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Abstract

Plasticity and damage are two fundamental phenomena in nonlinear solid mechanics associated to the development
of inelastic deformations and the reduction of the material stiffness. Alessi et al. [5] have recently shown, through
a variational framework, that coupling a gradient-damage model with plasticity can lead to macroscopic behaviours
assimilable to ductile and cohesive fracture. Here, we further expand this approach considering specific constitutive
functions frequently used in phase-field models of brittle fracture. A numerical solution technique of the coupled elasto-
damage-plasticity problem, based on an alternate minimisation algorithm, is proposed and tested against semi-analytical
results. Considering a one-dimensional traction test, we illustrate the properties of four different regimes obtained by
a suitable tuning of few key constitutive parameters. Namely, depending on the relative yield stresses and softening
behaviours of the plasticity and the damage criteria, we obtain macroscopic responses assimilable to (i) brittle fracture
à la Griffith, (ii) cohesive fractures of the Barenblatt or Dugdale type, and (iii) a sort of cohesive fracture including
a depinning energy contribution. The comparisons between numerical and analytical results prove the accuracy of the
proposed numerical approaches in the considered quasi-static time-discrete setting, but they also emphasise some subtle
issues occurring during time-discontinuous evolutions.
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1. Introduction

Variational approaches have been proved to be use-
ful tools to formulate mathematically sound models of de-
fect mechanics, understand their properties, and devise
effective numerical solution strategies. The variational ap-
proach of brittle fracture and the associated regularised
formulations [23, 22, 24, 40] are nowadays widely adopted
in computational mechanics. The mechanical interpreta-
tion of the regularised models as damage models added a
further insight on the prediction of crack nucleation in the
quasi-brittle setting, giving a precise connection between
the regularising length-scale and the maximum allowable
stress before failure [57, 25].

While the initial works focused on brittle materials,
more recently several authors attempted to extend the
variational approach to ductile failure. The general idea
is to introduce plastic strains and suitable evolution laws,
for coupling damage to plasticity, revisiting in a variational
phase-field framework the classical approaches to ductile
failure [18, 19, 43, 65, 63]. A phase-field (damage) fracture
model coupled with plasticity has been proposed by [10],
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with a phenomenological approach, and by [52] in a vari-
ational setting. These works have been subsequently ex-
tended to include geometric nonlinearities in [11, 53, 20].
Further insights on the role of the constitutive parameters
on the crack path are given in [46]. Imposing an intrin-
sic link between damage and plastic dissipation, [12, 41]
proposed a phase-field model of plastic slip-lines. Refer-
ences [47, 48] discussed how non-local softening plasticity
models can be used to account for macroscopic cracks.

A more general class of models for coupling damage and
plasticity has been presented and analysed in [5, 6]. These
works introduce the regularisation only on the damage
variable, through a gradient term penalised by an internal
material length, while keeping plasticity local and allowing
the development of sharp plastic localisations. The dis-
cussion of the role of the constitutive assumptions on the
emerging macroscopic behaviours shows that damage and
plastic localisations may interact to produce cohesive-like
cracks. This result has been confirmed through rigorous
asymptotic analysis in [30, 31, 34], showing the conver-
gence of a special case of the model presented in [5] to a co-
hesive sharp crack model. References [29] and [39] recently
proposed an alternative interesting phase-field model of co-
hesive fracture without introducing plastic effects.

The aim of this paper is to extend the analysis of the
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variational model presented in [5]. Therein, an ad-hoc
choice of the constitutive laws was used to obtain closed
form solutions. Here, we perform the analysis with the
constitutive functions classically used in phase-field mod-
els of fracture and focus on the numerical solution of the
evolution problem. Through the comparison with semi-
analytical results, we provide several insights on the fea-
tures and limitations of a staggered numerical scheme for
the solution of the quasi-static evolution problem. We dis-
cuss, in particular, the effect of snap-back phenomena and
irreversibility conditions in the numerical response. We
show that one can separately tune the softening behaviour
of the yield criteria for damage and plasticity through the
choice of the stiffness-degradation and plastic yield func-
tions. Correspondingly, several macroscopic behaviours
are obtained, including purely brittle, ductile, and sev-
eral types of cohesive responses. The results are resumed
in Figure 1, which reports four possible dependencies of
the fracture dissipated energy Df and the stress σ on the
displacement jump JuK:

• Griffith’s brittle fracture (gray curve), [42], where the
dissipated energy is independent of the crack open-
ing.

• Barenblatt’s cohesive fracture (blue curve), [17], where
the stress across the crack decreases monotonically
with the displacement jump, never attaining zero.

• Dugdale-like cohesive fracture (red curve) where the
stress across the crack decreases monotonically with
the displacement jump and attains zero at a finite
value, uc. The original Dugdale’s model, [35], is rep-
resented with a green curve.

• Cohesive fracture with depinning energy (brown curve)
requiring a finite energy dissipation to nucleate the
crack (depinning energy) and a further dissipation to
increase the displacement jump (as in Barenblatt’s
model).

We show that it is possible to obtain the four macroscopic
behaviours above within the same model by a proper tun-
ing of the constitutive functions, that affect the order of
the appearance of the elastic (E), plastic (P ), damage (D),
or coupled (PD) phases during the evolution. The cohe-
sive behaviour is associated to the appearance of localised
plastic deformations at the centre of damaged bands. For
sake of simplicity, we will consider in the present work only
a one-dimensional traction problem, that allows a through-
out comparison between (semi-)analytical and numerical
results. Many of the fundamental features of the model
can be highlighted in this simplified setting.

The paper is structured as follows. In Sec. 2, the
main ingredients of the gradient damage-plasticity model
of [5, 6] are recalled. We deduce within a variational frame-
work the evolution laws, where the displacement and the
gradient of damage fields are allowed to be discontinuous
in space. The homogeneous material response, obtained
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Figure 1: Dependence of the fracture energy (a) and the stress (b)
on the crack opening JuK obtained with different choices of the con-
stitutive functions. The macroscopic response ranges from purely
brittle to ductile, including Barenblatt-like and Dugdale-like cohe-
sive behaviours. Each behaviour corresponds to different sequences
of evolution stages, namely: E-D , E-P-D , E-P-PD and E-D-PD (see
Sec. 3 for the notation). Gc denotes the toughness, defined as the
fracture energy dissipation for JuK→∞.

by assuming that strains, plastic strains and damage are
uniform in space, is discussed in Sec. 3. The aim is twofold:
whilst being of fundamental importance to derive the lo-
calised responses, studying the homogeneous response also
unveils the capability of the model to describe different se-
quences in the material evolution. Structural problems,
showing localised responses, are tackled in Sec. 5, after
describing the numerical implementation (Sec. 4). For a
one-dimensional displacement-controlled traction test, we
compare the analytical results and numerical simulations,
and discuss the role of the internal length penalising the
gradient damage term. We show that different constitutive
choices of the constitutive parameters lead to the global
fracture responses sketched in Fig. 1.

Regarding the notation, the prime will denote either
the derivative with respect to the spatial variable x or
the derivative with respect to the damage parameter, the
dot stands for the time derivative; for instance u′(x, t) =
∂u(x, t)/∂x, σ′P(α) = dσP(α)/ dα and u̇(x, t) = ∂u(x, t)/∂t.
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2. The formulation of a gradient damage model
coupled with plasticity

In this section, we briefly recall the ingredients and
the main results of the gradient damage model coupled
with plasticity presented in [5, 6]. The model is devel-
oped in a rate-independent framework. As such, viscous
phenomena are not taken into account whilst plasticity
and damage evolutions are assumed time-scale invariant.
Moreover, inertial effects are neglected and the external
actions are assumed smooth in time, so as to comply with
a quasi-static setting.

2.1. State variables and basic energetic quantities

Let us consider, in an infinitesimal strain setting, a one-
dimensional straight bar whose reference configuration is
the open bounded domain (0, L). We assume that each
point of the body x ∈ (0, L) is characterized by the state
variables described in Tab. 1. The bar is subjected to
Dirichlet boundary conditions u = 0 in x = 0 and u =
U(t) in x = L. We consider only monotonically increasing
loadings with t and, up to a re-parametrization of the time
variable, we set U(t) = t L.

state variable type

u displacement observable
ε total strain observable, dependent
p plastic strain internal, reversible
p̄ accumulated plastic

strain
internal, irreversible,
dependent

α damage internal, irreversible
α′ gradient of damage internal, dependent

Table 1: State variables.

The time-dependent state variables are scalar fields
representing the displacement u(x, t), the plastic strain p(x, t),
and the damage α(x, t). The infinitesimal strain and the
accumulated plastic strain are given by

ε(x, t) = u′(x, t) and p̄(x, t) =

∫ t

0

|ṗ(x, τ)| dτ. (1)

The scalar damage field is assumed to be bounded in [0, 1],
with {

α = 0, undamaged material

α = 1, fully damaged material

and must satisfy the following irreversibility condition [27]

α̇ ≥ 0, on [0, L]. (ir)

The internal potential energy density is assumed to be

ψ(ε, p, α) =
1

2
E(α) (ε− p)2

, (2)

where the constitutive function E(α) represents the Young
modulus of the material and is supposed to be sufficiently

smooth and decreasing with α up to zero [59]. Accordingly,
the stress is defined as

σ := ∂εψ = E(α) (ε− p) . (3)

In the framework of Generalized Standard Materials,
[44], the dissipative behaviour is described through the
dissipation potential, which is a convex and positive func-
tion of the internal state variables rates, vanishing for null
rates and possibly depending on the internal variables it-
self. Rate-independence is ensured by assuming the dissi-
pation potential being 1-homogeneous with respect to the
rates [54]. For the present model, the dissipation potential
is assumed as the the sum of two contributions, the first
due only to the accumulated plastic strain rate while the
second one depending only on the damage and gradient of
damage rates, namely

ϕ(p̄, α, α′, ṗ, α̇, α̇′) = ϕp(α, ṗ) + ϕd(p̄, α, α′, α̇, α̇′), (4)

with

ϕp(α, ṗ) := σP(α)|ṗ|,

ϕd(p̄, α, α′, α̇, α̇′) :=
(
w′(α) + σ′P(α)p̄

)
α̇+ 2w1`

2α′α̇′.
(5)

Therein, the scalar function σP(α) can be identified with
the plastic yield stress in a uniaxial traction test. We re-
quire σP(α) to be decreasing with the damage and vanish-
ing for a fully damaged material. Consequently, we assume

σP(0) = σp > 0, σ′P(α) < 0,

σP(1) = 0, σ′P(1) ≤ 0,
(6)

with σp being the plastic yield stress of the undamaged ma-
terial. The scalar damage constitutive function w(α) can
be interpreted as the density of the energy dissipated by
the material during a homogeneous damage process (such
that α′(x) = 0), where the damage variable of the mate-
rial point grows from 0 to α; w1 = w(1) represents the
specific fracture energy [28]. Accordingly, we assume w(α)
to be sufficiently smooth and to verify the following re-
quirements:

w(0) = 0, w′(α) > 0, w1 < +∞. (7)

One can easily prove that with these hypotheses ϕ is never
negative [5].

The dependence of ϕp on α and of ϕd on p̄ intro-
duces a coupling between plasticity and damage. Here,
the underlying plasticity model is perfect plasticity. Nev-
ertheless, hardening effects can be easily added, as done
in [66].The second term in the damage dissipation po-
tential part can be recognized as the standard gradient-
damage contribution to the brittle-fracture regularization
model, [23], with ` > 0 having the role of an internal ma-
terial length related to the width of a damage localization
profile.
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The total dissipated work up to an instant t is, in gen-
eral, a process dependent function. Nevertheless, for the
dissipation potential in (4) and (5), the dissipated work
turns out to be a state function. By straightforward cal-
culations, we get

D({pτ}τ<t, {ατ}τ<t) :=

=

∫ L

0

(∫ t

0

ϕ(p̄τ , ατ , α
′
τ , ṗτ , α̇τ , α̇

′
τ ) dτ

)
dx

=

∫ L

0

∫ t

0

d

dτ

(
σP(ατ )p̄τ + w(ατ ) + w1`

2 (α′τ )
2
)

dτ dx

=

∫ L

0

(
σP(αt)p̄t + w(αt) + w1`

2 (α′t)
2
)

dx

:= D(p̄t, αt),
(8)

where the dependence of the state variables on the spatial
coordinate x has been omitted for sake of conciseness and
pt = p(x, t), αt = α(x, t), p̄t = p̄(x, t). Therefore, in this
particular case, we can introduce a total internal energy
density since the dissipated work can be expressed as a
state function, namely

W (ε, p, p̄, α, α′) =

=
1

2
E(α) (ε− p)2

+ σP(α)p̄+ w(α) + w1`
2(α′)2, (9)

with the corresponding total internal energy

W(u, p, p̄, α) =

∫ L

0

W (u′(x), p(x), p̄(x), α(x), α′(x)) dx,

(10)
coinciding with the functional considered in [6].

Remark 1 (Plastic, damage and fracture dissipation).
Despite the dissipated work is a state function, the single
contributions due to plasticity and damage are not. We
define the plastic and damage dissipated work by

Dp(t) := Dp({pτ}τ<t, {ατ}τ<t) =

L∫
0

t∫
0

σP(ατ )|ṗτ |dτ dx,

(11)
and

Dd(t) := Dd({pτ}τ<t, {ατ}τ<t) =

=

L∫
0

t∫
0

(
(w′(ατ ) + σ′P(ατ )p̄τ ) α̇τ + w1`

2(α′τ )2
)

dτ dx.

(12)

In addition, we define the fracture energy as

Df(t) := Df({pτ}τ<t, {ατ}τ<t) =

D({pτ}τ<t, {ατ}τ<t)−Dp({pR
τ }τ<t, {ατ}τ<t), (13)

where we use the decomposition of the plastic strain in
regular pR and singular parts, which will be introduced be-
low. With such a choice, only the singular part of the
plastic strain is accounted, as responsible of the cohesive
behaviour, in the fracture energy.

2.2. Function spaces and decomposition in regular and sin-
gular parts

The global state field ξ := (u, p, p̄, α) should be suffi-
ciently smooth in space to keep the total energy (10) finite.
Specifically, the space of the admissible damage fields is

A :=
{
α ∈ H1([0, L],R) : 0 ≤ α ≤ 1

}
. (14)

The damage field must be continuous, while its deriva-
tive may suffer discontinuities. The latter fact will play a
fundamental role in describing cohesive fracture responses.
The elastic strain field (u′ − p) must be square integrable,
i.e. to belong to L2([0, L]). For perfect plasticity, p can
localise and, consequently, induce similar singularities on
u′, [64, 33, 37, 38]. Specifically, admissible plastic strains
are in a subspace of the finite Radon measuresMb, [36, 45]:

P := {p ∈Mb([0, L],R)} . (15)

Consequently the admissible displacement fields are Spe-
cial functions of Bounded Variations (SBV):

U(t) := {u ∈ SBV([0, L],R) : u(L) = L t} . (16)

Then, the global state field ξ is piecewise smooth and
its singular part is localized on a ξ-dependent set J(ξ) ∈
[0, L], called the jumps set of ξ, which contains a finite
number of smooth and non-intersecting points in [0, L].
The domain [0, L] \ J(ξ) will be denoted regular domain
and, for a sake of simplicity, we also assume that this set
has zero intersection with the boundary {0, L}.

The displacement field is continuously differentiable on
[0, L]\J(ξ) and admits jump discontinuities of finite ampli-
tude on J(ξ). Consistently, the strain, the plastic strain
and the accumulated plastic strain fields can be decom-
posed into their regular part denoted (·)R and their sin-
gular (or jump) part denoted (·)S. Specifically, the total
strain is decomposed as

ε = εR + εS, with εS = JuKδJ(ξ), (17)

and εR being the absolute continuous part of the gradient
of the displacement field and δ the Dirac measure concen-
trated on the jumps set J(ξ). Similarly, the plastic strain
and the accumulated plastic strain fields are decomposed
as,

p = pR + pS and p̄ = p̄R + p̄S, (18)

with

pS = JuKδJ(ξ), p̄S =

∫ t

0

|Ju̇K|δJ(ξ) dτ = P̄ δJ(ξ), (19)
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P̄ being the accumulated plastic strain density.

2.3. Evolution laws

Following the energetic formulation of rate indepen-
dent systems [55], we define the solutions of the evolution
problem as the processes ξt satisfying the following three
energetic principles:

• Irreversibility:

α̇ ≥ 0, on [0, L], ∀t ∈ (0, T ). (ir)

• Stability:

W ′(u, p, p̄, α) (ũ, p̃, |p̃|, α̃) ≥ 0, (st)

for any admissible test direction ξ̃ = (ũ, p̃, |p̃|, α̃)
with W ′(a)(b) denoting the directional derivative of
W in the point a in the direction b.

• Energy balance:

d

dt
(W(u, p, p̄, α)− L([0, t])) = 0, ∀t ∈ [0, T ] (eb)

where

L([0, t]) =

∫ t

0

fr(τ) U̇(τ) dτ, (20)

is the external power of the reaction force fr in x =
L.

From this formulation we derive a necessary set of local
evolution laws, which are summarized in Tab. 2. The
yield function of the damage field in the regular domain
includes a gradient term, while the yield function of the
damage field in the singular domain establishes the rela-
tion between the displacement jump, through the singular
part of the plastic strain field, and the jump of the deriva-
tive of the damage field. The explicit derivation of these
laws can be found in [5, 6]. The reader is also referred to
[58, 60, 3, 2, 7, 4] for further details.

2.4. Specific models

From now on, the presentation is limited to a simple
one parameter class of models. Specifically, the constitu-
tive functions are chosen as follows,

E(α) = (1− α)2E0, w(α) = w1 α, σP(α) = (1− α)s σp

(21)
where w1 and σp are two positive constitutive constants
and E0 the Young modulus of the sound material. Re-
normalisation arguments allow us to set E0 = 1 without
loss of generality. The functions (21) are different from
those considered in [5], where they were chosen to allow
for explicit analytical results. The present model reduces
to the ones commonly used in a phase-field regularisation
of brittle fracture [57, 49, 25] when neglecting plasticity
(σp → ∞). The underlying damage model is that of a

strongly brittle material [60], for which the energy neces-
sary to break the material is finite, while the underlying
plastic model is that of perfect plasticity.

The exponent s > 0 will tune the softening behaviour
on the plastic yield stress. Its values will greatly influence
the material response, as shown in the following section. In
the rest of this paper, we will study the response of the bar
for the specific choices of (s, σp, w1) listed in Tab. 3. As
will be shown in the next section, since w′(0) > 0, see [60],
all these choices will imply an initial purely elastic stage in
the response, noted as (E ). After the initial elastic stage,
when reaching the initial yield stress, several evolutions
are possible. They will include phases where only plastic
strains evolves (P), only damage evolves (D), or with a
coupled evolution of plasticity and damage (PD).

3. Homogeneous material responses

We present in this Section the homogeneous responses
for the models in Tab. 3. They are obtained by assuming
that the damage and the strain fields are uniform in space.
Using the boundary conditions on the displacement, one
can immediately deduce that ε = t. Hence, the only un-
knowns of the response are then the plastic strain and the
damage state variables, since pt = p̄t. In addition, the
material is initially assumed unstretched, not plasticized
and undamaged, namely

ξ0 = (ε0, p0, p̄0, α0) = (0, 0, 0, 0). (22)

All responses are calculated using the stress-strain re-
lation σ = E(α)(t − p), the damage and plastic Karush-
Kuhn-Tucker (KKT) systems in Tab. 2. Specifically, the
yield stresses for plasticity (σP) and damage (σD) can be
deduced from the yield conditions and read as

σP(α) = (1− α)s σp, (23)

σD(p̄, α) =
√

E0 (w1 − s(1− α)s−1σpp̄)

√
(1− α)

3
. (24)

Responses for which σP(0) > (resp. <) σD(0, 0) will be
hereafter denoted E-D-* (resp. E-P-* ) since damage (resp.
plasticity) is first triggered after the initial elastic stage.
Tab. 4 resumes the numerical values for the yield stresses
and strains for the four models in Tab. 3. Some models
show a secondary yielding, where plasticity (or damage) is
triggered during a damage (or plastic) phase, see below.
In the following we will synthetically present the key re-
sults for the four models by commenting the plots of Fig. 2.
Therein, the evolutions of stress, damage and plasticity are
higlighted, as well as yield stresses and possible unloading
paths.

3.1. E-D model

Since σP(0) > σD(0, 0), after the initial elastic stage a
damaging stage occurs. Moreover, for any damage level,
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Figure 2: Homogeneous responses for the constitutive choices of Tab. 3. For each model (rows) we show: the evolution of stress, plastic strain,
damage and yield stresses with possible unloading curves; column 2, the plastic (red) and damage (green) yield surfaces; column 3, the actual
plastic and damage evolution paths ( ).
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equilibrium
equations

plasticity conditions damage conditions

regular domain [0, L] \ J(ξ)

σ′ = 0 KKT system:

fp(σ, α) ≤ 0, ˙̄pR ≥ 0, fp(σ, α) ˙̄pR = 0

yield function:

fp(σ, α) := |σ| − σP(α)

flow rule:

ṗ = ˙̄p sign(σ)

KKT system:

fd(σ, p̄, α) ≤ 0, α̇ ≥ 0, fd(σ, p̄, α) α̇ = 0

yield function:

fd(σ, p̄, α) :=
1

2
S′(α)σ2−w′(α)−σ′P(α)p̄R +2w1`

2α′′

singular domain J(ξ)

JσK = 0 KKT system:

fS
p (σ, α) ≤ 0, ˙̄pS ≥ 0, fS

p (σ, α) ˙̄pS = 0

yield function:

fS
p (σ, α) := |σ| − σP(α)

flow rule:

ṗS = ˙̄pS sign(σ)

KKT system:

fS
d (p̄, α) ≤ 0, α̇ ≥ 0, fS

d (p̄, α)α̇ = 0

yield function:

fS
d (p̄, α) := 2w1`

2Jα′K− σ′P(α)P̄

boundary conditions {0, L}

σ|0 = fr or u|0 = 0 α′|0 ≤ 0 or α|0 = 0

σ|L = fr or u|L = t α′|L ≥ 0 or α|L = 0

Table 2: Summary of the governing equations deduced from the energy balance (eb), stability condition (st) and irreversibility condition (ir).
In fd(σ, p̄, α), S(α) = E−1(α) represents the compliance elastic tensor.

model name σP(0) σD(0, 0) εy σy εyy σyy

E-D 3/2 1 1 1 � �

E-D-PD 3/2 1 1 1 3/2 (2/3)3

E-P-D 1
√

2 1 1 2 1

E-P-PD 1
√

3 1 1 2 1

Table 4: First (·)y and second (·)yy yield points. Cells with a gray
background highlight the smaller initial yield stress, σy, that defines
which inelastic phenomenon is triggered first.

one has σP(α) > σD(0, α) and hence a second yield in-
stant σyy does not exist. The complete E-D material re-
sponse is described in Fig. 2a.

Fig. 2a1 shows that the damage and plastic yield stresses
do not intersect. This means that the plastic yield stress is
never reached and, therefore, plastic strains never evolve.

3.2. E-D-PD model

Since σP(0) > σD(0, 0), after the initial elastic stage, a
damaging stage occurs. Differently from the E-D model,
at a certain damage level, a second yield instant exists.
Indeed, by imposing σP(α) = σD(0, α), we get (εyy, σyy) =
(σp/E0,w

2
1E

2
0/σ

3
p) and from that instant on, damage and

plasticity must evolve together. The complete E-D-PD
material response is described in Tab. 5 and Fig. 2b.

E D PD

t
[
0,
√

w1
E0

] [√
w1
E0
,
σp

E0

] [
σp

E0
,+∞

]
σ(t) E0 t

w2
1

E0 t3
w2

1E0

σp(2E0 t− σp)2

p(t) 0 0 t− σp

E0

α(t) 0 1− w1

E0 t2
1− w1E0

σp(2E0 t− σp)

Table 5: Homogeneous response of the E-D-PD model: evolution of
the state variables with the loading in the elastic (E), damage (D),
and coupled (PD) phases. The E-D is the particular case where
σp →∞ and PD phase does not exists.

From the stress-strain response of Fig. 2b1, one can
appreciate the existence of a second yield point where the
yield stresses intersect. While during the damaging stage
only a decrease of the stiffness occurs, after such second
yield instant also the plastic strain starts to evolve to-
gether with damage, as highlighted by the increasing resid-
ual strains and contemporary decreasing stiffness of the
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model name σp w1 s mechanical response

E-D 3/2 1 1 Griffith’s brittle fracture1

E-D-PD 3/2 1 2 mixed Griffith’s brittle/Barenblatt’s cohesive fracture

E-P-D 1 2 1 plasticity with Dugdale’s like cohesive fracture (ductile fracture)

E-P-PD 1 3 2 plasticity with Barenblatt’s cohesive fracture (ductile fracture)

Table 3: The four choices of the constitutive parameters in(21) considered throughout this work and the associated qualitative responses.

unloading curves.

3.3. E-P-D model

Since σP(0) < σD(0, 0), after the initial elastic stage,
a plastic stage occurs. Since ∂p̄σD(p̄, 0) < 0, due to the
assumption (6), a second yield instant σyy, where damage
is triggered, always exists. By imposing σP(0) = σD(p̄, 0),
we get (εyy, σyy) = (w1/σp, σp). From that instant on, only
damage evolves since the plastic yield stress decreases more
slowly with α than the damage yield stress, ∂ασD(p̄(εyy), α) <
∂ασP(α). The complete E-P-D material response is de-
scribed in Tab. 6 and Fig. 2c.

E P D

t

[
0,
σp

E0

] [
σp

E0
,
w1

σp

] [
w1

σp

,+∞
]

σ(t) E0 t σp

σ4
p

E3
0(t− p̄)3

p(t) 0 t− σp

E0

w1

σp

− σp

E0

α(t) 0 0 1−
σ2
p

E2
0(t− p̄)

Table 6: Homogeneous response of the E-P-D model.

In contrast with the E-D case, Fig. 2c1 shows the exis-
tence of an intersection point between the damage and
plastic thresholds represented by the dashed green and
red curves, respectively. This point is associated to a sec-
ond yielding where plasticity stops and damage starts to
evolve. Indeed the unloading paths show first an increase
of residual strains and then, only a decrease of the elastic
stiffness.

3.4. E-P-PD model

Also for this case, since σP(0) < σD(0, 0), after the ini-
tial elastic stage not only a plastic stage occurs but also
a second yield instant, coinciding with the one of the E-
P-D model, (εyy, σyy) = (w1/σp, σp). But now, since the
plastic yield stress decreases faster than the damage yield
stress with respect to the damage level, ∂ασD(p̄(εyy), α) >
∂ασP(α), plasticity must evolve together with damage af-
ter that second yield instant. The general evolution, which
equals the evolution of the E-P-D response during the
elastic-plastic stage, is described in Tab. 7 and Fig. 2d.

E P PD

t

[
0,
σp

E0

] [
σp

E0
,
w1

σp

] [
w1

σp

,+∞
]

σ(t) E0 t σp

w2
1E

2
0

σp(2E0 t− σp)2

p(t) 0 t− σp

E0
t− σp

E0

α(t) 0 0 1− w1E0

σp(2E0 t− σp)

Table 7: Homogeneous response of the E-P-PD model.

From the stress-strain response of Fig. 2d1, one can
appreciate the existence of a second yield point where the
yield stresses intersect. While during the plastic stage no
damage occurs, after such second yield instant both plas-
ticity and damage evolve. Indeed, the unloading paths
show first an increasing of residual strains and then a cou-
pled behaviour, with plastic strains that continue to in-
crease with a progressive decrease of the elastic stiffness.

4. Numerical solution algorithm

To solve numerically the evolution problem we adopt
a staggered algorithm suggested by the time-discrete ver-
sion of the variational formulation. This can be consid-
ered as an extension of the consolidated alternate mini-
mization scheme used in the regularised models of brittle
fracture, [23, 22, 24, 13, 25] and fits the incremental en-
ergy minimization framework [56, 61]. Similar algorithms
have been used for coupled plasticity-damage problems
also by [10, 52, 62]. Both the time and space discretisation
procedures for the state variables fields are standard.

Time-discretisation. The time interval [0, T ] is discretised
with possibly non-uniform time steps dti. By definition,
(1), the discretised version of the accumulated plastic strain
at time t becomes

p̄i = p̄i−1 + |pi − pi−1|. (25)

Hence, we find the fields (ui, pi, αi) by solving the following
minimisation problem at time step ti

min
u,p,α
{Wi(u, p, α) , α ≥ αi−1, u(L) = ti}, (26)
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where

Wi(u, p, α) =

∫ L

0

(
1

2
E(α) (ε− p)2

+w(α)+w1`
2(α′)2) dx

+

∫ L

0

σP(α) (|p− pi−1|+ p̄i−1) dx. (27)

Space-discretisation. The displacement and damage fields
are projected over a piecewise affine finite element space
(P1 triangular elements) over the same unstructured mesh.
Arguments for not using higher degree finite elements can
be found, for example, in [21]. Conversely, the plastic
strain field p is projected over a discrete discontinuous
space (quadrature elements1) due to the local character
of the plasticity minimization problem. To get a better
approximation of the optimal damage profile, the mesh
size h must be smaller than the internal length ` (at least
h ≤ `/4), see [24], rapidly leading to the need of large scale
computations in 2D and 3D settings.

Although (27) is non convex, it is convex with respect
to each variable individually. Therefore, we alternate min-
imizations with respect to u, p and α, as described in Algo-
rithms 1-2. In particular, we first optimize with respect to
the displacements and plastic strains and then, only after
convergence, with respect to the damage field. Specifi-
cally, the minimization step with respect to u is equiva-
lent to solve a linear elasticity problem. The minimization
step with respect to p is equivalent to a linear local pro-
jection, refer to Algo. 2, because of the perfect-plasticity
setting. Instead, the minimization step with respect to
α ∈ [αi−1, 1] requires a box-constrained minimization al-
gorithm. The code has been written using the FEniCS

library [50, 9] for finite elements and PETSc [16, 14, 15] for
linear algebra and bound-constrained solvers. Of course,
as the total energy is non convex, one cannot expect con-
vergence of Algo. 1 to a global minimizer. However, one
can prove that the alternate minimization process is un-
conditionally stable and globally decreasing and that it
leads to a stationary point of (27) which may be a local (or
global) minimizer or a saddle point for the energy. From
a practical standpoint, we observe that the algorithm is
robust with respect to the mesh discretisation, provided
that the mesh size is small enough compared to the inter-
nal length.

The present model does not introduce any localization
limiter for the plastic strain. However, as in perfect plas-
ticity, the numerical results are convergent with respect to
the mesh size. The plastic strain localises in a single mesh
element. But, when decreasing the mesh-size, its absolute
value increases so as to preserve a constant element-wise
integral, which represents the displacement jump.

1In quadrature elements, the function values are defined only on
Gauss integration points.

Algorithm 1: Alternate minimization.

Result: {(ui, pi, αi)}ni=0 solving (26)

initialization with an unstretched, not plasticised and

undamaged state;

i = 0, u0 = 0, p0 = 0, p̄0 = 0, α0 = 0;

for i ∈ (0, . . . , n) do

i = i+ 1, j = 0, α0
i = αi−1;

while αerr > αtol

do

j = j + 1,

(uji , p
j
i ) := arg min

u, p
Wi(u, p, α

j−1
i ), u(L) = ti ;

αji := arg min
αi−1≤α≤1

Wi(u
j
i , p

j
i , α) ;

αerr = ‖αji − α
j−1
i ‖∞,

ui = uji , pi = pji , αi = αji ,

p̄i = p̄i−1 + |pi − pi−1|;

5. Numerical simulations of the one-dimensional
traction test

This section presents the numerical solutions of the
traction test. The bar, of unitary length L = 1, is initially
unstreched, not plasticized and undamaged. Its left-end
is fixed while on its right-end, a monotonically increasing
displacement u(1) = t is prescribed, see Fig. 3. The gra-

L = 1

U = t

x

Figure 3: One-dimensional displacement-controlled traction bar test
setup.

dient term plays a crucial role in the structural response,
acting as a localisation limiter for the damage field. The
value of the internal length, ` = 0.15, is chosen to be suffi-
ciently small to allow for the development of a full localisa-
tion inside the bar. We use a uniform mesh with element
size h = 1/200. We perform numerical simulations for the
parameters listed in Tab. 8, which are renormalised in or-
der to give a common elastic limit at ty = 1, σy = 1 for
the four models.

We provide a throughout verification of the numerical
solutions obtained with the algorithms of Sec. 4 against
semi-analytical results. A discussion of the semi-analytical
solution for the localisation problem is reported in Ap-
pendix A, see also [1].

5.1. E-D response

The E-D model describes the occurrence of a brittle
fracture without the occurrence of plastic strains. Its prop-
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Algorithm 2: Minimization with respect to (u, p).
The minimization step with respect to p is a linear
local projection.

Result: (uji , p
j
i ) of Algorithm 1

i and j are fixed; k = 0, p0 = pj−1
i ;

while perr > ptol
do

k = k + 1;
solve the elastic problem:
uk = arg min

u
Wi(u, p

k−1, αj−1
i ), u(L) = ti,

compute the stress: σ = σ(uk, pk−1, αj−1
i ) ;

evaluate yield function: fp = |σ| − σP(αj−1
i );

if fp ≤ 0 then no plastic increment

pk = pk−1;
else projection:

pk = pk−1 +
fp

E(αj−1
i )

sign(σ);

perr = ‖pk − pk−1‖∞;

uji = uk, pji = pk

model name σp w1 s `/L

E-D > 1 1 1 0.15

E-D-PD 2 1 2 0.15

E-P-D 1 2 1 0.15/0.08

E-P-PD 1 3 2 0.15

Table 8: Constitutive parameters for the test cases of Sec. 5.

erties have been widely discussed in previous works, when
considering damage-gradient model as phase-field approx-
imation of brittle fracture [57, 51]. Here we recall and
discuss some important facts, useful for later discussions.
Fig. 4a displays the force-displacement response. In the
numerical model, after the initial elastic stage, damage is
triggered and grows instantaneously to its maximum level
corresponding to a fractured state where all the dissipated
energy is spent instantaneously. The analytical calculation
uses the decreasing stress as parameter during the dam-
aging stage. This allows the computation of the unstable
snap-back branch in the force-displacement response. To
follow this branch numerically would require specific path-
following techniques, [8]. The energy plot of Fig. 4b shows
a jump in the total energy at t = 1, when the damage lo-
calisation appears. In the numerical simulation, the total
energy is not conserved (but is decreasing). This inconsis-
tency with the energy balance principle in the quasi-static
rate-independent evolution is related to the use, in the
time-discrete setting, a local stability criterion. It can be
resolved by a more careful analysis, as discussed in [2].

The damage profile evolution is shown in Fig. 4c. The
semi-analytical profiles have been determined through the
technique resumed in Appendix A. The numerical solu-

tion jumps from an undamaged state to the fully fractured
stated with α = 1 at the center. Figure 4c shows that fully
localised profiles of the analytical and numerical solutions
are slightly different. In the numerical solution, the fully
localised profile appears abruptly and accounts for the ir-
reversibility condition only with respect to the previous
time-step, i.e. α ≥ 0. Instead, the analytic calculation
include the irreversibility conditions during the (unstable)
growth of the damage profile, see Appendix A.1. However,
the difference between the two profiles is barely noticeable
and the dissipated energy in the two cases is almost indis-
tinguishable. One can safely neglect this difference when
performing more complex computations. This aspect will
be further discussed in the E-D-PD response. The jump
of the displacement field in Fig. 4d is the signature of the
occurrence of a “crack” at the center of the localisation
zone. All the solutions obtained translating the whole lo-
calization profile within the bar are energetically equiva-
lent. The problem is obviously imperfection-sensitive and
small perturbations of the material properties could al-
ter the placement of the localization zone. However, the
global structural response would not be affected by the a
different position of the localization.

5.2. E-D-PD response

In the E-D-PD case, plasticity is triggered during the
evolution of damage, leading to a coupled response, as
seen for the corresponding homogeneous response. In the
context of a structural problem, the fields can localise in
space, leading to a subtler coupling. Specifically, a fracture
occurs as soon as the damage-yield loading is reached, but
the damage field does not reach the value 1. The strain
localisation is not due to the loss of stiffness, but to a sin-
gularity in the plastic strain (Dirac measure), that occurs
at the center of the damage profile.

The force-displacement plot of Fig. 5a shows that the
stress never vanishes after the snap-back. Numerically,
the progressive growth of the damage field, described in
the analytical solution, is not observed. The analytical
profiles have been built accounting for the irreversibility
condition during their unstable growth, see Fig. A.15.

The energy plot in Fig. 5b discloses the key features of
the coupled plasticity-damage evolution, that are more evi-
dent in Fig. 5c, where the evolutions of the different energy
contributions are plotted against the displacement jump
due to the plastic localisation. Specifically, one can appre-
ciate that some energy is dissipated by damage as soon
as the discontinuity occurs while the remaining energy
is progressively dissipated with the increase of the frac-
ture opening. The plot of the stress against the displace-
ment jump could be interpreted as a mixed Griffith’s brit-
tle/Barenblatt’s cohesive fracture type: one needs a finite
“depinning” energy to nucleate the crack, as in Griffith’s
model, and a further progressive dissipation to increase
the crack opening. The displacements profiles in Fig. 5f
gives a clear signature of the presence of a fracture. Again
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Figure 4: Numerical and analytical results for the traction test of the E-D model: (a) force-displacement diagram; (b) energy diagrams;
damage (c) and displacement (d) fields at different loading steps.
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Figure 5: Numerical and analytical results for the traction test of the E-D-PD model: (a) force-displacement diagram; (b) energy diagrams;
(c) fracture energy-crack opening diagram; (d) stress-crack opening diagram; damage (e) and displacement (f) fields at different loading steps.
The force-displacement diagram (a) compares the analytical results obtained taking into account (continuous line) or not (dashed line) the
irreversibility condition.
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the total energy is not conserved when the crack is nucle-
ated. The numerical results are in close agreement with
the analytical predictions.

5.3. E-P-D response

In this case, after the initial elastic stage, a perfect
plastic stage occurs. Hence, the plastic strains increase
uniformly in space2, until the end-displacement reaches a
second yield value, tyy = 2 and σyy = 1, when the damage
criterion is also triggered. For t > tyy, the structural re-
sponse may be very different from the material response.
In the latter, after the plastic stage, only damage evolves.
Instead, in the structural response, the damage evolution
is coupled to a plastic localisation. In the present one-
dimensional traction test, the qualitative features of the
numerical response depend on the internal length. Fig-
ures 6 (` = 0.15) and 7 (` = 0.08) illustrate the two possi-
ble scenarios associated with large and small values of the
internal length, respectively.

For ` = 0.15, from the force-displacement plot of Fig. 6a,
we observe that up to a very low stress level the numer-
ical response follows the stress softening branch, without
snap-back. The energy plots of Fig. 6b unveil the dissi-
pating phenomena occurring in the softening branch, with
a contemporary evolution of damage and localised plas-
tic strain. The evolution of the damage and displacement
profiles in Figures 6e and 6f show the presence of a dis-
placement jump at the center of the damage localisation
zone. This jump occurring with α < 1 is associated to a
plastic singularity, as per (19). In this singular point, the
damage evolution criterion (see Table 2) imposes a link be-
tween the plastic singularity and the jump in α′, namely
2w1`

2Jα′K− σ′P(α)P̄ = 0. The detailed analytical calcula-
tion of the solution is reported in Appendix A. From the
plot of the energy-displacement jump in Fig. 6c we rec-
ognize a Dugdale’s like cohesive fracture behaviour. Dif-
ferently form the case of the E-D-PD model in Fig. 5, the
nucleation of a displacement jump does not require a finite
energy dissipation. Both the energy and the displacement
jumps increase smoothly and monotonically from 0 with
the loading, until the occurrence of a snap-back in the re-
sponse. The corresponding cohesive force is represented
in Fig. 6d; the stress decreases linearly during the plastic
strain localisation.

For a smaller internal length (` = 0.08), the results
of the numerical computation obtained with the alternate
minimization miss the softening transition in the force-
displacement response, Fig. 7a. All the fracture energy is
instantaneously dissipated Fig. 7b. The cohesive-like effect
is not visible because unstable. Numerically, in this case,
a fracture occurs without the growth of the plastic locali-
sation, but only with a pure damage localisation, reaching

2In a perfect plasticity setting, the homogeneous plastic evolution
is not unique. Nevertheless, in the present one-dimensional context
and for sake of simplicity, only homogeneous plastic strains are taken
into account before the damage triggering.

immediately its maximum value at the center, like for the
E-D model, Fig. 7c. After the occurrence of the fracture,
that is with a vanishing stress, the elastic strain vanishes.
Therefore, the total strain, related to the non vanishing
slope of the displacements profiles, Fig. 7d, compensates
the plastic strain formerly occurred during the evolution.
The total energy is not conserved at the fracture appear-
ance.

Despite of what is numerically observed for small in-
ternal lengths, the existence of cohesive response of the
Dugdale type can be proven for any `. To this end, we can
look for the existence of solutions where

p̄S = JuK =

(
1− σ

σp

)
uc (28)

at the singular point and zero elsewhere. From the dam-
age jump condition on the singular domain, and from the
damage and plastic yield criteria in Tab.2, we derive the
following relations in the very same singular point:

|α′| = (σp − σ)uc

4w1`2
, ᾱ =

(
1− σ

σp

)
, p̄R =

w1

σp

− S0σp.

(29)
with Jα′K = 2|α′|. We can also prove3 that there exists a
critical opening

u2
c = 8S0w1`

2, (31)

for which the cohesive stress vanishes. For small values
of the internal length this kind of solution is not obtained
through the alternate minimization because it is unstable.

This example underlines some limitations of the alter-
nate minimization algorithm for time-discontinuous evo-
lutions and rises the question of the opportunity of using
path-following or minimizing mouvements [26] algorithms
to better describe the dissipative phenomena in unstable
snap-back branches.

5.4. E-P-PD response

This response is similar to the E-P-D model, except for
the fact that during the fracturing stage, a Barenblatt’s
cohesive fracture behaviour is recovered. After the ini-
tial elastic stage, the same perfect plastic stage occurs,
where the plastic strains increase uniformly in space. At
(tyy, σyy) = (2, 1) a cohesive fracture appears at the centre
of the damage localisation zone. In the numerical response
for ` = 0.15, the stress jumps to a value that is almost half
the yield stress, as highlighted by the stress-displacement
plot, Fig. 8a. The immediately contemporary evolution of

3It is sufficient to prove that for any stress level, during the evo-
lution of a localisation, both (α, α′) given by (28) and (29) satisfy
(A.34), where the constant is obtained by assuming that (A.34) is
satisfied also for (α, α′) = (0, 0). This gives

C = −1

2
S0σ

2 + w1 − S0σ
2
p , (30)

Injecting now (28), (29) and (30) in (A.34) we obtain the expression
for uc.
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Figure 6: Numerical and analytical results for the traction test of the E-P-D model with ` = 0.15: (a) force-displacement diagram; (b) energy
diagrams; (c) fracture energy-crack opening diagram; (d) stress-crack opening diagram; damage (e) and displacement (f) fields at different
loading steps.
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Figure 7: Numerical and analytical results for the traction test of the E-P-D model with ` = 0.08: (a) force-displacement diagram; (b) energy
diagrams; (c) fracture energy-crack opening diagram; (d) stress-crack opening diagram; damage (e) and displacement (f) fields at different
loading steps.
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damage and plasticity during the fracturing stage is, in-
stead, evident from the energy plot in Fig. 8b. The result-
ing fracture behaviour can be identified as a Barenblatt-
like cohesive fracture response, simply by looking at the
fracture energy contribution with respect to the fracture
opening displacement, Fig. 8c. The interfacial stress law
with respect to the crack opening is plotted in Fig. 8d.
After the initial jump, the stress monotonically decreases,
approaching asymptotically zero only for an infinite crack
opening. The capability of such model in describing Baren-
blatt’s cohesive fracture behaviour has been already and
rigorously proved in [5] with closed form results for a model
with ad-hoc constitutive functions, different from the ones
considered here. Note that numerical algorithm based on
alternate minimization is not able to follow the unstable
part of the localised solution branch, associated with a
snap-back. Fig. 9 reports the stress-strain responses ob-
tained for several values of `, emphasising the role of the
internal length on the snap-back. The damage profiles,
built using the damage localisation profiles obtained in the
appendix, evolve from the very beginning with a cusp at
the center of the localisation, Fig. 8e, due to the contem-
porary evolution of a plastic localisation in the same point.
Therefore, the displacement field suffers a sharp disconti-
nuity during the crack opening which is well captured by
the numerical model, Fig. 8f. Also for the present case, the
total energy is not conserved at the fracture appearance.

In the E-P-* models, the amount of plastic strain,
accumulated before the triggering of damage, has a key
role in the localisation and structural responses. Fig. 10
highlights the force-displacement response for the E-P-
PD model and for different values of the critical accu-
mulated plastic strain p̄c, that is, the accumulated plas-
tic strain at which damage is triggered and given by the
relation w1 = 2p̄c. By increasing w1, one increases the
initial damage yield stress (24) and, therefore, postpones
the triggering of the localisation. We note then, that the
more the plastic strain is accumulated before damage is
triggered, the less the snap-back phenomenon is accentu-
ated. Moreover, from a certain value, the snap-back phe-
nomenon disappears in favour of a smooth stress-softening
branch. This effect is due to a progressive widening of the
localisation support, as the one observed when increasing
the internal length.

6. Conclusions and Perspectives

We have studied the complex response of nonlinear con-
tinuum models including coupled damage and plasticity,
with the aim of developing an effective phase-field model
of ductile and cohesive fracture. The model has been pre-
sented in a rigorous variational framework consistent with
the theory of Generalised Standard Materials. It includes a
localisation limiter only on the damage variable (damage-
gradient models). We expanded here the ideas presented
in a previous work [5], by analysing the response of a
one-dimensional bar when using the classes of constitutive
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Figure 9: Influence of the internal length on the force-displacement
diagram for the E-P-PD model. The different curves are for `/L =
{0.1500, 0.0750, 0.0375, 0.0188, 0.0094, 0.0047}. The points denotes
the solutions obtained numerically through the alternate minimiza-
tion, which does not follow the unstable parts of the branches.
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Figure 10: Force-displacement diagram for the E-P-PD model for
different values of the critical accumulated plastic strain (p̄c =
{1, 2, 4}) corresponding, respectively, to w1 = {3, 5, 9}:( )/( )
correspond to analytical/numerical responses for a fixed internal
length, ` = 0.11; ( )/( ) correspond, instead, to the an-
alytical/numerical responses for different internal lengths, ` =
{0.155, 0.131, 0.110}, respectively, in order to keep fixed the dimen-
sion of the localisation support.

functions usually employed in numerical phase-field mod-
els of fracture. We presented a throughout comparison of
the different macroscopic responses that can be obtained
by semi-analytical solutions and numerical time-discrete
alternate minimisation algorithms. We have shown that
the interplay between damage and plasticity can lead to a
rich macroscopic behaviour, depending of the ratio of the
yield stresses and softening properties of the plasticity and
damage yield criteria. We have analysed the responses ob-
tained for four different regimes, leading to macroscopic
behaviour associable to brittle fracture à la Griffith (E-
D model), cohesive fracture of the Barenblatt (E-P-PD
model) or Dugdale type (E-P-D), and a kind of cohesive
fracture including a depinning energy contribution (E-D-
PD model). A key feature of the evolution is the subtle
coupling between fully localised plastic deformations and
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Figure 8: Numerical and analytical results for the traction test of the E-P-PD model: (a) force-displacement diagram; (b) energy diagrams;
(c) fracture energy-crack opening diagram; (d) stress-crack opening diagram; Damage (e) and displacement (f) fields at different loading steps.
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damage localisations.
We proposed a numerical solution scheme based on al-

ternate minimisation and reported extensive comparisons
with semi-analytical results in the different regimes. The
agreement between numerical and analytical results is very
good in most cases. However, our analysis emphasises that
issues can appear in time-discontinuous evolutions, as en-
countered when a crack suddenly nucleates. These events
are associated to the loose of stability of fundamental solu-
tions branches and the simultaneous appearance of bifur-
cated branches, which are often unstable. The numerical
responses obtained with the alternate minimisation algo-
rithm jumps to new stable solutions, without preserving
the total energy and without accounting for irreversible
evolutions during the jumps. The solutions obtained an-
alytically, by following the unstable branches emerging at
the instability of the fundamental branch, may be differ-
ent. This is not surprising since the evolution problem
has multiple solutions and one can expect that different
algorithms can lead to different solutions. However, this
poses the general problem of the selection of the better
algorithm to give a physically pertinent solution. We do
not have an answer to this fundamental question.

Another interesting feature of the present model, not
explored in this work, is the capability to describe plastic
fatigue effects, [32].

We believe that our contribution provide a better in-
sight in phase-field approaches to ductile and cohesive frac-
ture and can help in improving the currently available
models. Our work focused on the one-dimensional trac-
tion test. The extension to two- and three-dimensional
contexts is currently under investigation.

Appendix A. Construction of damage localization
profiles in the 1D setting

When the domain is assumed to be a line segment [0, L],
a procedure for the construction of a single localization
zone is shown for several different choices of the constitu-
tive parameters; these choices reflect the order with which
plasticity and damage occur, according to Tab. 3. The
damage profiles constructed will allow to obtain the global
response.

The attention is here limited on the formation and evo-
lution of only one internal localized damaged zone, S =
[x̄−D, x̄+D] where D and x̄ denote respectively half its
size and the position of its center. Therefore we exclude
from the analysis damage localizations near the bound-
aries and the interactions between multiple damage pro-
files. Obviously, with respect to the homogeneous cases, Sec. 3,
the damage gradient term plays a crucial role since the
damage yield condition becomes a differential equation
in α from which the damage profile is constructed.

We recall from Tab. 2 the plastic and damage yield

functions:

fp(σ, α) = fS
p (σ, α) = |σ| − σP(α), (A.1)

fd(σ, p̄R, α) =
1

2
S′(α)σ2 − w′(α)− σ′P(α)p̄R + 2w1`

2α′′,

(A.2)

fS
d (σ, p̄S, α) = 2w1`

2Jα′K− σ′P(α)p̄S, (A.3)

defining the plastic yield stress σP(α) and the damage
yield stress

σD(p̄R, α) :=

√
2
(
w′(α) + σ′P(α)p̄− 2w1`

2α′′
)

S′(α)
. (A.4)

If σP(0) > σD(0, 0), a E-D-* response occurs, otherwise
we get a E-P-* response.

The construction of damage profile starts when the
damage yield criterion is satisfied somewhere in the bar
as an equality. This instant corresponds either to the end
of an elastic stage, if σD(0, 0) < σP(0), or at the end of a
plastic stage, if σD(0, 0) > σP(0). When damage is trig-
gered, the stress σ, constant along the bar, monotonically
decreases to 0 from σy := min {σP(0), σD(0, 0)}, due to the
softening conditions, (6). Starting from an undamaged
state, the purpose is to determine the damaged localiza-
tion profile α(x) and the corresponding plastic strain fields
p(x) and p̄(x) for any stress level σ ∈ [0, σy]. In particular:

1. A homogeneous undamaged state, where σ = σy, is
chosen to start with;

2. The damage yield condition fd = 0, a differential
equation in α, is initially used to determine the dam-
age profile as σ is decreased. At this stage, no singu-
lar points are assumed, hence J(ξ) = ∅. This anal-
ysis produces a function σ 7→ ασ(x), mapping any
stress level in the damage profile at constant plastic
strain, ˙̄p = 0;

3. The violation of the plastic yield condition fp = 0 is
checked for all σ. A violation may occur if in some
points σ > σP(ασ). In this case, singular points
may appear, and also the singular damage yield cri-
terion (A.3) must be taken into account.

In all the steps, the damage irreversibility condition is
explicitly considered.

Appendix A.1. E-D-* case

The following analysis has strong analogies with the
work in [57]. The reader is therefore invited to refer therein
for additional details.

The instant where a localization may appear corre-
sponds to the end of the elastic phase: this implies that
plastic strains are vanishing everywhere, that no singular
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points are present and that σ = σy = σD(0, 0). The start-
ing state for the construction of a localisation is, then,

(u, p, p̄, α) (x) = ((σy/E0)x, 0, 0, 0). (A.5)

The localization process is then governed only by the
damage yield criterion,

− 1

2
S′(α)σ2 + w′(α)− 2w1`

2 α′′ = 0, ∀ x in S. (A.6)

This last autonomous second order differential equation is
an Euler-Lagrange equation which admits a first integral,

− 1

2
S(α)σ2 + w(α)− w1`

2 α′2 = C, ∀ x in S (A.7)

The constant C is determined by the boundary conditions
which depends on the irreversibility condition. In the most
general case, one has

w1`
2 α′(x)

2
= H(σ, α(x) , C) , ∀ x in S, (A.8)

with

H(σ, α,C) := −1

2
S(α)σ2 + w(α)− C. (A.9)

Taking advantage of the matching conditions of the dam-
age profile with the elastic zone

α(x̄±D) = α′(x̄±D) = 0, (A.10)

we obtain

C(σ) = −1

2
S0σ

2 + w(0). (A.11)

The function H(σ, α,C(σ)) vanishes for α = 0 and
α = α∗(σ) with 0 < α∗(σ) < 1, [57]. Moreover, the dam-
age profile has a maximum in x̄ such that α(x̄) = α∗(σ)
and is symmetric, hence α′(x̄) = 0. It is then possible to
construct the damage profile in the localization by using

√
w1`α

′ = sign(x− x̄)
√
H(σ, α,C(σ)), ∀ x in S.

(A.12)
By separating the variables x and α in (A.12), one gets
the damage field ασ(x) in an implicit form,

x− x̄ =
√
w1`

∫ α∗

α

1√
H(σ, β, C(σ))

dβ. (A.13)

Thus one has determined the damage field with respect to
the stress level. The half-damage support D becomes a
function of σ and from (A.36) it reads

D(σ) =
√
w1`

∫ α∗

0

1√
H(σ, β, C(σ))

dβ, (A.14)

x̄x̄−D(σ2) x̄+D(σ2)

ασ2

ασ1

α∗(σ2)

α∗(σ1)

0

1

Figure A.11: Admissible and not-admissible evolutions for the dam-
age profile. The black, thick curve represents an admissible evolution
while the dashed curve violates the irreversibility condition in the red
part and hence represents a not admissible evolution. The solid gray
curve represents a damage profile at a previous time instant.

with the limit case σ = 0 simply given by

D(0) =
√
w1`

∫ 1

0

dα√
w(α)

. (A.15)

The issue is now, whether the constructed map σ →
ασ(x) satisfies at any point x ∈ S the irreversibility con-
dition or not. Specifically:

1. if for any σ, the damage field σ → ασ(x) satisfies the
irreversibility condition, that is

∀ σ2 < σ1 and ∀x ∈ Sσ1
, ⇒ ασ2

(x) ≥ ασ1
(x) ,
(A.16)

the construction is admissible. In this last relation
Sσ1 = (x̄−D(σ1) , x̄+D(σ1));

2. on the contrary, if a σ2 < σ1 exists such that in a
subset of S the damage field decreases, that is

∃ σ2 < σ1 and for some x ∈ Sσ1
,⇒ ασ2

(x) < ασ1
(x) ,

(A.17)
the solution is not admissible and a different con-
struction is proposed.

Both these situations are represented in Fig. A.11.
When the irreversibility condition is violated, the dam-

age field continues to evolve only in a subset S ⊃ Ŝ =
(x̄ − D̂, x̄ + D̂), with D̂ < D(σ0), while the complemen-
tary domain is subjected to an elastic unloading. Within
Ŝ, the governing equation is always (A.8), but a different
constant C has to be found using the continuity of α(x)
and α′(x) in x = x̄± D̂.
The new constant Ĉ is given by

Ĉ(σ, D̂) = −1

2
S(α̂0(x̄−D̂))σ2+w(α̂0(x̄−D̂))−w1`

2 α̂′′0(x̄−D̂),

(A.18)
so that the new maximum damage level is

α∗(σ, D̂) such that H(σ, α∗, Ĉ(σ, D̂)) = 0. (A.19)
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Figure A.12: The solid black thick curve represents the modified
construction that satisfies irreversibility. The solid red branch is
the profile which does not evolve because subjected to an elastic
unloading while the blue branch represents an evolving profile. The
solid gray curves represent damage profiles at previous time instants.

The unknown length D̂ is implicitly given by

D̂ − x̄ =
√
w1`

∫ α∗(σ,D̂)

α0(x̄−D̂)

dβ√
H(σ, β, Ĉ(σ, D̂))

, (A.20)

where α0 is the last damage profile satisfying irreversibil-
ity. Most of the time, this last relation cannot be re-
solved explicitly and a trial-error numeric scheme has to
be adopted. A numeric implementation has been carried
out with the software Mathematica. Once the new dam-
age support D̂ has been found, the damage profile, in the
evolving domain Ŝ, is given by the implicit relation

α̂σ(x) : x− x̄ =
√
w1`

∫ α∗(σ,D̂)

α̂

1√
H(σ, β, Ĉ(σ))

dβ,

(A.21)
that combined with the damage profile α0, subjected to the
elastic unloading, gives the overall damage field evolution,

ασ(x) =

{
α̂σ(x) , ∀ x ∈ Ŝ
α0(x) , ∀ x ∈ S \ Ŝ,

(A.22)

This last construction is depicted in Fig. A.12.
Now that one is able to construct damage localization

evolutions, which satisfy the irreversibility condition and
are based on the first order stability condition, another
question arises. Namely if during such evolution σ → ασ
the plastic yield criterion is violated or not. Two cases are
possible:

1. During all the evolution the plastic criterion is never
violated,

σ < σP(ασ(x)) , ∀x ∈ S (A.23)

2. During the evolution it exist a stress level σ and at
least one point x where the plastic yield condition is

violated,

∃ x ∈ S, σ > 0, such that σ ≥ σP(ασ(x)) .
(A.24)

In case 1, the solution is admissible and the damage pro-
cess becomes a candidate for the global response since
it fulfills all the requirements of the first order stability.
Therefore, the above construction is able to describe lo-
calizations for a E-D response.

On the other hand, case 2 refers to a process in which
the plastic criterion is attained. Such situation is hereafter
described.

E-D-PD response. The plastic criterion can be violated
only at one point x = x̄, namely at center of the damage
profile where α is maximum and, therefore, σP(α) mini-
mum, (6).

The critical stress level, where the plastic criterion is vi-
olated, is σ̄ = σP(ασ(x̄)). This means that in the construc-
tion of a localization the maximum value of the damage
field is not anymore dictated by the condition α′(x̄) = 0
where H = 0 but by

ᾱ(σ) := ασ(x̄) = σ−1
P (σ) . (A.25)

Moreover, due to (A.3), the derivative of the damage pro-
file must suffer a jump in the very same point. The center
of the localization becomes, then, for any σ ≤ σ̄, a sin-
gular point J(ξ) = {x̄}. Since the damage profile in the
connected sub-regions [0, L]\J(ξ) is still governed by (A.6)
and the accumulated plastic strain is zero in S \ {x̄}, the
damage field reads

x− x̄ =
√
w1`

∫ ᾱ(σ)

α

1√
H(σ, β, C(σ))

dβ, (A.26)

where ᾱ is given by (A.25). Clearly, the damage profile is
still symmetric with respect to the center x̄ but its deriva-
tive is not anymore continuous. A jump Jα′K occurs in x̄
and its value, according to (A.8), reads

Jα′K(x̄) = − 2
√
w1`

√
H(σ, α∗, C(σ)), (A.27)

from which one deduces, with the singular plastic yield
condition (A.3), the coefficient (19) of the accumulated
plastic strain Dirac measure

p̄S(x̄) =
2w1`

2Jα′K(x̄)

σ′P(α)
. (A.28)

In the most general case, where irreversibility has to be
taken into account, the problem becomes, for an assigned
stress σ < σ̄, to find D̂, given by the implicit relation

D̂ − x̄ =
√
w1`

∫ ᾱ

α(x̄−D̂)

dβ√
H(σ, β, Ĉ(σ, D̂))

. (A.29)
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Figure A.13: The solid, black, thick curve represents the modified
construction that satisfies irreversibility. The solid red branch is
the profile which does not evolve because subjected to an elastic
unloading while the blue branch represents an evolving profile with
a jump in its derivative in x̄. The solid gray curve represents the
damage profile without plastic strains.

with the same constant Ĉ(σ, D̂) given in (A.18) and the
same solution strategy adopted for (A.20).
The damage profile in Ŝ is, in this case,

α̂σ(x) : x− x̄ =
√
w1`

∫ ᾱ

α̂

1√
H(σ, β, Ĉ)

dβ, (A.30)

and the overall damage function reads

ασ(x) =

{
α̂σ(x) , ∀ x ∈ Ŝ
α0(x) , ∀ x ∈ S \ Ŝ.

(A.31)

The damage construction for a E-D-PD evolution is shown
in Fig. A.13.

Appendix A.2. E-P-* case

In this section, we investigate the case where plasticity
is triggered after the elastic stage, namely σy = σP(0) <
σD(0, 0). For sake of simplicity, it is assumed that plastic-
ity evolves uniformly along the bar.

Since p̄ 7→ σD(α, p̄) is a decreasing function with re-
spect to plasticity and limp̄→∞ σD(α, p̄) = −∞, it exists,
necessarily, a second yield instant where the damage cri-
terion is attained and damage must evolve. Two possible
evolutions could be expected: an E-P-D response, where
plasticity stops to evolve and only damage localizes, or
an E-P-PD response, where both damage and plasticity
evolve together. Which evolution will actually take place
depends on the constitutive functions. In the following,
both cases are investigated and the relative localization
constructions explained. Moreover, it is assumed that once
a response is triggered, it persists during all the evolution,
that is alternate phases of a pure damage evolution and
coupled plasticity-damage evolutions are excluded. For
both cases, the start for the construction of localized so-
lutions is the homogeneous state

u(x) =
σy

E0
x, p(x) = p̄(x) =

S′(0)σ2
y − 2w′(0)

2σ′P(0)
, α(x) = 0.

(A.32)

E-P-D case. In this case, during the localization process,
plasticity stops and does not evolve anymore. No singu-
lar points arises, J(ξ) = ∅, and the damage evolution is
dictated, as for the E-D response, by the damage yield cri-
terion (A.6) with the additional contribution of an initial
uniform plastic distribution,

− 1

2
S′(α)σ2 +w′(α)+ p̄R σ′P(α)−2w1`

2 α′′ = 0, ∀x in S,
(A.33)

From now on, the procedure for the construction of the
damage profiles is the same as Appendix A.1 except for
the presence of the additional term p̄Rσ′P(α). The first
integral (A.7) changes into

− 1

2
S(α)σ2 +w(α)+ p̄RσP(α)−w1`

2 (α′)2 = C, ∀x in S,
(A.34)

while the function H in (A.8) becomes also a function of
the accumulated plastic strain, namely

H(σ, p̄, α, C) := −1

2
S(α)σ2 + w(α) + p̄ σP(α)−C. (A.35)

With such a change, the damage field ασ(x) is now given
by the implicit form

x− x̄ =
√
w1`

∫ α∗

α

1√
H(σ, p̄, β, C)

dβ, (A.36)

Clearly, (A.36) refers to the case where irreversibility is au-
tomatically fulfilled. On the contrary, one has to modify
the construction as in case 2 on page 19 where a construc-
tion that accounts for irreversibility is investigated and
explored.

It is worth noting that the initial width D of the local-
ization is greater for the E-P-D response compared to the
E-D response, since H(σ, p̄, α, C) ≥ H(σ, 0, α, C).

E-P-PD response. In this case, when damage is triggered,
plasticity must continue to evolve since the damage pro-
file, constructed by assuming no singular points, violates
the plastic criterion. That is, ασ(x) in (A.36) is such that
σP(α) < 0 somewhere. Clearly, as already discussed, the
first point where the plastic criterion is attained is the cen-
ter of the localization zone. Then, a candidate solution is
to take the center of the localization zone as a singular
point where plasticity localizes. The passages that follows
are the same as in Appendix A.1 except for the presence
of an initial uniform accumulated plastic strain in the gov-
erning equations which slightly modifies the results. The
center of the localization zone x̄ becomes a singular point,
J(ξ) = {x̄}, and the maximum damage level, attained in
x̄, is dictated for a given stress by (A.25). In the region
J(ξ)\{x̄} the damage profile is obtained from (A.6), lead-
ing to the implicit definition

x− x̄ =
√
w1`

∫ ᾱ(σ)

α

1√
H(σ, p̄, β, C)

dβ, (A.37)
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Figure A.14: The solid, black, thick curve represents the modified
construction that satisfies irreversibility. The solid red branch is the
profile which does not evolve because subjected to an elastic unload-
ing while the blue branch represents an evolving profile. The solid
gray curves represent the damage profiles at previous time instants.
The damage derivative jumps at the tip of the profiles from the very
beginning of the localization evolution.

where H(σ, p̄, β, C) is the same function and has the same
meaning as (A.35). By the same line of reasoning in Ap-
pendix A.1 for the E-D-PD case, the damage profile suf-
fers in x̄ a jump in its derivative, whose amplitude is given
in (A.27) and where coefficient (19) of the accumulated
plastic strain Dirac measure is still given by (A.28). In
case where during the localization process irreversibility is
not satisfied, the same changes in the construction of the
damage profile for the E-D-PD case have to be adopted,
as schematically shown in Fig. A.14.

The damage profiles, corresponding to the constitu-
tive models of Tab. 3 and used to determine the global
responses in Sec. 5, have been built with the previous an-
alytical constructions. The case of the E-D-PD model is
reported in Fig. A.15.
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[48] G. Lancioni, T. Yalçinkaya, and A. Cocks. Energy-based non-
local plasticity models for deformation patterning, localization
and fracture. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Science, 471(2180), jul 2015.

[49] A. A. León Baldelli, J. F. Babadjian, B. Bourdin, D. Henao, and
C. Maurini. A variational model for fracture and debonding of
thin films under in-plane loadings. Journal of the Mechanics
and Physics of Solids, 70:320–348, oct 2014.

[50] A. Logg, K.-A. Mardal, and G. Wells. Automated Solution
of Differential Equations by the Finite Element Method: The
FEniCS Book. feb 2012.

[51] J.-J. Marigo, C. Maurini, and K. Pham. An overview of the
modelling of fracture by gradient damage models. Meccanica,
51(12):3107–3128, dec 2016.

[52] C. Miehe, M. Hofacker, L.-M. Schänzel, and F. Aldakheel. Phase
field modeling of fracture in multi-physics problems. Part II.
Coupled brittle-to-ductile failure criteria and crack propagation
in thermo-elastic-plastic solids. Computer Methods in Applied
Mechanics and Engineering, 294:486–522, sep 2015.

[53] C. Miehe, S. Teichtmeister, and F. Aldakheel. Phase-field
modelling of ductile fracture: a variational gradient-extended
plasticity-damage theory and its micromorphic regularization.
Philosophical transactions. Series A, Mathematical, physical,

23



and engineering sciences, 374(2066), apr 2016.
[54] A. Mielke. A Mathematical Framework for Generalized Stan-

dard Materials in the Rate-Independent Case. In R. Helmig,
A. Mielke, and B. Wohlmuth, editors, Multifield Problems in
Solid and Fluid Mechanics, volume 28 of Lecture Notes in Ap-
plied and Computational Mechanics, pages 399–428. Springer
Berlin / Heidelberg, 2006.
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