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ABSTRACT

k-plexes are a formal yet �exible way of de�ning communities

in networks. �ey generalize the notion of cliques and are more

appropriate in most real cases: while a node of a clique C is con-

nected to all other nodes of C , a node of a k-plex may miss up to

k connections. Unfortunately, computing all maximal k-plexes is
a gruesome task and state-of-the-art algorithms can only process

small-size networks. In this paper we propose a new approach

for enumerating large k-plexes in networks that speeds up the

search by several orders of magnitude, leveraging on (i) methods

for strongly reducing the search space and (ii) e�cient techniques

for the computation of maximal cliques. Several experiments show

that our strategy is e�ective and is able to increase the size of the

networks for which the computation of large k-plexes is feasible
from a few hundred to several hundred thousand nodes.
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1 INTRODUCTION

In the vast majority of networks representing real-world scenarios

the distribution of edges is not uniform and it is o�en possible to

clearly distinguish groups of nodes that are highly connected. �e

automatic detection of these groups, o�en called communities, helps
to discover fundamental properties of large networks in a variety

of di�erent domains. For this reason this problem has been largely

investigated [13].

A clique is a set of nodes in a network with all possible edges

among them, and is a formal and strict way of de�ning a community.

So strict, in fact, that cliques are generally thought to be too rigid

to be used in practice [16]. A more appropriate notion in many

practical cases is the k-plex: a set of nodes such that each of them

has edges with all the others, with the possible exception of up to

k missing neighbors (including itself). So, for example, for k = 1,
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k-plexes are cliques, for k = 2, each node may miss one edge, etc.

Hence, k-plexes are a simple and intuitive generalization of cliques.

Unfortunately, the detection of all maximal k-plexes in a network
is unpractical being hindered by two main problems: (i) maximal

k-plexes are even more numerous than maximal cliques, even if

most k-plexes are small and not signi�cant; (ii) the most e�cient

algorithms in the literature for computing maximal k-plexes can
only be used on small-size graphs: we show in our experiments that

the largest networks we were able to analyze with the algorithm

in [5] have a few hundred nodes.

In this paper we propose a solution to the �rst issue that is also

a solution to the second one. Namely, if we restrict the search to

large k-plexes, which are the most meaningful in practice, we can

devise e�cient algorithms to detect them.

Indeed, computing all maximal k-plexes does not make sense

when the purpose is that of detecting communities. In this respect,

it is useful to focus on the relationship between s , the size of a

k-plex, and k itself. Starting from k = 1, which corresponds to

cliques, if we increase the value ofk , we obtain progressively sparser
communities that are clearly less interesting in practice. In addition,

there is a dramatic e�ect on small k-plexes: it is trivial that if s ≤ k
a k-plex can be composed of isolated nodes, but it is possible to

show that even if s < 2k , the k-plex can be disconnected (see

Section 5). Hence, small k-plexes do not correspond to communities.

In particular, in order to avoid �nding the degenerate k-plexes
mentioned above, it is natural to impose at least that s ≥ 2k .

In this framework, our strategy for �nding large k-plexes relies
on two main observations. First, the complexity of the problem

can be reduced in the vast majority of cases on the basis of certain

properties of large k-plexes that can be e�ciently checked and that

allows us to �lter out a large portion of the network before starting

their search. �e second consideration is that, di�erently to what

happens for k-plexes, the state-of-the-art techniques to compute

all maximal cliques are able to scale up to millions of nodes by

decomposing the network into small blocks [7, 11]. Unfortunately,

the decomposition approach cannot be easily adapted to the de-

tection of k-plexes. However, we demonstrate that we can �nd all

k-plexes non-smaller thanm by looking in the neighborhood of

cliques of a size that depends on k andm. Hence, it turns out that

the knowledge of maximal cliques in a network provides a hint for

�nding all the signi�cant k-plexes.
In sum, our contributions are the following.

• We present techniques to e�ciently compute all maxi-
mum k-plexes of a network in the hypothesis that they are

greater than a �xed threshold, which is adequate to obtain

signi�cant results. Our approach is based on the intuition
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Figure 1: An example network.

that the e�cient computation of all maximal cliques can be

exploited to guide the search for k-plexes towards speci�c
portions of the network, �ltering out uninteresting parts.

• We propose an algorithm to detect all maximal k-plexes
whose size is at least a given threshold. �e algorithm

is based on a decomposition of the network in smaller

blocks, which is, to the best of our knowledge, the �rst

decomposition that is proposed for this purpose and, again,

is based on the maximal cliques that are detected in the

network.

• We illustrate an experimentation showing that these tech-

niques are able to speed up the computation of several

orders of magnitude with respect to traditional algorithms,

increasing the size of the networks for which computing

maximal k-plexes is a feasible task from a few hundred

nodes to several hundred thousand nodes.

�e rest of this paper is organized as follows. Section 2 contains

an overview of our approach and results. Sections 3 and 4 describe

in detail our approach to �nd all largest k-plexes in the network and
all the most signi�cant k-plexes, respectively. Section 5 contains the
theoretical basis of our algorithms. �e e�ciency of the algorithms

is experimentally measured in Section 6. Finally, Sections 7 and 8

contain related work and our concluding remarks.

2 OVERVIEW

As mentioned in the introduction, our approach is based on two

main ideas: (i) before starting the search of k-plexes, we can �lter

out a relevant portion of the network in which necessary conditions

for the presence of large k-plexes do not hold, and (ii) in large

networks, cliques can drive the search of k-plexes. While the �rst

point provides an e�ective way to simplify the problem at hand,

the second can lead to an e�cient strategy for �nding k-plexes.
Let us elaborate on these ideas starting with the problem of �nd-

ing all k-plexes of maximum size. Assume that we have computed

all the maximal cliques of a network and let ω be the size of the

maximum clique. �en, a maximum k-plex has size at least ω, since
cliques are also k-plexes. For example, suppose we are searching for

k-plexes in the network in Fig. 1a, which we will use as a running

example in this section: we have that ω = 5, since the maximum

clique (the blue subgraph on the le� hand side) involves �ve nodes.

At this point, it turns out that two �ltering criteria can be applied.

(1) Coreness Our �rst intuition follows from the very de�-

nition of k-plex: all the nodes of a k-plex of sizem must

have degree non-smaller thanm − k . If we know that the

size of a maximum k-plex is at least ω, this means that we

can iteratively �lter out any node that has degree lower

than ω − k . �is corresponds to computing the coreness of
all the nodes of the network (Lemma 5.3), a process that

can be executed in linear time [4]. For example, suppose

we are searching for 2-plexes in the running example of

Fig. 1a for which ω = 5: we can �lter out the three black

nodes on the top of the picture since they have coreness 2,

which is less than ω − k = 3. In larger networks we show

that this criterion allows us to cut up to 99% of the nodes.

(2) Cliqueness�e second intuition is that any node of a k-
plex of sizem must be included in a clique of a size that

depends onm. �is is con�rmed by Corollary 5.5 stating

that any node of a k-plex larger or equal tom is included

in a clique of size at least dm/ke. �en, if the size of the

maximum k-plex is at least ω, we can cut out all nodes

that do not belong to any clique of size at least dω/ke. For
example, if we are searching for 2-plexes in the network

depicted in Fig. 1a, we can �lter out all nodes that do not

belong to cliques of size at least d5/2e = 3, that is, the pair

of black nodes in the bo�om of the network. We will show

in Section 6 that in larger instances this criterion can be

tested e�ciently and is able to cut up to 98% of the nodes.

Even if some nodes can be �ltered out both because their low

cliqueness and low coreness, the network in Fig. 1a shows that the

two �ltering criteria are indeed independent. When both criteria

are applied, the size of the network is reduced of magnitude and

standard techniques for �nding k-plexes may become applicable

even to very large networks.

We push ahead this approach to devise a technique that allows

us to further increase the tractable cases. In fact, a consequence

of Corollary 5.5 is that if the largest k-plex has size p, then the

network contains a clique of size at least p/k , which in turn must

be less than the size of the maximum clique ω. �is implies that

the size p of a maximum k-plex in the network cannot exceed k ·ω.
Hence, the size p of the searched k-plexes is in the interval [ω,k ·ω].
In our running example, this would mean to search in the interval

[5, 10]. Now we iteratively apply the following algorithm:

(1) We make an educated guess of a value of p in the interval

[ω,k · ω] that allows us to �lter out many nodes based on

the cliqueness criterion.

(2) We launch a traditional method to �nd all k-plexes on such

reduced network

(3) If we �nd some k-plex of size greater or equal thanp we are
done (our guess was correct and we found all maximum

k-plexes).
(4) If we �nd only k-plexes of size s ∈ [ω,p−1], then we know

that our guess was too optimistic and we iterate, using

p − 1 as new upper bound and using s as new lower bound

(and �ltering out nodes based on it).
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�is technique is e�ective at least whenever the size p of the

largest k-plex is much larger than the size ω of the largest clique,

which is a reasonable property for some networks.

Once we have found the largest k-plexes, we may be interested

into searching smaller ones. We have noted in the introduction

that an exhaustive search does not make much sense, since very

small k-plexes are not signi�cant, to the point that they may be

even disconnected or composed by a set of isolated nodes. Hence,

the second problem we tackle is to �nd all maximal k-plexes in the

network of size bigger than a thresholdm.

As mentioned above, our idea is to start from cliques, which are

k-plexes but not necessarily maximal, and possibly enlarge them to

�nd maximal k-plexes. Building on the cliqueness criterion, which

ensures that each node of a k-plex C of size s is included into a

clique of size at least ds/ke, we start from each of such cliques K . If
we setm ≥ k2, we have that |K | ≥ ds/ke > k , which implies that

any other node of C must be adjacent to at least one node of K (in

other words, K is a dominating set of C). Hence, we can search for

C restricting to a block including K and all its adjacent nodes. For

example, suppose you are searching for all maximal 2-plexes of size

at least 5 in the network in the top of Fig. 1b. Consider any clique of

size at least ds/ke = d5/2e = 3, for example the clique K = {a,b, e}
(yellow triangle in Fig. 1b). �e nodes of any k-plex of size at least
5 containing K are adjacent to K (surrounded nodes of Fig. 1b top).

We further reduce the size of the block by proving that C can be

obtained by considering only nodes belonging to K and to other

cliques of size at least ds/ke intersecting with K (Lemma 5.7). For

example, the 2-plex of size 6 on the right of Fig. 1b is all contained

into the clique {a,b, e} and three other cliques of size 3 intersecting
with K (surrounded nodes of Fig. 1b bo�om). �is gives rise to an

e�cient searching algorithm that decomposes the network into

blocks each composed of one clique as the core, and all intersecting

cliques as the boundary. Each block can be separately processed,

possibly in a distributed environment.

3 FINDING MAXIMUM K-PLEXES

In this section, we show our algorithms for enumerating the max-

imum k-plexes of the input graph G. Intuitively, our approach

consists of enumerating all the k-plexes of a targeted sub-graph

of G, that we refer to as H , and then selecting the largest ones.

Clearly, the smaller is H with respect to G , the faster is solving the

problem
1
, as long as H contains all the maximum k-plexes of G.

Precisely, we aim at extracting a sub-graph H out of G, that is:

(1) small enough to make the enumeration fast;

(2) large enough to capture all maximum k-plexes of G, and
allow the computation of a correct solution.

We design two di�erent sub-graph extraction criteria, dubbed
coreness and cliqeness. Our criteria are of the form “all the k-
plexes larger or equal thanm consist of nodes with property XYZ”,

and have the above desiderata for a suitable choice ofm. Practically

speaking, we make the following observations.

• Ifm is too small, then the criteria are trivially met by most

(or even all) nodes of G (violating the �rst desiderata);

1
Ideally, H consists exclusively of the nodes of the k -plexes we are looking for.

• Ifm is too large, then the criteria are met only by few (or

even none) nodes of G (violating the second desiderata);

To this end, we show what are the best se�ings of the thresh-

oldm in di�erent scenarios. �e theoretical analysis in Section 5

proves that the solution provided by our se�ings is correct, and

the experiments in Section 6 show that the enumeration on the

resulting sub-graph is greatly faster than in the input graph.

In the rest of this section, we �rst describe our criteria and

related concepts, then we describe the corresponding algorithms

for enumerating maximum k-plexes, based on di�erent choices for

the thresholdm.

3.1 Criteria

We now describe our coreness and cliqeness criteria, and how

to use them for extracting the sub-graph H out of G.
Coreness. Our �rst criterion is the simplest, and it is based on the

intuition that all the nodes of a k-plexC , with |C | ≥ m have degree

non-smaller thanm − k . Clearly, we do not know a priori what are

the nodes ofC . However, we can iteratively �lter out any node that

has degree lower thanm − k . Formally, this is equivalent to search

for the (m − k )-cores of G. We de�ne this concept in the following.

De�nition 3.1. An h-core of G is a maximal connected subgraph

ofG in which all nodes have degree at least h. A nodeu has coreness
h if it belongs to a h-core, but not to any (h + 1)-core.

An h-core is one of the connected components of the sub-graph

of G formed by repeatedly deleting all nodes of degree less than h.
We are now ready to state our coreness criterion, as follows.

Criterion 1 (Coreness). All the k-plexes of G larger or equal
thanm consist of nodes having coreness larger or equal thanm − k .

Cliqueness. Our second criterion is based on the intuition that all

the nodes of a k-plex C , with |C | ≥ m, form smaller cliques with

other nodes of C . Informally speaking, if we try to “draw” a k-plex
by adding one edge at a time, we soon realize that there are no

ways of placing edges without forming progressively larger cliques

here and there. Lemma 5.4 in Section 5 proves that every node of

C participates in a clique non-smaller than
m
k . �erefore, we can

�lter out any node that only participates in smaller cliques. We

de�ne this concept in the following.

De�nition 3.2. A node u has cliqueness h if it belongs to a clique

of G of size h, but not to any clique of G of size h + 1.

We are now ready to state our cliqueness criterion, as follows.

Criterion 2 (Cliqeness). All the k-plexes of G larger or equal
thanm consist of nodes having cliqueness larger or equal than m

k .

Algorithm 1 prune(G,k,m) algorithm that computes a sub-graph

of G according to Criterion 1 and 2.

1: G ′ ← {v ∈ G : G .coreness(v ) ≥ m − k }
2: H ← {v ∈ G ′ : G ′.cliqueness(v ) ≥ m

k }

3: return H

Computing the sub-graph. Letm be given as input. �e proce-

dure prune(G,k,m), shown in Algorithm 1, returns the sub-graph
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Algorithm 2 max plexes(G,k) algorithm.

1: K← all cliques(G)
2: m ← maxK ∈K |K |
3: H ← prune(G,k,m)

4: K← all plexes(H ,k)
5: P← argmaxK ∈K |K |
6: return P

H resulting from a combination of coreness and cliqeness. We

�rst compute the (m−k )-cores (line 1), and then we �lter out all the

nodes with low cliqueness in the cores (line 2). Note that the two

criteria can be applied sequentially, in any order. Since computing

coreness is easy [4], we chose to apply coreness �rst and compute

cliqueness on the smaller graph G ′ (line 2).

3.2 Algorithms for maximum k-plexes
Let ω be the size of any maximum clique in G. Criterion 2 shows

that the size of any maximum k-plex lies in the range [ω,k · ω]. In
principle, for the problem at hand,m can be set anywhere in the

interval [ω,k · ω]. With our desiderata in mind (complete solution

and fast enumeration), we identify two alternative strategies that

make sense with no prior knowledge on the maximum k-plexes,
that we refer to as the cautious choice and the greedy choice.

• Cautious choice. We set m = ω. �e pros are that we

cannot miss the maximum k-plexes. �e cons are that if

the size of the maximum k-plex is closer to k ·ω than to ω,
H may be much larger than needed.

• Greedy choice. We set m in the middle. �e pros are

that H is very small. �e cons are that we may miss the

maximum k-plex. To this end, we can iterate in a binary

search fashion.

Let us introduce the following useful methods.

• all cliques(G): �emethod returns all themaximal cliques

of G.
• all plexes(H ,k): �e method returns all the maximal

k-plexes of the sub-graph H , for a given k , with any appro-

priate state-of-art method.

Cautious choice. Our �rst strategy is illustrated in Algorithm 2,

that we refer to as max plexes(). �e procedure is very simple.

We �rst enumerate all the maximal cliques of G (line 1), and then

extract the sub-graph H using our criteria and the maximum clique

size as threshold (line 2–3). Finally, we enumerate all the maximal

k-plexes of the sub-graph H , and return the maximum ones (line

4–5). Note that some cliques can be included in the solution. We

observed that some instances in our experiments only have one

maximum clique Cmax , that also corresponds to the maximum k-
plex. In such extreme cases, the sub-graphH only consists inCmax ,

and we can even do without all plexes().
Greedy choice. Our second strategy is illustrated in Algorithm 3,

that we refer to as max plexes binary(). We �rst enumerate all the

maximal cliques ofG (line 1), as in max plexes(). A�er that, rather
than using the maximum clique size as threshold, the algorithm

a�empts to extract a smaller sub-graph by se�ingm to the middle

point of the range [ω,k · ω] (line 6–7). �en, we enumerate all the

maximal k-plexes of the sub-graph H , and compute the maximum

Algorithm 3 max plexes binary(G,k) algorithm.

1: K← all cliques(G)
2: m ← maxK ∈K |K |
3: LB←m
4: UB← k ·m
5: while LB , UB do

6: x ← LB+U B
2

. Pivot

7: H ← prune(G,k,x )
8: K← all plexes(H ,k)
9: x ′ ← maxK ∈K |K |
10: LB ← max{LB,x ′}
11: UB ← max{x ,x ′}
12: end while

13: P← argmaxK ∈K |K |
14: return P

size x ′ (line 9). If H = ∅ we set x ′ = 0. �e following scenarios are

possible.

• If x ′ ∈ [0,x ), then there are no k-plexes larger than the

pivot x and the search continues. �e lower-bound does

not change (line 10), and the pivot becomes the new upper-

bound (line 11).

• If x ′ ≥ x , then we found k-plexes non-smaller than the

pivot x . �e search comes to an end, since the value x ′

becomes both the new lower-bound (line 10) and the the

new upper-bound (line 11).

In particular, if x ′ ≥ x , then x ′ is also the maximum k-plex size of
G by our criteria. Equivalently, all the maximum k-plexes of the
input graph G must be included in K (line 8). �erefore, at the end

of the search, we return the maximum elements of K (line 13–14).

Note that if we replace the selection of x = LB+U B
2

with x = ω
we obtain the same behavior than max plexes() algorithm.

4 FINDING LARGE K-PLEXES

Let ωk be the size of any maximum k-plex of G, as computed for

instance with the algorithm max plexes() in the earlier section. A

natural next step is to �nd all the k-plexes within a range (1−ϵ )ωk .
One may be tempted to re-use the approach of max plexes() as a
template, and change line 2 of Algorithm 2 by se�ingm = (1−ϵ )ωk .
While this is valid in principle, we observed in practice that large

k-plexes are more numerous that maximum k-plexes (that in most

case only consist of a single max k-plex) even if ϵ is small. On

the one hand, this con�rms our initial intuition that enumerating

all the k-plexes of G is impractical. On the other, this calls for

the design of an e�cient algorithm speci�c for the large k-plexes
problem at hand. To this end, we introduce a third criterion, that we

refer to as OverlappingCliqes, which enables the enumeration

of large k-plexes in networks that are orders of magnitude larger

than previously considered.

Overlapping cliques criterion. �is is an advanced application

of the cliqueness criterion. Let C be a k-plex non-smaller thanm.

Consider any maximal clique K ∈ C . We know from the cliqueness

criterion that |K | ≥ m
k .
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Algorithm 4 large plexes(G,k,m) algorithm.

1: H ← prune(G,k,m)

2: K← all cliques(H )

3: for K ∈ K do

4: B ← boundary(K )
5: P← all plexes(H [B],k) . H [B] is the subgraph of H

induced by B ⊆ V .

6: for P ∈ P, |P | ≥ m do

7: yield P . duplicates admi�ed

8: end for

9: end for

Algorithm 5 boundary(K ) algorithm.

1: B ← ∅
2: for K ′ ∈ K do

3: if K ′ ∩ K , ∅ then
4: B ← B ∪ K ′

5: end if

6: end for

7: return B

• If
m
k ≥ k , every node of C \ K must be adjacent to at least

one node v ∈ K , since every node of a k-plex can miss up

to k − 1 neighbors.
• Every node of C \ K must itself participate in a clique K ′,

at least as large as
m
k .

Intuitively, for large enough k-plexes withm ≥ k2, all the nodes of
C not inK participate in cliques overlapping withK , that is, sharing
at least one node with K . (We provide a proof of this statement in

Lemma 5.7.) �is allows us to target our search for large k-plexes
to the neighborhood of each clique K . More formally, to all the

cliques overlapping with K , that we refer to as its boundary. We

state the overlapping cliques criterion as follows.

Criterion 3 (OverlappingClicqes). All the k-plexes ofG with
sizem ≥ k2 consist of nodes either belonging to a clique K s.t. |K | ≥
m
k , or to overlapping cliques K ′, s.t. |K ′ | ≥ s

k and K ∩ K ′ , ∅.

Algorithm for large k-plexes. Our algorithm for large k-plexes
is illustrated in Algorithm 4, that we refer to as large plexes().
�e procedure uses the same auxiliary methods than max plexes()
(see Section 3), and the boundary(K ) primitive in addition.

• boundary(K): �e method returns all the nodes included

in a given clique K , or in overlapping cliques.

�e large plexes() algorithm �rst extracts the sub-graph H
using our criteria and the input thresholdm = (1 − ϵ )ωk (line 1).

Note that prune() selects all the nodes ofG , except those that do not
participate in anyk-plex larger or equal thanm. �en, it enumerates

all the maximal cliques of the sub-graphH (line 2). �e resulting set

K (line 2) only consists of cliques that are larger than
m
k (because

of the constructive process of H ) and thus can be used as “seeds”

for growing large k-plexes, according to the OverlappingCliqes

criterion. Finally, the large plexes() algorithm iterates over K

(lines 3–9) and for each clique considers its boundary (line 4). Let

B the current set returned by boundary(). We �rst enumerate all

the maximal k-plexes of the sub-graph of H [B] of H induced by B

(line 5). �en, we return only k-plexes non-smaller thanm (lines

6–8), and proceed with the next clique.

In Algorithm 5we show a simple implementation of the boundary()
algorithm. At line 2, the data structure K is shared with the caller

method (i.e., large plexes()).
Duplicates. Note that the above method can return the same k-
plex multiple times (line 7). To this end, we design a clever test,

that guarantees that every k-plex is returned at most once. Let C
be any k-plex computed by all plexes(H [B],k). We de�ne the

concept of parent clique P (C ), and return C only when the current

clique is equal to P (C ). Speci�cally, let

• min(C ) be the node u in C with smallest id;

• complete (X ,Y ) be a method that iteratively adds to the

clique X the next minimum node in the set Y s.t. X is still

a clique;

We de�ne P (C ) by construction as in the following equation.

P (C ) = complete (complete ({min(C )},C ),H ) (1)

Practically speaking, we start from the node u in C with smallest

id. �en, the process of construction has two phases. In the �rst

phase, we extend u within C in increasing order of id. �en we

keep extending by selecting nodes from the whole H .

We can thus rewrite line 6 as “if P (P ) = K then yield P”: this
way each k-plex is returned exactly once.

5 THEORETICAL BASIS

A k-plex C = (V ,E) with s nodes, s ≥ 2k , is a graph such that every

node is adjacent at least to all other nodes inC exceptk . For the sake
of simplicityC may refer to both the set of nodes it contains and to

the induced graph. We refer to nodes adjacent to a given node u,
as neighbors of u. A clique can be thought of as 1-plex. Any subset

of a k-plex is also a k-plex, and a k-plex is also a k + 1-plex. We

need to prove the three criteria described in the previous sections,

dubbed coreness, cliqeness and OverlappingCliqes.

Coreness criterion. Let ∆(C ) denote the diameter ofC , that is, the
largest number of nodes which must be traversed in order to travel

from one node to another. While a clique, or a 1-plex, has diameter

equals 1, k-plexes with k > 1 come in a variety of forms and can

have arbitrarily high diameter (which is not a desirable property

for a community). However, for k ≤ s
2
– which means that every

node is adjacent more than half nodes in C – the diameter is only

at most 2. �is is proven in the following.

Lemma 5.1. If s ≥ 2k then ∆(C ) ≤ 2.

Proof. If C has diameter larger than 2, there are at least two

nodes u and v at distance larger than 2. Since u is missing at most

k edges, it has at least s − k neighbors. However, neither u or

its neighbors are connected to v and therefore v missing at least

s − k + 2 edges, which is larger than k if k ≤ s
2
. �

Corollary 5.2. If s ≥ 2k then C is connected.

We are now ready for proving the coreness criterion.

Lemma 5.3 (Coreness). Every node inC has coreness at least s−k .

Proof. Let δ (u) denote the degree of a node u, that is, the num-

ber of nodes ofC adjacent to u. It easy to verify that for every node
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c ∈ C , δ (u) ≥ s − k . A h-core of C is a connected subgraph of C in

which all nodes have degree at least h [19]. Since C is connected

by Corollary 5.2, C is a s − k-core. �

Other criteria. We give the technical lemma below, that we use

for deriving the cliqueness and adjacency criteria, and the advanced

search principle.

Lemma 5.4. Every clique X ⊆ C , s.t. |X | < s
k , is included in a

bigger clique Xbiд , s.t. |Xbiд | ≥
s
k .

Proof. Let X ⊆ C be any clique of C , s.t. |X | < s
k . Let N ⊆ C

be the set of nodes which are not adjacent to all nodes of X , that is,

that are adjacent from 0 to |X | − 1 nodes of X . By picking any node

u ′ ∈ C \ (X ∪ N ), we have that X ′ = X ∪ {u ′} is a clique of size
|X | + 1. Since every u ∈ X can miss at most k neighbors including

itself, |N ∪ X | ≤ |X |(k − 1) + |X | = k |X |. �is means that at most

k |X | nodes are excluded for the selection of u ′. Let N ′ be the nodes
not adjacent to all nodes of X ′. We can repeat the process and grow

X ′, by picking any node u ′′ ∈ C \ (X ′ ∪ N ′), until we run out of

nodes. Note that the newly-excluded nodes for selecting u ′′ are u ′

and its missing neighbors. Such a clique-growing process can be

thought of as an iterative process starting from a node and growing

a clique – as if X itself were grown a�er |X | steps of the process –
and excluding at most k nodes at a time. �erefore, the process will

run at least
s
k steps, a�er which X has been grown to

s
k nodes. �

Note that, in case
s
k is not integer, the proof yields |Xbiд | ≥ d

s
k e.

�e cliqueness and the adjacency criteria directly follow.

Corollary 5.5 (cliqeness). Every node in C has cliqueness at
least d sk e.

Lemma 5.6. Consider a clique X ⊆ C , s.t. |X | ≥ s
k . If s ≥ k2,

every node in C either belongs to X or has a neighbors in X .

Proof. We know that such a clique always exists fromLemma 5.4.

Since its size is at least k by assumption, then every u ∈ C \ X has

to be adjacent to at least one node in X . �

Our last criterion is a stricter form of the above lemma, which

we formalize as follows.

Lemma 5.7 (OverlappingCliqes). Consider a clique X ⊆ C , s.t.
|X | ≥ s

k . If s ≥ k2, every node in C either belongs to X or to an
overlapping clique X ′, s.t. |X ′ | ≥ s

k and X ∩ X ′ , ∅.

Proof. Let u be any node of C \ X . We know from Lemma 5.6

that exists a nodev ∈ X adjacent to u. Since {u,v} is a clique of size
2, we can apply Lemma 5.4 and conclude that both nodes belong to

a clique X ′ larger or equal than s
k . Finally, v ∈ X ∪ X

′
. �

6 EXPERIMENTS

In this section, we compare our and previous algorithms over di�er-

ent real-world networks, and show the advantages and limitations

of our approach.

Datasets. We considered amix of real-world networks with various

sizes and characteristics. All our networks are publicly available on

the LASAGNE meta-repository [1], and come from di�erent human

activities. Speci�cally, we consider:

Graph n density ω type File Name

jazz 198 1.41 · 10−1 30 collab. jazz

grQc 5.241 1.05 · 10−3 44 collab. ca-GrQc

geom 6.158 6.28 · 10−4 22 collab. geom

advogato 7.418 1.75 · 10−3 19 collab. advogato

hepPh 12.006 1.64 · 10−3 239 collab. ca-HepPh

astroPh 18.771 1.12 · 10−3 57 collab. ca-AstroPh

newm 22.015 2.42 · 10−4 3 collab. Newman-Cond mat

mathSci 391.529 1.14 · 10−5 25 collab. MathSciNet

dblp 511.163 1.43 · 10−5 115 collab. dblp20080824 MAX

patents 3.8 M 2.32 · 10−6 11 citat. cit-Patents

Table 1: Real-world networks in our experiments. File name

extension is “.nde”. Networks are sorted by size n.

• small to large collaboration networks, where nodes rep-

resent authors of published papers or books, and edges

represent co-authorship;

• a large citation network, where nodes represent published

papers or books, and edges represent citations;

�e networks considered in our experiments, together with their

number of nodes (n), density, maximum clique size (ω) and type,

are listed in Table 1. In the table, we also list the �le name of every

network in the repository, for sake of reproducibility.

Implementation details. We implement the auxiliary methods

used by our algorithms, with the most recent methods in literature

for the corresponding tasks, to the best of our knowledge.

• In all cliques(G), we use the algorithm in [11] for enu-

merating all the maximal cliques of the input graph G.
• In all plexes(H ,k), we use the algorithm in [5] for enu-

merating all the maximal k-plexes of the sub-graph H .

We implement coreness and cliqeness criteria, respectively, with

the method in [4] and the already mentioned algorithm in [11]. Our

code is publicly available [2].

Methodology. We compare the execution of our methods for enu-

merating targeted k-plexes, with the most recent method for enu-

merating allk-plexes of the input graph [5]. In other words, we com-

pare the algorithms max plexes(G,k), max plexes binary(G,k),
large plexes(G,k,m) with the algorithm all plexes(G,k) over
the same input graph, for di�erent values of k and thresholdm. To

the best of our knowledge, indeed, there are no faster approaches

than [5] that are speci�c for maximum k-plexes and k-plexes non-
smaller than a threshold. Targeted enumeration is indeed our con-

tribution.

Test environment. Our experiments were performed on a ma-

chine with two CPU Intel Xeon E5-520 units with 4 cores each,

running at 2.26GHz, with 8MB of cache and 32GB RAM. �e op-

erating system was Linux CentOS 6.7, with kernel version 2.6.32,

Java Virtual Machine version 1.8.0 111 (64-Bit) and Python version

2.6.6 (64-Bit). All our executions have a reasonable 6 hours timeout,

a�er which they are interrupted. In the experiments, we show that

even the smallest networks with few thousands nodes timeout with

traditional methods. Our algorithms, instead, can process networks

up to hundreds of thousands of nodes.

6.1 Results

In Figure 2, we show the number of nodes in the sub-graph H
computed by the algorithm prune(G,k,m), with di�erent values of
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Figure 2: Number of nodes (log scale) in the sub-graph H .
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Figure 3: Nodes of G surviving the coreness criteria.
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Figure 4: Nodes of G surviving the cliqeness criteria.

k andm = ω, i.e, the maximum clique size. As frame of comparison,

we show the number of nodes in G (i.e., n). �e �gure shows

that, except for newm where ω = 3, the sub-graph H is order of

magnitudes smaller than G. Notably, for di�erent networks (jazz,
geom, hephPh, newm, and dblp), H is le� with only the nodes of

the maximum k-plex. In such lucky cases we can even skip the

execution of the enumeration step all plexes(H ,k). Since the sub-
graph produced by a given k is included in the sub-graph produces

by k + 1, is not surprising that higher values of k yield more nodes

inH . (Remember that for k = n we haveG = H .) However, for most

instances, the sub-graph is small with respect to G (thus allowing

for faster enumeration of k-plexes) for di�erent values of k .
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Figure 5: Nodes of G surviving coreness and cliqeness.

graph full enum
our approach

core cliqe enum

jazz 2 h 0,008 s 0,091 s no need

grQc > 6h 0,001 s 0,026 s 1,99 s

geom > 6h 0,001 s 0,086 s no need

advogato > 6h 0,003 s 0,234 s 1 h 45 m

hepPh > 6h 0,001 s 0,421 s no need

astroPh > 6h 0,046 s 0,892 s 2,92 s

newm > 6h 0,22 s 0,167 s > 6h

mathSci > 6h 0,009 s 2,535 s 0,11 s

dblp > 6h 0,005 s 4,336 s no need

patents > 6h 1,148 s 63,258 s > 6h

Table 2: Running time for �nding all the largest 2-plexes.

graph k
full enum our approach

time time #found

grQc
2 > 6h 4,65 s 3

4 > 6h 2,7 s 1

astroPh
2 > 6h 5 h 44 m 10

4 > 6h > 6h -

mathSci
2 > 6h 2,75 s 7

4 > 6h > 6h 7

Table 3: Running time for �nding all k-plexes larger than

80% of the maximum clique.

Figures 3 and 4 report the fraction of nodes of G residual a�er

the coreness and cliqeness criteria, applied separately. Figure 5

shows the same fraction a�er both criteria, applied together as in

our prune() algorithm. For the considered networks, most nodes

are �ltered out by coreness. �en, the structures that are too

connected to be �ltered by coreness but too small to play a role

in the search for k-plexes non-smaller than ω, are �ltered out by

cliqeness. Such an additional cliqeness step has bigger impact

in advogato and patents.
Maximum k-plexes. In Table 2, we show running times for dif-

ferent steps of max plexes(G, 2), compared to the time required

for enumerating all 2-plexes (column “full enum”), over the same

input graph.

• column “core” is the time needed for applying coreness

criterion, and computing an intermediate sub-graph G ′;
• column “cliqe” is the time needed for applying cliqe-

ness criterion over the intermediate sub-graph G ′, and
computing H ;
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• column “enum” is the execution time of large plexes()
over H .

�e time for computing our criteria has li�le impact on the

overall running time, which is dominated by the enumeration of 2-

plexes of the residual sub-graph when necessary. As a consequence,

in all the networks where H is le� with only the nodes of the

maximum clique, which is in turn also the maximum 2-plex, the

computation of max plexes() ends successfully a�er fractions of

seconds. For such networks, we write “no need” in the “enum”

column. As frame of comparison, full enumeration of 2-plexes (i.e.,

as in [5]) requires hours even on our smallest network (jazz), and
times out on the other networks.

When H is not as minimal as in the networks with no need for

all plexes(H ,k), the running time of max plexes() still ranges
from fractions of seconds (most networks) to 2 h, proportionally

to the size of H (see Figure 2 for comparison). In general, we can

conclude that the running time of our algorithm mostly depends

on the size of the sub-graph computed by prune().
We observed that the results for higher values of k , namely k = 3

and k = 4, are similar. �is is because the sub-graph H produced

with higher valued of k contains only few more nodes than the

sub-graph produced with k = 2, as shown in Figure 2

Binary search. Our “cautious choice” strategy for the maximum k-
plexes is able to process quickly all the networks in Table 2, except

newm and patents. For the newm network, we observe that ω = 3

(see Table 1) and the size of the maximum 2-plex is ω2 = 5, that is,

ω2 is closer to 2 · ω (i.e., the theoretical maximum size for a 2-plex)

than to ω. �is makes the newm network a good candidate for a

“greedy choice” as in the max plexes binary() algorithm described

in Section 3.2. In practice, the value of ω2 is not known a priori.

However, we can decide for the greedy choice also by observing

that ω is small. We observed experimentally for the newm networks

that the computation of max plexes binary(G,2) terminates a�er

only one iteration in less than our time out. Instead, the network

patents is hard to process even with the greedy choice. To improve

on this result is a challenging future task.

Large k-plexes. In Table 3, we show the overall running time of

large plexes(G,k,m) on di�erent networks in our dataset, for dif-

ferent values of k . For this experiment, we setm = 0.8ωk , whereωk
is the maximum k-plex size, as computed by max plexes(G,k). �e

time required for enumerating all k-plexes (column “full enum”)

of such networks is always larger than our timeout (6 hours). �e

table also show the number of k-plexes returned (column “found”).

All the networks considered contain less than a dozen k-plex non-
smaller than 0.8ωk , which are quickly found by our algorithm in

most cases. Note that in this experiment we call prune(G,k, 0.8ωk ),
that is, we compute the sub-graph H using a di�erent threshold

than in Figure 2 (possibly 0.8ωk ≥ ω).
�e astroPh network requires much more time than other net-

works. To this end, for this speci�c network, we plot in Figure 6a the

overall running time of large plexes(G, 2,m) (i.e., for 2-plexes),

form ranging in [0,ω2]. We computed using max plexes(G, 2) that
ω2 = 57. On the one side of the spectrum, form = 0, all the 2-plexes

ought to be returned (i.e., the same result than all plexes()). On
the other side, form = ω2, only a single 2-plex – the maximum

2-plex – is returned. �e plot shows that the running time quickly
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Figure 6: Running time on large plexes() and cumulative

distribution function distribution of k-plexes of astroPh.

decreases from hours to seconds asm approaches to ω2. �e data-

point close to 5 hours corresponds tom = 0.8ω2, as in Table 3. We

compare these results with the cumulative distribution function

(CDF) of 2-plexes of astroPh, as reported in Figure 6b. As frame

of comparison, we also show CDF of cliques (that are 1-plexes). As

expected, most 2-plexes have size smaller than 10
2
. Form > 0.8ω2,

which represents the 99th percentile for 2-plexes, the running time

of large plexes() is even smaller than half an hour, con�rming

the e�ectiveness of our targeted enumeration system.

7 RELATEDWORKS

In the �eld of network analysis, dense substructures in graphs (aka

dense subgraphs) are associated with communities, or more in gen-

eral sets of closely related elements [13, 16]. �e problem of �nding

these substructures has been extensively studied for decades, and

continues to be the object of cu�ing edge research. �e simplest

and most rigorous de�nition of dense subgraph is the clique, i.e., a

subgraph in which all nodes are pairwise connected. Many algo-

rithms for �nding all maximal cliques have been developed, most

of them being inspired to the Bron-Kerbosh algorithm [6], such

as [12, 18] or to the more recent paradigm of reverse search [3],

such as [9, 10, 14]. �e de�nition of clique may be too strict in

2
�e �gure may be counter-intuitive to read, as while the portion of 2-plexes larger

than 10 is smaller than the one of cliques, the absolute number is still larger.
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some instances, such as in real datasets where data can be noisy

and incomplete, so several de�nitions of pseudo-clique have been

produced [16], such as the k-plex [17].
McClosky [15] performs a thorough study to devise exact al-

gorithms for �nding the largest k-plex, and heuristics for �nding

lower upper bounds on its size, exploiting co-k-plexes (i.e., k-plexes
on the complement graph) and graph coloring techniques. �e us-

ability of the algrorithms for �nding the largest k-plex is however
limited to small networks, as the running time exceeds the hour for

graphs with hundreds of nodes.

Wu et al. [20] propose Pemp, a parallel algorithm for enumerating

k-plexes, which successfully improves its performance with the

usage of multiple cores.

Cohen et al. [8] give a generic framework for enumerating all

maximal subgraphs with respect to hereditary and connected hered-

itary graph properties, i.e., properties that are closed with respect to

induced subgraphs and connected induced subgraphs, respectively.

Berlowitz et al. [5] apply the framework in [8], together with in-

sights on the k-plex problem, to produce e�cient algorithms for the

enumeration of maximal k-plexes and maximal connected k-plexes,
which are respectively hereditary and connected hereditary. �e

algorithm for connected k-plexes in [5] outperforms the other state

of the art algorithms for enumerating or �nding the largest k-plex,
and constitutes our baseline for the experimental evaluation.

Other quasi clique models include the one de�ned by Zhai et

al. [21], that is a k-plex with additional connectivity constraint

(called CLB), and more that can be found in this survey by Pa�illo

et al. [16].

Real world networks can o�en be large, with millions of nodes

and billions of edges. However, algorithms for �nding dense sub-

graphs tend to have high computational complexity, and the number

of solutions can be exponential in the worst case [18]. �us, a great

amount e�ort was dedicated to �nd ways to process these di�cult

networks.

Some [7, 11] have proposed decomposition approaches to limit

the memory usage, as this allows in-memory computation on larger

instances, and can provide a speedup even when the graph �ts in

main memory. Others, such as Zhai et al. [21], exploit properties

speci�c to the considered quasi-cliuque model to prune the search

space.

8 CONCLUSIONS

We have proposed a novel approach to the enumeration of large

k-plexes, a formal andmeaningful way to de�ne interesting commu-

nities in real-world networks that generalizes the notion of clique.

Two main clues have driven our solution: (i) a relevant portion of

the network can be �ltered out well before starting the detection of

large k-plexes and (ii) cliques, which are more restricted but can be

computed e�ciently, can be used as starting points for the search

of k-plexes in the network. �e e�ciency of the approach over

state-of-the-art algorithms has been con�rmed by our experiments.

In the future, we intend to further extend the applicability of our

approach and tackle the problem of computing large k-plexes on
real world networks with millions of nodes.
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