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Abstract

We present a process algebra aimed at describing interactions that are multi-

party, i.e. that may involve more than two processes and that are open, i.e. the

number of the processes they involve is not fixed or known a priori. Here we

focus on the theory of a core version of a process calculus, without message

passing, called Core Network Algebra (CNA). In CNA communication actions

are given not in terms of channels but in terms of chains of links that record

the source and the target ends of each hop of interactions. The operational se-

mantics of our calculus mildly extends the one of CCS. The abstract semantics

is given in the style of bisimulation but requires some ingenuity. Remarkably,

the abstract semantics is a congruence for all operators of CNA and also with

respect to substitutions, which is not the case for strong bisimilarity in CCS. As

a motivating and running example, we illustrate the model of a simple software

defined network infrastructure.
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1. Introduction

An interaction is a way in which communicating processes can influence one

another. Interactions in the time of the World Wide Web and of the Internet of
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Things (IoT) are something more than input and output between two entities.

Actually, the word itself can be misleading, by suggesting a reciprocal or mutual5

kind of actions. Instead, interactions more and more often involve many parties,

and actions are difficult to classify under output and input primitives. This is

a common situation when, e.g. a client interacts with a website that in turn

invokes some services from other websites. At a certain level of abstraction it is

important to know which are the involved services, while it is not important how10

they are contacted. This practice follows the “separation of concern” modelling

style, where the modeller is not interested in the details of “how” (with how

many synchronisations, for example) the interaction takes place as long as a

specific phase of the overall procedure is concluded with success. Intuitively, we

can imagine an interaction as the composition of a jigsaw puzzle: all partners15

provide different pieces that fit together to complete the picture.

Networks have become part of the critical infrastructure of our daily activi-

ties (for business, home, social, health, government, etc.) and a large variety of

loosely coupled processes have been offered over global networks, as services. As

a consequence, more sophisticated forms of interactions have become common,20

for which convenient formal abstractions are under investigation. In this regard,

one important trend in networking is moving towards architectures where the

infrastructure itself can be manipulated by the software, as in the Software De-

fined Networking (SDN) approach [1]. Software clients can remotely access and

modify the control plane, by using standard open protocols such as OpenFlow.125

In this case, it is therefore possible to decouple the network control from data-

flow and from the network topology and to provide Infrastructure as a Service

(IaaS) over data-centers, cloud systems and IoT.

Another example, coming from a completely different research field, is that

of complex biological interactions as the ones emerging in bio-computing and30

membrane systems, where interactions typically involve several compounds and

catalysts.

1See, e.g. the Open Networking Foundation website http://www.opennetworking.org.
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(b) Matching tetrominos

Figure 1: Links as tetrominos

As a consequence, from a foundational point of view, it is strategic to pro-

vide the convenient formal abstractions and models to naturally capture these

new communication patterns, by going beyond the ordinary binary form of com-35

munication, here called dyadic. These models should be sufficiently expressive

to faithfully describe the complex phenomena, but they have also to provide a

basis for the formal analysis of such systems, by offering sufficient mathematical

structure and suitable abstraction mechanisms for tractability.

We present here a process algebra, called CNA, which takes interaction as its40

basic ingredient. The described interactions are multiparty, i.e. they may involve

more than two processes and are open, i.e. the number of the processes they

involve is not fixed or known a priori. This is not to be confused with multiparty

interactions represented as a global choreography [2, 3], whose realisation is still

based on dyadic interactions. Traditionally in process algebras, communication45

is based on synchronisation send/receive on specific channels. In CNA, instead,

communication actions are given not in terms of channels but in terms of links

that record the source and the target ends of each hop of interactions. Links

can be indeed combined in link chains in order to describe how information can

be routed across processes before arriving at destination. Note that links can50

be combined if they are to some extent “complementary”, i.e. if each process

contributes with links that are compatible, if not necessary, with the chain of

links provided by the other processes. According to the puzzle analogy, different

parts of a chain can be composed separately, and, afterwards, assembled by

superposition without overlays.55

To help the intuition, we can see links as Z-shaped tetrominos that can be
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joined together along a line when the labels of the edges match (see Figure 1).

Despite the inherent complexity of representing more sophisticated forms

of interaction, we show that the underlying synchronisation algebra and name

handling primitives are quite simple, being a straight generalisation of dyadic60

ones. This is witnessed by the operational semantic rules of our calculus that,

in their simpler version (i.e. without message passing), resemble the rules of

CCS [4], while in the full one, not considered here (see [5]), they resemble the

ones of π-calculus [6]. In this sense, CNA processes can be seen as running over

a dedicated middleware that guarantees a proper handling of links, in the same65

way as CCS and π-calculus processes can be seen as running over a middleware

that guarantees a proper handling of point-to-point messaging (e.g. messages

are not lost).

Finally, we address a more technical issue, by providing a convenient abstract

semantics, called network bisimilarity for CNA processes, which is the analogous70

of strong bisimilarity for CCS processes. Remarkably, network bisimilarity is a

congruence w.r.t. all useful composition operators and also w.r.t. substitutions,

a feature mostly missed in other frameworks.

Synopsis. In Section 2, we recall the basics of CCS, although we assume the

reader has some familiarity with process algebras. Furthermore, we illustrate a75

simple scenario of a modular network infrastructure that will serve as a running

example to demonstrate that the level of abstraction provided by CNA is much

more convenient w.r.t. the one provided by processes with dyadic interactions.

In Section 3, we present the theory of link chains, to be used as labels in the

operational semantics of CNA. The theory is quite rich, as it consists of several80

key operators for building and manipulating link chains. Some nice properties

of the introduced operators are also proved, which later will turn out useful to

assess semantics properties of CNA processes.

In Section 4, we introduce the syntax and operational semantics of CNA,

together with some simple usage examples that should help the reader in un-85

derstanding the driving principles behind our design choices. The key technical
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contribution in this section is the Accordion Lemma 25.

In Section 5, we close the loop by introducing network bisimilarity, the ab-

stract semantics of CNA processes. We prove the main congruence results (see

Theorem 43 and Proposition 48) and show how network bisimilarity fits well in90

the running example. Some variations are discussed by the end of Section 5.

Discussion of related work and some concluding remarks are in Section 6.

Some auxiliary results and the proofs of technical lemmata can be found

in Appendix A.

Previous work. This article is the full version of the extended abstract in [5],95

where also the message passing version of CNA was presented, called link-

calculus. Here we focus on the core version of the framework and spell out

its theory in full detail. It is worth mentioning that we have revised the defini-

tion of the equivalence BC on link chains that is the basis of network bisimilarity

and introduced a finer equivalence IJ that considerably simplifies the proofs of100

the main properties. The motivating and running example is completely original

to this contribution. Finally, we give here all proofs at a good level of detail.

The main contribution in [5] was to show that the link-calculus can be used

to encode Mobile Ambients (MA) [7] in such a way that there is a bijective cor-

respondence between the reduction steps of MA processes and silent transitions105

of their encodings in the link-calculus. This was a much stronger operational

correspondence than any available in the literature, such as the ones in [8, 9].

In [10], following a similar line, we have provided an encoding of Brane

Calculi [11] in the link-calculus. In particular, we have shown that biologically

interactions that usually involve several compounds can be naturally rendered110

by multiparty interactions. Furthermore, locality can be easily handled, without

introducing any specific operator, just encoding any membrane compartment as

a separate process.
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2. Background on CCS and a Running Example

2.1. CCS: the Calculus of Communicating Systems115

The Calculus of Communicating Systems (CCS) [4] was introduced by Tur-

ing Award winner Robin Milner in the early 1980s. It is based on the notion

of processes that communicate on shared channels by executing actions and co-

actions over them. Without loss of generality, we can imagine them as input and

output actions with synchronous dyadic interaction. Let C = {a, b, ...} be the120

set of channels and, by coercion, input actions. We denote by C = {a, b, ...} the

set of co-actions (i.e. output actions), with C ∩ C = ∅ and let O = C ∪ C denote

the set of observable actions ranged over by λ. We extend the bar-notation to

observable actions, by letting λ = λ. We also fix a distinguished silent action

τ 6∈ O and let µ ∈ O ∪ {τ} denote a generic action. A channel relabelling is125

a function φ : C → C. It is extended to generic actions by letting φ(τ) = τ

and φ(λ) = φ(λ) for any observable action λ. It is called a renaming when it is

bijective.

A CCS process is then a term generated by the following grammar:

p, q ::= 0 | µ.p | p+ q | p|q | (ν a)p | p[φ] | A

where φ is a channel relabelling function and A is any constant drawn from a

set ∆ of possibly recursive definitions of the form A , p.130

Roughly the process 0 is the inactive process that cannot perform any action.

The action prefixed process µ.p can execute the action µ and then behaves as

p. The operator + introduces nondeterminism: the composed process p+ q can

behave as p or as q, but once it performs an action as p the option q is discarded,

and vice versa. The parallel composition of two processes, written p|q, allows135

p and q to interleave their actions or to interact by performing complementary

actions a and a: if this is the case, the synchronisation is represented as a silent

action τ and the channel where it takes places is not recorded. The restricted

process (ν a)p can perform all actions that p can perform, except for actions a

and a, which are blocked. The relabelled process p[φ] can perform all actions140
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µ.p
µ−→ p

p
µ−→ p′

p+ q
µ−→ p′

q
µ−→ q′

p+ q
µ−→ q′

p
µ−→ p′ µ 6∈ {a, a}
(ν a)p

µ−→ (ν a)p′

p
µ−→ p′

p[φ]
φ(µ)−−−→ p′[φ]

p
µ−→ p′

p|q µ−→ p′|q
q
µ−→ q′

p|q µ−→ p|q′
p
λ−→ p′ q

λ−→ q′

p|q τ−→ p′|q′

p
µ−→ q (A , p) ∈ ∆

A
µ−→ q

Figure 2: SOS semantics of CCS.

that p can perform, but they are relabelled according to φ, i.e. if p can do an

action µ then p[φ] can do φ(µ). Relabelling is very useful for reusing process

components in different parts of the system just by changing the set of channels

on which they operate. Finally, the constant A behaves as p if (A , p) ∈ ∆.

In some cases we shall use constants A(x1, ..., xn) that are parametric on a145

set of channel names x1, ..., xn, written more concisely as A(x̃), and that can

be instantiated with actual names, as in A(a1, ..., an) or just A(ã) for short.

Similarly, we write (ν ã)p for (ν a1) · · · (ν an)p.

The operational semantics of CCS is given in the form of a Labelled Transi-

tion System (LTS), where the states are CCS processes and the transitions are150

labelled by actions. We write p
µ−→ q if p can perform the action µ and behave as

q afterwards. The inference rules that generate the LTS are defined in the style

of Structural Operational Semantics (SOS) as they are driven by the syntax of

processes (see Figure 2).

For example, we have transitions such as a.b.0
a−→ b.0

b−→ 0, a.b.0+ c.0
a−→ b.0155

and a.b.0+c.0
c−→ 0. The interplay between restriction and parallel composition

is interesting as it can be used to impose synchronisation on some channel.

In fact, while for A , (a.b.0 + c.0)|(a.0 + d.0) we have transitions such as

A
a−→ b.0|(a.0 + d.0), A

a−→ (a.b.0 + c.0)|0, and A
τ−→ b.0|0, among others,

the process (ν a)A cannot perform any action labelled by a and a but can still160

perform the synchronisation (ν a)A
τ−→ (ν a)(b.0|0), because τ actions cannot be
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restricted.

To keep the notation compact, we write p
µ1−→ µ2−→ · · · µn−−→ q when there exist

some processes p1, ...pn+1 that we do not need to mention such that p1 = p,

pn+1 = q and pi
µi−→ pi+1 for i ∈ [1, n].165

Recursive definitions can be used to account for infinite behaviour. For

example, if (A , a.A+ b.0) ∈ ∆, then the process A can do any finite sequence

of actions a terminated by an action b, as in A
a−→ A

a−→ · · · a−→ A
b−→ 0 but it can

also perform an infinite sequence of actions a, as in A
a−→ A

a−→ · · · a−→ A
a−→ · · · .

The main notion of equivalence for CCS processes is called strong bisimilarity170

and is denoted by ∼. It is defined as the largest strong bisimulation relation,

i.e. as the largest binary relation R on CCS processes such that whenever pR q

we have that:

1. for any µ, p′ such that p
µ−→ p′ there exists q′ such that q

µ−→ q′ and p′R q′;

2. for any µ, q′ such that q
µ−→ q′ there exists p′ such that p

µ−→ p′ and p′R q′.175

Notably, strong bisimilarity is a congruence w.r.t. all the operators of CCS.

Here we point out that it is not a congruence w.r.t. action substitution. For

example, it is well-known that strong bisimilarity reduces concurrency to non-

determinism, as a.0 | b.0 ∼ a.b.0+b.a.0. However, if we apply the (non-injective)

substitution {b/a} that replaces all the (free) occurrences of a with b to both180

processes we get b.0 | b.0 6∼ b.b.0 + b.b.0, because the former process can do the

silent step b.0 | b.0 τ−→ 0 | 0, while the latter process b.b.0 + b.b.0 cannot.

Sometimes one wants to abstract away from silent transitions τ . Corre-

spondingly weak bisimilarity can be considered instead of strong bisimilarity,

where in the bisimulation game a single transition can be simulated by exploit-185

ing any number of silent transitions. Unfortunately, weak bisimilarity is not a

congruence w.r.t. the choice operator and substitutions.

2.2. Software Defined Infrastructures

In this sub-section we sketch four scenarios of increasing complexity together

with their possible modelling in CCS. Once introduced CNA, in Sections 4 and 5,190
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we will revisit these examples to show that they can be more conveniently

accounted for in CNA.

The reference case study consists of a network infrastructure with n re-

questor agents A1, ..., An, m servers S1, ..., Sm and a routing infrastructure R

that regulates which requestors are connected to which servers in a way that is195

out of the control of agents and requestors. For the sake of simplicity, in the

following we let n = m = 2.

Example 1 (Blind routing). Initially, we keep the scenario as simple as pos-

sible: the idea is that a requestor can repeatedly request a service if there is a

non-busy server connected to it via R. Let us suppose that R connects A1 with200

S1 and S2, while A2 only with S2. In CCS, the system can be readily modelled

by the following recursive processes that run in parallel.

Ai , req i.think .Ai for i ∈ [1, 2]

Sj , srv j .exec.Sj + busy .τ.Sj for j ∈ [1, 2]

R , req1.(srv1.R+ srv2.R) + req2.srv2.R

For example we can let the system be defined as

N , (ν r̃eq)(ν s̃rv)(A1 | A2 | R | S1 | S2)

so that synchronisation is enforced for all the interactions between requestors

and the infrastructure (on channels req1 and req2) and between the infrastruc-205

ture and servers (on channels srv1 and srv2).

The routing depends on the state of the system. Suppose, for instance, that

S2 becomes busy and that A2 sends a request to R, according to the transition

sequence N
busy−−−→ τ−→ N ′ with

N ′ = (ν r̃eq)(ν s̃rv)(A1 | think.A2 | srv2.R | S1 | τ.S2).

This is perfectly admissible, but leaves A2 thinking its request has been

served, because the interaction with R has taken place, while the server S2 has

not even received it.
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Example 2 (Acknowledged routing). To remedy the problem raised by the210

previous model, one can introduce some acknowledgement protocol, to ensure

each agent that its request has been assigned to some server. The CCS model

can thus be improved by redesigning the processes as follows:

Ai , req i.ack i.think .Ai for i ∈ [1, 2]

Sj , srv j .exec.Sj + busy .τ.Sj for j ∈ [1, 2]

R , req1.(srv1.ack1.R+ srv2.ack1.R) + req2.srv2.ack2.R

For example we can let the system be defined as

M , (ν ãck)N

where N is defined as before.

At a very abstract level, we can view an infrastructure as an oriented graph

with n nodes on the left boundary and m nodes on the right boundary: the

assignment of a request from Ai to the server Sj is possible if Sj is available

and if there is a connection between the ith node on the left boundary and the

jth node on the right boundary. Graphically, M can be depicted as below:

A1

req1
))
1• //

��

ack1

kk
R

•1
srv1 ++

S1

A2

req2
))
2• //

ack2

kk •2
srv2 ++

S2

This time, when S2 is busy and A2 interacts with the infrastructure R on215

channel req2, the requestor A2 blocks until the server S2 becomes available and

can accept the request by interacting on channel srv2 with R. In fact, when

this is the case, R sends the acknowledgment on channel ack2 to A2.

Example 3 (Composite, acknowledged routing). Now suppose that the

infrastructure R is not monolithic, and that it is instead obtained by composing220

some network infrastructures together, which is a necessity for complex systems.
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To make the infrastructure compositional, we must make interaction sym-

metric on the two, left and right, boundaries, i.e. we must assume that servers

also send some acknowledgement. Correspondingly, we set

Sj = srv j .sack j .exec.Sj + busy .τ.Sj for j ∈ [1, 2]

Now the system can be depicted as below:225

A1

req1
))
1• //

��

ack1

kk
R

•1
srv1 ++

S1

sack1

ii

A2

req2
))
2• //

ack2

kk •2
srv2 ++

S2

sack2

ii

Now consider the case where R is obtained by juxtaposing three other in-

frastructures R′, R′′ and R′′′ defined as follows:

R′ , req1.(s1.a1.ack1.R
′ + s2.a2.ack1.R

′) + req2.s2.a2.ack2.R
′

R′′ , s1.s′1.a
′
1.a1.R

′′ + s2.s′2.a
′
2.a2.R

′′

R′′′ , s′2.srv2.sack2.a′2.R
′′′

R , (ν ã′)(ν s̃′)(ν ã)(ν s̃)(R′ | R′′ | R′′′)

Note that R′′′ does not forward any request coming from its first port. The

resulting infrastructure is illustrated in the figure below:

A1

req1
))
1• //

��

ack1

kk
R′

•1
s1 ))

1• //
a1

ii
R′′

R

•1
s′1 ))

1•
a′1

ii
R′′′

•1
srv1 ++

S1

sack1

ii

A2

req2
))
2• //

ack2

kk •2
s2 ))

2• //
a2

ii •2
s′2 ))

2• //

a′2

ii •2
srv2 ++

S2

sack2

ii

In general, an assignment of a request to a server is possible only if there is

a path of connections in the graph associated with the infrastructure. In the
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example, the requests coming from A1 and A2 can only be assigned to S2, as230

there is no path towards S1.

Unfortunately, it may happen that the routing of the infrastructure comes

to a dead point. In the example, R′ can forward the request from A1 to R′′ on

s1, but then R′′ is blocked because it will not be able to pass the request to R′′′

on s′1.235

To remedy this, either all dead paths must be removed before the infras-

tructure is deployed or some deadlock-detection and backtracking mechanism

should be put in place, which requires some additional efforts.

Example 4 (Dynamic routing). Finally, imagine the situation where the in-

frastructure R is software defined, in the sense that connections can be added240

and removed dynamically. This time static-time dead-path analysis is not pos-

sible at all, and the integration of this additional feature with the previous ac-

knowledgement, deadlock-detection and backtracking mechanisms looks overly

complicated.

3. A Theory of Link Chains245

To address the challenges posed by the scenarios in Section 2, the idea is

to move from dyadic interaction to multiparty one. Correspondingly, commu-

nication actions are given in terms of links and a single atomic interaction is

possibly composed by more than one link. A link is a pair α\β that records the

source and the target sites of a communication, meaning that the input available250

at the source site α can be forwarded to the target one β. Links are suitably

combined in link chains to describe how information can be routed across pro-

cesses before arriving at their destination. Therefore, links are combined like

pieces in a jigsaw puzzle, where each party contributes with its link. As ex-

plained in the introduction, we can think about links as Z-shaped tetrominos255

that are joined together in a line when the labels of the edges match so to form

a link chain. Standard I/O communication is made more accurate, by recording
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a

b

⌧

Figure 3: A chain with a missing link.

the route of information across several sites. Furthermore, link chains allow

seamless realisation of multiparty synchronisations.

To achieve compositionality, we allow processes to provide link chains that260

are assembled just in part. Intuitively they correspond to puzzles where some,

but not all, the pieces are present. As an example, Figure 3 shows a chain with

a missing link from a to b.

In this section we present the underlying theory of links and link chains,

posing the emphasis on the operations for combining them and on some relevant265

properties they satisfy.

3.1. Links

Let C be the set of channels, ranged over by a, b, c, ..., and let A = C ∪{ τ }∪
{� } be the set of actions, ranged over by α, β, γ, ..., where the symbol τ denotes

a silent action, while the symbol � denotes a virtual (non-specified) action (i.e.270

a missing piece of the puzzle according to the analogy proposed above).

Definition 5 (Links: solid, virtual, valid). A link is a pair ` = α\β ; it can

be read as forwarding the input available on α to β, and we call α the source

site of ` and β the target site of `. A link α\β is solid if α, β 6= �; the link �\�
is called virtual. A link is valid if it is solid or virtual. We let L be the set of275

valid links.

Examples of non valid links are τ\� and �\a, while both τ\a and a\b are

solid valid links. From now on, we only consider valid links.

As it will be shortly explained, the virtual link �\� is a sort of “missing

link” inside a link chain; it represents a needed link that can be supplied, as280
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a solid link, by another link chain, via a suitable composition operation called

merge (see below).

3.2. Link Chains

Links can be combined in link chains that record the source and the target

sites of each hop of the interaction.285

Definition 6 (Link Chain). A link chain is a finite sequence s = `1...`n of

(valid) links `i = αi\βi such that:

1. for any i ∈ [1, n− 1],

 βi, αi+1 ∈ C implies βi = αi+1

βi = τ iff αi+1 = τ

2. ∃i ∈ [1, n]. `i 6= �\�.

The first condition says that any two adjacent solid links must match on290

their adjacent sites; it also imposes that, in particular, τ cannot be matched by

�. The second condition disallows chains made of virtual links only. A non-

empty link chain is solid if all its links are so. For example, τ\aa\b is a solid link

chain, while τ\�a \b�\τ is not solid.

In counting links in a chain we may decide to ignore or not virtual links.295

Definition 7 (Length and size). The length of a chain s, written |s|, is the

number of valid (virtual and solid) links that are in s. The size of s, written

||s||, is the number of solid links that are in s.

For example, |τ\�a \b�\τ | = 3, while ||τ\�a \b�\τ || = 2.

The following definition introduces an equivalence relation over link chains300

that equates two valid link chains if they only differ for the presence of virtual

links only.

Definition 8 (Equivalence IJ). We let IJ be the least equivalence relation

over link chains closed under the axioms (whenever both sides are well defined

link chains):

s�\� IJ s s1
�\��\�s2 IJ s1

�\�s2
�\�s IJ s s1

α\aa\βs2 IJ s1
α\�a \a�\βs2
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From the above definition, it follows that the chain size is invariant w.r.t. IJ,

i.e. s IJ s′ implies that ||s|| = ||s′|| (although s and s′ can have different

lengths). Furthermore, for ` a solid link and s a link chain, we write s IJ ` if305

and only if ` is the only solid link that occurs in s.

The following basic operations over links and link chains are partial and

strict, i.e. they may issue ⊥ (undefined) and the result is ⊥ if any argument

is ⊥. To keep the notation short, we tacitly assume that the result is ⊥ if

either one of the sub-expressions in the righthand side of any defining equation310

is undefined, or if none of the conditions in the righthand side of any defining

equation is met.

Merge. We remind that the virtual links in a chain can be seen as the part in

the chain not yet specified, and possibly provided by another link chain when

merged.315

Two link chains can be merged if they are to some extent “complementary”,

in the sense that: (i) they have the same length; (ii) each of them provides solid

links that are missing in the other, and (iii) superimposed together they still

form a link chain.

In particular, if there is a position where both link chains carry solid links,320

then there is a clash and the merge is not possible (undefined). Also if the merge

would result in a non valid sequence, then the merge is not possible.

Definition 9 (Merge). For s = `1...`n and s′ = `′1...`
′
n, with `i = αi\βi and

`′i = α′i\β′i for any i ∈ [1, n], we define their merge s • s′ by defining the merge

of two actions as follows:

α • β ,

 α if β = �

β if α = �

and then taking its homomorphic extension to links and link chains:2

s • s′ , (`1 • `′1) · · · (`n • `′n) α\β • α
′\β′ , (α•α′)\(β•β′)

2As anticipated, we remark that in the defining equations for merge it is implicitly under-

stood that: if `i • `′i = ⊥ for some i, then s • s′ = ⊥; if the sequence (`1 • `′1)...(`n • `′n) is not
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Figure 4: Merge as assembling tetrominos.

Roughly, the merge is defined element-wise on the actions of a link chain,

by ensuring that whenever two actions are merged, (at least) one of them is �

and that the result of the merge is still a link chain. Note that the merge is325

undefined if the link chains have different lengths.

Intuitively, we can imagine that s and s′ are two parts of the same puzzle

separately assembled, where solid links are the pieces of the puzzle and virtual

links are the holes in the puzzle and their merge s • s′ puts the two matched

parts together, without piece overlaps (see Figure 4).330

Example 10. Let s1 = τ\�a \��\�, s2 = �\a�\�b \�, and s3 = �\��\b�\τ be

three link chains of the same length |s1| = |s2| = |s3| = 3. Then s1 and s2

can be merged to obtain s = s1 • s2 = (τ\a • �\�)(�\� • a\b)(�\� • �\�) =

(τ•�\a•�)(�•a\�•b)(�•�\�•�) = τ\aa\�b \�. Similarly, s and s3 can then be

merged to obtain: s • s3 = τ\aa\bb\τ .335

The merge operation enjoys some simple algebraic properties.

Lemma 11. For any `, `′, s, s′:

(i) The merge of links and link chains is commutative and associative.

(ii) ` • `′ = �\� if and only if ` = `′ = �\�.

a link chain, then s • s′ = ⊥; if α • α′ = ⊥ or β • β′ = ⊥, then α\β • α
′\β′ = ⊥; if α, β 6= �,

then α • β = ⊥.
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(iii) If s is solid, then for any s′ we have s • s′ = ⊥.340

Finally, the following lemma about the composition of link chains will be

exploited in Lemma 25 to prove that the operational semantics of CNA is in-

sensitive w.r.t. the equivalence IJ.

Lemma 12. Let s, s′, and s′′ be three link chains such that (s′ • s′′) IJ s,

then there must exist s1 and s2 such that s1 IJ s′ and s2 IJ s′′ with s1•s2 = s.345

Restriction. Certain actions of the link chain can be hidden by restricting the

channel where they take place. Of course, restriction of a is possible only if no

pending communication on a (like τ\�a \�) is present, i.e. only matched commu-

nication pairs, in intermediate positions, can be restricted (as in τ\aa\τ ).350

Definition 13 (Matched Action). Let s = `1...`n, with `i = αi\βi for i ∈
[1, n]. We say that an action a is matched in s if:

1. a 6= α1, βn, and

2. for any i ∈ [1, n− 1], either βi = αi+1 = a or βi, αi+1 6= a.

Otherwise, we say that a is unmatched (or pending) in s.355

It follows from the definition that we say that a is matched in s also when

a does not appear at all in s.

For instance, a is matched in the sequence τ\aa\τ , while it is pending in the

sequences τ\�a \� and in a\aa\aa\a.

Definition 14 (Restriction). Let s = `1...`n, with `i = αi\βi with i ∈ [1, n].

We define the restriction operation (ν a)s by letting

(ν a)s ,

 ((ν a)`1) . . . ((ν a)`n) if a is matched in s

⊥ otherwise

where:

(ν a)α\β , ((ν a)α)\((ν a)β) (ν a)α ,

 τ if α = a

α otherwise
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Restriction on links enjoy properties similar to the usual structural congru-360

ence laws for processes.

Lemma 15. For any a, b, `, s, s′

(i) (ν a)` = �\� if and only if ` = �\�.

(ii) (ν a)(s • s′) = s • (ν a)s′ if a does not occur in s.

(iii) (ν a)(ν b)s = (ν b)(ν a)s.365

Example 16. Let s = τ\aa\�b \� and s′ = �\��\b�\τ . Then, we have that

(ν a)s = ((ν a)τ\a)((ν a)a\b)((ν a)�\�) = τ\ττ\�b \�, while (ν a)(s•s′) = τ\ττ\bb\τ =

((ν a)s) • s′, because a does not occur in s′.

Finally, we prove a technical lemma, similar to Lemma 12 for the merge,

that will be exploited in the proof of Lemma 25.370

Lemma 17. Let s and s′ be two link chains such that (ν a)s is defined and

(ν a)s IJ s′, then there exists s′′ such that s′ = (ν a)s′′ and s IJ s′′.

Renaming. The last operation that we present is called renaming and allows

us to change, in a uniform way, the channel names appearing in a link chain.

A channel renaming function is a bijection φ : A → A such that φ(τ) = τ and375

φ(�) = �.

Definition 18 (Renaming). Let s = `1...`n, with `i = αi\βi with i ∈ [1, n],

and φ be a channel renaming function. We define the renaming operation s[φ]

by letting

s[φ] , (`1[φ]) . . . (`n[φ]) (α\β)[φ] , φ(α)\φ(β)

It can be readily checked that channel renaming functions enjoy the following

properties.

Lemma 19. For any a, φ, ψ, `, s, s′

(i) `[φ] = �\� if and only if ` = �\�.380

(ii) (s • s′)[φ] = s[φ] • (s′[φ]).
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(iii) ((ν a)s)[φ] = (ν φ(a))(s[φ]).

(iv) s[φ][ψ] = s[ψ ◦ φ].

(v) If s IJ s′ then s[φ] IJ s′[φ].

We conclude this section by proving a last technical lemma that will be385

exploited in the proof of Lemma 25.

Lemma 20. Let φ be a channel renaming function and s, s′ be two link chains

such that s[φ] IJ s′, then there exists s′′ such that s′ = s′′[φ] and s IJ s′′.

4. A Core Network Algebra

In this section we build on the theory of links and link chains to present the390

syntax and operational semantics of CNA.

4.1. Syntax

Definition 21. The CNA processes are generated by the following grammar:

P,Q ::= 0 | `.P | P +Q | P |Q | (ν a)P | P [φ] | A

where ` is a solid link (i.e. ` = α\β with α, β 6= �), φ is a channel renaming

function, and A is a process identifier for which we assume a definition A , P

is available in a given set ∆ of (possibly recursive) process definitions.395

As usual, we write ã for tuples of channels and we allow parametric process

definitions of the form A(ã) , P , where ã is the set of free channels of P . For

brevity, in the examples, we sometimes write A , P leaving implicit that the

free channles of P are the parameters of A.

Remark 22. The extension in which generic link chains are allowed as action400

prefixes instead of solid links is discussed in Section 5.3.

It is evident that processes are built over a CCS-like syntax, with inac-

tive process 0, action prefix `.P , choice P +Q, parallel P |Q, restriction (ν a)P ,
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renaming P [φ] and constant definition A, but where the underlying synchronisa-

tion algebra [12] is based on link chains. This is made evident by the operational405

semantics that we present next.

As usual, (ν a)P binds the occurrences of a in P , the sets of free and of

bound names of a process P are defined in the obvious way and processes are

taken up to alpha-conversion of bound names. We shall sometimes omit trailing

0, e.g. by writing a\b instead of a\b.0.410

Example 23. CNA provides us with a natural way to rephrase the communi-

cation primitives of usual process calculi, such as CCS and CSP [13], in terms

of links.

• Intuitively, the output action a (resp. the input action a) of CCS can be

seen as the link τ\a (resp. a\τ ) and the solid link chain τ\aa\τ as a dyadic415

communication, analogous to the silent action τ of CCS.

• The action a of CSP can be seen as the link a\a and the solid link chain

a\aa\aa\a as a CSP-like communication among three peers over a.

4.2. Operational Semantics

The idea is that communication can be routed across several processes by420

combining the links they make available to form a link chain. Since the length

of the link chain is not fixed a priori, an open multi-party synchronisation is

realised.

The operational semantics is defined in terms of a Labelled Transition Sys-

tem, in which states are CNA processes, labels are link chains, and transitions425

are generated by the SOS rules in Figure 5. Notice that the rules are very

similar to the ones of CCS, apart from the labels that record the link chains

involved in the transitions: moving from dyadic to linked interaction does not

introduce any complexity burden from the formal point of view.

We comment in details the rules (Act), (Res), and (Com). In rules (Res)430

and (Com) we leave implicit the side conditions (ν a)s 6= ⊥ and s • s′ 6= ⊥,
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s IJ `
(Act)

`.P
s−→ P

P
s−→ P ′

(Lsum)

P +Q
s−→ P ′

P
s−→ P ′

(Res)

(ν a)P
(ν a)s−−−→ (ν a)P ′

P
s−→ P ′

(Ren)

P [φ]
s[φ]−−→ P ′[φ]

P
s−→ P ′

(Lpar)

P |Q s−→ P ′|Q
P

s−→ P ′ Q
s′−→ Q′

(Com)

P |Q s•s′−−→ P ′|Q′

P
s−→ P ′ (A , P ) ∈ ∆

(Ide)

A
s−→ P ′

Figure 5: SOS semantics of the CNA (rules (Rsum) and (Rpar) are omitted).

respectively (they can be easily recovered by noting that otherwise the label of

the transition in the conclusion would be undefined).

The rule (Act) states that `.P
s−→ P for any link chain s, whose unique solid

link is `, i.e. any s such that s IJ ` (we recall that s IJ ` if s and ` differ only for435

the presence of virtual links). Intuitively, `.P can take part in any interaction,

in any (admissible) position. To join in a communication, `.P should exhibit the

capability to enlarge its link ` to a link chain s IJ `, whose length is the same as

the length of the chains offered by all the other participants, so to proceed with

the merge operation. Following the early style, the suitable length is inferred at440

the time of deducing the input transition. Note that, by definition of link chain,

if one site of ` is τ , then ` can only appear at one of the extremes of s.

The rule (Res) can serve different aims: (i) floating, if a does not occur in

s, then (ν a)s = s and (ν a)P
s−→ (ν a)P ′; (ii) hiding, if a is matched in s ( i.e. a

appears as sites already matched by adjacent links), then all occurrences of a in445

s are transformed to τ in (ν a)s; (iii) blocking, if a is pending in s ( i.e. there are

some unmatched occurrences of a in s), then (ν a)s = ⊥ and the rule cannot be

applied.

In the (Com) rule the link chains recorded on both the premises’ transitions

are merged in the conclusion’s transition. This is possible only if s and s′450

are to some extent “complementary”. Contrary to CCS, the rule (Com) can

appear several times in the proof tree of a transition, because s • s′ can still
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contain virtual links (if s and s′ had a virtual link in the same position) and

can possibly be merged with other link chains. However, when s • s′ is solid, no

further synchronisation is possible (by Lemma 11 (ii)).455

Example 24. Let P = τ\a.P1 | (ν b)Q and Q = b\τ .P2 | a\b.0, for some pro-

cesses P1 and P2. The process τ\a.P1 can perform an output on a, the process

b\τ .P2 can perform an input from b; the process a\b provides a one-shot link

forwarder from a to b. Their links match along the sequence and a three-party

interaction can take place. Together, these processes can indeed synchronise by460

agreeing to form the solid link chain τ\aa\ττ\τ of length three, as follows.3

(Act)

τ\a.P1

τ\�a \
�
�\�−−−−−−→ P1

(Act)

b\τ .P2

�\��\
b
�\τ−−−−−−→ P2

(Act)

a\b.0
�\a�\

�
b \�−−−−−−−→ 0

(Com)

Q
�\a�\

b
b\τ−−−−−−→ P2|0

(Res)

(ν b)Q
�\a�\

τ
τ\τ−−−−−−→ (ν b)(P2|0)

(Com)

P
τ\aa\

τ
τ\τ−−−−−−→ P1|(ν b)(P2|0)

The following lemma, whose proof goes by rule induction, shows that labels

behave like an accordion. Concretely, any label s in a transition is replaceable465

with any other chain having a different number of virtual links �\� added to

s according to the axioms of IJ. The result builds on the previous technical

Lemmata 12 and 17. This fact will be later exploited in Section 5, where the

abstract semantics is given.

Lemma 25 (Accordion Lemma). If P
s−→ P ′ and s IJ s′, then P

s′−→ P ′.470

Proof. The proof is by rule induction.

rule (Act) Assume `.P
s−→ P with s IJ s′. We need to prove that `.P

s′−→ P

Since by hypothesis s IJ ` then, by transitivity, s′ IJ `. By applying

rule (Act) we get the thesis `.P
s′−→ P .

3Note that b is restricted and therefore the matched communication on b is replaced by τ

in the observed chain.
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rule (Lsum) Assume P + Q
s−→ P ′ with P

s−→ P ′ and s IJ s′. We need to475

prove that P +Q
s′−→ P ′. By inductive hypothesis we have that P

s′−→ P ′,

and by applying rule (Lsum) we get the thesis. For the rules (LPar), and

(Ide) the proof is similar to this case and thus omitted.

rule (Res) Assume (ν a)P
(ν a)s−−−→ (ν a)P ′ with P

s−→ P ′ and (ν a)s IJ s′. We

want to prove that (ν a)P
s′−→ (ν a)P ′. By Lemma 17, there exists s′′ s.t.480

s′ = (ν a)s′′ with s IJ s′′. Then, by inductive hypothesis we have that

P
s′′−→ P ′, and by applying rule (Res) we obtain the thesis.

rule (Ren) Assume P [φ]
s[φ]−−→ P ′[φ] with P

s−→ P ′ and s[φ] IJ s′. We want

to prove that P [φ]
s′−→ P ′[φ]. By Lemma 20, there exists s′′ such that

s′ = s′′[φ] and s IJ s′′. Then, by inductive hypothesis we have that485

P
s′′−→ P ′, and by applying rule (Ren) we get the thesis.

rule (Com) Assume P |Q s−→ P ′|Q′ and s IJ s′. We want to prove that

P |Q s′−→ P ′|Q′. By hypothesis, there exist s1 and s2 such that P
s1−→ P ′

and Q
s2−→ Q′, with s = s1 • s2. By Lemma 12, there exist s′1 and s′2

such that s′1 IJ s1, s′2 IJ s2, and s′1 • s′2 = s′. By inductive hypothesis,490

P
s′1−→ P ′ and Q

s′2−→ Q′. Finally, by applying rule (Com) we get the thesis.

Example 26 (Forwarders). We give a few examples to show how flexible is

CNA for defining “forwarding” policies. We have already seen a one-shot and

one-hop forwarder from a to b that can be written as a\b.0. Its persistent version495

is just written as R(a, b) , a\b.R(a, b). Moreover, the process R(a, b) |R(b, a)

provides a sort of name fusion, making a and b interchangeable.

An alternating forwarder A(a, b, c) from a to b first and then to c can be

defined as

A(a, b, c) , a\b.a\c.A(a, b, c).

A persistent non-deterministic forwarder C(a, c̃) (the C stands for choice),

from a to c1, ..., cn can be written as

C(a, c̃) , a\c1 .C(a, c̃) + · · ·+ a\cn .C(a, c̃).
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Similarly, J (̃b, a) defined as (the J stands for join4)

J (̃b, a) , b1\a.J (̃b, a) + · · ·+ bm\a.J (̃b, a)

is a persistent non-deterministic forwarder, from b1, ..., bm to a.

By combining the two processes above as in

F (̃b, c̃) , (ν a)(J (̃b, a) | C(a, c̃))

we obtain a persistent forwarder from any of the bi’s to any of the cj ’s. The only

admissible transitions have indeed the form F (̃b, c̃)
s−→ F (̃b, c̃) with s IJ bi\ττ\cj500

for some i ∈ [1,m] and j ∈ [1, n] (because interaction on a is restricted and

(ν a)(bi\aa\cj ) = bi\ττ\cj ).

Example 27 (Blind routing in CNA). We have already observed that CCS

processes can be transformed to CNA processes just by transforming action pre-

fixes in link prefixes. Correspondingly, the blind routing example from Section 2505

(Example 1) can be encoded in CNA just as follows, where for readability we

have omitted the parameters from definitions.

Ai , τ\reqi .τ\think .Ai for i ∈ [1, 2]

Sj , srvj\τ .τ\exec .Sj + τ\busy .τ\τ .Sj for j ∈ [1, 2]

R , req1\τ .(τ\srv1 .R+ τ\srv2 .R) + req2\τ .τ\srv2 .R

N , (ν r̃eq)(ν s̃rv)(A1 | A2 | R | S1 | S2)

For example, the following transitions can be derived from the SOS rules

accounting for the case where a request from A1 is assigned to S2:

N
τ\ττ\τ−−−−→ (ν r̃eq)(ν s̃rv)(τ\think .A1 | A2 | (τ\srv1 .R+ τ\srv2 .R) | S1 | S2)
τ\ττ\τ−−−−→ (ν r̃eq)(ν s̃rv)(τ\think .A1 | A2 | R | S1 | τ\exec .S2)
τ\think−−−−→ (ν r̃eq)(ν s̃rv)(A1 | A2 | R | S1 | τ\exec .S2)
τ\exec−−−→ N

4With the term “join” we refer to the fact that messages from different sources are for-

warded to the same channel. It has no relation with join patterns in join calculus.

24



Note that, in the first two steps, interactions on channels req1 and srv2510

are restricted and thus not observable, in fact (ν req1)(τ\req1
req1
\τ ) = τ\ττ\τ and

(ν srv2)(τ\srv2
srv2
\τ ) = τ\ττ\τ .

Example 28 (Acknowledged routing in CNA). The features of CNA be-

come evident in our running example when we come to modelling acknowledged

routing (Example 2). This is because the explicit acknowledgment is no longer515

necessary as it can be implicitly accounted for by the ability to construct a chain

of links.5 Correspondingly, we set

Ai , τ\reqi .τ\think .Ai for i ∈ [1, 2]

Sj , srvj\τ .τ\exec .Sj + τ\busy .τ\τ .Sj for j ∈ [1, 2]

R , req1\srv1
.R+ req1\srv2

.R+ req2\srv2
.R

M , (ν r̃eq)(ν s̃rv)(A1 | A2 | R | S1 | S2)

Note that channels ack i are not needed and CNA processes Ai and Sj are defined

as in the case of blind routing; only the syntax of R has been changed to link,

in one single step, the requests from agents with the availability of servers.520

For example, the following transitions can be derived from the SOS rules

accounting for the case where a request from A1 is assigned to S2:

M
τ\ττ\

τ
τ\τ−−−−−→ (ν r̃eq)(ν s̃rv)(τ\think .A1 | A2 | R | S1 | τ\exec .S2)

τ\think−−−−→ (ν r̃eq)(ν s̃rv)(A1 | A2 | R | S1 | τ\exec .S2)
τ\exec−−−→ M

Note that, in the first step, the interaction on channels req1 and srv2 is

restricted and thus not observable, in fact (ν req1)(ν srv2)(τ\req1
req1
\srv2
srv2
\τ ) =

τ\ττ\ττ\τ .525

Example 29 (Composite, acknowledged routing in CNA). Notably, the

infrastructure presented in the previous example is already designed in a mod-

5Of course, one could also just encode the CCS processes for acknowledged routing just by

translating their prefixes as we have done for blind routing.
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ular way: infrastructures can be composed without requiring any change and

no dead path detection or backtracking mechanisms have to be put in place,

because they are taken care by the CNA “middleware”.530

For instance, take the CNA versions of the infrastructures presented in Ex-

ample 3:

R′ , req1\s1 .R′ + req1\s2 .R′ + req2\s2 .R′

R′′ , s1\s′1 .R
′′ + s2\s′2 .R

′′

R′′′ , s′2\srv2
.R′′′

R , (ν s̃′)(ν s̃)(R′ | R′′ | R′′′)

Besides looking considerably more concise than their CCS versions, they

make evident that the delivery of any request to a server is atomic as any

process executes one (link) action and reduces (recursively) to itself.535

At a closer inspection, one may notice that the only possible transitions for

R are the following ones (up to IJ, as explained by the Accordion Lemma 25):

R
req1\ττ\

τ
τ\srv2−−−−−−−−→ R and R

req2\ττ\
τ
τ\srv2−−−−−−−−→ R.

As in the previous examples, note that, e.g. in the first step, the inter-

action on channels s2 and s′2 is restricted and thus not observable, in fact

(ν s2)(ν s′2)req1\s2s2\
s′2
s′2
\srv2

= req1\ττ\ττ\srv2
.

Therefore, at a suitable level of abstraction, in which routing details are

omitted, we would like to relate the composite infrastructure R with the mono-540

lithic infrastructure Rm defined as follows:

Rm , req1\srv2 .Rm + req2\srv2 .Rm

In the next section we show how this can be formalised.

5. Abstract semantics

As usual, we can use the LTS semantics to define suitable behavioural equiva-

lences over processes. We focus on bisimulation relations. The accordion lemma545
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(Lemma 25) implies that it makes no sense to distinguish between two labels s

and s′ such that s IJ s′, because if one process p can do s and reach p′, then it

can also do s′ and still reach p′. However, when comparing two labels we would

like to abstract away also from the number of hops performed and from the size

(not just the length) of the chains, as the following example suggests.550

Example 30. Take the one-hop forwarder R(a, b) , a\b.R(a, b). From the

operational semantics it is immediate to check that its transitions are all and

only R(a, b)
s−→ R(a, b) such that s IJ a\b.

Now connect together two one-hop forwarders in a sequence to form the

routing infrastructure T (a, b) , (ν c)(R(a, c) | R(c, b)). Again it is immediate to555

check that its transitions are all and only T (a, b)
s−→ T (a, b) such that s IJ a\ττ\b.

Intuitively, we would like R(a, b) and T (a, b) to be interchangeable, as they

offer the same routing service. If we were to compare R(a, b) and T (a, b) using

plain bisimilarity, where labels must be matched syntactically, then they would

not be equivalent. Also if we relax bisimulation by matching transition labels560

up-to IJ, the two terms are not equivalent, as it is not true that a\b IJ a\ττ\b
(they have different sizes, i.e. they have a different number of solid links, and

size is preserved by IJ).

To define a bisimilarity equivalence that relates processes such as R(a, b)

and T (a, b) above, we introduce an equivalence coarser than IJ, written BC,565

that we use to match labels in the bisimulation game, according to which e.g.

a\b BC a\ττ\b.

Definition 31 (Equivalence BC). We let BC be the least equivalence relation

over link chains closed under the following inference rules:

s IJ s′

s BC s′
s1
α\ττ\βs2 BC s1

α\βs2

The only difference between BC and IJ is that the additional axiom of BC

abstracts away from intermediate matched actions that are silent. The intuition

is that such matched actions cannot be split and used to compose longer chains,570
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because they are silent and therefore the matching was made on a restricted

channel.

Remark 32. We invite the reader to check that the Accordion Lemma 25 is

only concerned with IJ and not with BC.

We now consider the equivalences classes given by BC and its representatives.575

Definition 33 (Essential chain). A link chain is essential if it is composed

by alternating solid and virtual links, with solid links at its extremes.

For example, the chain a\ττ\bb\c is not essential, while the chain a\�b \b�\c is

essential and we have a\ττ\bb\c BC a\�b \b�\c.
The following lemma shows that each BC-equivalence class has a unique580

essential representative.

Lemma 34. All of the following properties hold for any link chain s.

(i) There exists an essential link chain s′ such that s BC s′.

(ii) If s is essential, for any essential s′ such that s BC s′, then s = s′.

It is immediate to check that by orienting the axioms in Definitions 8 and 31585

from left to right we have a procedure for transforming any link chain s to a

unique essential link chain s′ such that s BC s′. We write e(s) to denote such a

unique representative.

Corollary 35. For any link chains s, s′ we have s BC s′ iff e(s) = e(s′).

The following properties are useful in the proof of the main result, i.e. the590

congruence property of our notion of bisimilarity (Theorem 43).

The first lemma says that the restriction operator respects the relation BC,

in the sense that if one link chain s can be restricted in a then any chain s′ BC s

can be extended to some s′′ IJ s′ where a is matched and can be restricted.

Lemma 36. If s BC s′, then for any a such that (ν a)s 6= ⊥ there exists s′′ IJ s′595

such that (ν a)s′′ 6= ⊥ and (ν a)s BC (ν a)s′′.
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s1 BC s′1 IJ s′′1

• •
s2 IJ s′2

s1 • s2 BC s′′1 • s′2

Figure 6: Graphic representation of Lemma 37.

The second lemma says that taken two link chains s1 and s′1 in the same

equivalence class, and given any link chain s2 that can be merged with s1, then

it is possible to find a link chain s′2 (which is a stretched version of s2) such

that it can be merged with another link chain s′′1 (which is a stretched version600

of s′1) with the result being equivalent to s2 • s1. This is graphically rendered

in Figure 6.

Lemma 37. If s1 BC s′1, then for any s2 such that s2 • s1 6= ⊥ there exist two

link chains s′2 IJ s2 and s′′1 IJ s′1 such that s′2 • s′′1 6= ⊥ and s2 • s1 BC s′2 • s′′1 .

Also the next lemma is introduced to prove the main Theorem 43.605

Lemma 38. Let s and s′ be two link chains such that s BC s′, then for any

renaming function s[φ] BC s′[φ].

Definition 39 (Network bisimulation). A network bisimulation R is a bi-

nary relation over CNA processes such that, if P R Q then:

• if P
s−→ P ′, then ∃ s′, Q′ such that s′ BC s, Q

s′−→ Q′, and P ′ R Q′;610

• if Q
s−→ Q′, then ∃ s′, P ′ such that s′ BC s, P

s′−→ P ′, and P ′ R Q′.

Note that, by Corollary 35, the requirement s′ BC s amounts just to checking

that e(s′) = e(s).

Definition 40 (Network bisimilarity
BC∼ ). We let

BC∼ denote the largest net-

work bisimulation and we say that P is network bisimilar to Q if P
BC∼ Q.615

It can be shown that network bisimulations are closed with respect to union

and composition and that
BC∼ is an equivalence relation.
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Example 41. Take the recursively defined processes R(a, b) , a\b.R(a, b) and

T (a, b) , (ν c)(R(a, c) | R(c, a)) from Example 30. It is straightforward to check

that the relation

R , {(R(a, b), T (a, b))}

is a network bisimulation, because a\b BC a\ττ\b, hence R(a, b) and T (a, b) are

network bisimilar.

Example 42. Consider the two processes P , a\b.P andQ , (ν c)(a\c | c\b.Q).

We have that whenever P
s−→ P ′, then P ′ = P and e(s) = a\b. Similarly, when-

ever Q
s−→ Q′, then Q′ = (ν c)(0|Q) and e(s) = a\b. Then we prove that P

BC∼ Q

by showing that the relation R below:

R , {(P,R) | ∃n.R = Cn[Q]}

is a network bisimulation, where Cn[Q] is inductively defined by letting C0[Q] ,620

Q and Cn+1[Q] , C[Cn[Q]] for C[·] the context (ν c)(0|·). Intuitively, the con-

text Cn mimics the effects of n internal interactions in Q, as any internal inter-

action in Q leaves a zero process in parallel with Q. The thesis simply follows by

noting that, for any n, whenever Cn[Q]
s−→ R′ thenR′ = Cn+1[Q] and e(s) = a\b:

by induction on n, the base case C0[Q] = Q has been already observed above,625

while the inductive case, where we consider Cn+1[Q] = (ν c)(0|Cn[Q]), follows

immediately from the inductive hypothesis.

We are now ready to prove the first main result, i.e. that network bisimilarity

is preserved by all the operators of CNA.

Theorem 43. Network bisimilarity is a congruence.630

Proof. We show that network bisimilarity is preserved by all the operators. The

proof uses standard arguments. The interesting cases are that of restriction,

renaming and parallel composition, the others are just suitable rephrasing of

the corresponding proofs in the CCS literature.

Prefix We want to prove that if P
BC∼ Q then for any ` we have `.P

BC∼ `.Q.635

We define the relation Rpre , {(`.P, `.Q) | P BC∼ Q} ∪ BC∼ and show that
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Rpre is a network bisimulation. The case when (P,Q) ∈ BC∼ is obvious.

Take (`.P, `.Q) ∈ {(`.P, `.Q) | P BC∼ Q}. If `.P
s−→ P with s IJ ` then also

`.Q
s−→ Q and P Rpre Q as P

BC∼ Q. Vice versa, if `.Q
s−→ Q with s IJ `

then also `.P
s−→ P and P Rpre Q as P

BC∼ Q.640

Restriction We want to prove that if P
BC∼ Q then for any a we have (ν a)P

BC∼
(ν a)Q. We let Rres , {((ν a)P, (ν a)Q)|P BC∼ Q} and show that Rres is

a network bisimulation. Suppose P
BC∼ Q and (ν a)P

(ν a)s−−−→ (ν a)P ′, for

some s and P ′ such that P
s−→ P ′. By assumption, we know that P

BC∼ Q

and therefore there exist s′, Q′ such that Q
s′−→ Q′ with e(s′) = e(s) and645

P ′
BC∼ Q′. By Lemma 36, there exists s′′ IJ s′ such that (ν a)s′′ 6= ⊥

and (ν a)s′′ BC (ν a)s. Hence (ν a)Q
(ν a)s′′−−−−→ (ν a)Q′ and, by definition of

Rres, we obtain (ν a)P ′ Rres (ν a)Q′.

Renaming We want to prove that if P
BC∼ Q then for any renaming function

φ we have P [φ]
BC∼ Q[φ]. Let Rren , {(P [φ], Q[φ]) | P BC∼ Q} and show650

that Rren is a network bisimulation. Suppose P
BC∼ Q and P [φ]

s−→ P ′[φ],

for some s, P ′. By rule (Ren), it must exist s′ such that s = s′[φ], and

P
s′−→ P ′. By assumption we know that P

BC∼ Q and therefore there exist

s′′, and Q′ s.t. Q
s′′−→ Q′ with e(s′) = e(s′′). By Lemma 38, we have

e(s′[φ]) = e(s′′[φ]). Hence Q[φ]
s′′[φ]−−−→ Q′[φ] and, by definition of Rren, we655

obtain P [φ] Rren Q[φ].

Choice We want to prove that if P
BC∼ Q then for anyR we have P+R

BC∼ Q+R.

We define the relation Rsum , {(P +R,Q+R) | P BC∼ Q}∪ BC∼ and show

that Rsum is a network bisimulation. The case when (P,Q) ∈ BC∼ is

immediate. Take (P +R,Q+R) ∈ {(P +R,Q+R) | P BC∼ Q}. Suppose660

P + R
s−→ T . We want to prove that Q + R

s′−→ T ′ with e(s) = e(s′), and

T Rsum T ′. There are two cases to be considered, depending on the last

SOS rule used, to prove P +R
s−→ T . If the last used rule is

• (Rsum), then it means that R
s−→ R′ for some R′ with T = R′.

But then, by using (Rsum), we have Q + R
s−→ T ′, with T ′ = R′665
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and T = R′ Rsum R′ = T ′ by reflexivity of network bisimilarity
BC∼⊆ Rsum.

• (Lsum), then it means that P
s−→ P ′ for some P ′ with T = P ′. By

assumption, we know that P
BC∼ Q and therefore there exist s′ and

Q′ such that Q
s′−→ Q′ with e(s) = e(s′) and P ′

BC∼ Q′. By applying670

the rule (Lsum), we obtain that Q+R
s′−→ Q′ and we are done.

Parallel We want to prove that if P
BC∼ Q then for any R we have P |R BC∼ Q|R.

We define the relation Rpar , {(P |R,Q|R) | P BC∼ Q} and show that Rpar

is a network bisimulation. Suppose P
BC∼ Q and P |R s−→ T . We want to

prove that Q|R s−→ T ′ with T Rpar T ′. There are three cases to be675

considered, depending on the last SOS rule used to prove P |R s−→ T . If

the last used rule is

• (Rpar), then it means that R
s−→ R′ for some R′ with T = P |R′. But

then, by using (Rpar), we have Q|R s−→ Q|R′ and P |R′ Rpar Q|R′,
by definition of Rpar.680

• (Lpar), then it means that P
s−→ P ′ for some P ′ with T = P ′|R. By

assumption, we know that P
BC∼ Q and therefore there exist s′, Q′

such that Q
s′−→ Q′ with e(s) = e(s′) and P ′

BC∼ Q′. By applying

the rule (Lpar), we have that Q|R s′−→ Q′|R and we are done because

P ′|R Rpar Q
′|R, by definition of Rpar.685

• (Com), then it means that P
s1−→ P ′, R

s2−→ R′, for some s1, s2, P
′, R′

with s = s1•s2 and T = P ′|R′. By assumption, we know that P
BC∼ Q

and therefore there exist s′1, Q′ such that Q
s′1−→ Q′ with e(s1) = e(s′1)

and P ′
BC∼ Q′. Now it may be the case that s′1 • s2 is not defined, but

by Lemma 37, we know that s′1 and s2 can be stretched respectively690

to s′′1 IJ s′1 and s′2 IJ s2 by inserting or removing enough virtual

links to have that s′′1 • s′2 is defined and e(s1 • s2) = e(s′′1 • s′2). By

the Accordion Lemma 25, Q
s′′1−→ Q′ and R

s′2−→ R′. We conclude

by applying rule (Com): Q|R s′−→ Q′|R′ with s′ = s′′1 • s′2 BC s and

P ′|R′ Rpar Q
′|R′, by definition of Rpar.695
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Recursion Let E and F be two processes that invoke the process identifier X.

Let us denote with E{P/X} the process obtained by replacing in E every

occurrence of the identifier X with the process P . Assume that for any

process P we have E{P/X} BC∼ F{P/X}. We want to prove that, given

the process definitions A , E{A/X}, B , F{B/X}, then A
BC∼ B. The700

proof proceeds by showing that:

1. If A , Q is a process definition, then A
BC∼ Q.

2. Given the process definitions A , E{A/X} and B , F{B/X}, for

any process G that invokes X we have G{A/X} BC∼ G{B/X}.

Then, we have A
BC∼ E{A/X} BC∼ E{B/X} BC∼ F{B/X} BC∼ B. The705

proof of (1) is immediate by rule (Ide), as A and Q have exactly the same

transitions, while the proof of (2) proceeds in the standard way exploiting

induction on derivations, as detailed in the appendix.

Remark 44. As for CCS, it can be proved that several useful axioms over710

processes hold up to network bisimilarity, like the commutative monoidal laws

for | and +, the idempotence of + and the usual laws about restriction.

5.1. Semantics Closure with Respect to Substitutions

One relevant difference w.r.t. strong and weak bisimilarity in CCS is that

network bisimilarity is also closed with respect to substitutions.715

At the level of chains, name substitution is defined as the renaming (see Def-

inition 18). Not to overload the notation, we denote substitution with {−/−}.
Given s = `1 . . . `n, with `i = α1\βi for i ∈ [1, n], we define the substitution

of channel a with channel b in a link chain s, s{b/a} as follows

s{b/a} = `1{b/a} . . . `n{b/a}

`i{b/a} = αi{b/a}\βi{b/a} α{b/a} =

 b if α = a

α otherwise

The first observation is that equivalence BC (but also IJ) is closed with

respect to substitution, as stated by the next lemma.
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Lemma 45. For any a, b, s, s′720

(i) If s IJ s′ then s{b/a} IJ s′{b/a}.
(ii) If s BC s′ then s{b/a} BC s′{b/a}.

Next, we prove that transitions are respected by substitutions. On processes,

name substitution differs from renaming and a different notation is used. Let

us denote by P{b/a} the simultaneous, capture-avoiding substitution of all the725

(free) occurrences of a with b in P . Substitution is defined inductively as follows.

0{b/a} , 0

`.P{b/a} , `{b/a}.P{b/a}

(P +Q){b/a} , (P{b/a}) + (Q{b/a})

(P |Q){b/a} , (P{b/a})|(Q{b/a})

((νc)P ){b/a} , (νd)(P{d/c}{b/a}) with d fresh

P [φ]{b/a} , P{φ−1(b)/φ−1(a)}[φ]

A(c̃){b/a} , A(c̃{b/a})

Substitution enjoys properties similar to that of renaming. In particular, in

the proof of Lemma 47 we exploit the following property (see Lemma 19(ii)),

whose proof follows immediately by definition of • and substitution.

Lemma 46. For any a, b, s1, s2, if s1 • s2 is defined, then (s1 • s2){b/a} =730

s1{b/a} • (s2{b/a}).

Lemma 47. For any process P the following holds:

1. if P
s−→ P ′ then P{b/a} s{b/a}−−−−→ P ′{b/a}.

2. if P{b/a} s−→ P ′ then there exist s′ and P ′′ such that P
s′−→ P ′′ with

P ′ = P ′′{b/a} and s IJ s′{b/a}.735

Proof. We prove the two items separately.

1. The proof is straightforward by rule induction and thus omitted.
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2. The proof is in two steps. First we observe that whenever P{b/a} s−→
P ′ then, by the Accordion Lemma 25, P{b/a} s′′−→ P ′ with s IJ s′′

where there is no matched occurrences of b in s′′ (the chain s′′ is obtained740

from s by applying the fourth axiom in Definition 8 as many times as

needed). Then we prove that if P{b/a} s′′−→ P ′ where there is no matched

occurrences of b in s′′, then there exists s′ and P ′′ such that P
s′−→ P ′′ with

P ′ = P ′′{b/a} and s′′ = s′{b/a}. The rule proceeds by rule induction as

detailed below.745

Rule (Act) By hypothesis, P = `.P ′′, and we get P{b/a} = (`.P ′′){b/a} =

`{b/a}.P ′′{b/a} with P{b/a} s′′−→ P ′′{b/a} and s′′ IJ `{b/a}. More-

over, by rule (Act), P = `.P ′′
s′−→ P ′′ for any s′ IJ `. In particular,

we can choose s′ to have the same virtual links (and in the same

positions) as s′′, so that s′{b/a} = s′′. By putting P ′ = P ′′{b/a}, we750

are done.

Rule (Res) By hypothesis, P = (ν c)Q and without loss of generality as-

sume that c 6= a, b. We get P{b/a} = ((ν c)Q){b/a} = (ν c)(Q{b/a}).
Hence, there exist Q′ and s′′1 such that

P{b/a} = (ν c)(Q{b/a}) (ν c)s′′1−−−−→ (ν c)Q′ = P ′

with s′′ = (ν c)s′′1 and Q{b/a} s′′1−→ Q′. Since there is no matched

occurrence of b in s′′, there is none in s′′1 . By inductive hypothesis,

there exist Q′′ and s′1 such that Q
s′1−→ Q′′, with s′1{b/a} = s′′1 , and

Q′ = Q′′{b/a}. Since (ν c)s′′1 = (ν c)(s′1{b/a}) is defined then also755

(ν c)s′1 is defined, because c 6= a, b. Thus, we can apply rule (Res)

to get (ν c)Q
(ν c)s′1−−−−→ (ν c)Q′′, and we take P ′′ = (ν c)Q′′ and s′ =

(ν c)s′1. Then we get P ′ = (ν c)Q′ = (ν c)(Q′′{b/a}) = P ′′{b/a} and

s′′ = (ν c)s′′1 = (ν c)(s′1{b/a}) = ((ν c)s′1){b/a} = s′{b/a}.

Rule (Com) By hypothesis, P = R|Q and, by rule (Com), we have

P{b/a} = (R|Q){b/a} = (R{b/a}|Q{b/a}) s′′1 •s
′′
2−−−−→ (R′|Q′) = P ′
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with s′′ = s′′1 • s′′2 , R{b/a} s′′1−→ R′ and Q{b/a} s′′2−→ Q′. Since all there760

is no matched occurrence of b in s′′, there is none in both s′′1 and s′′2 .

By inductive hypothesis, there exist R′′, s′1, Q′′, s′2 such that R
s′1−→

R′′ and Q
s′2−→ Q′′, with s′′1 = s′1{b/a}, R′ = R′′{b/a}, s′′2 = s′2{b/a},

Q′ = Q′′{b/a}. Now we observe that s′1 • s′2 is defined. In fact the

only reason for which s′1 • s′2 is undefined when s′1{b/a} • (s′2{b/a})765

is defined would be that an action a should be paired with an action

b before the substitution takes place, but this is ruled out by the

assumption that there is no matched occurrence of b in s′′. By rule

(Com), we have R|Q s′1•s
′
2−−−→ R′′|Q′′. Now, we take P ′′ = R′′|Q′′, s′ =

s′1•s′2 and we get P ′ = R′|Q′ = R′′{b/a}|Q′′{b/a} = (R′′|Q′′){b/a} =770

P ′′{b/a}, s′′ = s′′1 • s′′2 = s′1{b/a} • (s′2{b/a}) = (s′1 • s′2){b/a} =

s′{b/a} and we are done.

Rule (Ren) By hypothesis, P = Q[φ]. Let a′ = φ−1(a) and b′ = φ−1(b).

We get that P{b/a} = Q[φ]{b/a} = Q{b′/a′}[φ] and, by rule (Ren)

there exist Q′ and s′′1 such that

P{b/a} = Q[φ]{b/a} = Q{b′/a′}[φ]
s′′1 [φ]−−−→ Q′[φ] = P ′

with s′′ = s′′1 [φ] and Q{b′/a′} s1−→ Q′. Since there is no matched

occurrence of b in s′′ it must be the case that there is no matched

occurrence of b′ in s′′1 . By inductive hypothesis, there exists Q′′ and775

s′1 s.t. Q
s′1−→ Q′′, with s′′1 = s′1{b′/a′}, and Q′ = Q′′{b′/a′}. By rule

(Ren), Q[φ]
s′1[φ]−−−→ Q′′[φ], and we take P ′′ = Q′′[φ] and s′ = s′1[φ].

Then we get P ′ = Q′[φ] = Q′′{b′/a′}[φ] = Q′′[φ]{b/a} = P ′′{b/a}
and s′′ = s′′1 [φ] = s′1{b′/a′}[φ] = s′1[φ]{b/a} = s′{b/a}.

For the remaining rules the proofs are simpler and thus omitted.780

Proposition 48. For any processes P,Q, if P
BC∼ Q then for any channel a, b

we have P{b/a} BC∼ Q{b/a}.
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Proof. We define the relation Rsub = {(P{b/a}, Q{b/a}) | P BC∼ Q} and prove

that it is a network bisimulation.785

We want to show that if P{b/a} s−→ P ′ then there exist Q′ and s′ such that

Q{b/a} s′−→ Q′, with s BC s′ and P ′ Rsub Q
′.

By Lemma 47 (point 2), there exist P ′′ and s′′ such that P
s′′−→ P ′′ with P ′ =

P ′′{b/a} and s IJ s′′{b/a}.
By hypothesis, P

BC∼ Q, then there exist s′′′, Q′′ such that Q
s′′′−−→ Q′′, with790

s′′ BC s′′′ and P ′′
BC∼ Q′′′.

By Lemma 47 (point 1), Q{b/a} s′′′{b/a}−−−−−→ Q′′{b/a}, and we take s′ = s′′′{b/a}
and Q′ = Q′′{b/a}. Now we are done, since P ′ = P ′′{b/a} Rsub Q

′′{b/a} = Q′

and, by Lemma 45(ii), s IJ s′′{b/a} BC s′′′{b/a} = s′.

Example 49. It is illustrative to revisit the classical CCS counterexample that795

shows that strong bisimilarity is not a congruence w.r.t. substitution, already

mentioned in Section 2. The translations of the two CCS processes a.0 | b.0 ∼
a.b.0 + b.a.0 in CNA are respectively τ\a.0 | b\τ .0 and τ\a.b\τ .0 + b\τ .τ\a.0.

But now the transition τ\a.0 | b\τ .0
τ\�a \

b

�\τ−−−−−−→ 0 | 0 cannot be simulated by

τ\a.b\τ .0 + b\τ .τ\a.0 and the two processes are not network bisimilar. The rea-800

son the transition cannot be simulated is that in one case you have concurrency

and in the other sequentiality, while in our semantics rule Com applies in the

concurrent case.

5.2. Composite and Dynamic Routing in CNA

By using CNA as a modelling framework, we can now revisit the example of805

composite routing and prove some interesting properties. We start by introduc-

ing the simplest possible algebra for building complex routing infrastructures

starting from basic building blocks. As done in Section 2, we can imagine a

routing infrastructure as a box with a left and right interface and with some

connections from (some of) the left channels to (some of) the right channels.810

Definition 50 (Basic infrastructure). Let ã = a1, ..., an and b̃ = b1, ..., bm

be two lists of channels. A basic routing infrastructure R from ã to b̃, written

37



R(ã, b̃) is a CNA process of the form

R(ã, b̃) , `1.R(ã, b̃) + ...+ `k.R(ã, b̃)

with `h = aih \bjh where ih ∈ [1, n] and jh ∈ [1,m] for any h ∈ [1, k].

Definition 51 (Composite infrastructure). A composite infrastructure R(ã, b̃)

is either a basic infrastructure or the composition

R(ã, b̃) = (ν c̃)(Q(ã, c̃) | S(c̃, b̃))

of two (composite) infrastructures Q(ã, c̃) and S(c̃, b̃).

To each (composite) infrastructureR(ã, b̃) we can associate a graph G(R(ã, b̃)),

whose nodes are the channels appearing in the definition6 of the process R(ã, b̃),

and whose arcs are induced by the links appearing in the process, i.e. there is815

an arc x→ y if the link x\y appears as a prefix in the definition of R(ã, b̃). We

then have the following characterisation of the transitions admitted by R(ã, b̃).

We recall that with ||s|| we denote the size of s, i.e. the number of solid links

in the link chain s. Note that size is preserved by the equivalence IJ, but not

by BC.820

Lemma 52. Let R(ã, b̃) be a composite infrastructure.

1. If R(ã, b̃)
s−→ R′ then R′ = R(ã, b̃) and there exist two nodes ai ∈ ã and

bj ∈ b̃ of the graph G(R(ã, b̃)) such that s BC ai\bj and there is a path

from ai to bj whose length is ||s|| in the graph G(R(ã, b̃)).

2. If there is a path of length n from ai to bj in the graph G(R(ã, b̃)) then825

R(ã, b̃)
s−→ R(ã, b̃) with s BC ai\bj and ||s|| = n.

From the previous lemma, it follows that any composite infrastructureR(ã, b̃)

is network bisimilar to a basic infrastructure that has one link for each possible

path in G(R(ã, b̃)) from one of the ais to one of the bjs.

6Without loss of generality, we can exploit alpha-conversion to assume that all restricted

channels are named in a different way.
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Definition 53. Let R(ã, b̃) be a composite infrastructure and G = G(R(ã, b̃))

be its corresponding graph. We denote with PG(ã, b̃) the basic infrastructure

that offers one link for any path in G, i.e.

PG(ã, b̃) ,
∑

ai→∗bj∈G

ai\bj .PG(ã, b̃).

where a→∗ b denotes the presence of a path from a to b.830

Corollary 54. Any composite infrastructure R(ã, b̃) is network bisimilar to the

basic infrastructure PG(R(ã,̃b))(ã, b̃).

Example 55. Let us define the following basic infrastructures

R′(r̃eq , s̃) , req1\s1 .R′(r̃eq , s̃) + req1\s2 .R′(r̃eq , s̃) + req2\s2 .R′(r̃eq , s̃)

R′′(s̃, s̃′) , s1\s′1 .R
′′(s̃, s̃′) + s2\s′2 .R

′′(s̃, s̃′)

R′′′(s̃′, s̃rv) , s′2\srv2 .R
′′′(s̃′, s̃rv)

and combine them to form the composite infrastructures

Q(r̃eq , s̃′) , (ν s̃)(R′(r̃eq , s̃)|R′′(s̃, s̃′))

R = R(r̃eq , s̃rv) , (ν s′)(Q(r̃eq , s̃′)|R′′′(s̃′, s̃rv))

Assuming all of the tuples r̃eq , s̃, s̃′ and s̃rv have length 2, the graph G(R) is

depicted below

req1
• //

""

s1• // •s′1 •srv1

req2
• //

s2• // •s′2 // •srv2

Then, it is immediately evident that the admissible transitions for R are of the

form

R
req1\ττ\

τ
τ\srv2−−−−−−−−→ R R

req2\ττ\
τ
τ\srv2−−−−−−−−→ R

where, of course, many additional virtual links can be appended to the ex-835

tremes of the labels (remember the Accordion Lemma 25). Consequently, R is

network bisimilar to the basic infrastructure S(r̃eq , s̃rv) , req1\srv2
.S(r̃eq , s̃rv)+

req2\srv2
.S(r̃eq , s̃rv).
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Finally, we show that CNA is particularly convenient to model programmable

infrastructures, where links can be dynamically added and removed.840

Given ã = a1, ..., an and b = b1, ..., bm let us consider the processes

R̂i,j , addi,j\τ .Ri,j

Ri,j , ai\bj .Ri,j + remi,j\τ .R̂i,j + addi,j\τ .(Ri,j |Ri,j)

and their parallel composition

R =

n∏
i=1

m∏
j=1

R̂i,j

where we use the shorthand
∏n
i=1 Pi for the parallel composition P1 | · · · | Pn.

The idea is that an interaction involving the link addi,j\τ allows us to add

one link from ai to bj and that an interaction involving the link remi,j\τ allows

us to remove one such link. Several links between ai and bj can be available at845

the same time, but no such link can be removed if it is not present. Initially,

the process R makes no link available.

We believe that modelling infrastructures at this level of abstraction dras-

tically improves the situation w.r.t other process algebras based on dyadic in-

teraction, such as CCS. In fact imagine the situation where a composite pro-850

grammable infrastructure is modelled in CCS: it can happen that a transfer of

information is started along a viable path, but during the chain of interactions

one or more of the hops are removed. As a consequence it is then impossible

to deliver the request as well as acknowledge the failure. The CNA middleware

guarantees that none of these troublesome scenarios can arise in the model.855

5.3. Alternative Definitions

The theory of CNA is quite strong and stable and it can be extended in

several directions without much efforts. Here we briefly discuss only three note-

worthy possible variations of the presented framework.

Chain as prefixes. In the first variation, we could extend the syntax of CNA860

to allow essential chains instead of solid links as prefixes, i.e. the grammar
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production P ::= `.P can be replaced by P ::= s.P with s essential. This

change can increase the usability of the process algebra in modelling different

scenarios. For example, we can write a process such as τ\�a \b�\�b \c�\τ .P that

requires an interaction from a to c via b. All of the results presented in the865

paper would carry over such an extension. Remarkably, network bisimilarity

would still be a congruence.

Bisimilarity
IJ∼ . In the second variation, in the bisimilarity game, we could

decide to take into account the number of traversed (solid) links so to get a

finer equivalence. This amounts to changing the definition of bisimulation by870

requiring that the matching label s′ is related to s by IJ instead of BC. We

can denote the corresponding bisimilarity as
IJ∼ . Since IJ ⊆ BC, it follows

that
IJ∼ is finer than

BC∼ , i.e. , it distinguishes more processes. However, as in

the previous case, all the results presented in the paper would carry over this

change.875

Ordinary bisimilarity ∼=
IJ∼ . In the third and last variation, we could take

ordinary strong bisimilarity ∼, by requiring exact matching of labels. Then,

because of the Accordion Lemma 25, the resulting equivalence would coincide

with the equivalence
IJ∼ from the second point.

6. Concluding Remarks and Related Works880

In this paper we have presented CNA as a generalisation of traditional dyadic

process calculi able to deal with open multiparty interactions. These more com-

plex forms of interactions can be represented in CNA without complicating the

underlying synchronisation algebra, still quite simple and with rules similar to

the ones of CCS. We have provided the calculus with an abstract semantics,885

called network bisimilarity that, as the strong bisimilarity of CCS, is a congru-

ence w.r.t. all the operators of CNA. In addition, network bisimilarity is also a

congruence w.r.t. substitutions. Furthermore, the theory of CNA is quite stable
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under several variations, such as allowing (essential) link chains as prefixes or

changing the notion of network bisimulation to get finer equivalences.890

Formally capturing new patterns of communication seems crucial to under-

stand today’s Internet infrastructures and their intrinsic dynamic nature. From

this point of view, we have shown that CNA is particularly convenient for mod-

elling programmable infrastructures, where links can be added and removed in

a dynamic way.895

Concerning the taxonomy for multiparty languages proposed in [14], we can

say that CNA is variable, i.e. the number of participants is not fixed a priori,

and asynchronous, i.e. not all the processes in the systems are required to make

a move at each step. In contrast, CNA adopts a multi-channel mechanism that

does not work as a gate forcing all the involved processes to take part in the in-900

teraction. We can say that our interaction command, i.e. the command used to

establish a multiparty interaction, only allows a multiparty interaction to hap-

pen. Thus, following this taxonomy we can classify CNA neither as conjunctive

nor as disjunctive calculus.

As stated in Section 5.3, we intend to take CNA as a starting point for905

investigating more general forms of interaction and more advanced forms of

equivalence. Several interesting directions are possible.

Some alternatives to network bisimilarity have been discussed in Section 5.3.

Weak variants of them can be readily defined by considering solid link chains

as internal (silent) actions (as they represent completed interactions). As usual,910

the corresponding equivalences will not be congruences w.r.t. choice. However,

we think that the multi-party interaction available in CNA offers already a more

abstract mechanism than dyadic communication, so that weak equivalences are

not needed for many applications.

Another possibility, frequently used in process calculi literature, is to define915

the operational semantics in terms of reductions and then derive (context-closed)

observational equivalences on the basis of some well-chosen observables. While

the obvious choice for the observables would be link prefixes, it is difficult to

set up the same methodology for CNA because open multi-party interactions
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can involve an unbounded number of participants and are difficult to model as920

reduction rules. Nevertheless, this would be an interesting research direction to

explore in the future.

The name handling variant of CNA, called link-calculus, has been already

considered in [5] and exploited in [10] to model biological interactions.

Due to space limitation, we decided to focus here on presenting the commu-925

nication layer in full details and devote a companion paper to the name handling

extension, which is currently under scrutiny. In particular, on the more applica-

tive side, we think that the generalisation of link prefixes to link-chain prefixes

can be very useful to encode some simple patterns of interaction directly in the

action prefixes, thus enhancing the modelling power.930

We plan to extend the theory to take into account some weights associated

with each link, along the lines of [15]. For example, if weights are seen as

costs, then processes can be compared on the basis of the overall cost of an

interaction they offer, and the abstract equivalence can be refined to a preorder

to reflect the fact that when two processes offer the same interactions, one is935

cheaper than the other. If costs are replaced with some logical information, e.g.

representing the knowledge associated with the link, then an interaction can

be paired with deduction and thus compared with others on the basis of the

amount of information it provides. Other quantitative extensions could exploit

probabilities and stochastic rates.940

Another direction for future work is concerned with the cross-fertilisation

between computational sciences and biology. In [10] we have shown that mem-

brane interactions are intrinsically multi-party, by providing a faithful encoding

of Brane calculi [11] in terms of link-calculus. Brane calculi are compartment-

based calculi, introduced to model the behaviour of nested membranes in com-945

plex biological systems. We plan to include causality in the picture, so to

study dependencies among interactions and track down sources of unwanted

behaviours and consequences of biological reactions. Causality enriched models

have already been used to study metabolic networks [16, 17, 18], e.g. for de-

tecting incorrect behaviour that may depend on a particular ordering of certain950
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events, sometimes difficult to predict. The idea is to define a causal semantics

for CNA and exploit static analysis techniques for approximating the causal re-

lationships among the interactions performed by a complex system, along the

lines of the abstract causal semantics proposed in [19, 20, 21, 22] for the Brane

calculus and of the context dependent analysis presented in [23] for BioAmbi-955

ents [24], another calculus for describing biological systems.

A further extension of our approach consists in the possibility of expressing

non linear communication patterns in the prefixes, as allowing links of arity

greater than 2 and combine them in trees, matrices or graphs.

Related Work. Among the recently presented network-aware extensions of clas-960

sical calculi such as [25] (to handle explicit distribution, remote operations and

process mobility), and [26] (to deal with permanent nodes crashing and links

breaking), the closest proposal to ours is in [27], an extension of π-calculus,

where links are named and are distinct from usual input/output actions, and

there is one sender and one receiver (the output includes the final receiver name).965

In the name-passing variant of CNA [5], links can carry message tuples, and each

participant can play both the sender and the receiver rôle. This extended seman-

tics recalls the concurrent semantics in [27], where concurrent transmissions can

be observed in the form of a multi-set of routing paths. In our case the collected

links are organised in a link chain.970

In [28], the authors present a general framework to extend synchronisa-

tion algebras [29] with name mobility that could be easily adapted to many

other high-level kinds of synchronisation, like the one we need, but with a more

complex machinery. More sophisticated forms of synchronisations, with a fixed

number of processes, are introduced in π-calculus in [30] (joint input) and in [31]975

(polyadic synchronisation). The focus of [32] is instead on the expressiveness

of an asynchronous CCS equipped with joint inputs allowing the interactions

of n processes, proving that there is no truly distributed implementation of op-

erators synchronising more than three processes. As in the Join-calculus [33],

and differently from our approach, participants can act either as senders or as980
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receivers.

In [34], a conservative extension of CCS, called A2CCS, is studied that is

able to model multi-party synchronisation. The mechanism is realised as an

atomic sequence of dyadic synchronisations of arbitrary lengths, but imposes

some constraints that make the parallel operator non associative and therefore985

more difficult to use as a model.

Finally, in [35], a distributed version of the π-calculus for handling names,

considered as localised to their owners, in concurrent and distributed systems

made of mobile processes. Each process is indeed equipped with a local name

environment. When a name is exported, it is equipped with the information990

needed to point back to its local environment, thus keeping track of the origin

of mobile agents in multi-hop travel on the network. Communications are not

open, but are instead controlled by a distributed name manager that keeps

distinct the names generated by different environments.

As a last remark, it is worth noting that the operational semantics of CNA995

allows a link prefix to participate in infinitely many transitions that account for

the presence of the link within chains of any length. Thus, a direct implementa-

tion of the CNA semantics that can be used for verification is not immediate. A

possible solution to overcome this problem is the definition of a symbolic seman-

tics. The one in [36] collapses in a single transition all the transitions labelled1000

with link chains composed with the same set of solid links. Its implementation

can be found in [37], where an online tool is available for the simulation for

CNA-encoded examples.
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Appendix A. Proofs of Technical Results

In this appendix we restate the lemmata presented earlier in the paper and1105

gives the proofs of their correctness.

Appendix A.1. Proofs of Section 3

We recall Lemma 11 (the original appears on p. 16).

Lemma 11. For any `, `′, s, s′:

(i) The merge of links and link chains is commutative and associative.1110

(ii) ` • `′ = �\� if and only if ` = `′ = �\�.

(iii) If s is solid, then for any s′ we have s • s′ = ⊥.
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Proof. We prove the three items separately.

(i) Trivial, by the fact that the underlying operation on actions α • β is

commutative and associative.1115

(ii) The thesis follows by applying the definition of merge. Let ` = α\β and

`′ = α′\β′ then ` • `′ = (α•α′)\(β•β′), where (α • α′) = � iff α = α′ = �.

Similarly, (β • β′) = � iff β = β′ = �.

(iii) Since s is solid, its length n = |s| is greater than zero. If |s′| 6= n then

s • s′ = ⊥. Otherwise, let s = `1...`n and s′ = `′1...`
′
n. Since link chains1120

cannot be made of virtual links only, there is at least a position i in s′

such that `′i is solid. Then, `i • `′i = ⊥ because, since s is solid, also `i is

solid. As a consequence, s • s′ = ⊥.

We recall Lemma 12 (the original appears on p. 17).1125

Lemma 12. Let s, s′, and s′′ be three link chains such that (s′ • s′′) IJ s,

then there must exist s1 and s2 such that s1 IJ s′ and s2 IJ s′′ with s1•s2 = s.

Proof. We prove that the axioms in Definition 8, when applied in either di-

rection, satisfy the property. Then, by transitivity, the thesis holds for all the

elements in each equivalent class of IJ. The proof proceeds by cases on the1130

axioms of IJ.

case [s0 IJ s0
�\�] Let s′ • s′′ = s0 and s = s0

�\�. Now we have to find

s1 IJ s′ and s2 IJ s′′ such that s1 • s2 = s. To this aim, we set7

s1 = s′�\� and s2 = s′′�\�. By definition of the merge operator, •, we

get that s1 • s2 = s′�\� • s′′�\� = (s′ • s′′)�\� = s0
�\� = s.1135

case [s0
�\� IJ s0] By hypothesis, s′ • s′′ = s0

�\� and s = s0. By definition

of the merge operator, •, we get s′ = s1
�\� and s′′ = s2

�\�, for suitable

s1 and s2. Then, we have s = s1 • s2.

7Note that s1 and s2 are link chains since otherwise (s′ •s′′)�\� = s would not be defined.
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case [s0
�\��\�s′0 IJ s0

�\�s′0] Let s′ • s′′ = s0
�\��\�s′0 and s = s0

�\�s′0.

Therefore it must be the case that s′ = s′1
�\��\�s′′1 and s′′ = s′2

�\��\�s′′21140

with s′1 • s′2 = s0 and s′′1 • s′′2 = s′0. Then we let s1 = s′1
�\�s′′1 and

s2 = s′2
�\�s′′2 and we get s1 • s2 = (s′1 • s′2)�\�(s′′1 • s′′2) = s0

�\�s′0 = s.

case [s0
�\�s′0 IJ s0

�\��\�s′0] Let s′ • s′′ = s0
�\�s′0 and s = s0

�\��\�s′0.

Therefore it must be the case that s′ = s′1
�\�s′′1 and s′′ = s′2

�\�s′′2 with

s′1 • s′2 = s0 and s′′1 • s′′2 = s′0. Then we let s1 = s′1
�\��\�s′′1 and s2 =1145

s′2
�\��\�s′′2 and we get s1•s2 = (s′1•s′2)�\��\�(s′′1 •s′′2) = s0

�\��\�s′0 = s.

case [s0
α\�a \a�\βs′0 IJ s0

α\aa\βs′0] Let s′•s′′ = s0
α\�a \a�\βs′0 and s = s0

α\aa\βs′0.

Then, there are four possible cases:

s′ = s′1
�\��\��\�s′′1 and s′′ = s′2

α\�a \a�\βs′′2
s′ = s′1

α\�a \��\�s′′1 and s′′ = s′2
�\��\a�\βs′′21150

s′ = s′1
�\��\a�\βs′′1 and s′′ = s′2

α\�a \��\�s′′2
s′ = s′1

α\�a \a�\βs′′1 and s′′ = s′2
�\��\��\�s′′2

with s′1 • s′2 = s0 and s′′1 • s′′2 = s′0.

We only show the first case, as the other ones are similar.

Now we let s1 = s′1
�\��\�s′′1 IJ s′ and s2 = s′2

α\aa\βs′2 = s and we are1155

done since s1 • s2 = (s1 • s′2)α\aa\β(s′′1 • s′′2).

The remaining cases, i.e. s0 IJ �\�s0 , �\�s0 IJ s0 and s0
α\aa\βs′0 IJ

s0
α\�a \a�\βs′0, have similar proofs and are omitted.

We recall Lemma 15 (the original appears on p. 18).

Lemma 15. For any a, b, `, s, s′1160

(i) (ν a)` = �\� if and only if ` = �\�.

(ii) (ν a)(s • s′) = s • (ν a)s′ if a does not occur in s.

(iii) (ν a)(ν b)s = (ν b)(ν a)s.

Proof. The proof derives from the definitions of the restriction (ν ) operator and

of the merge operator •, both defined on link chains.1165
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(i) Obvious, as (ν a)α 6= � if α 6= �.

(ii) If (ν a)s′ = ⊥ it means that a is unmatched in s′ and since a does not

appear in s it remains unmatched in s • s′. Otherwise, a is matched in s′

and since solid links are preserved by • it remains matched in s • s′, then

renaming a to τ before or after the merge does not change the result.1170

(iii) Obvious as (ν a)(ν b)α = (ν b)(ν a)α for any α.

We recall Lemma 17 (the original appears on p. 18).

Lemma 17. Let s and s′ be two link chains such that (ν a)s is defined and

(ν a)s IJ s′, then there exists s′′ such that s′ = (ν a)s′′ and s IJ s′′.1175

Proof. We prove that the axioms, when applied in either direction, satisfy the

property. Then, by transitivity, the thesis holds for all the elements in each

equivalent class of IJ. The proof proceeds by cases on axioms of IJ.

case [s0 IJ s0
�\�] Let (ν a)s = s0 and s′ = s0

�\�. Then, we set s′′ = s�\�,

and it is immediate to verify that a is matched in s′′, as it is in s, thus we1180

can write s′ = (ν a)s′′ (with (ν a)s IJ (ν a)s′′) and we get that s IJ s′′.

case [s0
�\� IJ s0] Let (ν a)s = s0

�\� and s′ = s0. Then it must exists s′′

s.t. s = s′′�\� with s0 = (ν a)s′′. The thesis follows as s′ = s0 = (ν a)s′′

and clearly s IJ s′′.

case [s0
�\�s′0 IJ s0

�\��\�s′0] Let (ν a)s = s0
�\�s′0 and s′ = s0

�\��\�s′0.1185

Then it must be s = s1
�\�s2 for some s1 and s2 with (ν a)s1 = s0 and

(ν a)s2 = s′0. We set s′′ = s1
�\��\�s2, from which the thesis immediately

follows.

case [s0
α\�b \b�\βs′0 IJ s0

α\bb\βs′0] Let (ν a)s = s0
α\�b \b�\βs′0 and s′ = s0

α\bb\βs′0.

As a cannot appear in (ν a)s, it must be the case that a 6= b and s =1190

s1
�\�s2 for some s1 and s2 with (ν a)s1 = s0

α\b and (ν a)s2 = b\βs′0. We

set s′′ = s1s2, from which the thesis immediately follows.
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case [s0
α\bb\βs′0 IJ s0

α\�b \b�\βs′0] Let (ν a)s = s0
α\bb\βs′0 and s′ = s0

α\�b \b�\βs′0.

As a cannot appear in (ν a)s, it must be the case that a 6= b and s = s1s2

for some s1 and s2 with (ν a)s1 = s0
α\b and (ν a)s2 = b\βs′0. We set1195

s′′ = s1
�\�s2, from which the thesis immediately follows.

We omit the remaining cases that are analogous.

We recall Lemma 19 (the original appears on p. 18).

Lemma 19. For any a, φ, ψ, `, s, s′

(i) `[φ] = �\� if and only if ` = �\�.1200

(ii) (s • s′)[φ] = s[φ] • (s′[φ]).

(iii) ((ν a)s)[φ] = (ν φ(a))(s[φ]).

(iv) s[φ][ψ] = s[ψ ◦ φ].

(v) If s IJ s′ then s[φ] IJ s′[φ].

Proof. The proof of the points (i), (ii), (iii) derives from the definitions of the1205

renaming function φ, of the merge operator •, and of restriction operator (ν ),

all defined on link chains.

(i) Obvious, as `[φ] 6= �\� if ` 6= �\�.

(ii) Let s = `1...`n and s′ = `′1...`
′
n, with `i = αi\βi and `′i = α′i\β′i , for all

i ∈ [1, n]. Then, by definition of merge and renaming:

(s • s′)[φ] = ((`1 • `′1) · · · (`n • `′n))[φ] = (`1 • `′1)[φ] · · · (`n • `′n)[φ].

Since, for all i ∈ [1, n], (`i •`′i)[φ] = (φ(αi)•φ(α′i))\(φ(βi)•φ(β′i)) = φ(αi)\φ(βi) •
φ(α′i)\φ(β′i) = (`i[φ] • `′i[φ]), we can conclude that (s • s′)[φ] = s[φ] • (s′[φ]).1210

(iii) Let s = `1...`n with `i = αi\βi then ((ν a)s)[φ] = (((ν a)`1) . . . ((ν a)`n))[φ],

that amounts to (((ν a)`1)[φ] . . . ((ν a)`n)[φ]). Note that for any α we have

φ((ν a)α) = (ν φ(a))φ(α). In fact, if α = a then φ((ν a)a) = φ(τ) = τ and

(ν φ(a))φ(a) = τ . If instead α 6= a, then φ(α) 6= φ(a) (because φ is a bijec-

tion) and thus φ((ν a)α) = φ(α) = (ν φ(a))φ(α). Since, for all i ∈ [1, n],1215
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((ν a)`i))[φ] = ((ν a)αi\βi)[φ] = (ν a)αi\(ν a)βi [φ] = φ((ν a)αi)\φ((ν a)βi) =

(ν φ(a))φ(αi)\(ν φ(a))φ(βi) = (ν φ(a))(φ(αi)\φ(βi)) = (ν φ(a))(αi\βi [φ]), we

can conclude that ((ν a)s)[φ] = (ν φ(a))(s[φ]).

(iv) The proof of (iv) derives from the compositionality of renaming functions,

in particular, (α\β)[φ][ψ] = φ(α)\φ(β)[ψ] = ψ◦φ(α)\ψ◦φ(β) = (α\β)[ψ ◦ φ].1220

(v) To prove (v), we prove that the axioms, when applied in either direction,

satisfy the property. Then, by transitivity, the thesis holds for all the

elements in each equivalent class of IJ. The proof proceeds by cases on

axioms of IJ. For the sake of simplicity, we show only one case.

case [s0 IJ s0
�\�] Let s = s0 and s′ = s0

�\�. We have to show1225

that s[φ] IJ s′[φ] i.e. that s0[φ] IJ s0
�\�[φ], where s0

�\�[φ] =

s0[φ]�\�, since φ distributes over the single links. Therefore, we

obtain that s0[φ] IJ s0[φ]�\�.

We recall Lemma 20 (the original appears on p. 19).1230

Lemma 20. Let φ be a channel renaming function and s, s′ be two link chains

such that s[φ] IJ s′, then there exists s′′ such that s′ = s′′[φ] and s IJ s′′.

Proof. Since φ is a bijection, we take its inverse φ−1 and let s′′ , s′[φ−1].

Then the thesis holds by Lemma 19(iv–v): s′ = s′′[φ] trivially holds, since

s′′[φ] = s′[φ−1][φ] = s′, and s IJ s′[φ−1] holds because s[φ] IJ s′ implies1235

s = s[φ][φ−1] IJ s′[φ−1].

Appendix A.2. Proofs of Section 5

We recall Lemma 34 (the original appears on p. 28).

Lemma 34. All of the following properties hold for any link chain s.

(i) There exists an essential link chain s′ such that s BC s′.1240

(ii) If s is essential, for any essential s′ such that s BC s′, then s = s′.
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Proof.

(i) Take s and let

• n be the number of adjacent solid links in s,

• m be the number of adjacent virtual links in s,1245

• k be the number of virtual links at the extremes of s.

For example, for s = �\��\a�\ττ\bb\�c \c�\�d \��\e�\τ , we have n = 3, m = 4 and

k = 2.

We prove the existence of s′ by induction on v(s) = n+m+ k.

• For the base case, if v(s) = 0 then s is essential and we are done.1250

• For the inductive case, suppose v(s) > 0. Then at least one of n,m, k is

greater than 0.

If n > 0, then there are two adjacent links in s such as α\aa\β or α\ττ\β .

In the former case, we can apply the last axiom of IJ (Definition 8) to

introduce a virtual link between the matched action a and decrement by1255

one the number of adjacent solid links. In the latter case, we can apply the

rightmost axiom of BC (Definition 31) to eliminate the matched τ actions

and decrement by one the number of adjacent solid links.

If m > 0, then there are two adjacent virtual links in s and we can apply

the top-right axiom of IJ (Definition 8) to decrement by one the number1260

of adjacent virtual links.

If k > 0 we can apply one of the leftmost axioms of IJ (Definition 8) to

decrement by one the number of virtual links at the extremes.

In all cases we get a chain s′′ BC s with v(s′′) = v(s)−1 and, by inductive

hypothesis, there is an essential link chain s′ such that s′ BC s′′. Thus,1265

by transitivity, we have s′ BC s.

(ii) By contradiction, let s = `1
�\�`2 . . .�\�`n and s′ = `′1

�\�`′2 . . .�\�`′m
be two essential link chains such that s BC s′ and s 6= s′. Without loss of
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generality, assume s and s′ are chosen such that the length of s is the mini-

mal one for which such a counterexample exists. If `1 = `′1, then `2 . . .
�\�`n1270

and `′2 . . .
�\�`′m would provide a shorter counterexample, contradicting the

hypothesis of minimality for n. Thus it must be `1 6= `′1. Let `1 = α1\β1
and

`′1 = α′1\β′1 . Now we can notice that the axioms for BC preserves the leftmost

non-virtual symbol of a link chain. Thus α1 = α′1, otherwise s BC s′ would not

hold. Finally, we notice that any non-virtual symbol adjacent to a virtual link is1275

preserved by the axioms. Thus β1 = β′1 and `1 = `′1 leading to a contradiction.

We recall Lemma 36 (the original appears on p. 28).

Lemma 36. If s BC s′, then for any a such that (ν a)s 6= ⊥ there exists s′′ IJ s′

such that (ν a)s′′ 6= ⊥ and (ν a)s BC (ν a)s′′.1280

Proof. We prove that the property holds for the axioms of BC when applied

in each direction, then the fact that the property is preserved by the rules for

equivalence is immediate. We prove only some cases; the remaining ones are

similar.

case [s1
α\ττ\βs2 BC s1

α\βs2 ] Let s = s1
α\ττ\βs2 and s′ = s1

α\βs2. Since1285

(ν a)s 6= ⊥ it means that a is matched in s and thus it is matched in s′,

which differs from s only for the removal of τ , and we put s′′ = s′. Then

we have

(ν a)s′′ = ((ν a)s1)(ν a)α\(ν a)β((ν a)s2)

BC ((ν a)s1)(ν a)α\ττ\(ν a)β((ν a)s2)

= (ν a)s.

case [s1
α\aa\βs2 BC s1

α\�a \a�\βs2 ] Let s = s1
α\aa\βs2 and s′ = s1

α\�a \a�\βs2.

We let s′′ = s IJ s′ and we are done, since (ν a)s′′ = (ν a)s is defined by1290

hypothesis.

case [s1
α\�a \a�\βs2 BC s1

α\aa\βs2 ] Let s = s1
α\�a \a�\βs2 and s′ = s1

α\aa\βs2.

Since (ν a)s is not defined, we are done.
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We recall Lemma 37 (the original appears on p. 29).1295

Lemma 37. If s1 BC s′1, then for any s2 such that s2 • s1 6= ⊥ there exist two

link chains s′2 IJ s2 and s′′1 IJ s′1 such that s′2 • s′′1 6= ⊥ and s2 • s1 BC s′2 • s′′1 .

Proof. We prove that the property holds for the axioms of BC, then the fact

that the property is preserved by the rules for equivalence is immediate. We

prove only two cases, the remaining ones are similar.1300

case [sα\ττ\βs′ BC sα\βs′ ] We have s1 = sα\ττ\βs′ and s′1 = sα\βs′. By defi-

nition of valid link, the links α\τ and τ\β are solid, i.e. α 6= � and β 6= �.

Then, since s2 • s1 6= ⊥ we infer that s2 = s′′�\��\�s′′′ for some s′′, s′′

such that s′′ •s 6= ⊥, and s′′′ •s′ 6= ⊥. Then we take s′2 = s′′�\�s′′′ IJ s2

and s′′1 = s′1 and we are done, since s2 • s1 = (s′′ • s)α\ττ\β(s′′′ • s′) BC1305

(s′′ • s)α\β(s′′′ • s′) = s′2 • s′′1 .

case [sα\�a \a�\βs′ BC sα\aa\βs′ ] We have s1 = sα\�a \a�\βs′ and s′1 = sα\aa\βs′.
Then, there are two possibilities: either (a) s2 = s′′�\��\��\�s′′′, or (b)

s2 = s′′�\a�\�a \�s′′′ with s′′ • s 6= ⊥, and s′′′ • s′ 6= ⊥. In the case (a),

we take s′2 = s′′�\��\�s′′′ IJ s2 and s′′1 = s′1 and we are done, since1310

s2 • s1 = (s′′ • s)α\�a \a�\β(s′′′ • s′) BC (s′′ • s)α\aa\β(s′ • s′′′) = s′2 • s′′1 . In

the case (b) we take s′2 = s2 and s′′1 = sα\�a \a�\βs′ IJ s′1 and we are done,

since s2•s1 = (s′′•s)α\aa\aa\β(s′′′•s′) BC (s′′•s)α\aa\aa\β(s′•s′′′) = s′2•s′′1 .

We recall Lemma 38 (the original appears on p. 29).1315

Lemma 38. Let s and s′ be two link chains such that s BC s′, then for any

renaming function s[φ] BC s′[φ].

Proof. The proof is similar to the ones of Lemma 19 (point v) since, by definition

φ(τ) = τ and φ(�) = �, then the equivalence relation BC is not affected by

φ.1320
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We recall Theorem 43 (the original appears on p. 30).

Theorem 43. Network bisimilarity is a congruence.

Proof. We complete here the proof outlined at p. 30, by giving the details of the

case for recursion.

Recursion Let E and F be two processes that invoke the process identifier X.1325

Assume that for any process P we have E{P/X} BC∼ F{P/X}. We want

to prove that, given the process definitions A , E{A/X}, B , F{B/X},
then A

BC∼ B. The proof proceeds by showing that:

1. If A , Q is a process definition, then A
BC∼ Q.

2. Given the process definitions A , E{A/X} and B , F{B/X}, for1330

any process G that invokes X we have G{A/X} BC∼ G{B/X}.

Then, we have A
BC∼ E{A/X} BC∼ E{B/X} BC∼ F{B/X} BC∼ B. The

proof of (1) is immediate by rule (Ide), as A and Q have exactly the same

transitions, while the proof of (2) proceeds in the standard way exploiting

induction on derivations as detailed below.1335

Let Rctx , {(G{A/X}, G{B/X}) | G is a process that possibly invokes X}.
Let Rupto ,

BC∼ ◦ Rctx ◦ BC∼ . Note that Rctx includes the identity rela-

tion when taking G with no occurrence of X. Moreover, Rctx ⊆ Rupto,
BC∼⊆ Rupto and Rupto ◦ BC∼= Rupto because

BC∼ is an equivalence relation

(and thus transitively closed). We prove that Rupto is a network bisim-1340

ulation. To this aim, it is enough to consider a generic pair of processes

(G{A/X}, G{B/X}) in Rctx and prove that whenever G{A/X} s−→ P ′

then there are some s′ and Q′ such that G{B/X} s′−→ Q′, e(s) = e(s′)

and (P ′, Q′) ∈ Rupto. We proceed by induction on the derivation of the

transition G{A/X} s−→ P ′, by considering the possible shapes of G.1345

G = X: We have G{A/X} = A. Since A
s−→ P ′ and A , E{A/X},

it means that E{A/X} s−→ P ′ with a shorter derivation than A
s−→

P ′. Hence, by inductive hypothesis, there are s′′ and Q′′ such that
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E{B/X} s′′−→ Q′′, e(s) = e(s′′) and (P ′, Q′′) ∈ Rupto. Since E{P/
X} BC∼ F{P/X} for any process P , we have in particular E{B/1350

X} BC∼ F{B/X}. So there are s′ and Q′ such that F{B/X} s′−→ Q′,

e(s′′) = e(s′) and Q′′
BC∼ Q′. Since B , F{B/X}, by applying rule

(Ide) we have B
s′−→ Q′. We conclude by noting that G{B/X} = B,

e(s) = e(s′′) = e(s′) and that (P ′, Q′) ∈ Rupto ◦ BC∼= Rupto.

G = `.G′: We have G{A/X} = `.(G′{A/X}) and thus P ′ = G′{A/X}.1355

Moreover G{B/X} = `.(G′{B/X}) s−→ G′{B/X} and by definition

of Rupto we have (G′{A/X}, G′{B/X}) ∈ Rctx ⊆ Rupto.

G = G1 +G2: We have G{A/X} = G1{A/X} + G2{A/X}. Since we

have G{A/X} s−→ P ′ there are two possibilities: either G1{A/X} s−→
P ′ or G2{A/X} s−→ P ′ (with shorter derivations). Without loss of1360

generality, let us consider just the first case. By inductive hypothesis,

there are s′ and Q′ such that G1{B/X} s′−→ Q′, e(s) = e(s′) and

(P ′, Q′) ∈ Rupto. Then, by rule (Lsum), G{B/X} = G1{B/X} +

G2{B/X} s′−→ Q′.

G = (ν a)G′: We have G{A/X} = (ν a)(G′{A/X}). Thus P ′ = (ν a)P ′′1365

and s = (ν a)s′′ for some P ′′ and s′′ such that G′{A/X} s′′−→ P ′′

(with a shorter derivation). By inductive hypothesis, there are s′′1 , Q
′′

such that G′{B/X} s′′1−→ Q′′, e(s′′) = e(s′′1) and (P ′′, Q′′) ∈ Rupto.

By Lemma 36, there exists s′′2 IJ s′′1 such that (ν a)s′′2 6= ⊥ and

(ν a)s′′2 BC (ν a)s′′. By the Accordion Lemma 25, G′{B/X} s′′2−→ Q′′.1370

Then, we take s′ = (ν a)s′′2 and Q′ = (ν a)Q′′ and by rule (Res)

G{B/X} = (ν a)(G′{B/X}) s′−→ Q′. Clearly e(s) = e(s′). To see

that (P ′, Q′) ∈ Rupto we note that by (P ′′, Q′′) ∈ Rupto there is

some H such that P ′′
BC∼ H{A/X} and H{B/X} BC∼ Q′′. Then, as

BC∼ is a congruence w.r.t. restriction, P ′ = (ν a)P ′′
BC∼ (ν a)H{A/X}1375

and (ν a)H{B/X} BC∼ (ν a)Q′′ = Q′ and we are done.

G = G′[φ]: This case in analogous to the previous one and thus omitted.

G = G1|G2: We haveG{A/X} = G1{A/X}|G2{A/X}. SinceG{A/X} s−→
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P ′ we have three cases: (i) G1{A/X} s−→ P ′1 and P ′ = P ′1|G2{A/
X}, or (ii) G2{A/X} s−→ P ′2 and P ′ = G1{A/X}|P ′2, or (iii) G1{A/1380

X} s1−→ P ′1, G2[{A/X} s2−→ P ′2 and P ′ = P ′1|P ′2 with s = s1 • s2.

Without loss of generality, let us focus on the third case, which is

the more involved. By inductive hypothesis, there are s′′i , Q
′
i with

Gi{B/X}
s′′i−→ Q′i, e(si) = e(s′′i ) and (P ′i , Q

′
i) ∈ Rupto for i = 1, 2.

By Lemma 37, we know that s′′1 and s′′2 can be stretched respectively1385

to s′1 IJ s′′1 and s′2 IJ s′′2 so that s′1 • s′2 is defined and e(s1 • s2) =

e(s′1 •s′2). By the Accordion Lemma 25, Gi{B/X}
s′i−→ Q′i for i = 1, 2

and by rule (Par), we get G{B/X} = G1{B/X}|G2{B/X} s′−→ Q′

with s′ = s′1 • s′2 and Q′ = Q′1|Q′2. To see that (P ′, Q′) ∈ Rupto we

note that, for i = 1, 2, by (P ′i , Q
′
i) ∈ Rupto there is some Hi such that1390

P ′i
BC∼ Hi{A/X} and Hi{B/X} BC∼ Q′i. Then, as

BC∼ is a congruence

w.r.t. parallel composition, P ′ = P ′1|P ′2
BC∼ H1{A/X}|H2{A/X} and

H1{B/X}|H2{B/X} BC∼ Q′1|Q′2 = Q′ and we are done.

G = C: The simplest case is when G is a constant C associated with a

definition C , R. In fact, we have G{A/X} = C = G{B/X} and1395

we conclude by taking s′ = s and Q′ = P ′.

We recall Lemma 45 (the original appears on p. 34).

Lemma 45. For any a, b, s, s′

(i) If s IJ s′ then s{b/a} IJ s′{b/a}.1400

(ii) If s BC s′ then s{b/a} BC s′{b/a}.

Proof. The proof proceeds by cases on the axioms of IJ and BC, see Defini-

tions 8 and 31. We prove only one case, the remaining ones are similar.

case [sα\ττ\βs′ BC sα\βs′ ] We have s1 = sα\ττ\βs′ and s2 = sα\βs′. Let a, b
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two channel names then, by definition of substitution, we have1405

s1{b/a} = (sα\ττ\βs′){b/a}

= (s[{b/a}) (α\τ{b/a}) (τ\β{b/a}) (s′{b/a})

= (s{b/a}) α{b/a}\ττ\β{b/a} (s′{b/a})

BC (s{b/a}) α{b/a}\β{b/a} (s′{b/a})

= (sα\βs′){b/a}

= s2{b/a}.

We recall Lemma 52 (the original appears on p. 38).

Lemma 52. Let R(ã, b̃) be a composite infrastructure.

1. If R(ã, b̃)
s−→ R′ then R′ = R(ã, b̃) and there exist two nodes ai ∈ ã and

bj ∈ b̃ of the graph G(R(ã, b̃)) such that s BC ai\bj and there is a path1410

from ai to bj whose length is ||s|| in the graph G(R(ã, b̃)).

2. If there is a path of length n from ai to bj in the graph G(R(ã, b̃)) then

R(ã, b̃)
s−→ R(ã, b̃) with s BC ai\bj and ||s|| = n.

Proof. We prove the two implications separately.

1. The proof is by structural induction on the composite infrastructureR(ã, b̃).1415

If it is a basic infrastructure R(ã, b̃) = `1.R(ã, b̃) + ... + `k.R(ã, b̃), then

it must be the case that R′ = R(ã, b̃) and s IJ `h = aih \bjh for some

h ∈ [1, k]. Clearly ||s|| = 1 and in fact there is a path of length 1 from aih

to bjh in the graph G(R(ã, b̃)).

If it is the composition

(ν c̃)(Q(ã, c̃) | S(c̃, b̃))

of two infrastructures, then it must be the case that s = (ν c̃)(s1 • s2)1420

for some s1 and s2 such that there exists Q′ and S′ with Q(ã, c̃)
s1−→ Q′,

S(c̃, b̃)
s2−→ S′ and R′ = (ν c)(Q′ | S′). Then, by inductive hypotheses, we

know that
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• Q′ = Q(ã, c̃) and there exist two nodes ai ∈ ã and ch ∈ c̃ of the graph

G(Q(ã, c̃)) (and thus also in G(R(ã, b̃))) such that s1 BC ai\ch1 and1425

there is a path from ai to ch1
whose size is ||s1||.

• S′ = S(c̃, b̃) and there exist two nodes ch2
∈ c̃ and bj ∈ b̃ of the graph

G(S(c̃, b̃)) (and thus also in G(R(ã, b̃))) such that s2 BC ch2 \bj and

there is a path from ch2 to bj whose length is ||s2||.

Since channels c̃ are restricted and (ν c)(s1 • s2) is well defined, it must1430

be the case that h1 = h2 and s1 • s2 BC ai\ch1ch1
\bj . Therefore R′ =

(ν c̃)(Q′ | S′) = (ν c̃)(Q(ã, c̃)|S(c̃, b̃)) = R(ã, b̃), s = (ν c̃)(s1 • s2) BC ai\bj ,
||s|| = ||s1|| + ||s2|| and the two paths from ai to ch1 and from ch1 to bj

can be composed to form a path from ai to bj whose length is exactly ||s||.
2. The proof is by structural induction on the composite infrastructureR(ã, b̃).1435

If it is a basic infrastructure R(ã, b̃) = `1.R(ã, b̃) + ... + `k.R(ã, b̃) then

the path from ai to bj in the graph must have length one and be in

correspondence to one of the links offered by R(ã, b̃).

If it is the composition

(ν c̃)(Q(ã, c̃) | S(c̃, b̃))

of two infrastructures, then it must be the case that the path from ai to bj

with length n can be split in two parts: from ai to some ch (contained in1440

the graph G(Q(ã, c̃))) and from ch to bj (contained in the graph G(S(c̃, b̃))),

respectively with lengths n1 and n2 such that n = n1 + n2. Then, by the

inductive hypotheses, it must be the case that

• Q(ã, c̃)
s1−→ Q(ã, c̃) with s1 BC ai\ch and ||s1|| = n1.

• S(c̃, b̃)
s2−→ S(c̃, b̃) with s2 BC ch\bj and ||s2|| = n2.1445

Then we can find two suitable chains s′1 IJ s1 and s′2 IJ s2 such that

s′1 • s′2 is well defined and s′1 • s′2 BC ai\chch\bj . Therefore we take s =

(ν c̃)(s′1•s′2) BC ai\bj with ||s|| = ||s′1||+||s′2|| = ||s1||+||s2|| = n1+n2 = n

and by the rules of the operational semantics we have R(ã, b̃)
s−→ R(ã, b̃).
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