
Explaining Successful Docker Images
using Pattern Mining Analysis

Riccardo Guidotti1,2, Jacopo Soldani1, Davide Neri1, and Antonio Brogi1

1 University of Pisa, Largo B. Pontecorvo, 3, Pisa, Italy, name.surname@di.unipi.it,
2 KDDLab, ISTI-CNR, Via G. Moruzzi, 1, Pisa, Italy, guidotti@isti.cnr.it

Abstract. Docker is on the rise in today’s enterprise IT. It permits ship-
ping applications inside portable containers, which run from so-called
Docker images. Docker images are distributed in public registries, which
also monitor their popularity. The popularity of an image directly im-
pacts on its usage, and hence on the potential revenues of its develop-
ers. In this paper, we present a frequent pattern mining-based approach
for understanding how to improve an image to increase its popularity.
The results in this work can provide valuable insights to Docker image
providers, helping them to design more competitive software products.

1 Introduction

Docker images are the de-facto standard for container-based virtualization in
enterprise IT [14]. The aim of container-based virtualization is to provide a
simple yet powerful solution for running software applications in isolated vir-
tual environments called containers [21]. Containers have faster start-up time
and less overhead than other existing visualization approaches, like virtual ma-
chines [10]. Docker permits building, shipping, and running applications inside
portable containers. Docker containers run from Docker images, which are the
read-only templates used to create them. A Docker image packages a software
together with all the dependencies needed to run it (e.g., binaries, libraries).

Docker also provides the ability to distribute and search images through so-
called Docker registries. Through Docker registries any developer can create and
distribute its own created images, so that other users have at their disposal
plentiful repositories of heterogeneous, ready-to-use images. In this scenario,
public registries as the official Docker Hub are playing a central role in the
distribution of Docker images.

DockerFinder [4] enhances the support for searching Docker images. Doc-
kerFinder allows to search for images based on multiple attributes. These
attributes include (but are not limited to) the name and size of an image, its
popularity within the Docker community (measured in terms of so-called pulls
and stars), the operating system distribution they are based on, and the software
distributions they support (e.g., java 1.8 or python 2.7). DockerFinder
automatically crawls all such information from the Docker Hub and by directly
inspecting the Docker containers that run from images. In this way, Docker-
Finder builds its own dataset of Docker images.

2 Riccardo Guidotti et al.

The popularity of an image directly impacts on its usage [13]. Understanding
the reputation and usage of an image is important as for every other kind of open-
source software. The higher is the usage and the endorsement of an open-source
software, the higher are the chances of revenue from related products/services,
the self-marketing and the peer recognition for its developers [8].

The main objective of this paper is to understand which are the rules charac-
terizing the patterns leading to popular images both in terms of registered pulls
and explicit endorsement from the users. With pattern we refer to the typical
image composition in terms of operating system distribution, installed softwares,
number of layers, size of the image, etc. In order to perform pattern analysis we
develop an accurate data-to-model transformation, which considers the possible
data types and distributions of variables. Finally, we extract itemsets and rules
using the well known FP-Growth algorithm [6].

The analysis of such rules and itemsets highlights that most of the Docker
images follow rules which are very common but that do not lead to a consistent
level of popularity, while some rules only used by a small portion of the images
are very stable and predictive of high level of popularity both in terms of pulls
and stars. Moreover, most of the rules leading to the highest success are satisfied
only by images officially supporting commercialized software distributions, and
as we proof in the experiments this does not happen by chance.

The rest of the paper is organized as follows. Sect. 2 provides background
on Docker. Sect. 3 formalizes the data type, the data transformation and the
popularity rules used to study Docker images. Sect. 4 presents a dataset of
Docker images and the analysis illustrating the main patterns hidden in the
data. Sects. 5 and 6 discuss related work and draw some concluding remarks.

2 Background

Docker is a platform for running applications in isolated user-space instances,
called containers. Each Docker container packages the applications to run, along
with all the software support they need (e.g., libraries, binaries, etc.).

Containers are built by instantiating so-called Docker images, which can be
seen as read-only templates providing all instructions needed for creating and
configuring a container (e.g., software distributions to be installed, folders/files
to be created). A Docker image is made up of multiple file systems layered over
each other. A new Docker image can be created by loading an existing image
(called parent image), by performing updates to that image, and by committing
the updates. The commit will create a new image, made up of all the layers of
its parent image plus one, which stores the committed updates.

Existing Docker images are distributed through Docker registries, with the
Docker Hub (hub.docker.com) being the main registry for all Docker users. In-
side a registry, images are stored in repositories, and each repository can contain
multiple Docker images. A repository is usually associated to a given software
(e.g., Java), and the Docker images contained in such repository are different
versions of such software (e.g., jre7, jdk7, open-jdk8, etc.). Repositories are di-

hub.docker.com

Explaining Successful Docker Images with Pattern Mining 3

vided in two main classes, namely official repositories (devoted to curated sets
of images, packaging trusted software releases — e.g., Java, NodeJS, Redis) and
non-official repositories, which contain software developed by Docker users.

The success and popularity of a repository in the Docker Hub can be mea-
sured twofold. The number of pulls associated to a repository provides informa-
tion on its actual usage. This is because whenever an image is downloaded from
the Docker Hub, the number of pulls of the corresponding repository is increased
by one. The number of stars associated to a repository instead provides signif-
icant information on how much the community likes it. Each user can indeed
“star” a repository, in the very same way as eBay buyers can “star” eBay sellers.

DockerFinder is a tool for searching for Docker images based on a larger set
of information with respect to the Docker Hub. DockerFinder automatically
builds the description of Docker images by retrieving the information available
in the Docker Hub, and by extracting additional information by inspecting the
Docker containers. The Docker image descriptions built by DockerFinder are
stored in a JSON format3, and can be retrieved through its GUI or HTTP API.

Among all information retrieved by DockerFinder, in this work we shall
consider the size of images, the operating system and software distributions they
support, the number of layers composing an image, and the number of pulls and
stars associated to images. A formalization of the data structures considered is
provided in the next section. Moreover, in the experimental section we will also
observe different results for official and non-official images.

3 Proposed Analytical Model

We hereafter provide a formal representation of Docker images, and we then
illustrate how to model docker patterns and popularity/endorsement rules.

A Docker image can be represented as a tuple indicating the operating system
it supports, the number of layers forming the image, its compressed and actual
size, and the set of software distributions it supports. For the sake of readability,
we shall denote with Uos the finite universe of existing operating system dis-
tributions (e.g., “Alpine Linux v3.4”,“Ubuntu 16.04.1 LTS”), and with Usw
the finite universe of existing software distributions (e.g., “java”, “python”).

Definition 1 (Image). Let Uos be the finite universe of operating system dis-
tributions and Usw be the finite universe of software distributions. We define a
Docker image I as a tuple I = 〈os, layers, sized, sizea,S〉 where
- os ∈ Uos is the operating system distribution supported by the image I,
- layers ∈ N is the number of layers stacked to build the image I,
- sized ∈ R is the download size4 of I,
- sizea ∈ R is the actual size5 of I, and
- S ⊆ Usw is the set of software distributions supported by the image I.

3 An example of raw Docker image data is available at https://goo.gl/hibue1.
4 As images are downloaded as compressed archives, their download size correspond

to their compressed size (in GBs).
5 The actual size of an image corresponds to its decompressed size (in GBs).

https://goo.gl/hibue1

4 Riccardo Guidotti et al.

A concrete example of a Docker image I is the following
I = 〈Ubuntu 16.04 LTS, 6, 0.78, 1.23, {python,perl,curl,wget,tar}〉
A repository contains multiple Docker images, and it stores the amount of

pulls and stars associated to the images it contains. The pulls highlights the
popularity of a repository, while the stars its endorsement. The main difference
between pulls and stars is that stars are a direct appreciation of the users, while
pulls are an indirect appreciation because a repository can be downloaded but
not appreciated.

Definition 2 (Repository). Let UI be the universe of available Docker images.
We define a repository of images as a triple R = 〈p, s, I〉 where
- p ∈ R is the number (in millions) of pulls from the repository R,
- s ∈ N is the number of stars assigned to the repository R, and
- I ⊆ UI is the set of images contained in the repository R.

For each repository, the number of pulls and stars is not directly associated
with a specific image, but it refers to the overall repository. We hence define the
notion of imager, viz., an image that can be used as a “representative image”
for a repository. An imager essentially links the pulls and stars of a repository
with the characteristic of an image contained in such repository.

Definition 3 (Imager). Let R = 〈p, s, I〉 be a repository, and let I = 〈os,
layers, sized, sizea,S〉 ∈ I be one of the images contained in R. We define an
imager IR as a tuple directly associating the pulls and stars of R with I, viz.,

IR = 〈p, s, I〉 = 〈p, s, 〈os, layers, sized, sizea,S〉〉.

A concrete example of imager IR is the following: IR=〈1.3, 1678, 〈Ubuntu 16.04

LTS, 6, 0.7, 1.2, {python,perl,curl,wget}〉〉. It is worth highlighting that an
imager can be formed by picking any image I contained in R, provided that I can
be considered a “medoid” [22] representing the set of images contained in R.

In order to perform frequent pattern mining analysis on imagers, we must
“flatten” their representation and turn them into itemsets [1, 22]. We hence
provide a translation from the tuple representing an imager into a set of items,
taken from discrete domains. The latter also means that the numerical domains
of pulls, stars, layers and sizes have to be discretized into intervals, which will
be considered instead of the concrete numeric values. The notion of imagerset is
defined precisely to accomplish to this purpose.

Definition 4 (Imagerset). Let IR=〈p, s, I〉=〈p, s, 〈os, layers, sized, sizea,S〉〉
be an imager. Let also P, S, L, Sb, Sa be the discretizations of the numeric
domains of pulls, stars, layers, download sizes and compressed sizes, respectively.
The imagerset IR corresponding to IR is defined as follows: IR = {p}∪{s}∪{os }∪
{layers} ∪ {sized} ∪ {sizea} ∪ S where x denotes the interval corresponding to
the value x in its discretized domain (e.g., p denotes the class p in P).

According to this definition, and assuming a given discretization, the previous
imager IR taken as example becomes the following imagerset IR:

Explaining Successful Docker Images with Pattern Mining 5

IR = {1.0 ≤ p < 3.0, 1200 ≤ s < 1800, Ubuntu 16.04 LTS,
5 ≤ layers < 10, 0.4 ≤ sized < 0.8, 1.0 ≤ sizea < 1.5,
python, perl, curl, wget}.

Imagersets can then be exploited to determine popularity patterns, expressed as
rules determining the popularity of an imager based on its technical contents.
Following [1,22], each rule is of type X→ y, where X is an itemset containing an
operating system distribution, a class of layers, a compressed size, a download
size and/or a set of supported software distribution. y is instead the popularity
of an imager, expressed in terms of either pulls or stars.

Definition 5 (Popularity Rule). Let P, S, L, Sb, Sa be the discretizations
of the numeric domains of pulls, stars, layers, download sizes and compressed
sizes, respectively. A pulls popularity rule is a pattern X→ y where
- X ⊆ Uos ∪ L ∪ Sb ∪ Sa ∪ Usw is an itemset, and
- y ∈ P is the popularity level expressed as pulls.
A stars popularity rule is defined analogously (with y ∈ S).

We will now exploit our modelling to analyse concrete data.

3.1 Implementing Models Transformation

In order to transform the continuous attributes sized, sizea, p, s into correspond-
ing, discretized intervals, it is important to consider their distributions. Indeed,
these attributes have a long tailed distribution with few imagers having a small
set of high values, while most of the imagers are characterized by a large and
various set of low values. A traditional natural binning [22] would result in a
discretization placing most of different low values in the long tail in a single bin.
This would annihilate any difference, hence resulting in a biased data model.

In order to overcome this issue we exploit the “knee method” [22] that first
sorts a variable x, then considers the curve described by the sorted x, and after
that it selects a threshold point pt on such curve. The latter is the point having
the maximum distance from the closest point on the straight line passing through
the minimum and the maximum values of x on the considered curve (examples in
Figure 2). We can then apply the natural binning only on the values lower than
the threshold pt, as on these values the long tail distribution effect is less present
or not present at all. Finally, the set of obtained bins is extended by including
an additional bin containing all the values higher than the threshold pt.

3.2 Implementing Pattern Extraction

The transformation described in the previous section allows us to turn a given

set of imagers I
{}
R = {IR1, ..., IRn} into a set of imagersets I

{}
R = {IR1, ..., IRn}.

This transformation enables the usage of common algorithms for frequent pat-
tern mining like Apriori, Eclat and FP-Growth [1, 6, 22]. All these approaches
extract the rules form the retrieved frequent itemsets. Since we are interested
in analyzing also the frequent itemsets besides the popularity rules we do not

6 Riccardo Guidotti et al.

sized sizea layers |S| pulls stars

x̃ 0.16 0.41 10.00 8.00 0.06 26.0
µ 0.27 0.64 12.67 7.82 6.70 134.46
σ 0.48 1.11 9.62 2.26 46.14 564.21

Table 1: Statistics of imagers: median x̃, mean µ and standard deviation σ.

considers algorithms able to directly extract rules that have a strong relationship
with a target attribute (i.e., the popularity in our case) such as algorithms for
subgroup discovery [9] and contrast sets detection [2].

Given as input a set of sets of items (viz., I
{}
R), such algorithms can be ex-

ploited to determine (i) the set of itemsets whose support σ is higher or equal
than a user defined threshold min sup, and (ii) the set of rules whose confidence
c is higher or equal than a user defined threshold min conf .

Given an itemset X, its support σ(X) with respect to a set of imagersets I
{}
R

is defined as the proportion of imagers that contain the itemset X [22], namely

σ(X) =
|{IR∈I{}R | X⊆IR}|

|I{}R |
. The confidence of a rule instead indicates how often such

rule is true. Given a rule X→ y, its confidence c(X→ y) with respect to a set of

imagersets I
{}
R is defined as the proportion of the imagers that contains X which

also contains y. We recall that, in this paper, we shall consider popularity rules,

i.e., y ∈ P ∪ S. c(X → y) = σ(X∪{y})
σ(X) . We also recall two indicators that can be

observed from the output of the above mentioned algorithms, viz., coverage and
lift. The rule coverage is the proportion of records that satisfy the antecedent X
of a rule: coverage(X → y) = σ(X). The lift is the ratio of the support to that

expected if X and y were independent: lift(X → y) = σ(X∪{y})
σ(X)·σ(y) . A lift equals to

1 implies that the probability of occurrence of the antecedent and that of the
consequent are independent of each other. A lift strictly higher than 1 indicates
the degree to which those two occurrences are dependent on one another, and
makes the rule potentially useful for predicting the popularity.

It is finally worth recalling the definition of two particular types of itemsets,
as they will be used in the following section. An itemset X is maximal if none
of its supersets has a support greater or equal than min sup, while it is closed
if all its supersets have a lower support than σ(X). We will not consider normal
frequent itemsets, because maximal and closed itemsets generalize and capture
variegate compositions while maintaining a better/higher level of support.

4 Experiments

4.1 Dataset and Experimental Setting

DockerFinder autonomously collects information on all the images available
in the Docker Hub that are contained in official repositories or in repositories
that have been starred by at least three different users. The datasets collected

Explaining Successful Docker Images with Pattern Mining 7

Fig. 1: Semilog distribution of sized, sizea, pulls and stars.

Fig. 2: Knee method effect. Numbers in parentheses indicate data used for the
bin of the highest values (left) and all the rest using equal width binning (right).

by DockerFinder6 ranges from January 2017 to March 2018 at irregular inter-
vals. If not differently specified in this work we refer to the most recent backup
where 132,724 images are available. Since performing frequent pattern mining
with the aim of understanding the rules leading to successful imagers requires a
notion of popularity, i.e., pulls or stars, from the available images we select 1,067
imagers considering for each repository the “latest” image. We leave as future
work the investigation of the effect of considering other extraction of imagers.
Some examples can be the smallest image, the one with more softwares, or a
medoid or centroid of each repository.

Statistical details of the imagers extracted from the principal dataset ana-
lyzed can be found in Table 1. As anticipated in the previous section, sized,
sizea, p and s follow a long tailed distribution highlighted by the large differ-
ence between the median x̃ and the mean µ in Table 1. The power-law effect is
stronger for pulls and stars (see Fig. 1). There is a robust Pearson correlation
between pulls and stars of 0.76 (p-value 1.5e-165). However, saying that a high
number of pulls implies a high number of stars (or vice versa) could be a tall
statement. For this reason we report experiments for both popularity measures.
There are no other relevant correlations. We highlight that there are 50 differ-
ent os and the most common ones are Debian GNU/Linux 8 (jessie), Ubuntu
14.04.5 LTS and Alpine Linux v3.4. The six most common software distri-
butions among the 28 available (without considering the version) are erl, tar,
bash, perl, wget, curl, and they appear in more than 55% of the imagers. In
order to avoid considering the obvious itemsets always containing such software
distributions, we remove them for the imagers.

Fig. 2 highlights the long tail of the aforementioned variables and which is
the portion of data used for the bin containing the highest values (left of the
parentheses) and all the rest using equal width binning (right of the parentheses).

6 Publicly available at https://goo.gl/ggvKN3.

https://goo.gl/ggvKN3

8 Riccardo Guidotti et al.

Fig. 3: Distributions of the number of layers (left) and of that of softwares (right).

{0.0037 ≤ sizea < 0.0993, 0.0019 ≤ sized < 0.0419, httpd , ash , unzip} (0.1047)
{ping , git , python} (0.0956)
{pip , git , python} (0.0853)
{ping , unzip , python} (0.0751)
{npm , node , git , python} (0.0728)
{9 ≤ softwares < 10, Debian GNU/Linux 8 (jessie), git , python} (0.0660)
{java , Debian GNU/Linux 8 (jessie), unzip} (0.0648)
{Alpine Linux v3.4, httpd , ash , unzip} (0.0637)
{java , git , unzip , python} (0.0626)
{3 ≤ layers < 5, ash , unzip} (0.0569)

Fig. 4: Maximal itemsets top ten sorted by support.

This operation removes the bias before the discretization that can be applied
with natural binning on more than 94% of the variables. On the other hand, the
number of layers and the number of softwares |S| do not suffer of this problem
and thus can be directly discretized (see Fig. 3).

The imagers to imagerset transformation and the cleaning steps return an

imagerset I
{}
R with an average imagerset size |IR| of 19.05 ± 6.32. We underline

that the high variability of the imagersets is given by the softwares components

S as all the other characteristics are fixed. These imagersets I
{}
R are given in

input to a frequent pattern mining algorithm.
Since we do not focus on particular types of itemsets or rules, a “classic”

pattern mining algorithm is suitable for assessing this task. Even though perfor-
mance is not an issue in this application, among the existing frequent pattern
mining algorithms we selected FP-Growth as from the state-of-the-art it shown
to have the best performances [6]. Thus, it would be the best choice in presence
of larger datasets. Other pattern mining algorithms would have returned very
similar results. We leave the study of the impact of the selected frequent pat-
tern mining algorithm for future works. In particular, we used the FP-Growth
Python implementation of the pyfim library7. As threshold parameters we fixed
min sup = 0.05 and min conf = 0.1. We exploited such low values because we
are interested not only in unveiling the most common patterns and rules, but
especially those leading to the highest target values in terms of pulls and stars.

4.2 Pattern Mining Analysis

We hereby report on some of the most interesting results of the frequent pattern
mining analysis performed specifically for itemsets and popularity rules8.

7 http://www.borgelt.net/pyfim.html
8 The python code and the list of all the itemsets and popularity rules extracted can

be found at https://github.com/di-unipi-socc/DockerImageMiner.

http://www.borgelt.net/pyfim.html
https://github.com/di-unipi-socc/DockerImageMiner

Explaining Successful Docker Images with Pattern Mining 9

{httpd , ash , unzip} (0.1695)
{0.0019 ≤ sized < 0.0419, ash , unzip} (0.1286)
{0.0037 ≤ sizea < 0.0993, ash , unzip} (0.1251)
{0.0037 ≤ sizea < 0.0993, 0.0019 ≤ sized < 0.0419, ash , unzip} (0.1229)
{git , unzip , python} (0.1229)
{Debian GNU/Linux 8 (jessie), git , python} (0.1149)
{0.0019 ≤ sized < 0.0419, httpd , ash , unzip} (0.1104)
{0.0037 ≤ sizea < 0.0993, httpd , ash , unzip} (0.1069)
{0.0037 ≤ sizea < 0.0993, 0.0019 <= size < 0.0419 , httpd , ash , unzip} (0.1047)
{9 ≤ |S| < 10, git , python} (0.1035)

Fig. 5: Closed itemsets top ten sorted by support.

{0.00 ≤ p < 0.07} ← {8 ≤ |S| < 9, ping , unzip , python} (1.00, 1.94)
{0.00 ≤ p < 0.07} ← {10 ≤ |S| < 11, pip , git , unzip , python} (1.00, 1.94)
{0.00 ≤ p < 0.07} ← {Ubuntu 16.04.2 LTS , git , python} (1.00, 1.94)
{0.00 ≤ p < 0.07} ← {sized > 0.6419, java , git , unzip} (0.94, 1.83)
{0.00 ≤ p < 0.07} ← {sized > 0.6419, java , git , unzip , python} (0.93, 1.82)

Fig. 6: Pulls popularity rules top five sorted by confidence (first value in parentheses).

Itemsets. FP-Growth with min sup = 0.05 retrieved 21 maximal itemsets and
45 closed itemsets having at least three components (i.e., |X| ≥ 3).

Figs. 4 and 5 report the top ten of the extracted patterns sorted by decreasing
support σ (in parentheses, on the right). We underline that in these itemsets we
do not consider pulls and stars as they are accurately analyzed in the popularity
rules. We can notice that the closed itemset {httpd, ash, unzip} has a high
support and it is contained in the maximal itemsets. Thus, it is a very typical
and common pattern. Something similar happens for the pair {git, python}.

Some itemsets are also augmented with 9 ≤ |S| < 10, signaling that very
commonly there are nine softwares and among them, besides the very common
six filtered out, there are also git and python. Other common softwares combina-
tions can be read in Fig. 4. By looking at sizes, we find 0.0037 ≤ sizea < 0.0993,
0.0019 ≤ sized < 0.0419. This highlights that many Docker images are “light
images” with an average compression ratio of 0.4. Finally, we underline that the
maximal itemsets are more related to the software composition, while the closed
itemsets to the Docker images size. Furthermore, java, one of the most common
programming language and tool is present only in two of reported and most
supported itemsets. The reason could be that a key feature of Docker images is
lightness that is generally not a prerogative of java.

Popularity Rules. Using FP-Growth with min sup = 0.05 and min conf = 0.1
and considering only rules having the antecedent part containing at least three
components (i.e., |X| ≥ 3), we extracted 9, 325 popularity rules where the target
is the number of pulls y ∈ P, and 12, 900 where the target is the number of stars
y ∈ S. In the following we analyze these rules with respect to the indicators
previously presented (confidence and lift) and also by focusing only the rules
predicting the highest values of popularity in terms of both pulls and stars.
Confidence and lift are reported in the parentheses following this order.

10 Riccardo Guidotti et al.

{13 ≤ s < 19} ← {0.2019 ≤ sized < 0.2419, ping , unzip} (0.77, 2.39)
{13 ≤ s < 19} ← {0.5774 ≤ sizea < 0.6730, 10 ≤ layers < 12} (0.72, 2.23)
{13 ≤ s < 19} ← {0.0819 ≤ sized < 0.1219, 5 ≤ |S| < 6, python} (0.71 , 2.19)
{13 ≤ s < 19} ← {10 ≤ |S| < 11, sized > 0.6419, unzip} (0.70, 2.15)
{13 ≤ s < 19} ← {0.9599 ≤ sizea < 1.0555, ping} (0.70, 2.15)

Fig. 7: Stars popularity rules top five sorted by confidence (first value in parentheses).

Figs. 6 and 7 illustrate the five most interesting rules among the ten pop-
ularity rules with the highest confidence sorted by decreasing confidence9. We
recall that pulls are expressed in millions. The first thing we notice is that these
rules with high confidence predict low popularity levels. Thus, the most com-
mon Docker image building patterns among Docker images developers perhaps
do not lead to good results in terms of popularity. This confirms the idea that
many users design Docker images for private usage and they are not interested
in obtaining a public recognition. A second interesting aspect is that the pull
popularity rules have a higher confidence than the stars popularity rules and
in general (not only looking at these top fives), stars popularity rules involves
the image sizes (sizea, sized). Hence, pulls popularity rules are more common
than stars popularity rules and they are generated by different patterns of image
development. This observation is confirmed by the data because the intersection
of the imagersets covered by the stars popularity rules which are covered also by
the pull popularity rules is only 0.09. Moreover, since stars are given as a direct
endorsement it means that image size is a very relevant aspect for Docker users.

Even though confidence highlights common rules, it does not provide an
indication of how much these rules are reliable. Indeed, all the rules reported in
Figs. 6 and 7 have a high confidence but a low positive lift. This indicates that
the imagerset composition suggested by the itemset X is not very predictive of
the outcome y. To overcome this limitation we analyze in Figs. 8 and 9 the five
most interesting rules among the ten popularity rules with the highest confidence
sorted by decreasing lift. This time we can observe rules with a markedly high
lift and a low confidence. By analyzing the target we notice that these rules
predict high values (not the maximum value) of both pulls and stars. Hence, the
rules, and consequently the patterns, which are predictors of a certain degree of
success, cover less imagerset but are strongly more stable than those covering
many imagerset with low popularity. The content of the itemsets of the reported
rules, both for pulls and stars, is mainly related to the software composition and
it is very common among the two sets of rules. The indication of these rules,
which are markedly different from the previous ones, is that assembling a Docker
image with these characteristics, i.e., Ubuntu 14.04.5 LTS, nginx, ping, unzip,
python, ruby and an actual size of about 500MB may provide a good level of
success in the community of Docker users.

Up to this point we filtered the popularity rules with respect to confidence
and lift, letting emerge the most common patterns. We now wish to understand
which are the itemsets leading to the highest values of pulls and stars. We report

9 We discarded very similar rules in order to have a broader overview.

Explaining Successful Docker Images with Pattern Mining 11

{8.47 ≤ p < 8.55} ← {nginx , ping , unzip , python} (0.11, 97.66)
{8.47 ≤ p < 8.55} ← {Ubuntu 14.04.5 LTS , ping , git , unzip , python} (0.11, 97.66)
{8.47 ≤ p < 8.55} ← {0.5774 ≤ sizea < 0.6730, ping , git} (0.11, 97.66)
{8.47 ≤ p < 8.55} ← {ruby , ping , git , unzip , python} (0.11, 97.66)
{1.69 ≤ p < 1.77} ← {0.3862 ≤ sizea < 0.4818, 5 ≤ layers < 7} (0.11, 97.66)

Fig. 8: Pulls popularity rules top five sorted by lift (second value in parentheses).

{256 ≤ s < 263} ← {nginx , ping , unzip , python} (0.11, 97.66)
{256 ≤ s < 263} ← {Ubuntu 14.04.5 LTS , ping , git , unzip , python} (0.11, 97.66)
{256 ≤ s < 263} ← {0.5774 ≤ sizea < 0.6730, ping , git} (0.11 , 97.66)
{256 ≤ s < 263} ← {ruby , ping , unzip , python} (0.11, 97.66)
{256 ≤ s < 263} ← {ruby , ping , unzip} (0.11 , 97.66)

Fig. 9: Stars popularity rules top five sorted by lift (second value in parentheses).

in Figs. 10 and 11 the five rules with the highest lift returning the highest values
of pulls and stars, i.e., p > 16.72 and s > 283 respectively. Note that these
values are those retrieved by the knee method in the imageset to imagerset
transformation. First of all, we highlight that for the first time we have a high
presence of the number of layers and the number of softwares of component
of the itemsets. Therefore, these elements are becoming particularly interesting
in defining very popular and successful images. Secondly, we notice that these
rules have a confidence a bit higher than the previous set of rules observed, but
also a lift coefficient markedly lower. Thus, the predictive power of these rules
leading to the maximum success is not as strong as the one of the rules with
the highest lift. This is because the consequence of such a success is not entirely
related to the image composition but rather depends on other external and not
observed factors. Something we can observe for the data we have is the fact that
an imagerset is generated from an image of an official or not official repository.
Examples of official images are alpine, ubuntu, mongo, postgres, openjdk, etc.

We underline that respecting the reported popularity rules does not auto-
matically imply a certain degree of popularity. In other words, it is not sufficient
to assemble a Docker image as described by the rules extracted to ensure suc-
cessful images, as there are some external factors that can undoubtedly affect
the popularity, e.g., whether a repository is official or not, or whether it uses
novel, upgraded software distributions.

In order to quantitatively assess this point we perform an experiment using
a null random model. We randomly select 1000 times 10 rules among all those
extracted, both for pulls and stars. Then we calculate the average coverage of
the selected rules among all the imagerset and among the imagerset referring
only to official repositories. Finally, we compare these numbers with the average
coverage of the ten rules with the highest lift returning the highest values of pulls
and stars. Results are reported in Table 2. Both for pulls and stars a random
selection of rules has a coverage considerably lower than the selection of the rules
leading to maximum popularity values for official repositories. On the other hand,
this phenomenon is not registered when all the repositories are considered. In
conclusion, we can state that official repositories follow the rules reported in
Figs. 10 and 11 not by chance and that in general they are less followed than

12 Riccardo Guidotti et al.

{p > 16.72} ← {3 ≤ |S| < 4, 0.12 ≤ sized < 0.16} (0.4444 , 9.3016)
{p > 16.72} ← {0.1949 ≤ sizea < 0.2906, 0.0819 ≤ sized < 0.1219, ash , unzip} (0.33, 6.97)
{p > 16.72} ← {3 ≤ |S| < 4, 3 ≤ layers < 5} (0.33, 6.97)
{p > 16.72} ← {Debian GNU/Linux 9 (stretch), java , unzip} (0.33, 6.97)
{p > 16.72} ← {0.2906 ≤ sizea < 0.3862, 0.1219 ≤ sized < 0.1619, 7 ≤ layers < 10} (0.25, 5.23)

Fig. 10: Pulls popularity rules predicting the highest value of pulls.

{s > 283} ← {Debian GNU/Linux 9 (stretch), java , unzip} (0.44, 8.31)
{s > 283} ← {0.1949 ≤ sizea < 0.2906, 3 ≤ layers < 5} (0.33, 6.23)
{s > 283} ← {0.2419 ≤ sized < 0.2819, 8 ≤ |S| < 9, git , python} (0.33, 6.23)
{s > 283} ← {3 ≤ |S| < 4, 0.1219 ≤ sized < 0.1619} (0.33, 6.23)
{s > 283} ← {Alpine Linux v3.7, 0.0037 ≤ sizea < 0.0993, 0.0019 ≤ sized < 0.0419,

ash , unzip} (0.27, 5.10)

Fig. 11: Stars popularity rules predicting the highest value of stars.

a random selection of rules. Hence, despite the low values of confidence and
rules, the rules reported in Figs. 10 and 11 are part of the reasons why official
repositories are more successful besides hidden and unobserved factors.

5 Related Work

The estimation and analysis of popularity of Docker images resembles the anal-
ysis of success performed in various other domains.

A well-known domain is related to quantifying the changes in impact and
productivity throughout a research career in science. [24] defines a model for the
citation dynamics of scientific papers. The results uncover the basic mechanisms
that govern scientific impact, and they also offer reliable measures of influence
that may have potential policy implications. [18] points out that, besides depen-
dent variables, also contextual information (e.g., prestige of institutions, super-
visors, teaching and mentoring activities) should be considered. The latter holds
also in our context, where we can observe that official images behave differently
with respect to non-official images. Sinatra et al. [20] recently designed a stochas-
tic model that assigns an individual parameter to each scientist that accurately
predicts the evolution of her impact, from her h-index to cumulative citations,
and independent recognitions (e.g., prizes). The above mentioned approaches
analyze the success phenomena by assuming the existence of a mathematical
formulation that try to fit on the data. In our proposal, we are not looking for
just an indicator but for an explainable complex model that not only permits
analyzing a population, but also to reveal suggestions for improvements.

Another domain of research where the analysis of success is relevant is sport.
In [3] the level of competitive balance of the roles within the four major North
American professional sport leagues is investigated. The evidence in [3] suggests
that the significance of star power is uncovered only by multiplicative models
(rather than by the commonly employed linear ones). As shown by our experi-
ments, this holds also in our context, where we explain with multi typical items
the co-occurrences and interdependencies that lead to a certain level of popular-
ity or endorsement. In [5], Franck et al. provide further evidence on contextual
factors, by showing that the emergence of superstars in German soccer depends

Explaining Successful Docker Images with Pattern Mining 13

pulls stars
all repositories officials all repositories officials

random 0.18 ± 0.45 0.14 ± 0.38 0.17 ± 0.44 0.14 ± 0.37
max popularity 0.11 ± 0.39 0.59 ± 0.79 0.12 ± 0.44 0.83 ± 1.15

Table 2: Comparison of average coverage (± standard deviation) between random
selection of rules and rule predicting the maximum popularity values for all the
repositories and for official repositories for pulls and stars.

not only on their investments in physical talent, but also on the cultivation of
their popularity. An analysis of impact of technical features on performances of
soccer teams is provided in [15]. The authors find that draws are difficult to pre-
dict, but they obtain good results in simulating (and consequently quantifying)
the overall championships. Instead, the authors of [16] try to understand which
are the features driving human evaluation with respect to performance in soccer.

Another field of research where the study of success and popularity is quite
useful is that one of online social networks, like Facebook, Instagram, Twitter,
Youtube, etc. The authors of [12] propose a method to predict the popularity of
new hashtags on Twitter using standard classification models trained on content
features extracted from the hashtag and on context features extracted from the
social graph. The difference with our approach is that we try to extract pat-
terns to explain the reasons of a certain degree of popularity. For understanding
the ingredients of success of fashion models, the authors of [17] train machine
learning methods on Instagram images to predict new popular models. Instead,
in [23] a regression method to estimate the popularity of an online video (from
YouTube or Facebook) measured in terms of its number of views is presented.
Results show that, despite the visual content can be useful for popularity pre-
diction before content publication, the social context represents a much stronger
signal for predicting the popularity of a video.

Closer to our context, some forms of analytics have been recently applied to
GitHub repositories. The authors of [25] study GitHub software version evolution
by developers’ activities. They define four metrics to measure commit activity
and code evolution and then they adopt visualization techniques to analyze the
commit logs. The authors of [26] instead study popularity of GitHub developers
on a sociological basis. The study is based on follow-networks built according to
the follow behavior among developers in GitHub, which allows to the authors
of [26] to identify and present a set of typical patterns determining a growth
of developers’ popularity in social coding networks. The contextual dimension
given by the social network is considered in [26] find an explosive growth of the
users in GitHub and construct follow-networks according to the follow behaviors
among developers in GitHub. Using this network delineates four typical social
behavior patterns. Further domains where the analysis and prediction of success
is a challenging task are music [19], movies [11] and school performances [7].
However, to the best of our knowledge, our approach is the first that is based
on complex descriptions such as those of Docker images, and which tries to
understand the reasons of popularity and endorsement.

14 Riccardo Guidotti et al.

6 Conclusion

In this paper we have proposed a methodology based on frequent pattern mining
to retrieve the hidden patterns leading to the popularity of Docker images. In
particular, we developed an approach to use common frequent pattern mining
algorithms (such as FP-Growth), which discretizes continuous variables by tak-
ing into account their distributions. The main findings highlight that most of
the images follow rules which are very common but that do not lead the Docker
image to a relevant level of popularity. On the other hand, we have found some
rules satisfied only by a small portion of the images, which are however very
stable and predictive of a consistent level of popularity in terms of pulls and
stars. Finally, we have observed that the most successful rules are followed only
by so-called official Docker images.

As future work, besides testing the proposed frequent pattern mining analyt-
ical framework on other domains, we would like to strengthen the experimental
section by means of a real validation which involve the usage of the rules we ob-
served in this paper. The idea is to release on DockerHub a set of images following
the aforementioned rules, and to observe the level of popularity they will be ob-
taining in a real case study, and how long it takes to reach the estimated values.
Time is indeed another crucial component that was not considered because the
current version of DockerFinder is not updating the status of a repository at
constant time intervals. Another extension of this study involves to also consider
the temporal dimension and the evolution of the patterns. Moreover, while in
this paper we propose a reasonable analysis of Docker images using basic existing
approaches, as future work we would like to consider advanced multi-instance
learning techniques [27]. These methods allow to overtake the problem of hav-
ing multiple Docker images for a single repository as they takes as input a set
of labeled bags, each containing many instances. Finally, a natural extension of
this work is to build a predictor/regressor either from scratch or on top of the
popularity rules extracted and observe to which extent is possible to infer the
popularity of a Docker image.

Acknowledgements. Work partly supported by the EU H2020 Program un-
der the funding scheme “INFRAIA-1-2014-2015: Research Infrastructures” grant
agreement 654024 “SoBigData” http://www.sobigdata.eu.

References

1. R. Agrawal, R. Srikant, et al. Fast algorithms for mining association rules. In Proc.
20th int. conf. very large data bases, VLDB, volume 1215, pages 487–499, 1994.

2. S. D. Bay and M. J. Pazzani. Detecting group differences: Mining contrast sets.
Data mining and knowledge discovery, 5(3):213–246, 2001.

3. D. J. Berri, M. B. Schmidt, and S. L. Brook. Stars at the gate: The impact of star
power on nba gate revenues. Journal of Sports Economics, 5(1):33–50, 2004.

4. A. Brogi, D. Neri, and J. Soldani. DockerFinder: Multi-attribute search of docker
images. In IC2E, pages 273–278. IEEE, 2017.

http://www.sobigdata.eu

Explaining Successful Docker Images with Pattern Mining 15

5. E. Franck and S. Nüesch. Mechanisms of superstar formation in german soccer:
Empirical evidence. European Sport Management Quarterly, 8(2):145–164, 2008.

6. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In ACM sigmod record, volume 29, pages 1–12. ACM, 2000.

7. J. M. Harackiewicz et al. Predicting success in college: A longitudinal study of
achievement goals and ability measures as predictors of interest and performance
from freshman year through graduation. JEP, 94(3):562, 2002.

8. A. Hars and S. Ou. Working for free? - Motivations of participating in open source
projects. IJEC, 6(3):25–39, 2002.

9. F. Herrera, C. J. Carmona, P. González, and M. J. Del Jesus. An overview on
subgroup discovery: foundations and applications. KAIS, 29(3):495–525, 2011.

10. A. Joy. Performance comparison between linux containers and virtual machines.
In ICACEA, pages 342–346, March 2015.

11. B. R. Litman. Predicting success of theatrical movies: An empirical study. The
Journal of Popular Culture, 16(4):159–175, 1983.

12. Z. Ma, A. Sun, and G. Cong. On predicting the popularity of newly emerging
hashtags in twitter. JASIST, 64(7):1399–1410, 2013.

13. I. Miell and A. H. Sayers. Docker in Practice. Manning Publications Co., 2016.
14. C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi. Cloud container technologies: a

state-of-the-art review. IEEE Transactions on Cloud Computing, 2017. [In press].
15. L. Pappalardo and P. Cintia. Quantifying the relation between performance and

success in soccer. Advances in Complex Systems, page 1750014, 2017.
16. L. Pappalardo, P. Cintia, D. Pedreschi, F. Giannotti, and A.-L. Barabasi. Human

perception of performance. arXiv preprint arXiv:1712.02224, 2017.
17. J. Park et al. Style in the age of instagram: Predicting success within the fashion

industry using social media. In CSCW, pages 64–73. ACM, 2016.
18. O. Penner, R. K. Pan, A. M. Petersen, K. Kaski, and S. Fortunato. On the pre-

dictability of future impact in science. Scientific reports, 3:3052, 2013.
19. L. Pollacci, R. Guidotti, et al. The fractal dimension of music: Geography, popu-

larity and sentiment analysis. In GOODTECHS, pages 183–194. Springer, 2017.
20. R. Sinatra, D. Wang, P. Deville, C. Song, and A.-L. Barabási. Quantifying the

evolution of individual scientific impact. Science, 354(6312):aaf5239, 2016.
21. S. Soltesz et al. Container-based operating system virtualization: A scalable, high-

performance alternative to hypervisors. SIGOPS, 41:275–287, 2007.
22. P.-N. Tan et al. Introduction to data mining. Pearson Education India, 2006.
23. T. Trzciński and P. Rokita. Predicting popularity of online videos using support

vector regression. IEEE Transactions on Multimedia, 19(11):2561–2570, 2017.
24. D. Wang, C. Song, and A.-L. Barabási. Quantifying long-term scientific impact.

Science, 342(6154):127–132, 2013.
25. Y. Weicheng, S. Beijun, and X. Ben. Mining github: Why commit stops–exploring

the relationship between developer’s commit pattern and file version evolution. In
APSEC, volume 2, pages 165–169. IEEE, 2013.

26. Y. Yu, G. Yin, H. Wang, and T. Wang. Exploring the patterns of social behavior
in github. In CrowdSoft, pages 31–36. ACM, 2014.

27. Z.-H. Zhou and M.-L. Zhang. Multi-instance multi-label learning with application
to scene classification. In NIPS, pages 1609–1616, 2007.

	Explaining Successful Docker Images using Pattern Mining Analysis

