variants Vm39, Vm41 and Vm43, respectively. Five *vmp1* sequence variants (VmTus4 to VmTus8) were described for the first time in the present study and named Vm88 to Vm92. In detail, sequence variants VmTus4 and

Annals of Applied Biology

VmTus5 shared the best sequence identity with previously described sequence variant Vm8 (95.2% and 97.3%, respectively), VmTus6 with Vm15 (99%), VmTus7 with Vm39 (98.3%), and VmTus8 with Vm43 (97.3%). The most frequent sequence variant identified in Tuscany was VmTus3 (52.9% of the BNp strains), followed by VmTus6 (11.6%), VmTus1 and VmTus2 (8.9% for each), VmTus4 and VmTus5 (5.8% for each), VmTus7 and VmTus8 (3.0% for each) (Table 2). For each *vmp1* sequence variant, one representative nucleotide sequence was deposited to NCBI GenBank at Accession Number shown in Table 2 (named from VmTus1 to VmTus8). Chi square test analyses showed statistically significant differences in: (i) V-type distribution in the 5 districts (p = 0.001); (ii) V-type and *vmp1* sequence variants distribution in climatic areas C1 and C2 (p=0.004 and p=0.031, respectively) (Table 5; Figure 2A, B, C).

Among the 75 BNp strains identified by Real-Time PCR assays, nested-PCR reactions allowed the amplification of 63 stamp fragments (STAMPF1/R1) of the expected size, which were sequenced. Based on sequence identity, 5 different stamp sequence variants (StTus1 to StTus5) were identified (Table 3). Comparison of such sequence variants (from StTus1 to StTus5) with the updated dataset (Table S2) revealed that they were identical respectively to the previously described sequence variants St5, St9, St10, St11, and St18. The most frequent sequence variant among BNp strains identified in Tuscany was StTus3 (46.0%), followed by StTus1 (34.9%), StTus5 (12.7%), StTus4 (4.8%), and StTus2 (1.6%) (Table 3). One representative stamp nucleotide sequence variant was deposited to NCBI GenBank at Accession Number shown in Table 3. Chi square test showed statistically significant differences in the distribution of (i) stamp sequence variants in the climatic areas C1 (Arezzo-Firenze-Siena) and C2 (Lucca-Massa) (p=0.06) (Table 5; Figure 2D).

Based on the combination of tufB types, V-type, vmp1 and stamp sequence variants, BNp strains identified in Tuscany were attributed to 17 tufB/V-type/vmp1/stamp genotypes (Table 1). The most abundant genotype identified in the present study was tufB-b/V11/VmTus3 (Vm43)/StTus3(St10), previously reported in the Chianti Classico area (Tuscany, Central Italy) (Pierro *et al.*, 2018). Chi square test analyses showed no statistically significant differences in the

distribution of *tufB*/V-type/*vmp1/stamp* genotypes in different varieties, vineyard management strategies, and geographic origins (Table 5).

Phylogenetic analysis and selective pressure on BNp strains

The phylogenetic tree, generated from the alignment of *vmp1* nucleotide sequences of BNp strains representative of the Vm sequence variants identified in Tuscany (VmTus1 to VmTus8) and those previously described (Vm1 to Vm87) (Table S1), showed the presence of five main clusters. Sequence variant VmTus2 grouped in the cluster *vmp1*-1, variants VmTus3 and VmTus8 in the cluster *vmp1*-2, VmTus1 and VmTus7 in the cluster *vmp1*-3, VmTus4 and VmTus5 in the cluster *vmp1*-4, and VmTus6 in the cluster *vmp1*-5 (Figure 3). Chi square test analyses showed statistically significant differences in the distribution of BNp strains grouped in distinct *vmp1* clusters in the five districts (p = 0.012) and in the weather condition zones C1 and C2 (p=0.005) (Table 5; Figure 2E, F).

The alignment of *stamp* nucleotide sequences of BNp strains representative of the St sequence variants identified in Tuscany (StTus1 to StTus5) and those previously described (St1 to St58) (Table S2) was used for generating a phylogenetic tree in which four main clusters were observed. Sequence variants StTus2, StTus4 and StTus5 grouped in the cluster *stamp*-1, variant StTus1 in the cluster stamp-3 and variant StTus3 in the cluster stamp-4 (Figure 4). Chi square test analyses showed statistically significant differences in the distribution of BNp strains grouped in distinct stamp clusters in vineyards managed by conventional or organic strategy (p=0.048) (Table 5; Figure 2G).

The phylogenetic tree, generated from the alignment of *vmp1/stamp* concatenated nucleotide sequences of BNp strains representative of the *vmp1/stamp* types identified in Tuscany (Table 1, 2, 3) and those previously described (Vm10/St2 to Vm76/St1) (Table S3), showed the presence of five main clusters. Three vmp1/stamp types (VmTus2/StTus1, VmTus2/StTus3, and VmTus2/StTus5, sharing *tufB*-b type and V11 type) grouped in cluster *vmp1/stamp*-1; four *vmp1/stamp* types

Annals of Applied Biology

(VmTus4/StTus1, VmTus4/StTus4, VmTus5/StTus1, and VmTus5/StTus5, sharing *tufB*-b type and V1 type) grouped in the cluster *vmp1/stamp-2*; three *vmp1/stamp* types (VmTus3/StTus1, VmTus3/StTus3, and VmTus8/StTus3, sharing V11 type and characterized by *tufB*-a and -b types) grouped in the cluster *vmp1/stamp*-3; two *vmp1/stamp* types (VmTus1/StTus1 and VmTus7/StTus1, sharing the *tufB*-b type and characterized by V15 and V4 types, respectively) grouped in the cluster 4; two *vmp1/stamp* types (VmTus6/StTus1 and VmTus6/StTus3, sharing V3 type and characterized by *tufB*-a and -b types) grouped in the cluster 5 (Figure 5). Further analyses revealed a difference between intra-cluster and inter-cluster genetic heterogeneity of BNp strains, calculated on both nucleotide and amino acid sequence alignments. In detail, BNp strains within each cluster (intracluster heterogeneity) shared a mean nucleotide/amino acid sequence identity of 98.4%/97.1% (approximately 29 SNPs/17 amino acid positions distinguishing one strain to another); on the other hand, BNp strains of distinct clusters (inter-cluster heterogeneity) shared a mean nucleotide/amino acid sequence identity of 95.1%/90.3% (approximately 90 SNPs/59 amino acid positions distinguishing one strain to another) (Table S4). Chi square test analyses showed statistically significant differences in: (i) BNp strains grouped in distinct *vmp1/stamp* clusters distribution in the 5 districts (p = 0.007) and in the climatic areas C1 and C2 (p=0.006) (Table 5; Figure 2H, I).

277 DISCUSSION

Multi-locus sequence typing analysis based on the *tufB*, *stamp* and *vmp1* genes, that are strictly correlated to biological features of '*Ca*. Phytoplasma solani' strains (Langer & Maixner, 2004; Murolo & Romanazzi, 2015; Kosovac *et al.*, 2016; Pierro *et al.*, 2018), contributes to the understanding of the ecology of this pathogen.

Considering the association of different epidemiological systems with *tufB* types (Langer & Maixner, 2004), results of TaqMan allelic discrimination assay confirmed that BNp ecology in Tuscan vineyards is mainly associated to the bindweed-related host system (*tufB* type-b = 84.0%), but revealed a lesser role of the nettle-related host system (*tufB* type-a = 16.0%). These results are

in accordance with previous studies showing a wider distribution of *tufB* type-b in central and
southern Italy (Pacifico *et al.*, 2007; Marchi *et al.*, 2015; Murolo & Romanazzi 2015; Pierro *et al.*,
2018).

Within BNp strains (tufB-b) associated with the prevalent bindweed-related host system, multiple gene sequence typing analyses allowed the identification of 13 collective BNp genotypes and evidenced the prevalence of the genotype tufB-b/V11/Vm43/St10 (36.0% of collective BNp genotypes) in Tuscan vineyards, extending to Regional level the results previously obtained by Pierro *et al.* (2018) in a case study vineyard in Greve in Chianti, district of Firenze. Interestingly, based on sequence identity and phylogenetic clustering obtained by the analysis of *vmp1*, *stamp* and concatenated *vmp1/stamp* nucleotide sequences, this prevalent BNp genotype was strictly related to 'Ca. P. solani' strains previously found mainly in Solanaceae hosts and in insect vectors (H. obsoletus and R. quinquecostatus) in France and central Italy (Cimerman et al., 2009; Murolo & Romanazzi, 2015; Landi et al., 2015; Chuche et al., 2016), but never in grapevines outside of Tuscany (Pierro et al., 2018). Other two BNp genotypes closely related to tufB-b/V11/Vm43/St10, representing 10% (tufB-B/V11/Vm43/St10) and 4% (tufB-b/V11/Vm91/St10) of described collective genotypes, could share its biological features. The remaining ten BNp genotypes were sporadically found and represent, when considered all together, 38% of BNp genotypes described in Tuscany. Based on sequence identities and grouping in phylogenetic clusters obtained by the analysis of *vmp1*, *stamp* and concatenated *vmp1/stamp* nucleotide sequences, such BNp genotypes were closely related to those largely found in Euro-Mediterranean countries in association with plant hosts and insect vectors connected to bindweed-related host system (Figure 3, 4, 5). Within BNp strains (*tufB*-a) associated with the nettle-related host system, multiple gene sequence typing analyses allowed the identification of four collective BNp genotypes sporadically found and representing, when considered all together, 12% of BNp genotypes described in Tuscany. Sequence identity and phylogenetic analyses of *vmp1*, *stamp* and concatenated *vmp1/stamp* nucleotide sequences confirmed the strict relationship between these Tuscan BNp genotypes and those

Annals of Applied Biology

previously described in Europe in association with nettle-related host system (Figure 3, 4, 5). Based on these evidences, it is reasonable to propose that BN epidemiology in Tuscany involves two BNp strain populations related to (i) bindweed and nettle host systems playing a pivotal role in BNp diffusion in European vineyards, and (ii) a BNp strain population, putatively associated with bindweed (*tufB*-b, but never found directly in C. arvensis), including strains identified in vineyard agro-ecosystems exclusively in Tuscany. Such BNp strains are similar to 'Ca. Phytoplasma solani' strains previously detected in Solanaceae, H. obsoletus and R. quinquecostatus in Europe, opening new perspectives on BN epidemiological patterns.

Climatic and geographic features in agro-ecosystems may be significant, directly or indirectly, in determining the strain composition of phytoplasma populations in different regions (Cai et al., 2008; Wu et al., 2012; Quaglino et al., 2017). In the present study, after having described the genetic variability among BNp strain populations in Tuscan vineyards, we investigated whether the composition of BNp strain populations was influenced by some environmental parameters: in particular the analyzed variables were the (i) V. vinifera cv Chardonnay or Sangiovese; the (ii) vinevard management strategy, either conventional or organic; and the (iii) geographic origin of the samples, divided among the five districts of Arezzo, Firenze, Lucca, Massa, and Siena.

The distribution of the different genotypes based on the *tufB*, *stamp*, *vmp1* genes and the concatenated *vmp1/stamp* nucleotide sequences was compared between the different parameters with a statistical approach. The first examined parameter, (i) the cultivar, never showed a significant difference in the distribution of the genotypes, suggesting that these plant hosts have no effect on the selection of the pathogen (Table 5). This result is in line with the fact that grapevine is a dead-end host of BNp (Belli et al., 2010; Maixner, 2011) and, therefore, it is intuitive that the considered cultivars (Sangiovese and Chardonnay) have no effect on the distribution of this pathogen. The second parameter, (ii) the management strategy, showed significant differences in the distribution of BNp strains, grouped on the basis of *stamp* clusters, in conventional or organic vineyards (Figure 2G). Still, further studies should be carried out to confirm this experimental evidence possibly

biased by the fact that most of examined organic vineyards are limited to a single district (Massa). Moreover, the significant difference was observed by the analyses of only one gene. The last considered parameter, (iii) geographic origin, instead showed significant difference in BNp strain distribution determined on the basis of V-type, *vmp1* and *vmp1/stamp* clusters (Figure 2A, E, H). To understand the reason behind this observed difference, we investigated the agro-meteorological parameters of the five districts determining their attribution to two distinct weather condition zones (C1 and C2, Table S3): the C1 including the districts of Arezzo, Firenze, and Siena (central-eastern Tuscany); and C2 including the districts of Lucca and Massa (north-western Tuscany). The use of the weather condition zone as a variable for the statistical analyses revealed a significant difference in the BNp strain distribution based on V-type, *vmp1* and *stamp* sequence variants, *vmp1* and *vmp1/stamp* clusters between C1 and C2 (Figure 2B, C, D, F, I). These results reinforce the hypothesis that environmental conditions can play a role, directly (i.e. selection of most fit phytoplasma strains) or indirectly (i.e. influence on wild plant hosts and insect vectors), in shaping the composition of BNp strain populations.

Based on the overall findings of the present study, it is reasonable to theorize that the distinctive environmental conditions of Tuscany can contribute to the selection of BNp strains, favouring the entrance of an unusual '*Ca*. P. solani' genotype (*tufB*-b/V11/Vm43/St10) from the surroundings and/or other crop fields to vineyard agro-ecosystems.

REFERENCES

Alma A., Arnò C., Arzone A., Vidano C. (1988) New bio-logical r eports on Auchenorrhyncha in
vineyards. In Proceedings of 6th Auchenorrhyncha Meeting, Turin, Italy, 1987, pp. 509–
516. Eds C. Vidano and A. Arzone. Turin, Italy: University of Turin.

Angelini E., Bianchi G.L., Filippin L., Morassutti C., Borgo M. (2007) A new TaqMan method for
the identification of phytoplasmas associated with grapevine yellows by real-time PCR
assay. *Journal of Microbiological Methods*, 68, 613–622.

2 3	36
4 5	36
6 7 8	36
9 10	36
10 11 12	36
13 14	36
15 16	37
17 18	37
19 20	37
21 22 22	37
23 24 25	37
25 26 27	37
28 29	37
30 31	37
32 33	37
34 35	37
36 37	38
38 39	38
40 41	38
42 43	38
44 45 46	20
40 47 48	38
49 50	38
50 51 52	38
53 54	38
55 56	38
57 58	38
59	

60

Belli G., Bianco P.A., Conti M. (2010) Grapevine yellows: past, present and future. *Journal of Plant Pathology*, 92, 303–326.

- Berger J., Dalla Via J., Baric S. (2009) Development of a TaqMan allelic discrimination assay for
 the distinction of two major subtypes of the grapevine yellows phytoplasma Bois noir.
 European Journal of Plant Pathology, 124, 521–526.
- 369 Cai H., Wei W., Davis R.E., Chen H., Zhao Y. (2008) Genetic diversity among phytoplasmas
 370 infecting *Opuntia*: virtual RFLP analysis identifies new subgroups in the peanut witches' 371 broom phytoplasma group. *International Journal of Systematic and Evolutionary* 372 *Microbiology*, 58, 1448–1457.
- 373 Choueiri E., Jreijiri F., El Zammar S., Verdin E., Salar P., Danet J.L., Bové J., Garnier M. (2002)
 374 First report of grapevine 'Bois Noir' disease and a new phytoplasma infecting solanaceous
 375 plants in Lebanon. *Plant Disease*, 86, 697.
- General Strain St
- 379 Cimerman A., Pacifico D., Salar P., Marzachì C., Foissac X. (2009) Striking diversity of *vmp1*, a
 380 variable gene encoding a putative membrane protein of the stolbur phytoplasma. *Applied* 381 and Environmental Microbiology, 75, 2951–2957.
- 382 Cvrković T., Jović J., Mitrović M., Krstić Q., Toševski I. (2014) Experimental and molecular
 a 383 evidence of *Reptalus panzeri* as a natural vector of bois noir. *Plant Pathology*, 63, 42–53.
- 384 Duduk B., Tian J., Contaldo N., Fan X., Paltrinieri S., Chen Q., Zha o Q., Bertaccini A. (2010)
 385 Occurrence of phytoplasmas related to stolbur and to '*Candidatus* Phytoplasma japonicum'
 386 in woody host plants in China. Journal of Phytopathology, **158**, 100–104.
 - Fabre A., Danet J.L., Foissac X. (2011) The stolbur phytoplasma antigenic membrane protein gene
 stamp is submitted to diversifying positive selection. *Gene*, **472**, 37–41.
 - 389 Fialová R., Válová P., Balakishiyeva G., Danet J.L., Sâfárová D., Foissac X., Navrátil M. (2009)

Annals of Applied Biology

1		
2 3 4	390	Genetic variability of Stolbur phytoplsama in annual crop and wild plant species in South
5	391	Moravia. Journal of Plant Pathology, 91, 411–416.
0 7 8	392	Foissac X., Carle P., Fabre A., Salar P., Danet J.L., STOLBUREUROMED Consortium (2013)
9 10	393	'Candidatus Phytoplasma solani' genome project and genetic diversity in the Euro-
11 12	394	Mediterranean basin. In Torres E., Laviña A., Battle A. (ed.), Book of Abstracts of 3rd
13 14	395	European Bois Noir Workshop; March 21-22, 2013, Barcelona, Spain.
15 16	396	Gajardo A., Fiore N., Prodan S., Paltrinieri S., Botti S., Pino A.M., Zamorano A., Montealegre J.,
17 18 19	397	Bertaccini A. (2009) Phytoplasmas associated with grapevine yellows disease in Chile.
20 21	398	<i>Plant Disease</i> , 93 , 789–796.
22 23	399	Hall T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis
24 25	400	program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
26 27	401	Kosovac A., Radonjić S., Hrnčić S., Krstić O., Toševski I., Jović J. (2015) Molecular tracing of the
28 29	402	transmission routes of bois noir in Mediterranean Vineyards of Montenegro and
30 31 22	403	experimental evidence for the epidemiological role of Vitex agnus-castus (Lamiaceae) and
32 33 34	404	associated Hyalestes obsoletus (Cixiidae). Plant Pathology, 65, 285–298.
35 36	405	Landi L., Riolo P., Murolo S., Romanazzi G., Nardi S., Isidoro N. (2015) Genetic variability of
37 38	406	stolbur phytoplasma in Hyalesthes obsoletus (Hemiptera: Cixiidae) and its main host plants
39 40	407	in vineyard agroecosystems. Journal of Economic Entomology, 108, 1506–1515.
41 42	408	Langer M., Maixner M. (2004) Molecular characterisation of grapevine yellows associated
43 44	409	phytoplasmas of the stolbur-group based on RFLP analysis of non-ribosomal DNA. Vitis,
45 46 47	410	43 , 191-200.
48 49	411	Li R., Mock R., Huang Q., Abad J., Hartung J., Kinard G. (2008) A reliable and inexpensive
50 51	412	method of nucleic acid extraction for the PCR-based detection of diverse plant pathogens.
52 53	413	Journal of Virological Methods, 154, 48–55.
54 55	414	Maixner M. (1994) Transmission of German grapevine yellows (Vergilbungskrankheit) by the
56 57	415	planthopper Hyalesthes obsoletus (Auchenorrhyncha: Cixiidae). Vitis, 33, 103-104.
58 59 60		16
00		

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
14	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
2/	
24 2⊑	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
<u>1</u> 7	
4/	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
58	
59	

60

416 Maixner M. (2011) Recent advances in Bois noir research. *Petria*, **21**, 17–32.

- Marchi G., Cinelli T., Rizzo D., Stefani L., Goti E., Della Bartola M., Luvisi A., Panattoni A.,
 Materazzi A. (2015) Occurrence of different phytoplasma infections in wild herbaceous
 dicots growing in vineyards affected by bois noir in Tuscany (Italy). *Phytopathologia Mediterranea*, 54, 504–515.
- 421 Mirchenari S.M., Massah A., Zirak L. (2015) 'Bois noir': new phytoplasma disease of grapevine in
 422 Iran. Journal of Plant Protection Research, 55, 88–93.
- 423 Mori N., Quaglino F., Tessari F., Pozzebon A., Bulgari D., Casati P., Bianco P.A. (2015)
 424 Investigation on 'bois noir' epidemiology in north-eastern Italian vineyards through a
 425 multidisciplinary approach. *Annals of Applied Biology*, 166, 75–89.
- 4 426 Murolo S., Romanazzi G. (2015) In-vineyard population structure of '*Candidatus* Phytoplasma 427 solani' using multilocus sequence typing analysis. *Infection, Genetics and Evolution*, **31**, 428 221–230.
- 429 Oliveri C., Pacifico D., D'Urso V., La Rosa R., Marzachi C., Tessitori M. (2015) Bois noir
 430 phytoplasma variability in a Mediterranean vineyard system: new plant host and putative
 431 vectors. *Australasian Plant Pathology*, 44, 235–244.
- 432 Pacifico D., Alma A., Bagnoli B., Foissac X., Pasquini G., Tessitori M., Marzachi C. (2009)
 433 Characterization of Bois noir isolates by restriction fragment lenght polymorphism of a
 434 stolbur-specific putative membrane protein gene. *Phytopathology*, 99, 711–715.
- 435 Pacifico D., Foissac X., Veratti F., Marzachì C. (2007) Genetic diversity of Italian phytoplasma and
 436 French "bois noir" isolates. *Bulletin of Insectology*, **60**, 345–346.
- 437 Pierro R., Passera A., Panattoni A., Casati P., Luvisi A., Rizzo D., Bianco P.A., Quaglino F.,
 438 Materazzi A. (2018) Molecular typing of 'bois noir' phytoplasma strains in the Chianti
 439 Classico area (Tuscany, central Italy) and their association with symptom severity in *Vitis*440 *vinifera* L. cv. Sangiovese. *Phytopathology*, **108**, 362–373.
 - 17

2 3	441	Quaglino F., Maghradze D., Casati P., Chkhaidze N., Lobjanidze M., Ravasio A., Passera A.,
4 5 6	442	Venturini G., Failla O., Bianco P.A. (2016) Identification and characterization of new
0 7 8	443	'Candidatus Phytoplasma solani' strains associated with Bois noir disease in Vitis vinifera
9 10	444	L. cultivars showing a range of symptoms severity in Georgia, the Caucasus Region. Plant
11 12	445	Disease, 100, 904–915.
13 14	446	Quaglino F., Murolo S., Zhao Y., Casati P., Durante G., Wei W., Bianco P.A., Romanazzi G., Davis
15 16	447	R.E. (2017) Identification of new -J and -K 16SrXII subgroups and distinct single nucleotide
17 18	448	polymorphism genetic lineages among 'Candidatus Phytoplasma solani' strains associated
19 20 21	449	with Bois noir in central Italy. Australasian Plant Pathology, 46, 31-34.
21 22 23	450	Quaglino F., Zhao Y., Bianco P.A., Wei W., Casati P., Durante G., Davis R.E. (2009) New 16Sr
24 25	451	subgroups and distinct single nucleotide polymorphism lineages among grapevine bois noir
26 27	452	phytoplasma populations. Annals of Applied Biology, 54, 279–289.
28 29	453	Quaglino F., Zhao Y., Casati P., Bulgari D., Bianco P.A., Wei W., Davis R.E. (2013) 'Candidatus
30 31	454	Phytoplasma solani', a novel taxon associated with stolbur and bois noir related diseases of
32 33 24	455	plants. International Journal of Systematic and Evolutionary Microbiology, 63, 2879–2894.
35 36	456	Salem N.M., Quaglino F., Abdeen A., Casati P., Bulgari D., Alma A., Bianco P.A. (2013) First
37 38	457	report of 'Candidatus Phytoplasma solani' strains associated with grapevine bois noir in
39 40	458	Jordan. Plant Disease, 97, 1505.
41 42	459	Sharon R., Soroker V., Wesley S., Zahavi T., Harari A., Weintraub P. (2005) Vitex agnus-castus is
43 44	460	a preferred host plant for Hyalestes obsoletus. Journal of Chemical Ecology, 31 , 1051–1063.
45 46 47	461	Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013) MEGA6: Molecular Evolutionary
48 49	462	Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30, 2725–2729.
50 51	463	Wu W., Cai H., Wei W., Davis R.E., Lee IM., Chen H., Zhao Y. (2012) Identification of two new
52 53	464	phylogenetically distant phytoplasmas from Senna surattensis plants exhibiting stem
54 55	465	fasciation and shoot proliferation symptoms. Annals of Applied Biology, 160, 25-34.
56 57	466	
59 60		18

Supporting Information

Pierro et al. [Environment-driven selection of BNp strain populations]

Table S1. Sequence variants of the gene *vmp1* among '*Ca*. P. solani' strains available in GenBank (part I)

Sequence variant	Strain	Host	Location	Acc. No. vmp1
Vm1	S13	Vitis vinifera	Italy	HM008616
Vm2	Neuweier57_C	Convolvulus arvensis	Germany	JQ977736
Vm3	$C_Boppard_C$	Convolvulus arvensis	Germany	JQ977734
Vm4	N10	Urtica dioica	France	JQ977730
Vm5	N9	Urtica dioica	France	JQ977729
Vm6	N2	Urtica dioica	Germany	JQ977722
Vm7	N1	Urtica dioica	Germany	JQ977721
Vm8	CH1	Vitis vinifera	Italy	AM992105
Vm8	T2_56	Solanum lycopersicum	Italy	AM992104
Vm9	P74/11	Vitis vinifera	Italy	KJ145361
Vm10	Vv17	Vitis vinifera	Serbia	KC703032
Vm10	Vv21	Vitis vinifera	Serbia	KC703026
Vm10	Vexp Rpm5	Reptalus panzeri	Serbia	KC703028
Vm10	Vexp Rpg11	Reptalus panzeri	Serbia	KC703027
Vm10	Rpm34	Reptalus panzeri	Serbia	KC703024
Vm10	Rpg39	Reptalus panzeri	Serbia	KC703023
Vm10	Rqg31	Reptalus quinquecostatus	Serbia	KC703031
Vm10	Rqg60	Reptalus quinquecostatus	Serbia	KC703025
Vm10	STOL	Capsicum annuum	Serbia	AM992103
Vm11	LA6 I C	Convolvulus arvensis	Germany	JQ977735
Vm12	GGY	Vitis vinifera	Germany	AM992102
Vm13	MK29	Vitis vinifera	Macedonia	KF957604
Vm14	Vv12 754	Vitis vinifera	Austria	KJ469734
Vm14	Vv12 751	Vitis vinifera	Austria	KJ469734
Vm14	Vv12 Kn6	Vitis vinifera	Austria	KJ469734
Vm15	60/11	Vitis vinifera	Italy	KJ145346
Vm15	Aa25	Vitis vinifera	Italy	HM008614
Vm15	Mri10	Vitis vinifera	Italy	HM008615
Vm15	HY.86N	Hvalesthes obsoletus	Italy	KM225871
Vm15	HY.80N	Hvalesthes obsoletus	Italy	KM225870
Vm15	Ne.10	Urtica dioica	Italy	KM225869
Vm15	Ho13 1006	Hvalesthes obsoletus	Austria	KJ469727
Vm16	N13	Urtica dioica	Italy	JO977733
Vm17	N12	Urtica dioica	Italy	JO977732
Vm18	N11	Urtica dioica	Italy	JO977731
Vm18	Ho13 838	Hvalesthes obsoletus	Austria	KJ469729
Vm19	N8	Urtica dioica	Italv	JO977728
Vm20	N7	Urtica dioica	Italy	JO977727
Vm21	N6	Urtica dioica	Italy	JO977726
Vm22	N5	Urtica dioica	Italy	JO977725
Vm23	CrHo13 1183	Hvalesthes obsoletus	Austria	KJ469728
Vm23	N4	Urtica dioica	Slovenia	JO977724
Vm24	N3	Urtica dioica	Slovenia	10977723
Vm25	MK44	Vitis vinifera	Macedonia	KF957605
Vm26	149/11	Vitis vinifora	Italy	K 1145347
Vm27	Aalf	Vitis vinifera	Italy	HM008602
Vm27	Ri 15	Convolvulus arvensis	Italy	KM225875
Vm27	HY OR	Hvalesthes absolutions	Italy	KM225875
Vm28	166/11	Vitis vinifora	Italy	K 11/5255
Vm28	136/11	Vitis vinifera	Italy	K 1145355
Vm28	D10/11	v uis vinijera Vitis vinifera	Italy	KJ143334 K 1145252
Vm28	10/11 Apg1	v uis vinijera Vitis vinifera	Italy	MM009601
v 1112.0	nayı	v uis vinijera	naly	11000001

1	
2	
3	
4	
5	
6	

Table S1. Sequence variants of the gene *vmp1* among '*Ca*. P. solani' strains available in GenBank (part II)

Sequence variant	Strain	Host	Location	Acc. No. vm
Vm28	Mca21	Vitis vinifera	Italy	HM00859
V m28	B51	vitis vinijera		HM00860
Vm28	Rpg4/	Reptalus panzeri	Serbia	KC/03034
Vm28	Rqg50	Reptalus quinquecostatus	Serbia	KC/03033
Vm28	D_Bacharach_C	Convolvulus arvensis	Germany	JQ977738
Vm28	MK28	Vitis vinifera	Macedonia	KF957603
Vm28	CrAr12_722_2	Anaceratagallia ribauti	Austria	KJ469735
Vm28	Vv12_752	Vitis vinifera	Austria	KJ469735
Vm28	17-11	Vitis vinifera	Bosnia & Herzegovina	KP73985
Vm29	M33_F_C	Convolvulus arvensis	France	JQ977742
Vm30	EisHo1_C	Convolvulus arvensis	Italy	JQ977740
Vm31	Charente-1	Hyalesthes obsoletus	France	AM99209
Vm32	Moliere	Prunus avium	France	AM99209
Vm33	CrHo12_601	Hyalesthes obsoletus	Austria	KJ46973
Vm34	19-25	Vitis vinifera	Germany	AM99210
Vm35	РО	Hyalesthes obsoletus	France	AM99209
Vm36	Rag42	Reptalus quinquecostatus	Serbia	KC70303
Vm37	SFRT1	Vitis vinifera	Italy	KJ12960
Vm38	LG	Solanum lycopersicum	France	AM99209
Vm39	78/11	Vitis vinifera	Italy	K 114534
Vm30	B7	Vitis vinifera	Italy	HM00860
Vm20		Hydlasthas obsolatus	Italy	KM22586
VIII39 Vm20		Hydiesthes obsoletus	Italy	KW22580
V11159 Vm20	П I .24D Son 21, 2016	Vitis vinifara	Italy	ME10205
V III 39	Sans1_2010	Vilis vinijera	Italy	NIF 18283
Vm40	Mp49	Vitis vinifera	Italy	HM00860
Vm41	B2035	Vitis vinifera	Italy	HM00861
Vm41	CI	Vitis vinifera	Italy	HM00861
Vm41	San47_2016	Vitis vinifera	Italy	MF18286
Vm42	Mca28	Vitis vinifera	Italy	HM00860
Vm42	San24_2016	Vitis vinifera	Italy	MF18286
Vm43	ARSIA1	Linaria vulgaris	Italy	KJ12960
Vm43	HY.3B	Hyalesthes obsoletus	Italy	KM22587
Vm43	HY32.B	Hyalesthes obsoletus	Italy	KM22587
Vm43	San21_2015	Vitis vinifera	Italy	MF18285
Vm44	Mvercer2	Vitis vinifera	Italy	HM00861
Vm45	San2_2015	Vitis vinifera	Italy	MF18285
Vm45	315/11	Vitis vinifera	Italy	KJ14536
Vm45	P136/11	Vitis vinifera	Italy	KJ14535
Vm45	P75/11	Vitis vinifera	Italy	KJ14535
Vm45	411/11	Vitis vinifera	Italy	KJ14535
Vm45	Bi.47	Convolvulus arvensis	Italy	KM22588
Vm45	HY.48N	Hyalesthes obsoletus	Italy	KM22588
Vm45	HY.50B	Hyalesthes obsoletus	Italy	KM22587
Vm46	353/11	<i>Vitis vinifera</i>	Italy	KJ14535
Vm46	287/11	Vitis vinifera	Italy	KJ14535
Vm46	115/11	Vitis vinifera	Italy	KJ14535
Vm46	Mp46	Vitis vinifera	Italy	HM00860
Vm46	A 949	Vitis vinifera	Italy	HM00860
Vm46	Rg+a Bi 13	Comobulus amansis	Italy	KM22586
Vm46	D1.13 Vx24	Vitis vinifara	Sorbio	KW122380
V 11140	V V24	Vilis vinijera Vitis vinifera	Serbia	KC70303
Vm46	VV5 Dum 25	vitis vinijera	Serbia	KC /0303
v m46	Kpm35	Keptatus panzeri	Serbia	KC/0302
Vm46	PMI	Solanum tuberosum	Montenegro	KU58819
Vm47	B49	Vitis vinifera	Italy	HM00860
Vm48	C3	Vitis vinifera	Italy	HM00860
Vm49	MK19	Vitis vinifera	Macedonia	KF95760

Table S1. Sequence variants of the gene vmp1 among 'Ca. P. solani' strains available in GenBank (part III)

1	
2	
3	
4	
5	
6	
7	
8	
9	
1	С
1	1
1	2
1	3
1	2
1	5
1	6
1	7
1	8
1	ç
2	(
2	1
2	2
2	3

	Sequence variant	Strain	Host	Location	Acc. No. vmpl
	Vm50	HY.14B	Hyalesthes obsoletus	Italy	KM225865
	Vm50	HY.5B	Hyalesthes obsoletus	Italy	KM225864
	Vm50	HY.12B	Hyalesthes obsoletus	Italy	KM225863
	Vm50	Ca13_RF	Convolvulus arvensis	Austria	KJ469732
	Vm51	C6	Vitis vinifera	Italy	HM008618
)	Vm51	B4	Vitis vinifera	Italy	HM008617
l	Vm51	RA6_I_C	Convolvulus arvensis	Italy	JQ977737
)	Vm52	I_Norheim_C	Convolvulus arvensis	Germany	JQ977739
-	Vm52	Charente-2	Hyalesthes obsoletus	France	AM992099
5 -	Vm53	P7	Catharanthus roseus	Lebanon	AM992100
ł	Vm53	Tsol89	Vitis vinifera	Georgia	KT184878
	Vm53	Kigu94	Vitis vinifera	Georgia	KT184878
	Vm54	P42/11	Vitis vinifera	Italy	KJ145356
	Vm55	T2 92	Solanum lycopersicum	Italy	AM992106
	Vm56	36861 SLO C	Convolvulus arvensis	Slovenia	10977741
	Vm57	CrHo12 721	Hydlasthas obsolatus	Austria	K 1/60731
	Vm58	Mag1	Vitis vinifora	Italy	HM008613
	V 111.20 V/m50	LIV 7N	Huglasthas absolution	Italy	KN1000013
	V III) V		Invalenthes obsoletus	Italy	NIVI223808
	V 11158		11yulesines obsoletus	Italy	NIVI22380/
	vm59	MK94	vitis vinifera	Nacedonia	KF95/606
	V m60	CrH012_650	nyalesthes obsoletus	Austria	KJ469/25
	Vm61	VV12_2/4	Vitis vinifera	Austria	KJ469726
	Vm62	425/11	Vitis vinifera	Italy	KJ145348
	Vm63	Vv12_III6	Vitis vinifera	Austria	KJ469733
	Vm64	Carv1	Convolvulus arvensis	Georgia	KT184867
	Vm65	Carv2	Convolvulus arvensis	Georgia	KT184868
	Vm66	Char7	Vitis vinifera	Georgia	KT184869
	Vm67	Char8	Vitis vinifera	Georgia	KT184870
	Vm68	Sape19	Vitis vinifera	Georgia	KT184871
	Vm69	GoMt25	Vitis vinifera	Georgia	KT184872
	Vm70	Kisi38	Vitis vinifera	Georgia	KT184873
	Vm71	Rkat47	Vitis vinifera	Georgia	KT184874
	Vm71	Sape51	Vitis vinifera	Georgia	KT184874
	Vm71	Sape62	Vitis vinifera	Georgia	KT184874
	Vm72	Khik70	Vitis vinifera	Georgia	KT184875
	Vm73	Amla77	Vitis vinifera	Georgia	KT184876
	Vm74	Sabu8/	Vitis vinifera	Georgia	KT184877
	Vm75	I N-b	Salvia miltiorrhiza	China	KU600116
	Vm75	LN 0 LN-2	Salvia miltiorrhiza	China	KU600115
	Vm75	LN-a LV 6	Salvia miltiorrhiza	China	KU600113
	Vm75		Salvia miliorini2d Salvia milioruhiza	China	KU600114
	V 111 / J V m75		Salvia milliorrniza	China	KU000113
	V III / J Vm75	L1-4 SZ0	Salvia milliorrniza	China	KU000112
	V III / J	52-9 57 9	Saivia milliorrhiza	China	KUOUUIII KUKOOIIO
	vm/5	SZ-8	Saivia miltiorrhiza	China	KU600110
	Vm/5	5Z-/	Salvia militorrhiza	China	KU000109
	Vm/5	LN-3	Salvia miltiorrhiza	China	KU600108
	Vm75	LN-2	Salvia miltiorrhiza	China	KU600107
	Vm75	LN-1	Salvia miltiorrhiza	China	KU600106
	Vm76	G24-13	Vitis vinifera	Bosnia & Herzegovina	KT766176
	Vm76	05-09	Vitis vinifera	Bosnia & Herzegovina	KT766163
	Vm76	PM2	Solanum tuberosum	Montenegro	KU588193
	Vm77	12-11	Vitis vinifera	Bosnia & Herzegovina	KT766169
	Vm78	HY.8B	Hyalesthes obsoletus	Italy	KM225878
	Vm79	HY.6B	Hyalesthes obsoletus	Italy	KM225873
	Vm79	HY.25B	Hyalesthes obsoletus	Italy	KM225872
	Vm80	Bi.2	Convolvulus arvensis	Italy	KM225860
	Vm80	HY.53B	Hyalesthes obsoletus	Italy	KM225859
	V	Son24 2015	Vitis vinifora	Italy	ME182858

2 3 4	47
5 6 7 8	
9	
10 11 12	47
12 13 14	47
15 16	47
17 18	48
19 20	48
21 22	48
23 24	48
25 26	48
27 28 20	48
29 30 31	48
32 33	48
34 35	48
36 37	48
38 39	49
40 41	49
42 43	49
44 45 46	49
40 47 48	49
49 50	49
51 52	49
53 54	49
55 56	49
57 58	-
59 60	

476 **Table S1.** Sequence variants of the gene *vmp1* among '*Ca*. P. solani' strains available in GenBank (part IV)

Vm82 San49 2016 Vitis vinifera Italy MF182862 Vm84 San5_2016 Vitis vinifera Italy MF182864 Vm85 San5_2016 Vitis vinifera Italy MF182865 Vm86 San5_2016 Vitis vinifera Italy MF182865 Vm85 San5_2016 Vitis vinifera Italy MF182865 Vm86 San5_2016 Vitis vinifera Italy MF182867 Vm87 San43_2016 Vitis vinifera Italy MF182867	Vm82 San49 2016 Vitis vinifera Italy MF182862 Vm84 San57_2016 Vitis vinifera Italy MF182864 Vm85 San57_2016 Vitis vinifera Italy MF182865 Vm85 San5_2016 Vitis vinifera Italy MF182866 Vm85 San5_2016 Vitis vinifera Italy MF182865 Vm86 San52_2016 Vitis vinifera Italy MF182867 Vm87 San43_2016 Vitis vinifera Italy MF182867	Sequence variant	Strain	Host	Location	Acc. No. vmp1
Vm83 San11_2016 Vitis vinifera Italy MF182863 Vm84 San5_2016 Vitis vinifera Italy MF182865 Vm86 San56_2016 Vitis vinifera Italy MF182866 Vm87 San43_2016 Vitis vinifera Italy MF182867	Vm83 San1_2016 Vitis vinifera Italy MF182864 Vm85 San5_2016 Vitis vinifera Italy MF182865 Vm86 San56_2016 Vitis vinifera Italy MF182866 Vm87 San43_2016 Vitis vinifera Italy MF182867	Vm82	San49_2016	Vitis vinifera	Italy	MF182862
vm84 Vm85 San5 Vm86 San56_2016 Vitis vinifera Italy MF182866 Vm87 San43_2016 Vitis vinifera Italy MF182867 MF1828	Vm84 San5/_2016 Vitis vinifera Italy MF182865 Vm86 San56_2016 Vitis vinifera Italy MF182866 Vm87 San43_2016 Vitis vinifera Italy MF182867	Vm83	San11_2016	Vitis vinifera	Italy	MF182863
Vindo Sando 2016 Vitis vinifera Italy MF182865 Vm87 San43_2016 Vitis vinifera Italy MF182867	Vinos Sands_2016 Vitis vinifera Italy MF182866 Vm87 San43_2016 Vitis vinifera Italy MF182867	Vm84	San5 2016	Vitis vinifera	Italy	MF182864 MF182864
Vm87 San43_2016 Vitis vinifera Italy MF182867	Vm87 San43_2016 Vitis vinifera Italy MF182867	v 11185 Vm86	San5_2016 San56_2016	v ilis vinifera Vitis vinifera	Italy	MF182865
		Vm87	San43 2016	Vitis vinifera	Italy	MF182867
				5		

Supporting Information

Pierro et al. [Environment-driven selection of BNp strain populations]

Table S2. Sequence variants of the gene *stamp* among '*Ca*. P. solani' strains available in GenBank (part I)

Sequence variant	Strain	Host	Location	Acc. N. stamp
St1	Rqg50	Reptalus quinquecostatus	Serbia	KC703019
St1	11-11	Vitis vinifera	Bosnia & Herzegovina	KP739852
St1	115/11	Vitis vinifera	Italy	KJ145337
St1	17-11	Vitis vinifera	Bosnia & Herzegovina	KP739854
St1	20MN	Vitis vinifera	Montenegro	KJ926068
St1	353/11	Vitis vinifera	Italy	KJ145338
St1	45MN	Convolvulus arvensis	Montenegro	KJ926069
St1	72MN	Vitex agnus-castus	Montenegro	KJ926070
St1	Ag4a	Vitis vinifera	Italy	KJ145377
St1	B1	Vitis vinifera	Italy	KJ145378
St1	C45	Convolvulus arvensis	Macedonia	KP337319
St1	CrAr12_722_2	Anaceratagallia ribauti	Austria	KJ469722
St1	CrHo12_721	Hyalesthes obsoletus	Austria	KJ469722
St1	G21-13	Vitis vinifera	Bosnia & Herzegovina	KP739856
St1	G22-13	Vitis vinifera	Bosnia & Herzegovina	KP739849
St1	G23-13	Vitis vinifera	Bosnia & Herzegovina	KP739846
St1	G24-13	Vitis vinifera	Bosnia & Herzegovina	KP739847
St1	G4-13	Vitis vinifera	Bosnia & Herzegovina	KP739853
St1	G6-13	Vitis vinifera	Bosnia & Herzegovina	KP739848
St1	Gb1	Phaseulus vulgaris	Serbia	KM977907
St1	Ho375	Hyalesthes obsoletus	Montenegro	KJ926071
St1	Ho66-2	Hyalesthes obsoletus	Montenegro	KJ926072
St1	HoC202	Hyalesthes obsoletus	Macedonia	KP337320
St1	Mp46	Vitis vinifera	Italy	KJ145379
St1	P25/11	Vitis vinifera	Italy	KJ145339
St1	PM1	Solanum tuberosum	Montenegro	KU588188
St1	PM2	Solanum tuberosum	Montenegro	KU588189
St1	PS8	Solanum tuberosum	Serbia	KP877599
St1	PS8Ho	Hvalesthes obsoletus	Serbia	KP877600
St1	PS8Rp	Reptalus panzeri	Serbia	KP877601
St1	PS9	Solanum tuberosum	Serbia	KP877602
St1	Rpg47	Rentalus panzeri	Serbia	KC703020
St1	Vv12 III6	Vitis vinifera	Austria	KJ469722
St1	Vv5	Vitis vinifera	Serbia	KC703021
St2	Rag31	Reptalus auinauecostatus	Serbia	KC703017
St2	Br8	Convolvulus arvensis	Croatia	KJ573597
St2	C2 R9950	Anium graveolens	Bosnia & Herzegovina	KU295506
St2	Ho41-2	Hvalesthes obsoletus	Montenegro	KJ926065
St2	P10	Capsicum annuum	Bosnia & Herzegovina	KU295504
St2	P6	Capsicum annuum	Bosnia & Herzegovina	KU295502
St2	PS4	Solanum tuberosum	Serbia	KP877588
St2 St2	PS4Ho	Hvalesthes obsoletus	Serbia	KP877589
St2	PS5	Solanum tuherosum	Serbia	KP877590
St2	PS5Ho	Hyalesthes absoletus	Serbia	KP877501
St2	PS5Rn	Rentalus nanzeri	Serbia	KP877592
St2 St2	PS6	Solanum tuberosum	Serbia	KP877592
S12 St7	PS6H0	Hvalesthes absolution	Serbia	K P87750/
S12 St7	PS6Ra	Rentalus aujuanecostatus	Serbia	KP877505
512	Vy12 Kn6	Vitis vinifora	Austria	KI 07737
512	V_{12} KIIO V_{217}	v ilis vinijera Vitis vinifora	Sorbio	KJ407/24 KC702019
512	16MN	v uis vinijera Vitis vinifera	Montenarra	KC/03018 K1026072
513	10IVIIN 20.00	v ilis vinijera Vitia vinifara	Nontenegro	KJ9200/3 VD720951
513	30-09 42 MDI	vilis vinijera	Dosnia & Herzegovina	Nr/39831 V 1026074
513	43IVIIN	Convolvulus arvensis	womenegro	KJ9200/4

1	
2	
3	
4	
5	
6	
7	
8	
g	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
20 21	
20 21 22	
20 21 22 23	
20 21 22 23 24	
20 21 22 23 24 25	
20 21 22 23 24 25 26	
20 21 22 23 24 25 26 27	
20 21 22 23 24 25 26 27 28	
20 21 22 23 24 25 26 27 28 29	
20 21 22 23 24 25 26 27 28 29 30	
20 21 22 23 24 25 26 27 28 29 30 31	
20 21 22 23 24 25 26 27 28 29 30 31 32	
20 21 22 23 24 25 26 27 28 29 30 31 32 33	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	

Table S	2. Sequence variants of	of the gene	stamp among 'Ca. P. so	lani' strains avail	able in GenBanl
	Sequence variant	Strain	Host	Location	Acc. N. stamp
	Sequence variant St3	Strain 79MN	Host Vitex agnus-castus	Location Montenegro	Acc. N. <i>stamp</i> KJ926075

Sequence variant	Strain	Host	Location	Acc. N. stamp
St3	79MN	Vitex agnus-castus	Montenegro	KJ926075
St3	Ho389	Hyalesthes obsoletus	Montenegro	KJ926076
St3	MK66	Vitis vinifera	Macedonia	KF957608
St3	P5	Capsicum annuum	Bosnia & Herzegovina	KU295501
St3	P7	Catharanthus roseus	Lebanon	FN813258
St3	PS7	Solanum tuberosum	Serbia	KP877596
St3	PS7Ho	Hyalesthes obsoletus	Serbia	KP877597
St3	PS7Rp	Reptalus panzeri	Serbia	KP877598
St3	Rpm35	Reptalus panzeri	Serbia	KC703015
St3	Vv12.751	Vitis vinifera	Austria	KJ469723
St4	G2	Vitis vinifera	Macedonia	KP337318
St4	GR328	Capsicum annuum	Greece	FN813253
St4	Ho10 2	Hydlasthas obsolatus	Montenegro	K 1026067
St4	MD11	Trydiestnes obsoletus	Dosnio & Horzogovino	KJ920007
514		Zea mays	Dosnia & Herzegovilla	KU293309
St4	MB4	Zea mays	Bosnia & Herzegovina	KU295507
St4	MB6	Zea mays	Bosnia & Herzegovina	KU295508
St4	PS1	Solanum tuberosum	Serbia	KP877583
St4	PS1Rp	Reptalus panzeri	Serbia	KP877584
St4	PS1Rq	Reptalus quinquecostatus	Serbia	KP877585
St4	Rpg39	Reptalus panzeri	Serbia	KC703009
St4	Rpm34	Reptalus panzeri	Serbia	KC703010
St4	Rqg60	Reptalus quinquecostatus	Serbia	KC703011
St4	STOL	Capsicum annuum	Serbia	FN813261
St4	Vexp Rpg11	Reptalus panzeri	Serbia	KC703013
St4	Vexn Rnm5	Reptalus panzeri	Serbia	KC703014
St4	Vv21	Vitis vinifera	Serbia	KC703012
St5	215/11	Vitis vinifera	Italy	K 11/15320
St5	215/11	Vitis vinifera	Italy	KJ145329 KJ145329
515	26//11	Vitis vinijera	Italy	KJ145552
SIS St5	313/11	Vilis vinijera	Italy	KJ145550
St5	425/11	Vitis vinifera	Italy	KJ145335
Sto	/8/11	Vitis vinifera	Italy	KJ145334
St5	Cal3_RF	Convolvulus arvensis	Austria	KJ469721
St5	CrHo12_601	Hyalesthes obsoletus	Austria	KJ469721
St5	GGY	Vitis vinifera	Germany	FN813256
St5	HoC205	Hyalesthes obsoletus	Macedonia	KP337315
St5	LA6_I_C	Convolvulus arvensis	Germany	JQ977720
St5	NGA9	Hyalesthes obsoletus	Slovenia	FN813262
St5	P136/11	Vitis vinifera	Italy	KJ145336
St5	P51/11	Vitis vinifera	Italy	KJ145331
St5	P75/11	Vitis vinifera	Italy	KJ145333
St5	Vv12 752	Vitis vinifera	Austria	KJ469721
St5	Vv12_754	Vitis vinifera	Austria	KJ469721
St5	San23 2015	Vitis vinifera	Italy	MF182869
St6	MK44	Vitis vinifera	Macedonia	KF957607
St6	\$7	Urtica dioica	Slovenia	10077710
St0 St7	56	Urtica dioica	Itoly	10077718
517	40 MN		Mantanaana	V 1026079
518	49MIN	Urilea aloica	Montenegro	KJ920078
St8	4MIN	vitis vinijera	Montenegro	KJ926077
St8	BN-Yan1	Vitis vinifera	Italy	KX151182
St8	Ho13_838	Hyalesthes obsoletus	Austria	KJ469720
St8	Ho13-8	Hyalesthes obsoletus	Montenegro	KJ926079
St8	HoU190	Hyalesthes obsoletus	Macedonia	KP337321
St8	S5	Urtica dioica	Italy	JQ977717
St8	SB5	Vitis vinifera	Croatia	FN813266
St9	60/11	Vitis vinifera	Italy	KJ145345
St9	07-11	Vitis vinifera	Croatia	KP274915
~ ~ ~		17	Itoly	V 11 45 207
St9	Aa25	Vitis vinitera	ILAIV	NJ140.007

7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
52	
50	
27	
00	

Table S2. Sequence variants of the gene *stamp* among '*Ca*. P. solani' strains available in GenBank (part III)

Sequence variant	Strain	Host	Location	Acc. N. stamp
St9	Ho13_1006	Hyalesthes obsoletus	Austria	KJ469718
St9	McII	Vitis vinifera	Italy	KJ145385
St9	52 LC	Urtica aloica	Slovenia	JQ9///14
St10 St10	LG PO	Solanum lycopersicum	France	FIN813239
St10	PU San21 2015	Vitia vinifona	Italy	FIN813270
St10 St11	Sali21_2015	Vitis vinijera Vitis vinifena	Cormony	EN912267
St11 St11	19-23 22MN	Vitis vinijera Vitis vinifera	Montonogra	F 1026080
St11 St11	67MN	Vitis vinijera Urtiga digiga	Montenegro	KJ920080 K 1026081
St11 St11	CrHo12 650	Hydlesthes obsoletus	Austria	KJ920081 KJ460716
St11 St11	E111012_050	Hydiesthes obsoletus	Germany	FN813263
St11	GI	Vitis vinifera	Macedonia	KP337322
St11	GBr2	Vitis vinifera Vitis vinifera	Croatia	K 1573590
St11	GBr4	Vitis vinifera Vitis vinifera	Croatia	K 1573591
St11	GVu1	Vitis vinifera Vitis vinifera	Croatia	KJ573592
St11	GVu2	Vitis vinifera	Croatia	K1573593
St11	H17	Hvalesthes obsoletus	Croatia	KJ573594
St11	H18	Hvalesthes obsoletus	Croatia	KJ573595
St11	H21	Hyalesthes obsoletus	Croatia	KJ573596
St11	Ho36-8	Hvalesthes obsoletus	Montenegro	KJ926082
St11	HoU17	Hvalesthes obsoletus	Macedonia	KP337323
St11	MK94	Vitis vinifera	Macedonia	KF957609
St12	L646	Lavandula angustifolia	France	FN813265
St13	GR13	Vitis vinifera	Greece	FN813264
St14	С	Solanum lycopersicum	France	FN813260
St15	P7	Capsicum annuum	Bosnia & Herzegovina	KU295503
St15	Tsol89	Vitis vinifera	Georgia	KT184885
St15	Kiqu84	Vitis vinifera	Georgia	KT184885
St16	H299	Hyalesthes obsoletus	France	FN813254
St16	L973	Lavandula angustifolia	France	FN813255
St17	Ate17	Vitis vinifera	Italy	KJ145386
St18	266/11	Vitis vinifera	Italy	KJ145344
St18	Aaq1	Vitis vinifera	Italy	KJ145383
St18	Mdxsain	Vitis vinifera	Italy	KJ145384
St18	San2_2015	Vitis vinifera	Italy	MF182870
St19	CrHo13_1183	Hyalesthes obsoletus	Austria	KJ469719
St19	S3	Urtica dioica	Slovenia	JQ977715
St20	136/11	Vitis vinifera	Italy	KJ145340
St20	166/11	Vitis vinifera	Italy	KJ145343
St20	Ate7	Vitis vinifera	Italy	KJ145381
St20	Mca21	Vitis vinifera	Italy	KJ145382
St20	P10/11	Vitis vinifera	Italy	KJ145342
St20	P42/11	Vitis vinifera	Italy	KJ145341
St21	Aal6	Vitis vinifera	Italy	KJ145380
St22	Mvercer2	Vitis vinifera	Italy	KJ145375
St22	San24_2015	Vitis vinifera	Italy	MF182871
St23	Lot et Garonne	Solanum lycopersicum	France	FN813257
St24	H0U93	Hyalesthes obsoletus	Macedonia	KP33/314
St24	U/9	Hyalesthes obsoletus	Macedonia	KP33/313
St25	HOU80	Hydiestnes obsoletus	Macedonia	KP33/309
5(20	U2 U21105	nyulesines obsoletus	Magadaria	Kr33/310 Kp227211
S(20 S+27	HUU85	Invalesines obsoletus	Macedonia	NF33/311 VD227212
5121	U/U HoC69	Unicu uioica	Magadonia	NE 33/312 V D227214
5120 St28	DC08	Solanum tubarosum	Serbio	KE 33/310 KD877587
5120	F 55 Vy12 274	Vitis vinifora	Austria	K 1/60717
St29	10MN	vius vinijera Vitis vinifera	Montenegro	K 1926066
St30	04-09	Vitis vinifera	Croatia	KP274914
5650	07-07	r nus vinijeru	Cittatia	

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
2∠ 22	
33 24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>⊿</u> 0	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

506	Table S2. Sequer	nce variants of the	gene stamp among	g 'Ca. P. solani	' strains available in	GenBank (part IV))
						(

Sequence variant	Strain	Host	Location	Acc. N. stamp
St30	G25	Vitis vinifera	Macedonia	KP337317
St30	PS10Ho	Hyalesthes obsoletus	Serbia	KP877603
St30	PS10Rq	Reptalus quinquecostatus	Serbia	KP877604
St30	Vv24	Vitis vinifera	Serbia	KC703022
St31	BG4560	Vitis vinifera	Bulgaria	FN813252
St31	PS2	Solanum tuberosum	Serbia	KP877586
St31	Rqg42	Reptalus quinquecostatus	Serbia	KC703016
St32	Mp49	Vitis vinifera	Italy	KJ145376
St33	OSESLO2	Hyalesthes obsoletus	Slovenia	FN813269
St33	Rome15	Hyalesthes obsoletus	Italy	FN813268
St33	S4	Urtica dioica	Italy	JQ977716
St34	S1	Urtica dioica	Germany	JQ977713
St35	Carv1	Convolvulus arvensis	Georgia	KT184879
St36	Carv2	Convolvulus arvensis	Georgia	KT184880
St37	Char7	Convolvulus arvensis	Georgia	KT184881
St37	Kisi38	Vitis vinifera	Georgia	KT184881
St37	Rkat47	Vitis vinifera	Georgia	KT184881
St37	Sape51	Vitis vinifera	Georgia	KT184881
St37	Sape62	Vitis vinifera	Georgia	KT184881
St38	Char8	Convolvulus arvensis	Georgia	KT184882
St38	Sape19	Vitis vinifera	Georgia	KT184882
St38	GoMt25	Vitis vinifera	Georgia	KT184882
St39	Amla77	Vitis vinifera	Georgia	KT184883
St40	Sabu84	Vitis vinifera	Georgia	KT184884
St41	20-set	Vitis vinifera	Bosnia & Herzegovina	KT766177
St42	154-10	Vitis vinifera	Bosnia & Herzegovina	KP739855
St43	03-nov	Vitis vinifera	Bosnia & Herzegovina	KP739850
St44	C1 Rog35/Rag31	Anium graveolens	Bosnia & Herzegovina	KU295505
St45	Ho1152	Hydlesthes obsoletus	Montenegro	KM977906
St45 St46	RO161	Rentalus auinauecostatus	France	L N823951
St47	San3 2015	Vitis vinifera	Italy	MF182872
St48	San4_2015	Vitis vinifera	Italy	MF182873
St40 St49	San6_2015	Vitis vinifera	Italy	MF182874
St50	San10_2015	Vitis vinifera	Italy	ME182875
St51	San10_2015	Vitis vinijera Vitis vinifara	Italy	MF182875
St51 St52	San22_2015	Vitis vinijera Vitis vinifera	Italy	ME182870
St52 St52	Santo_2010	Vitis vinijera Vitis vinifera	Italy	ME182878
St53 St54	Sant6_2010	Vitis vinijera Vitis vinifena	Italy	ME102070
SL34 S+55	San17_2016	Vilis vinijera Vitis vinifena	Italy	ME102079
SL33 S+56	San17_2010	Vilis vinijera Vitis vinifena	Italy	ME102000
5150	Sali28_2010	Vilis vinijera Vitis vinifera	Italy	ME102001
5157	San29_2016	vilis vinijera	Italy	MF182882
STSY .	San45 2016	Vitis vinifera	Italy	MF182883

515	Diarra at	<i>al</i> (E	nvironment d	lriven selection of BN	In strain populati
515	Table S3. vm	и. [Е. 1p1/stc	amp types of 'C	<i>Ca</i> . P. solani' strains av	ailable in GenBank
		stamp	Strain	Uost	Country
	Vmp1 Vm10	Stamp St2	Rog31	Reptalus auinauecostatus	Serbia
	Vm10	St2	Vv17	Vitis vinifera	Serbia
	Vm10	St4	Rpg39	Reptalus panzeri	Serbia
	Vm10	St4	Rpm34	Reptalus panzeri	Serbia
	Vm10	St4	Rqg60	Reptalus quinquecostatus	Serbia
	VIIII0 Vm10	St4 St4	Veyn Rng11	Reptalus panzeri	Serbia
	Vm10	St4	Vexp Rpg11 Vexp Rpm5	Reptalus panzeri Reptalus panzeri	Serbia
	Vm10	St4	Vv21	Vitis vinifera	Serbia
	Vm11	St5	LA6 I C	Convolvulus arvensis	Germany
	Vm12	St5	GGY	Vitis vinifera	Germany
	Vm14	St2	Vv12_Kn6	Vitis vinifera	Austria
	Vm14	St3	Vv12_751	Vitis vinifera	Austria
	Vm14	St5	Vv12_754	Vitis vinifera	Austria
	Vm15	St9	60/11	Vitis vinifera	Italy
	Vm15	St9	Aa25	Vitis vinifera	Italy
	Vm15	St9	Hol3_1006	Hyalesthes obsoletus	Austria
	Vm18	518	H015_858	Hydiestnes obsoletus	Austria
	V III 23 Vm 25	St19 St6	CIH015_1185 MK44	Vitis vinifora	Austria
	Vm27	St21	Aa16	Vitis vinifera	Italy
	Vm28	St21	Rag50	Reptalus auinauecostatus	Serbia
	Vm28	St1	17-nov	Vitis vinifera	Bosnia & Herzegovin
	Vm28	St1	CrAr12 722 2	Anaceratagallia ribauti	Austria
	Vm28	St1	Rpg47	Reptalus panzeri	Serbia
	Vm28	St5	Vv12_752	Vitis vinifera	Austria
	Vm28	St18	Aaq1	Vitis vinifera	Italy
	Vm28	St20	136/11	Vitis vinifera	Italy
	Vm28	St20	166/11	Vitis vinifera	Italy
	Vm28	St20	Mca21	Vitis vinifera	Italy
	V III28 Vm23	St20 St5	P10/11 CrHo12 601	Vills vinijera	
	VIII33 Vm34	St11	19-25	Vitis vinifera	Germany
	Vm35	St10	PO	Hvalesthes obsoletus	France
	Vm36	St31	Rqg42	<i>Reptalus quinquecostatus</i>	Serbia
	Vm38	St10	ĹĞ	Solanum lycopersicum	France
	Vm39	St5	78/11	Vitis vinifera	Italy
	Vm39	St5	San31_2016	Vitis vinifera	Italy
	Vm40	St32	Mp49	Vitis vinifera	Italy
	Vm41	St5	San47_2016	Vitis vinifera	Italy
	Vm42	St5	San23_2015	Vitis vinifera Vitis vinifera	Italy
	Vm42	St22 St10	Sall24_2010 San21_2015	v uis vinijera Vitis vinifera	Italy Italy
	v 11143 Vm43	St10 St54	$San 2 1_2 2015$ San 16_2016	vius vinijera Vitis vinifera	Italy Italy
	Vm43 Vm43	St55	San17 2016	Vitis vinifera	Italy
	Vm43	St56	San28 2016	Vitis vinifera	Italy
	Vm44	St22	Mvercer2	Vitis vinifera	Italy
	Vm45	St5	315/11	Vitis vinifera	Italy
	Vm45	St5	P136/11	Vitis vinifera	Italy
	Vm45	St5	P75/11	Vitis vinifera	Italy
	Vm45	St18	San2_2015	Vitis vinifera	Italy
	Vm46	St1	115/11	Vitis vinifera	Italy
	Vm46	St1	353/11	Vitis vinifera	Italy
	Vm46	St1	Ag4a	Vitis vinifera	Italy

Table S3. vmp1/stamp types of 'Ca. P. solani' strains available in GenBank (part II)

vmp1	<u>stamp</u>	Strain	Host	Country
Vm46	St1	Mp46	Vitis vinifera	Italy
Vm46	St1	PM1	Solanum tuberosum	Montenegro
Vm46	St1	Vv5	Vitis vinifera	Serbia
Vm46	St3	Rpm35	Reptalus panzeri	Serbia
Vm46	St5	287/11	Vitis vinifera	Italy
Vm46	St30	Vv24	Vitis vinifera	Serbia
Vm50	St5	Ca13_RF	Convolvulus arvensis	Austria
Vm53	St15	P7	Catharanthus roseus	Lebanon
Vm53	St15	Tsol89	Vitis vinifera	Georgia
Vm53	St15	Kigu84	Vitis vinifera	Georgia
Vm54	St20	P42/11	Vitis vinifera	Italy
Vm57	St1	CrHo12 721	Hvalesthes obsoletus	Austria
Vm59	St11	MK94	Vitis vinifera	Macedonia
Vm60	St11	CrHo12 650	Hvalesthes obsoletus	Austria
Vm61	St29	Vv12 274	Vitis vinifera	Austria
Vm62	St5	425/11	Vitis vinifora	Italv
Vm63	StJ St1	$\sqrt{\frac{123}{11}}$	r uis vinijera Vitis vinifera	Austria
Vm64	St1 St25	Corv1	Convolvulus anvansis	Georgia
Vm65	St35 St26	Carv ²	Convolvulus arvensis	Georgia
VIIIOS	5150	Carv2	Convolvulus arvensis	Georgia
V moo	513/	Char/	Convolvulus arvensis	Georgia
Vm6/	5138	Char8	Convolvulus arvensis	Georgia
V m68	St38	Sape19	Vitis vinifera	Georgia
Vm69	St38	GoMt25	Vitis vinifera	Georgia
Vm/0	St37	K1s138	Vitis vinifera	Georgia
Vm71	St37	Rkat47	Vitis vinifera	Georgia
Vm71	St37	Sape51	Vitis vinifera	Georgia
Vm71	St37	Sape62	Vitis vinifera	Georgia
Vm73	St39	Amla77	Vitis vinifera	Georgia
Vm74	St40	Sabu84	Vitis vinifera	Georgia
Vm76	St1	G24-13	Vitis vinifera	Bosnia & Herzegovin
Vm76	St1	PM2	Solanum tuberosum	Montenegro
Vm81	St22	San24_2015	Vitis vinifera	Italy
Vm82	St18	San49_2016	Vitis vinifera	Italy
Vm83	St18	San11_2016	Vitis vinifera	Italy
Vm84	St5	San37_2016	Vitis vinifera 🧹	Italy
Vm85	St10	San5_2016	Vitis vinifera	Italy
Vm86	St10	San56_2016	Vitis vinifera	Italy
Vm87	St5	San35 2016	Vitis vinifera	Italy
Vm87	St18	San43 2016	Vitis vinifera	Italy

51 523

districts,

1																			
2																			
3																			
4	524							Sup	port	ing]	[nfor	mat	ion						
5								I.	I	8									
6	525			P	ierı	o et al	!. [Env:	ironme	ent-dri	ven se	election	n of B	Np str	ain po	pulatio	ons]			
7			• •,			<i>·</i> 1	•. 、			<i>·</i> ·	`						. 1		
8	526	Table S4. Genetic d	iversity	based on nucleo	tide	(1n wl	nite) an	d amin	o acid	(in gre	y) sequ	iences	among	vmp1/	stamp	types,	Identifi	ed in t	he five Tusca
9	527	grouped in the same	and in	distinct phyloger	ietic	ciuste	ers												
10		•	v	mp1/stamp															
12		-	cluster	type	#	1	2	3	4	5	6	7	8	9	10	11	12	13	14
13		•		VmTus2/StTus1	1	ID	0,983	0,979	0,905	0,882	0,945	0,929	0,902	0,886	0,905	0,895	0,91	0,908	0,893
14			1	VmTus2/StTus3	2	0,992	ID	0,981	0,89	0,884	0,93	0,93	0,886	0,902	0,92	0,88	0,895	0,893	0,908
15				VmTus2/StTus5	3	0,99	0,992	ID	0,888	0,892	0,929	0,949	0,885	0,886	0,905	0,878	0,893	0,891	0,893
16				VmTus4/StTus1	4	0,943	0,936	0,933	ID	0,972	0,954	0,934	0,893	0,876	0,885	0,915	0,937	0,947	0,93
17			2	VmTus4/StTus4	5	0,928	0,929	0,933	0,984	ID	0,928	0,938	0,867	0,868	0,877	0,889	0,911	0,921	0,922
18			-	VmTus5/StTus1	6	0,975	0,967	0,965	0,965	0,951	ID	0,979	0,9	0,883	0,922	0,932	0,954	0,944	0,927
19				VmTus5/StTus5	7	0,965	0,967	0,975	0,956	0,956	0,99	ID	0,88	0,881	0,92	0,912	0,934	0,923	0,925
20 21				VmTus3/StTus1	8	0,956	0,949	0,947	0,938	0,923	0,951	0,941	ID	0,982	0,944	0,867	0,889	0,901	0,884
21			3	VmTus3/StTus3	9	0,949	0,956	0,948	0,931	0,925	0,943	0,943	0,992	ID	0,961	0,85	0,872	0,884	0,901
23				VmTus8/StTus3	10	0,96	0,967	0,959	0,932	0,925	0,963	0,962	0,972	0,98	ID	0,883	0,905	0,886	0,903
24			4	VmTus1/StTus1	11	0,95	0,943	0,94	0,947	0,932	0,967	0,957	0,936	0,929	0,942	ID	0,977	0,918	0,901
25				VmTus7/StTus1	12	0,958	0,951	0,948	0,958	0,944	0,978	0,969	0,948	0,94	0,953	0,987	ID	0,93	0,913
26			5	VmTus6/StTus1	13	0,955	0,948	0,946	0,962	0,947	0,971	0,961	0,952	0,945	0,942	0,958	0,965	ID	0,982
27			-	VmTus6/StTus3	14	0,948	0,955	0,947	0,954	0,948	0,963	0,963	0,945	0,952	0,949	0,951	0,958	0,992	ID
28	528	•												Ń					
29	529	Mean % nucleotide se	auence i	dentity within clus	ters	: vmn1/	stamp-1	: 99.13	: vmn1/	stamp-	2: 96.7:	vmn1/s	tamp-3	98.13:	vmp1/s	tamp-4	: 98.7: 1	vmn1/st	amp-5: 99.2.
30 21	530	Mean % nucleotide se	quence i	dentity of the clus	ter v	mp1/sta	amp-1 v	s: vmpl	/stamp	2:95.1	3; vmp1	l/stamp	-3: 95.4	5; vmp	l/stamp	-4: 94.8	33; vmp	l/stamp	-5: 94.98.
ו כ רכ	531	Mean % nucleotide se	quence i	dentity of the clust	ter v	mp1/sta	amp-2 v	s: vmpl	/stamp-	-3: 93.9	7; vmp1	l/stamp	-4: 95.6	5; vmp	/stamp-	5: 95.80	5.	_	
22 22	532	Mean % nucleotide se	quence i	dentity of the clus	ter v	mp1/sta	amp-3 v	s: vmp1	/stamp-	4: 94.1	3; vmp1	l/stamp	-5: 94.7	5.					
27	533	Mean % nucleotide se	quence i	dentity of the clus	ter v	mp1/sta	amp-4 v	s vmp1	stamp-	5: 95.80).								
35	534 535	Mean % amino acid se	auence	identity of the clus	ter 1	mn/sta	$mn_1 \cdot c$	98 10· v	mn1/sta	mn_7.	05 08· 1	mn1/st	mn_2.	06 23. 1	mn1/st	amn_1.	97 70. 1	mn1/st	$amp_{-}5.98.20$
36	536	Mean % amino acid se	equence	identity of the clus	ter i	mp/sta	amp-1.)	/s: vmp	l/stamp	-2:91.2	27; vmp	l/stam	-3: 89.	74: vmp	l/stam	ump-4. p-4: 89.	18; vm	ol/stam	<i>p</i> -5: 89.76.
37	537	Mean % amino acid se	equence	identity of the clus	ter 1	vmp1/st	amp-2 v	s: vmp	l/stamp	-3: 88.′	76; vmp	1/stam	-4: 92.	30; vm	s/stamp	-5: 92.9	8.	1	
38	538	Mean % amino acid se	equence	identity of the clus	ter 1	mp1/st	amp-3 v	s: vmp	1/stamp	-4: 87.′	76; vmp	1/stamp	p-5: 89 .	31.					
39	539	Mean % amino acid se	equence	identity of the clus	ter 1	mp1/st/	amp-4 v	vs vmpl	/stamp-	5: 91.5	5.								
40																			
41																			
42																			
43																			
44																			
45																			

Annals of Applied Biology

	TABLES
Pierro <i>et al</i>	Environment-driven selection of BNn strai

Pierro et al. [Environment-driven selection of BNp strain populations]

Table 1. BNp genotype based on *tuf, vmp1* and *stamp* genes identified in five Tuscan districts on

Vitis vinifera cv. Chardonnay and Sangiovese (part I)

DNn strain	Vinovand	Managamant	District	Cultivar	<i>tuf</i> type	V type	seq. var.		
Divp su ani	vineyaru	wianagement	District	Cultival	<i>iuj</i> type	v-type	vmp1	stamp	
144	Marciano della Chiana	conventional	AR	Chardonnay	b				
146	Marciano della Chiana	conventional	AR	Chardonnay	b	V15	VmTus1	StTus1	
147	Marciano della Chiana	conventional	AR	Chardonnay	b			StTus5	
151	Marciano della Chiana	conventional	AR	Chardonnay	b			StTus3	
152	Marciano della Chiana	conventional	AR	Chardonnay	b				
149	Marciano della Chiana	conventional	AR	Sangiovese	b			StTus3	
154	Marciano della Chiana	conventional	AR	Sangiovese	b			StTus3	
155	Marciano della Chiana	conventional	AR	Sangiovese	b	V11	VmTus2	StTus5	
189	Barberino V. Elsa	conventional	FI	Sangiovese	b			StTus1	
190	Barberino V. Elsa	conventional	FI	Chardonnay	b	V11	VmTus2	StTus1	
192	Barberino V. Elsa	conventional	FI	Chardonnay	b	V4	VmTus7	StTus1	
193	Barberino V. Elsa	conventional	FI	Chardonnay	b	V11	VmTus3	StTus3	
194	Barberino V. Elsa	conventional	FI	Chardonnay	b			StTus3	
PI76	Tavernelle Val di Pesa	organic	FI	Chardonnay	b	V11			
PI77	Tavernelle Val di Pesa	organic	FI	Chardonnay	b	V11	VmTus3	StTus3	
PI78	Tavernelle Val di Pesa	organic	FI	Chardonnay	b			StTus5	
PI79	Tavernelle Val di Pesa	organic	FI	Chardonnay	b	V11			
184	Lastra a Signa	conventional	FI	Sangiovese	b	V11	VmTus3	StTus3	
185	Lastra a Signa	conventional	FI	Sangiovese	b	V11	VmTus3	StTus3	
186	Lastra a Signa	conventional	FI	Sangiovese	b	V11	VmTus8	StTus3	
187	Lastra a Signa	conventional	FI	Sangiovese	b	V11	VmTus3	StTus3	
188	Lastra a Signa	conventional	FI	Sangiovese	b	V11	VmTus3	StTus3	
180	Lastra a Signa	conventional	FI	Sangiovese	b			StTus1	
115	Lastra a Signa	conventional	FI	Sangiovese	b	V11	VmTus3		
PI41	Greve in Chianti (I)	conventional	FI	Sangiovese	b	V15	VmTus1	StTus1	
PI42	Greve in Chianti (I)	conventional	FI	Sangiovese	b	V15	VmTus1	StTus1	
PI43	Greve in Chianti (I)	conventional	FI	Sangiovese	а	V3	VmTus6	StTus1	
PI45	Greve in Chianti (I)	conventional	FI	Sangiovese	b			StTus1	
PI47	Greve in Chianti (I)	conventional	FI	Sangiovese	b	V11	VmTus2	StTus3	
PI48	Greve in Chianti (I)	conventional	FI	Sangiovese	b	V11	VmTus3	StTus1	
PI49	Greve in Chianti (I)	conventional	FI	Sangiovese	b	V11	VmTus3		
PI50	Greve in Chianti (I)	conventional	FI	Sangiovese	b	V11	VmTus3		
PI56	Greve in Chianti (I)	conventional	FI	Sangiovese	b	V11	VmTus3	StTus1	
PI57	Greve in Chianti (I)	conventional	FI	Sangiovese	b			StTus5	
PI87	Greve in Chianti (II)	organic	FI	Sangiovese	а			StTus5	
PI88	Greve in Chianti (II)	organic	FI	Sangiovese	b			StTus3	

Table 1. BNp genotype based on *tuf, vmp1* and *stamp* genes identified in five Tuscan districts on

Vitis vinifera cv. Chardonnay and Sangiovese (part II)

BNn strain	Vinevard	Management	District	Cultivar	<i>tuf</i> type	V-type	seq. var.	
Dr (p Sti uni	, mey ar a	management	District	Cultival	ug type	, cjpc	vmp1	stamp
48	Montecarlo (I)	conventional	LU	Chardonnay	а			StTus4
49	Montecarlo (I)	conventional	LU	Chardonnay	b	V11	VmTus3	StTus3
50	Montecarlo (I)	conventional	LU	Chardonnay	b	V1	VmTus4	StTus1
52	Montecarlo (I)	conventional	LU	Chardonnay	b	V11	VmTus3	StTus1
53	Montecarlo (I)	conventional	LU	Chardonnay	b	V11	VmTus3	StTus3
54	Montecarlo (II)	conventional	LU	Chardonnay	а			StTus4
201	Montecarlo (II)	conventional	LU	Chardonnay	b	V1	VmTus5	StTus1
203	Montecarlo (II)	conventional	LU	Chardonnay	b			StTus1
258	Montecarlo (II)	conventional	LU	Chardonnay	а	V11	VmTus3	StTus1
87	Massa	organic	MS	Sangiovese	b			
90	Massa	organic	MS	Chardonnay	а			StTus1
85	Massa	organic	MS	Sangiovese	b	V1	VmTus5	StTus5
86	Massa	organic	MS	Sangiovese	b			
209	Licciana Nardi	organic	MS	Chardonnay	b	V1	VmTus4	StTus4
11	Mulazzo	organic	MS	Chardonnay	а			
31	Carrara	organic	MS	Sangiovese	b	V11	VmTus3	StTus3
106	San Gimignano	conventional	SI	Chardonnay	b			StTus3
108	San Gimignano	conventional	SI	Chardonnay	b	V11	VmTus3	StTus3
109	San Gimignano	conventional	SI	Chardonnay	b	V11	VmTus3	StTus3
110	San Gimignano	conventional	SI	Chardonnay	b			StTus3
PI21	Gaiole in Chianti (I)	conventional	SI	Chardonnay	а			StTus5
PI22	Gaiole in Chianti (I)	conventional	SI	Chardonnay	b	V3	VmTus6	StTus3
PI24	Gaiole in Chianti (I)	conventional	SI	Chardonnay	a	V3	VmTus6	StTus3
PI25	Gaiole in Chianti (I)	conventional	SI	Chardonnay	а	V3		StTus2
PI11	Gaiole in Chianti (II)	conventional	SI	Chardonnay	b			StTus1
PI12	Gaiole in Chianti (II)	conventional	SI	Chardonnay	b			StTus3
PI14	Gaiole in Chianti (II)	conventional	SI	Chardonnay	b			StTus3
PI16	Gaiole in Chianti (II)	conventional	SI	Sangiovese	b			StTus3
PI17	Gaiole in Chianti (II)	conventional	SI	Sangiovese	b			StTus5
PI20	Gaiole in Chianti (II)	conventional	SI	Sangiovese	b			StTus3
PI68	Colle Val d'Elsa	conventional	SI	Chardonnay	b			StTus3
PI69	Colle Val d'Elsa	conventional	SI	Chardonnay	b			
PI61	Colle Val d'Elsa	conventional	SI	Sangiovese	b			
212	Montepulciano	conventional	SI	Sangiovese	b			StTus3
294	Montepulciano	conventional	SI	Sangiovese	b			StTus1
295	Montepulciano	conventional	SI	Sangiovese	а			StTus3
PI6	Montepulciano	conventional	SI	Sangiovese	b			StTus1
PI9	Montepulciano	conventional	SI	Sangiovese	а			StTus1
PI7	Montepulciano	conventional	SI	Sangiovese	b	V3	VmTus6	StTus1

Table 2. *vmp1* genetic variants of BNp strains identified in the vineyards localized in five Tuscan
districts in 2016, their prevalence, representative strains and sequence accession numbers deposited

551 in NCBI GenBank.

	Variant	No. of strains	Representative strain	Accession No.
	VmTus1 (Vm39)	3	146	MG874657
	VmTus2 (Vm41)	3	190	MG874658
	VmTus3 (Vm43)	18	Pi77	MG874659
	VmTus4 (Vm88)	2	209	MG874660
	VmTus5 (Vm89)	2	85	MG874661
	VmTus6 (Vm90)	4	Pi43	MG874662
	VmTus7 (Vm91)	1	192	MG874663
	VmTus8 (Vm92)	1	186	MG874664
552				
553				
554				
555				
556				
550				
557				
558				
559				
560				
561				
562				
563				
564				
565				
566				
567				
568				

Table 3. stamp genetic variants of BNp strains identified in the vineyards localized in the five

569

4 5	570	Tuscan districts	in 2016 their	r prevalence repr	esentative strains and	sequence acco	ession numbers
6	570		iii 2010, then	provulence, repr	contactive strains and	sequence uses	
7 8	571	deposited in NC	BI GenBank.				
9 10		·	Variant	Num. Of strains	Representative strain	Accession	
10			StTus1 (St5)	22	146	MG874665	
11			StTus2(St0)	1	Di 25	MG874666	
12			$\operatorname{StTus2}(\operatorname{St3})$	1	1 12J	MG874000	
13			StTus3 (St10)	29	P1//	MG8/466/	
14 1 <i>1</i>			StTus4 (St11)	3	209	MG874668	
15			StTus5 (St18)	8	85	MG874669	
10	572	-					
17	572						
10	E72						
19	575						
20							
21	574						
22							
23	575						
24 25							
25	576						
20							
27	577						
20							
30	578						
30							
37	579						
32	575						
34	580						
35	380						
36	E01						
37	201						
38	502						
39	582						
40							
41	583						
42							
43	584						
44							
45	585						
46							
47	586						
48							
49	587						
50							
51	588						
52	550						
53	500						
54	287						
55	500						
56	590						
57							
58							22
59							55
60							

Table 4. Agro-climatic conditions recorded in the five Tuscan districts considered in the present

study over two years (2015-2016).

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	<i>p</i> value ^b	C2 ^a	C1 ^a	Year	Parameters
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	*	8.4 ± 0.4	9.1 <u>+</u> 0.7	2015	Min Temp (C°)
Mean Temp (C°) 2015 14.4 ± 0.4 11.8 ± 0.1 Max Temp (C°) 2016 19.7 ± 0.2 15.2 ± 0.1 Rain (mm) 2016 19.5 ± 0.3 14.3 ± 0.1 Rain (mm) 2016 99.7 ± 14.4 706.2 ± 42.7 ET (mm) 2015 967.1 ± 33.2 798.4 ± 1.0 Data retrieved from the website https://www.politicheagricole.it * * The zone C1 includes the districts of Arcezo, Firenze and Siena (central-eastern Tus includes the districts of Arcezo, Firenze and Siena (central-eastern Tus includes the district of Lucca and Massa (north-western Tuscany); * * = statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences		7.6 <u>+</u> 0.2	8.8 <u>+</u> 0.6	2016	
Max Temp (C°) 2016 14.1 ± 0.5 11.0 ± 0.1 Max Temp (C°) 2015 19.7 ± 0.2 15.2 ± 0.1 Rain (mm) 2015 726.7 ± 13.4 706.2 ± 4.2 Rain (mm) 2016 897.4 ± 14.5 884.5 ± 7.8 ET (mm) 2016 86.0 ± 43.7 700.4 ± 7.5 Data retrieved from the website https://www.politicheagricole.it * * The zone C1 includes the districts of Arezzo, Firenze and Siena (central-eastern Tus includes the districts of Lucca and Massa (north-western Tuscany); b * = statistically significant differences (p < 0.05); ns = not statistically significant differences	*	11.8 ± 0.2	14.4 ± 0.4	2015	Mean Temn (C°)
Max Temp (C°) 2015 $19, 7 \pm 0.2$ $15, 2 \pm 0.1$ Rain (mm) 2015 $726, 7 \pm 13.4$ $706, 2 \pm 4.2$ Bar (mm) 2015 $977, 1 \pm 33.2$ 798.4 ± 1.0 ET (mm) 2016 $897, 4 \pm 14.5$ 884.5 ± 7.8 ET (mm) 2016 $897, 4 \pm 14.5$ 884.5 ± 7.8 Data retrieved from the website https://www.politicheagricole.it * * The zone C1 includes the districts of Arezzo, Firenze and Siena (central-castern Tus includes the districts of Lucca and Massa (north-western Tuscany); * * = statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p <		11.0 ± 0.1	<u>14.1 + 0.5</u>	2016	
Rain (mm) 2015 726.7 \pm 13.4 706.2 \pm 4.2 Rain (mm) 2016 897.4 \pm 14.5 884.5 \pm 7.8 ET (mm) 2016 86.0 \pm 43.7 700.4 \pm 7.5 Data retrieved from the website https://www.politicheagricole.it The zone C1 includes the districts of Arezzo, Firenze and Siena (central-eastern Tus includes the districts of Lucca and Massa (north-western Tuscany): ** = statistically significant differences (p < 0.05); ns = not statistically significant differences (p <	ns	15.2 ± 0.1	19.7 <u>+</u> 0.2	2015	Max Temp (C°)
Rain (mm)2015726.7 \pm 13.4706.2 \pm 7.82016897.4 \pm 14.5884.5 \pm 7.8ET (mm)2015967.1 \pm 33.2798.4 \pm 1.02016836.0 \pm 43.7700.4 \pm 7.5Data retrieved from the website https://www.politicheagricole.it'The zone C1 includes the districts of Arezzo, Firenze and Siena (central-eastern Tus ncludes the districts of Lucca and Massa (north-western Tuscany);'* = statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences		14.3 ± 0.1	19.5 ± 0.3	2016	······································
2016 89/.4 ± 14.3. 884.5 ± 7.8 ET (mm) 2015 967.1 ± 33.2 798.4 ± 1.0 Data retrieved from the website https://www.politicheagricole.it 1 1 'The zone C1 includes the districts of Arezzo, Firenze and Siena (central-eastern Tus includes the districts of Lucca and Massa (north-western Tuscany); * = statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically significa	ns	706.2 ± 4.2	726.7 ± 13.4	2015	Rain (mm)
ET (mm) 2015 96/.1 ± 33.2 798.4 ± 1.0 2016 836.0 ± 43.7 700.4 ± 7.5 Data retrieved from the websife https://www.politicheagricole.it 'The zone C1 includes the districts of Arezzo, Firenze and Siena (central-eastern Tus neludes the districts of Lucca and Massa (north-western Tuscany); '* = statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.		884.5 <u>+</u> 7.8	<u>897.4 + 14.5</u>	2016	
Data retrieved from the website https://www.politicheagricole.it The zone C1 includes the districts of Arezzo, Firenze and Siena (central-eastern Tus includes the districts of Lucca and Massa (north-western Tuscany); * = statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically signific	*	798.4 <u>+</u> 1.0	967.1 <u>+</u> 33.2	2015	ET (mm)
Data retrieved from the website https://www.politicheagricole.it * The zone C1 includes the districts of Arezzo, Firenze and Siena (central-eastern Tus includes the districts of Lucca and Massa (north-western Tuscany); * = statistically significant differences (p < 0.05); ns = not statistically significant differences (p < 0.05); ns = not statistically signifi		/00.4 <u>+</u> /.5	<u>836.0 + 43.7</u>	2016	
	inces (p > t	y significant differe	5), lis – liot statistical	interences (p < 0.0	- statisticany significant di

1	
2 3	612
4 5	613
6 7	
8 9	
10 11	
12 13	
14 15	
16 17	
18 19	614
20 21	615
22 23	616
24 25 26	617
20 27 28	618
29 30	619
31 32	620
33 34	621
35 36	622
37 38 20	623
39 40 41	624
41 42 43	625
44 45	626
46 47	627
48 49	628
50 51	629
52 53	630
54 55 56	631
57	
58 59	
60	

Table 5. Statistical significance (p value) of differences in the strain composition of BNp

populations identified in Tuscan vineyards

	Tuscan BNp strains	Differences in BNp strain composition (p value)					
		varieties	managements	districts	weather zones		
	<i>tufB</i> types	0.226	0.444	0.161	0.061		
	V-types	0.614	0.277	0.001	0.004		
	vmp1 sequence variants	0.686	0.404	0.084	0.031		
	stamp sequence variants	0.319	0.126	0.111	0.006		
	vmp1 clusters	0.455	0.332	0.012	0.005		
	stamp clusters	0.513	0.048	0.335	0.161		
	<i>vmp1/stamp</i> clusters	0.861	0.219	0.007	0.006		
614	Significant p values ($p < 0$)	.05) are eviden	ced in bold				
615							
015							
616							
617							
618							
619							
620							
020							
621							
622							
623							
624							
625							
025							
626							
627							
628							
629							
620							
030							
631							
631							

2	
з	
1	
4 7	
2	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
3U 21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
Δ <u>Δ</u>	
77 15	
-т-) Л6	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
20	
27	

1

632

FIGURE LEGENDS

633 Pierro *et al.* [Environment-driven selection of BNp strain populations]634

Figure 1. Virtual *Rsa*I-RFLP profiles of *vmp1* gene obtained from BNp strains identified in this
study. Virtual *Rsa*I restriction profiles of *vmp1* gene were obtained digesting trimmed
TYPH10F/TYPH10R fragments with the software Serial Cloner 2.6.1. Samples 209, Pi43, 192, 190
and 146 are representative of the profile V1, V3, V4, V11 and V15, respectively. M, Marker Φ174
DNA/*Hae*III (Promega).

Figure 2. Distribution of BNp strains in Tuscany. Distribution of V-types in districts (A) and
weather condition zones (B); *vmp1* and *stamp* sequence variants in weather condition zones (C) and
(D); BNp strains grouped in *vmp1* clusters (Figure 3) in districts (E) and weather condition zones
(F); BNp strains grouped in *stamp* clusters (Figure 4) in conventional and organic vineyards (G);
BNp strains grouped in *vmp1/stamp* clusters (Figure 5) in districts (H) and weather condition zones
(I). X axis represents the number of BNp strains.

646 **Figure 3.** Unrooted phylogenetic tree inferred from *vmp1* gene nucleotide sequences of BNp strains representative of *vmp1* sequence variants previously described (Table S1) and identified in this 647 study (Table 2); minimum evolution analysis was performed using the neighbor-joining method and 648 649 bootstrap replicated 1,000 times. Names of strains are reported on the image. GenBank accession 650 number of each sequence is given in parenthesis; gene sequences obtained in the present study are 651 indicated in bold. Clusters are shown as delimitated by parentheses. Acronyms within clusters indicated phytoplasma hosts and origin. Hosts: Car, Convolvulus arvensis; Ho, Hyalesthes 652 653 obsoletus; Lv, Linaria vulgaris; Sl, Solanum lycopersicum; St, Solanum tuberosum; Ud, Urtica dioica; Vv, Vitis vinifera. Origin: AU, Austria; B&H, Bosnia & Herzegovina; FR, France; GER, 654 655 Germany; IT, Italy; MA, Macedonia; MONT, Montenegro; SLO, Slovenia.

Figure 4. Unrooted phylogenetic tree inferred from *stamp* gene nucleotide sequences of BNp
strains representative of *stamp* sequence variants previously described (Table S2) and identified in

Page 37 of 42

Annals of Applied Biology

this study (Table 3); minimum evolution analysis was performed using the neighbor-joining method and bootstrap replicated 1,000 times. Names of strains are reported on the image. GenBank accession number of each sequence is given in parenthesis; gene sequences obtained in the present study are indicated in **bold**. Clusters are shown as delimitated by parentheses. Acronyms within clusters indicated phytoplasma hosts and origin. Hosts: Apium graveolens, Ag; Ar, Anaceratagallia ribauti; Can, Capsicum annuum; Car, Convolvulus arvensis; Ho, Hyalesthes obsoletus; La, Lavandula angustifolia; Phaseolus vulgaris, Pv; Rp, Reptalus panzeri; Rq, R. quinquecostatus; Sl, Solanum lycopersicum; St. Solanum tuberosum; Ud. Urtica dioica; Va-c. Vitex agnus-castus; Vy; Vitis vinifera; Zm, Zea mays. Origin: AU, Austria; B&H, Bosnia & Herzegovina; BU, Bulgaria; CR, Croatia; FR, France; GEO, Georgia; GER, Germany; GR, Greece; IT, Italy; MA, Macedonia; MON, Montenegro; SER, Serbia; SLO, Slovenia.

Figure 5. Unrooted phylogenetic tree inferred from concatenated nucleotide sequences of *ymp1* and stamp genes of BNp strains representative of *vmp1/stamp* types previously described (Table S3) and identified in this study (Table 1); minimum evolution analysis was performed using the neighbor-joining method and bootstrap replicated 1,000 times. Names of strains are reported on the image. GenBank accession number of each sequence is given in parenthesis; gene sequences obtained in the present study are indicated in **bold**. Clusters are shown as delimitated by parentheses. Acronyms within clusters indicated phytoplasma hosts and origin. Hosts: Car, Convolvulus arvensis; Ho, Hyalesthes obsoletus; Sl, Solanum lycopersicum; St, Solanum tuberosum; Ud, Urtica dioica; Vv, Vitis vinifera. Origin: AU, Austria; B&H, Bosnia & Herzegovina; FR, France; GEO, Georgia; GER, Germany; IT, Italy; MA, Macedonia; SLO, Slovenia.

