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Abstract—We refer to a key-based protection environment featuring active subjects and
protected objects. A subject that possesses a key for a given object is allowed to access
this object to carry out actions that depend on the specific application. We propose a new
key model, called multiple key, or m-key for short. In this model, an m-key consists of a
name, a value and a map. The name specifies a set of objects, and the value is used to
validate the m-key. Possession of a valid m-key is equivalent to possession of a key for all
the objects specified by the m-key name, or for a subset of these objects, as is stated by the
map. A subject that holds an m-key referencing a given set of objects can transform this
m-key into a weaker m-key referencing only a subset of these objects. M-key revocation is
supported.
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1 INTRODUCTION

We shall refer to a protection system paradigm whereby active entities called subjects
generate access attempts to passive, protected entities called objects [1]. Objects can be
simple or typed. A single operation is permitted on a simple object (s-object from now
on, for short), i.e. to access that s-object, whereas for a typed object a set of operations
is defined, which depends on the type. The type specifies a set of access rights, and
determines the association between the operations and the access rights. A subject can
execute a given operation on a typed object only if it possesses the access rights required
for that operation and that typed object [2].

In a classical representation, this protection paradigm takes the form of a matrix, called
the access matrix AM , featuring a row for each subject and a column for each object [3].
Let S0, S1, . . . denote the subjects, and b0, b1, . . . denote the objects. Element AMi,j of the
access matrix specifies whether subject Si holds an access privilege for object bj. If bj is
an s-object, the privilege permits accesses in the form specified by the s-object definition,
whereas if bj is typed, the privilege specifies a set of access rights that determines the
permitted operations.

1.1 Keys

An important aspect of every protection paradigm is the method to encode access privileges
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in memory. A solution is to associate keys with objects and privileges. A subject that
possesses a key for a given object can use this key to access the object to exercise the
corresponding privilege.

As an example involving s-objects, let us consider a binder containing a set of documents.
In this example, the subjects are the potential readers and the s-objects are the documents
in the binder. In the access matrix model, we have a row for each reader, and a column for
each document. The matrix element corresponding to a given reader and a given document
specifies whether that reader possesses the privilege to access the document. In this case,
in a key-based implementation of the access matrix, the reader possesses a key for the
document.

As a further example, let us refer to an environment supporting enciphered messages
[4], [5]. Each message consists of a header and a body. The header is in plaintext, the
body is enciphered by using a symmetric-key algorithm and a cryptographic key whose
name is written in the header. A subject that possesses a given cryptographic key can
read the contents of all the messages enciphered by using that key. This example shows
that a single key can grant an access privilege for several s-objects. In the access matrix
model, each element in a column corresponding to a message enciphered by using that key
may specify the access privilege to decipher the message.

As a final example, let us refer to a protection environment in which objects are typed.
In a key-based approach, a key is associated with each pair (typed object, access privilege).
A subject that possesses a given key is allowed to access the named typed object to carry
out the operations permitted by the access rights in the privilege. In the access matrix,
the elements in the column of that typed object specify the subjects that the hold access
privileges for that object.

1.1.1 Proliferation

In a key-based protection environment, subjects tend to possess varieties of keys. In the
aforementioned examples, we have a key for each document in the binder; several keys
are necessary to decipher messages from different senders; and, for a typed object, a key
is associated with each object and each meaningful access privilege. The necessity to
maintain collections of different keys leads to undesirable complications in key management,
and to inefficiencies in terms of the memory requirements for key storage.

1.1.2 Weakening

A subject that possesses a given key can transfer a copy of this key to another subject.
This is equivalent to granting the full access privilege corresponding to that key. In fact, a
copy of a key is indistinguishable from the original, and possession of the copy is equivalent
to possession of the original. On the other hand, we may well be aimed at granting only a
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fraction of the privilege. This means that the protection system should permit actions of
key weakening. In the example of the typed objects, weakening means to eliminate access
rights from the access privilege associated with the given key, so that the recipient of the
key copy can access the corresponding typed object only for a subset of the operations.

1.1.3 Revocation
A subject that received a key can distribute the key further. In fact, keys tend to spread
throughout the system. A related requirement is the possibility for the original subject to
revoke the key, so that it will no longer possible to use this key to exercise the corresponding
access privilege [6]. Revocation should transitively extend to every subject that received a
key copy. Transitivity should also apply to all the weakened versions of the original key, so
that it is impossible to take advantage of the weakened copies to circumvent revocation.

The key revocation mechanism should be non-invasive. In fact, an important requisite
for a key model is simplicity and efficiency in key verification and transmission between
subjects. Revocation should not affect the overall system performance negatively. This
would be the case if, for instance, every activity involving a given key, e.g. generation of a
key copy, should be validated by a pervasive protection monitor [7].

1.2 Capabilities

Capabilities are an effective implementation of the key concept [8], [9]. A capability is
a pair (ID, AP ), where ID is the unique identifier of a protected object, and AP is the
specification of an access privilege for this object. In a capability environment, each
subject holds a collection of capabilities, which specifies the objects it can access and the
operations it can execute on these objects, as made possible by the access privileges.

1.2.1 Segregation and proliferation
Segregation is a peculiar problem of capability systems. We should prevent undue mod-
ifications of capabilities, to add access rights to the access privileges, or to change the
identifiers to reference different objects (which is equivalent to forge new capabilities).

Several solutions have been proposed to the capability segregation problem [10]. In
a segmented memory system, special segments, which we shall call capability segments,
can be reserved for capability storage (in contrast, data segments will contain ordinary
information items) [11]. The instruction set of the processor is augmented to include
special instructions for capability processing. These capability instructions make it possible
to access the contents of capability segments; if an ordinary data instruction is used, an
exception of violated protection is raised, and execution fails.

Segment-based capability segregation forces subjects to adhere to complicated schemes
of object management. For instance, for a given object, at least one capability segment is
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necessary to contain the capabilities for the data segments storing the internal representa-
tion of the object. Undesirable capability proliferation and memory wastes may follow.
This is especially true if protection should be exercised at a high granularity level, for
small-sized objects.

In a different approach, each memory cell includes a one-bit tag, which specifies whether
this cell contains a capability, or an ordinary information item [12], [13]. Only capability
instructions can be executed on a cell tagged to contain a capability. This approach implies
ad hoc memory modules designed to contain the tags; this is contrary to the requisite
of hardware standardization. Complications arise in memory management, e.g. for the
necessity to save, and then to restore, the tags whenever a segment is swapped to the
secondary memory.

1.2.2 Weakening
Weakening is easy in capability systems. In a simple implementation, the access privilege
field includes one bit for each access right; if asserted, the given bit specifies that the
capability grants the corresponding access right. The instruction set of the processor
includes a capability instruction that makes it possible to clear (but not to set) these bits.
This instruction will be used to weaken the given capability, by clearing the bits that
correspond to the unwanted access rights.

1.2.3 Revocation
A subject that granted a given capability should be in the position to revert the grant,
and retract the corresponding access privilege from the recipient [10]. Solutions have been
devised to the capability revocation problem, which include a propagation graph associated
with the given capability, to keep track of all copies of this capability throughout the
memory system [8]; a reference monitor associated with the given protected object, to
mediate all accesses to this object [7]; and short-lived capabilities whose lifetime should be
periodically renewed [14]. These solutions are in sharp contrast with the requirement of
simplicity of access privilege transmission between subjects, which was one of the original
motivations for the introduction of the capability concept [15].

1.3 Password capabilities

Password capabilities are an important improvement on the capability paradigm [10], [16],
[17]. In a password capability environment, a set of passwords is associated with each given
object; each password corresponds to a specific access privilege for this object. A password
capability is a pair (ID, W ), where ID is an object identifier, and W is a password. If
W matches one of the passwords associated with the object identified by ID, then the
password capability grants the access privilege for the object, which corresponds to this
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password.

1.3.1 Segregation and revocation
If passwords are large, sparse and chosen at random, a malevolent subject will not be able
to forge a password capability from scratch, or to modify an existing password capability
to include the password for a stronger privilege [18]. This means that password capabilities
can be mixed in memory with ordinary information items, and are an effective solution to
the segregation problem. Furthermore, if we change one of the passwords associated with
a given object, we revoke all the password capabilities defined in terms of that password,
and this is an effective solution to the revocation problem.

1.3.2 Proliferation and weakening
Granularity in the specification of access privileges implies that many passwords are
associated with the same given object, one password for each significant privilege. This
leads to password proliferation, with negative effects on simplicity in password management,
and on the memory requirements for password storage.

A related problem is that of password capability weakening. A subject that holds
a given password capability is not in the position to weaken this password capability
autonomously. Instead, it should ask for the intervention of an ad hoc component of
the protection system, that we shall call the object manager, associated with the given
object, and responsible for password capability weakening. The object manager receives a
password capability, and returns a new password capability expressed in terms of a weaker
password. An alternative, less complicated solution would be desirable, whereby a subject
that holds a password capability can weaken this password capability autonomously, with
no intervention of the protection system.

1.4 Multiple keys

With reference to an environment featuring subjects and protected objects, this paper is
aimed at presenting effective solutions to the problems, outlined above. We shall introduce
a new key model, called multiple keys, or m-keys for short. In this model, an m-key consists
of a name, a value and a map. The name specifies a set of s-objects, and the value is
used to validate the m-key. Possession of a valid m-key is equivalent to possession of a
key for each s-object specified by the m-key name, or for a subset of these s-objects, as is
stated by the map. Thus, the m-key construct allows us to encode several distinct keys in
a single m-key, and m-keys are an effective solution to the proliferation problem. We shall
show that:

• M-keys give effective support to segregation, unforgeability, weakening and revoca-
tion.
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• The memory requirements for storage of an m-key is comparable to that of a single
key.

• Any illegitimate attempt to modify an m-key to include a stronger privilege is
hampered. In particular, a subject that holds an m-key generated by weakening
is prevented from amplifying this m-key to reference more s-objects, and possibly
return to the original, unweakened m-key.

• The m-key concept is flexible, and can be used efficiently to solve a variety of
protection problems, which correspond to different meanings associated with the
concept of an object.

The rest of this paper is organized as follows. Section 2 introduces the m-key model with
special reference to the relation existing between the value of an m-key and a master value
permanently associated with the name of this m-key. The problems of m-key validation,
weakening, and revocation are considered in special depth. Section 3 illustrates a few
examples of application of the m-key concept, which include the protection of collections
of strictly-related homogeneous objects, the management of sets of cryptographic keys,
and the access privileges for typed objects. Section 4 discusses the m-key model from
a number of important viewpoints, which include implementation issues, the memory
requirements for m-key storage, and the relation of our work to previous work. Section 5
gives concluding remarks.

2 THE MULTIPLE KEY MODEL

Let b0, b1, . . . , bn−1 be a set of n s-objects, and let B = (bn−1, bn−2, . . . , b0) be the quantity
obtained by concatenating (joining) the names of these s-objects. M-key K is a triple
(B, V, M) where B is the m-key name, V is the m-key value, and M is a map. We say that
the m-key references a given s-object if the validity of the m-key extends to this s-object.
For each given s-object bi in B, the map M indicates whether m-key K references bi, or
not; in the affirmative case, possession of K implies possession of a key for bi. Furthermore,
as will be illustrated shortly, the map describes the relation existing between quantity
V and an m-key value, called the master value and denoted by V , which is permanently
associated with m-key name B.

Map M is divided into n − 1 submaps, i.e. M = (mn−2, mn−3, . . . , m0), where mi

denotes the i-th submap. The size of each submap is n bits, and the i-th bit corresponds
to the i-th s-object, bi. If the i-th bit is cleared in all the submaps of m-key K, then K

references bi, and possession of K implies possession of a key for bi. Conversely, if the i-th
bit is asserted in one or more submaps, then K does not reference bi, even if bi is named
in B.
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A submap is cleared if its value is 0. Cleared submaps are always placed in the most
significant positions of the map, at the highest order numbers. It follows that, if mj is
cleared, then mk is cleared for all k > j. We shall take advantage of this property shortly,
in m-key validation. Possession of an m-key whose submaps are all cleared (i.e. M = 0) is
equivalent to possession of a key for each s-object included in the m-key name. In this
case, V = V , and the resulting m-key has the form (B, V , 0). This m-key is called the
master key of the s-objects named in B, and is denoted by K. Thus, K = (B, V , 0).

2.1 M-key evaluation

Function f is one-way if given x, it is easy to determine f(x), and given f(x), it is
computationally unfeasible to determine x [19]. In our protection system, to generate
m-key values, we take advantage of a one-way function, called the base function and
denoted by f .

Let K = (B, V, M) be an m-key. The value V of the m-key is divided into n subvalues,
i.e. V = (vn−1, vn−2, . . . , v0), where vj denotes the j-th subvalue, and n is the number
of s-object names that form B. The relation existing between V and master value
V associated with B is specified in terms of repeated applications of base function f ,
one application for each submap of map M that is not cleared. In detail, if M = 0
then we have V = V ; otherwise, quantity V is obtained by iteratively evaluating quantity
Vi+1 = f(Ui), i = 0, 1, . . . etc., where V0 = V . Quantity Ui is called the mapped complement
of Vi, and is the result of a bitwise complement of each subvalue of Vi that corresponds to
an asserted bit of mi (i.e. if the k-th bit of mi is asserted, then we complement vk). The
iterations terminate at the submap, say mj, that precedes the first cleared submap (i.e.
mj+1 = 0), and in this case V = Vj+1. If no submap is cleared, the iterations terminate at
the last submap mn−2, when V = Vn−1.

Figure 1 shows the evaluation of quantity V for a specific configuration of map M

in m-key K = (B, V, M). In this example, n = 4, that is, the m-key name includes
four s-object names, which we shall denote by b0 to b3. Thus, B = (b3, b2, b1, b0). Map
M consists of three submaps, i.e. M = (m2, m1, m0), and the size of each submap is
four bits. If M = (0000, 0001, 0110), bit 3 is the only bit that is cleared in all submaps.
Consequently, m-key K references a single s-object, b3. This means that possession of K is
equivalent to possession of a single key, for b3. Value V is partitioned into four subvalues,
i.e. V = (v3, v2, v1, v0). Let us denote the bit configuration of the generic subvalue by
xx . . . x, and the corresponding bitwise complement by x̄x̄ . . . x̄. In the evaluation of V , in
the first iteration we have V0 = V . Submap m0 is 0110, and consequently, subvalues v1

and v2 are bitwise complemented. The result U0 is transmitted to function f that produces
V1. In the second iteration, submap m1 is 0001, and consequently, subvalue v0 is bitwise
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Figure 1: Evaluation of quantity V for a specific configuration of map M in m-key K = (B, V, M).
In this example, the m-key name includes four s-object names. Consequently, the value V of the
m-key is partitioned into four subvalues, v0 to v3, map M is partitioned into three submaps, m0
to m2, and the size of each submap is four bits.

complemented. The result U1 is transmitted to function f that produces V2. Submap m2

is cleared; this terminates the iterations, and V = V2.

2.2 M-key validation

Let K = (B, V, M) be an m-key, and let V be the master value associated with m-key
name B. K is valid if its value V corresponds to the value we obtain starting from V and
using map M in the iterative evaluation process described in Section 2.1.

In detail, let B = (bn−1, bn−2, . . . , b0), where bi denotes an s-object name, let V =
(vn−1, vn−2, . . . , v0), where vi denotes a subvalue, and let M = (mn−2, mn−3, . . . , m0),
where mi denotes a submap. If M = 0 (i.e. all the submaps are cleared) and V = V , then
m-key K is valid and it references bn−1, bn−2, . . . , b0 (that is, possession of K is equivalent
to possession of a key for each s-object named in B). If M 6= 0, the m-key is validated
by using base function f and the submaps of M to evaluate quantity V ′ corresponding
to M . Thus we have V0 = V , and Vi+1 = f(Ui), i = 0, 1, . . . etc., where Ui is the mapped
complement of Vi. The sequence terminates at the submap, say mj, that precedes the
first cleared submap (i.e. mj+1 = 0), and in this case V ′ = Vj+1. If no submap is cleared,
the iterations terminate at the last submap mn−2, when V ′ = Vn−1. M-key K is valid if
V ′ = V . If K is valid, and the i-th bit is cleared in all the submaps, then K references
s-object bi (that is, possession of K is equivalent to possession of a key for bi).
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Figure 2: Weakening of m-key K = (B, V, M) that references two s-objects, b0 and b3, into m-key
K ′ = (B, V ′, M ′) that references a single s-object, b3.

2.3 M-key weakening

Let us consider a subject S that holds m-key K = (B, V, M), let B = (bn−1, bn−2, . . . , b0),
where bi denotes an s-object name, and let I be the set of all the s-objects referenced
by K, according to map M . Subject S may wish to transfer a copy of K to a different
subject S ′. This action is equivalent to the grant of a key for each s-object in I. Subject S

can even transfer an m-key referencing a subset I ′ of the s-objects in I. To this aim, S

converts K into a weaker m-key K ′ = (B, V ′, M ′) that references only the s-objects in I ′.
This action is called m-key weakening, and can be carried out by subject S autonomously,
as is detailed below.

Suppose that m-key K references s-object bi, and we are aimed at excluding this
s-object from a weaker m-key K ′. Let m0, m1, . . . , mn−2 be the submaps of map M , and
let mj be the first cleared submap (i.e. mk = 0 for all k > j). Map M is transformed
into map M ′ by setting the i-th bit of mj, which corresponds to bi. Then, value V is
transformed into value V ′ by applying base function f . Thus we have V ′ = f(U), where
U denotes the mapped complement of V obtained by using mj.

It should be noted that, for n s-objects and n − 1 submaps, the map of an m-key
referencing two or more s-objects always contains at least one cleared submap, and can be
weakened (conversely, if no map is cleared, then the m-key contains a single s-object, and
cannot be weakened).

Figure 2 shows the weakening of m-key K = (B, V, M) for a specific configuration of
map M . In this example, n = 4, that is, the m-key name includes four s-object names.
Thus, B = (b3, b2, b1, b0). Map M consists of three submaps, i.e. M = (m2, m1, m0), and
the size of each submap is four bits. If M = (0000, 0000, 0110), bits 0 and 3 are cleared
in all the submaps, and consequently, K references b0 and b3 (i.e. possession of m-key
K is equivalent to possession of a key for b0 and a key for b3). Let us suppose that we
are aimed at weakening m-key K into m-key K ′ = (B, V ′, M ′) to eliminate b0, so that K ′

will reference a single s-object, b3. We modify the first cleared submap of M , i.e. submap
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m1; the new value is 0001 to indicate that s-object b0 is excluded from K ′. Quantity U is
obtained by bitwise complementing subvalue v0 of V , corresponding to bit 0 of m1, which
is asserted. Base function f is applied to U to obtain V ′ = f(U).

2.4 M-key revocation

Let B = (bn−1, bn−2, . . . , b0) be an m-key name, where bi denotes an s-object name, and
let V be the master value associated with B. As seen in Section 2.2, validation of m-key
K = (B, V, M) is an iterative procedure that starts at V . The procedure determines a
value V ′ by successive transformations involving map M and base function f . M-key K is
valid if V ′ matches m-key value V . It follows that if we modify V , we invalidate all the
m-keys that originate from V , that is, master m-key K = (B, V , 0) and all the m-keys
derived from K by weakening. It will no longer be possible to use these m-keys to reference
the corresponding s-objects.

Now suppose that we associate two master values with B, say V 1 and V 2. The
corresponding master m-keys are K1 = (B, V 1, 0) and K2 = (B, V 2, 0). If we change a
master value, say V 1, we invalidate the corresponding master m-key K1 and all the m-keys
derived from this master m-key by weakening. On the other hand, validity of K2 and all
the m-keys derived from K2 is unaffected. These considerations can be extended to an
arbitrary number of master values.

3 EXAMPLES OF APPLICATION

M-keys can be used in a variety of applications, corresponding to different meanings
associated with the concept of an s-object. This section presents a few examples of these
applications, where s-objects correspond to strictly related entities, to cryptographic keys,
and to different access rights for a typed object. This is by no means exhaustive, but it
gives an indication of the flexibility of the m-key concept.

3.1 Homogeneous objects

As an example of application involving a collection of strictly related, homogeneous objects,
let us consider a binder B containing n documents. An m-key for the binder has the form
(B, V, M), where B = (dn−1, dn−2, . . . , d0), and di denotes the name of a document. A
master value V is associated with the binder. Map M states the relation existing between
V and m-key value V . The master m-key for B has the form K = (B, V , 0), where the
map equal to 0 indicates that K references all the documents in the binder (i.e. possession
of K is equivalent to possession of a key for each document in the binder). As shown in
Section 2.3, K can be transformed into a weaker m-key K = (B, V, M). In this case, map
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M has a non-zero value that indicates the relation existing between master value V and
m-key value V , and determines the documents that are actually referenced by the m-key.
Possession of m-key K is equivalent to possession of a key for each of these documents.

Let S be a subject aimed at accessing document di in binder B. S should possess
an m-key K = (B, V, M) for the binder, and this m-key should reference di. When the
m-key is sent to the binder, the i-th bit of each submap of map M is inspected. If one or
more of these bits are asserted, K does not reference document di, and the access to this
document is denied. If all these bits are cleared, master value V is used to validate K.
This means that quantity V ′ corresponding to M is evaluated by carrying out the iterative
procedure delineated in Section 2.2, which involves base function f and the submaps of
M . If V ′ = V , validation terminates successfully, and the access to di is finally permitted.

3.2 Cryptographic keys

Let us consider a message-passing environment, where messages are enciphered by a
symmetric-key algorithm. A message consists of a header in plaintext, and a body in
ciphertext. The message header includes the name k of a cryptographic key; the value of
this key has been used to encipher the message body. Subject S that enciphered a message
by using k can authorize a recipient subject R to read this message by granting k to R.
The authorization can be transitively extended to other subjects by copying k to these
subjects. M-keys can be effectively used to simplify these copy actions. In particular, we
can transfer several cryptographic keys by a single m-key copy.

In this application, in m-key K = (B, V, M), we have B = (kn−1, kn−2, . . . , k0), where
ki denotes a cryptographic key. A key manager maintains a key table featuring an entry for
each cryptographic key. The entry for key ki contains the value vi of this key. Furthermore,
the key manager associates a master value V with B. In m-key K, map M indicates the
relation existing between V and m-key value V . If M = 0, we have the master m-key
K = (B, V , 0); possession of K implies possession of all the cryptographic keys. If M 6= 0,
possession of m-key K = (B, V, M) implies possession of a subset of all the cryptographic
keys, and the composition of this subset is stated by M .

A subject that holds m-key K can ask the key manager for the value v of the i-th
cryptographic key ki by executing operation v ← keyV alue(K, i). Execution of this
operation of the key manager is as follows. The i-th bit is inspected in each submap of
map M ; if this bit is asserted in one or more submaps, then K does not reference ki, and
operation keyValue fails. Otherwise, master value V is used to validate K, as has been
illustrated in Section 2.2. If validation fails, then keyValue fails; otherwise, the key table
is accessed to find the value vi of ki, which is finally returned to the caller.

A subject S that holds an m-key K referencing a set of cryptographic keys can transfer
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these cryptographic keys to another subject S ′ by simply copying K to S ′. Subject S can
also transfer an m-key for a subset of the cryptographic keys, e.g. a single key. To this
aim, S weakens K, as has been illustrated in Section 2.3, to eliminate the unwanted keys;
no intervention of the key manager is necessary.

3.3 Typed objects

Let us refer to a protection environment in which objects are typed. Subject S can
access object G of type T to execute operation op only if it possesses the access privilege
associated with op. The access privilege is expressed in terms of a collection of access
rights. As seen in Section 1, a classical protection problem is to represent the access
privileges. M-keys and our protection system are a solution to this problem.

Let ar0, ar1, . . . , arn−1 be the access rights defined by type T , and let an s-object
correspond to a pair (typed object, access right). Thus, for a given object G of type T , we
define n s-objects, one s-object for each access right defined by T . Let bi be the s-object
associated with access right ari. An m-key referencing G is a triple (B, V, M), where
B = (bn−1, bn−2, . . . , b0). This means that the name of the m-key includes the s-objects for
all the access rights. The map states the relation existing between value V of the m-key
and master value V associated with B. If M = 0, we have the master m-key K = (B, V , 0),
which grants full access rights for G. If M 6= 0, possession of m-key K = (B, V, M) is
equivalent to possession of a subset of the access rights, and the composition of this subset
is stated by the map.

Therefore, subject S that possesses an m-key K for a given typed object G is in the
position to access G to perform the operations permitted by the access rights included
in K, according to the m-key map. Subject S may even transfer these access rights to
a different subject S ′, completely or in part. A simple m-key copy action is sufficient to
transfer all the access rights. For a partial access right transfer, S will generate a weaker
version of K, say K ′ = (B, V ′, M ′), where M ′ is obtained by modifying M to exclude the
s-objects corresponding to the unwanted access rights. To this aim, as seen in Section 2.3,
subject S modifies the first submap of M whose value is 0, say submap mj , to set the bits
corresponding to the s-objects to be excluded. Then, S uses mj and base function f to
evaluate V ′ starting from V . The new m-key K ′ will be transferred to subject S ′.

As an example of implementation, let us consider the Buffer object type. The definition
of this type includes four access rights, namely delete, copy, insert, and extract. Possession
of the delete access right for a given buffer allows us to delete the buffer, copy makes it
possible to generate a buffer copy, insert allows a producer subject to add new data items
into the buffer, and extract allows a consumer subject to extract data items from the
buffer. Thus, for a given instantiation of the Buffer type, we have four access rights, which
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correspond to four s-objects, namely b0 for access right delete, b1 for copy, b2 for insert,
and b3 for extract. When subject S creates a buffer, a master value V is generated at
random and is permanently associated with the buffer as part of its internal representation.
Subject S receives a master m-key for the buffer, K = (B, V , 0), where B = (b3, b2, b1, b0),
and the map equal to 0 indicates that all access rights are included in the master m-key.
Subject S can transfer these access rights to a different subject S ′, completely or in part,
by granting S ′ a copy of K, or an m-key generated from K by weakening.

As seen in Section 2.4, m-keys can be revoked by changing the corresponding master
value. In our example of the Buffer type, this action is made possible by a specific
operation, which has the form K ′ ← revoke(K). This operation receives the old master
m-key K as a parameter; this is necessary to verify that the caller holds full access rights
for the buffer. Execution replaces V with a new value V ′, and returns a master m-key K ′

defined in terms of V ′. As a result, all the m-keys originated from V (i.e. K, as well as all
the m-keys derived from K by weakening) are invalidated; it will no longer possible to use
these m-keys to access the buffer. After execution of revoke, K ′ is the single valid m-key
for the buffer. The subject that executed revoke has the opportunity to carry out a new
distribution of access rights, by granting copies of K ′ as well as of m-keys derived from K ′

by weakening.

4 DISCUSSION

4.1 M-key forging

Let us suppose that subject S attempts to forge an m-key for a set of s-objects from
scratch. Let K = (B, V, M) be the result of this attempt. M-key name B will be simply
obtained by joining the s-object names, i.e. B = (bn−1, bn−2, . . . , b0). Map M will be set
to 0, so that the m-key will reference all the s-objects. However, S does not know the
master value V associated with B, and consequently, it will use a value chosen at random.
If master values are sparse and large, the probability of a casual match is virtually null,
and the m-key forging attempt is destined to fail. Of course, similar considerations also
apply to any weaker m-key, corresponding to a non-zero value of map M .

Let us now suppose that subject S possesses a valid m-key K = (B, V, M). If M 6= 0,
this m-key references only a subset of the s-objects named in B. Suppose that S is aimed
at amplifying K to obtain m-key K ′ = (B, V ′, M ′), where M ′ is less restrictive than M

(e.g. if submap mj 6= 0 and submap mk = 0 for k > j, we clear mj). In this case, V ′

should precede V in the iterative procedure illustrated in Section 2.1, and used to evaluate
V starting from master value V . However, base function f is one-way, and can cannot be
inverted. This means that it is impossible to use m-key value V corresponding to map
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M to determine m-key value V ′ corresponding to map M ′. In this case, too, if S uses a
random V ′, the probability of a casual match is vanishingly low.

4.2 M-key revocation

As seen in Section 2.4, by changing the master value V associated with m-key name B, we
revoke the corresponding master m-key K = (B, V , 0), and all the m-keys derived from K

by weakening. If more master values are associated with B, and we change one of them,
the m-keys derived from the other master values are not affected by the change.

Despite its simplicity, this mechanism for m-key revocation possesses several interesting
properties [8]. Revocation is selective, that is, it can be limited to a subset of the m-keys
for a given set of s-objects, if a specific master value is associated with this subset, and we
change this master value. Revocation is transitive, that is, the effects of the revocation of
a given m-key automatically extend to all the copies of this m-key (in fact, the copy of an
m-key is indistinguishable from the original). Revocation is independent, that is, m-keys
for the same collection of s-objects can be revoked independently of each other, if these
m-keys derive from different master m-keys. Revocation is temporal, that is, it can be
reversed automatically through the same mechanism used for revocation, by restoring the
master value preceding revocation.

4.3 Implementation issues

In a possible, effective implementation of an m-key system, we shall define a limited
number of m-key formats, corresponding to prefixed values of the number n of s-objects in
an m-key. We may have a short m-key for up to four s-objects (n = 4), a standard m-key
for up to eight s-objects (n = 8), and a long m-key for up to 16 s-objects (n = 16). For
instance, in the standard m-key format, the m-key value is partitioned into eight subvalues,
v0 to v7. The map consists of seven submaps, m0 to m6, and the size of each submap is
eight bits.

4.3.1 Clusters

As seen in Section 2, the name of an m-key is obtained by joining the names of the
component s-objects. Let m be the size of an s-object name, in bytes; for n s-objects, an
m-key name is n ·m bytes wide. For instance, m = 4 makes it possible to generate a large
number of s-object names. In the standard m-key format, introduced above, we have eight
s-objects, and the size of an m-key name is 32 bytes.

These memory requirements can be significantly reduced if the s-objects in the same
m-key are numbered in sequence to form a cluster. In the example of a collection of
homogeneous objects, considered in Section 3.1, this means that the documents in a
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given binder will correspond to consecutive objects. In the cryptographic key example
of Section 3.2, the keys will be assigned consecutive names. Finally, in the typed object
example of Section 3.3, the access rights for the same given typed object will be numbered
in sequence.

If s-objects are clustered, the most significant portion of the name of a given s-object
identifies the cluster, and the least significant portion is a local s-object number, equal to
the order number of that s-object in the cluster. The name of an m-key for the cluster
is simply given by the cluster name. If the cluster consists of fewer s-objects than the
capacity of the m-key format, the redundant s-objects will be excluded from the m-key by
taking advantage of the m-key map.

For instance, for 32-bit s-object names and clusters of eight s-objects, the 29 most
significant bits of an s-object name identify the cluster, and the three least significant
bits are the local name of the s-object in that cluster. In the standard format, the m-key
supports up to eight s-objects. For a smaller cluster, e.g. a cluster of six s-objects, b6 and
b7 will be excluded from the m-key by setting the two most significant bits of submap
m0; the m-key value will be evaluated accordingly, as is the case in m-key weakening (see
Section 2.3). The map consists of seven submaps, and the size of each submap is eight
bits. If the size of an s-object name is 32 bits and the size of an m-key value is 128 bits,
the resulting m-key size is 27 bytes, which is comparable to that of a single key (20 bytes),
and is much less than the memory requirements for storage of eight separate keys (160
bytes).

4.4 Previous work

Capabilities and password capabilities have received much attention for many decades [15].
Several systems were conceived that support forms of capability-based protection. This
section takes a few significant examples of these systems into consideration. The aim is a
comparison with the design principles that inform the m-key protection model.

PSOS [20] is a capability operating system using tagging for capability segregation, in
the processor as well as in the primary and secondary memory. The tag bits cannot be
altered by ordinary processor operations, a single exception being the two instructions,
to create a new capability and to restrict a capability to include less access rights. A
capability consists of a unique identifier and a set of access rights taking the form of a
Boolean array. The instruction to weaken a capability creates a new capability with the
same identifier, and applies a mask to the access rights. The ability to copy a capability
can be restricted, e.g. if we are aimed at permitting a user to access a given object but not
to transmit this privilege to others. A result of this type is obtained by an access right
that grants store permission; each memory segment can be limited to contain only those
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capabilities that include this access right.
CHERY [13] is a design and implementation effort using a capability coprocessor

to extend the 64-bit MIPS instruction set architecture. The MIPS pipeline transmits
instructions to the coprocessor, it exchanges operands with the coprocessor, and receives
exceptions from the coprocessor. The aim is to give efficient support to a hybrid approach
to memory protection whereby a memory management unit supports coarse-grained inter-
process separation, and capabilities implement fine-grained intra-process isolation and
software compartmentalization. Applications are decomposed into isolated components
that are selectively given access to resources. Capability segregation is obtained by a
one-bit memory tag for each 256-bit memory cell. The coprocessor includes a set of
capability registers; the capability instructions make it possible to access these registers to
load and store capabilities, and to dereference capabilities to load and store data.

Annex [6] is a distributed system that unifies addressing and protection by an object
model based on password capabilities. In Annex, subjects have no ambient authority.
Instead, the entire authority of a subject is that connected with the password capabilities
it possesses. This promotes adherence to the principle of least privilege: each subject
should be granted least possible privileges, and a privilege should be granted to least
possible subjects [21]. A password capability consists of a device identifier that univocally
specifies a host device, as is required to deliver information requests; an object identifier
that specifies an object in the target device; a capability identifier aimed at selecting an
access permission; and a password that guarantees capability unforgeability. Password
capabilities may only exist within the protective bounds of the kernel. Outside the kernel,
a password capability is referenced by using handles mapped to that password capability
on a per-object basis. Access privilege revocation uses a kernel-based algorithm, similar to
that proposed in [8], in which a graph is used to record the propagation of capabilities
within the boundaries of a single device. When a revocation should take place that crosses
the device boundaries, all devices are required to cooperate.

Protected pointers [22] were conceived as a solution to the password proliferation
problem, consequent to the necessity to specify any arbitrary combination of access rights
in a memory system exercising protection at the level of memory segments. A single
password is associated with each segment; this keeps the memory requirements for password
storage low, and simplifies password management. A segment pointer consists of pair
(ID, AR), where ID identifies a segment, and AR specifies a set of access rights for this
segment. Segment pointers are never stored in memory in plaintext. Instead, they are
stored in the ciphertext form that results from application of a symmetric-key cipher
to quantity AR and the password of the corresponding segment. Encryption prevents
tampering with the access right field to add new access rights, and is an effective solution to
the segregation problem. A segment pointer must be deciphered to verify the access rights
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when an access is issued to the corresponding segment. Hardware supports are necessary
to limit the execution time costs of repeated actions of segment pointer deciphering, e.g. in
the case of a sequence of accesses to the same segment. These hardware supports include
a set of protection registers inside the processors. A segment pointer must be translated
into plaintext and loaded into a protection register to access the corresponding segment.
This protection register can be used in every subsequent access to this segment.

The m-key protection paradigm, introduced in this paper, does not rely on any form
of support from ad hoc hardware. Instead, all the functionalities of the protection system
are intended to be implemented by software routines. As seen in Section 4.1, m-keys do
not need to be segregated in memory or enciphered, as they are protected from forgery by
unguessablef master passwords. We rely on typed object encapsulation for fine-grained
process separation (see Section 3.3). M-key revocation requires no intervention of the kernel.
In fact, as seen in Section 2.4, our solution to the revocation problem takes advantage of
the m-key validation procedure, which uses the universally-known base function. When an
access is attempted to a given object to execute a given operation, the master password
associated with that object is used to validate the access. If the master password has been
changed, validation fails, and the m-key is revoked. Multiple encryption is used to support
m-key weakening with no intervention of the protection system (see Section 2.3). Multiple
encryption is certainly not a new idea; it has been used to support secure authorized
deduplication, for instance [23], [24].

5 CONCLUDING REMARKS

In a protection system supporting active subjects that produce access attempts to protected
objects, we have proposed a new key paradigm called multiple keys. The following is a
brief summary of the main results we have obtained:

• A subject that holds an m-key referencing a given set of s-objects can transform
this m-key into a weaker m-key referencing only a subset of these s-objects. This
transformation requires no intervention of the protection system, and can be iterated
to the limit of an m-key that references a single s-object.

• If master values are large, sparse and chosen at random, it is virtually impossible for
a malevolent subject to forge a valid m-key. Similarly, it is impossible to modify a
valid m-key to reference more s-objects.

• By changing the master value associated with a given m-key name, we revoke the
validity of the m-keys defined in terms of that m-key name. It is even possible to
associate more master values with a single m-key name, and in this case, revocation
can be restricted to the m-keys derived from a subset of these master values. We
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have shown that this m-key revocation mechanism possesses a number of interesting
properties; it is selective, transitive, independent, and temporal.

• The memory requirements for storage of an m-key are low, and are comparable to
those of a single key. This is especially true for clusters of strictly related s-objects,
so that these s-objects can be named in sequence.

• The m-key concept is flexible, and can be used to solve a variety of protection
problems efficiently. We have illustrated a few examples of applications, including
the protection of collections of strictly related s-objects, the management of sets of
cryptographic keys, and the access permissions to typed objects.
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