
1 

 

Artificial Neural Network for the provenance study of archaeological ceramics 

using clay sediment database 

Germana Barone1, Paolo Mazzoleni1, Grazia Vera Spagnolo2, Simona Raneri3 

1 University of Catania, Department of Biological, Geological and Environmental Sciences, C.so Italia 57 - 95129 

Catania (Italy) 

2 University of Messina, Department of ancient and modern civilization, Polo Universitario SS Annunziata98168, 

Messina (Italy) 

3University of Pisa, Department of Earth Science, Via Santa Maria 53 - 53126 Pisa (Italy) 

 

*corresponding author: pmazzol@unict.it 

Abstract 

An artificial neural network (ANN) for archaeometric studies was created to facilitate provenance attribution 

of archaeological ceramics. A multilayer perceptron model (MLP) was applied to construct the network, 

including only one hidden layer. Moreover, correction parameters based on historical and archaeological 

evidences were applied to Bayesian probability factor.  

The ANN was trained by using clays mixings mathematically constructed based on a reference chemical 

database of Sicilian sediments. The clay mixing takes in consideration compositional variability within the 

same geological site and the extent of the ceramic manufacture processes. Test was performed by querying 

the ANN with compositional data of ceramics found in archaeological sites coherent with clays sampling areas. 

Up to 88% correct attribution was verified, with good correspondence between geological and archaeological 

contexts.  

Finally, merits of ANN were highlighted by comparing the extent of successfully provisional attribution with 

classical statistical methods (PCA and LDA). 
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1. Introduction 

The identification of the production sites in archaeological ceramics studies represent a key factor in 

reconstructing both economic and cultural history of ancient communities; in view of their daily use, pottery 

allows in fact to derive significant information on land resources, trade, customs, behaviors and religious 

beliefs. Provenance studies of archeological ceramics usually deal with compositional data; comparative 

studies between ceramics and reference clayey raw materials or laboratory experimental mixes are often 

carried out to locate production centers and draw possible imports routes [1–5]. However, these predictions 

are not always trivial, because of the extent of production process [6]. Thus, comparative evaluations 

between possible raw materials and artefacts have to take in account the possible mixing of clay 

sediments sampled in one or more outcrops, the intentional addition of tempers or the depuration of the 

sediment for technical purposes. Tying to model the final composition of a certain ceramic artifact by 

considering all factors proper of the production cycle, it can be expressed by the following equations:  

For a simple ware (no addition, no depuration): 𝐶𝑖
𝑝

= ∑ 𝑋𝑠(𝑗)𝐶𝑖
𝑠(𝑗)𝑛

𝑗=1 + 𝐻2𝑂    (1) 

For potteries with added tempers:𝐶𝑖
𝑝

= ∑ 𝑋𝑠(𝑗)𝐶𝑖
𝑠(𝑗)𝑛

𝑗=1 + 𝑋𝑡𝐶𝑖
𝑡 + 𝐻2𝑂    

 (2) 

For depurated potteries: 𝐶𝑖
𝑝

= ∑ 𝑋𝑠(𝑗)𝐶𝑖
𝑠(𝑗)𝑛

𝑗=1 − 𝑋𝑐𝐶𝑖
𝑐 + 𝐻2𝑂      (3) 

where 𝐶𝑖
𝑝

 is the abundance of aplastic fraction i in the ceramic paste; 𝑋𝑠(𝑗) the mass fraction of clayey 

sediment s(j); 𝐶𝑖
𝑠(𝑗)

 the abundance of aplastic fraction i of the clayey sediment s(j); 𝑋𝑡 the mass fraction of 

temper; 𝐶𝑖
𝑡 the abundance of aplastic fraction i of temper; 𝑋𝑐 the mass fraction of coarse grain size of clayey 

sediments; 𝐶𝑖
𝑐 the abundance of aplastic fraction i of coarse grain size; H2O mixing water. 

In the field of archaeological sciences, compositional data are often obtained by X-ray fluorescence analysis 

(XRF). The management and processing of large chemical dataset available from such instrumental analysis 

is usually addressed by the application of statistical methods for predicting groups and/or relations among 

samples [7]. Literature offers a large overview on different statistical procedures useful to address provenance 

issues in XRF data analysis related to archaeological ceramics, including principal component analysis (PCA), 

factor analysis (FA), linear discriminant analysis (LDA), cluster analysis (HCA) [8–19], even discussing 

possible limits and drawbacks [7].  

Among the most popular statistical methods, artificial neural networks (ANNs) has been recently proposed as 

particularly challenging in archaeological applications to optimize predictions and correlations among objects 

[20–23]. However, the complex computational process and the relevant amount of samples required in training 

neutral networks generally favor the use of other classical methods. Artificial Neural Networks (ANNs) were 

developed for the first time by McCulloch & Pitts [24]. The definition of an ANN frequently recurs to 

parallelism with biological paradigms, resembling its structure the brain’s architecture and the human learning 
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procedures. According to [25], “A neural network is a massively parallel distributed processor made up of 

simple processing units, which has a natural propensity for storing experiential knowledge and making it 

available for use. It resembles the brain in two respects: 1) knowledge is acquired by the network from its 

environment through a learning process; 2) inter neuron connection strengths, known as synaptic weights, are 

used to store the acquired knowledge”. 

An ANN is due to simple processing units named neurons, acting as nerve cells able to receive inputs, elaborate 

them by specific operations and exchange output results with the other connected processing elements.  

The structure of a simple ANN consists in layers of neurons, the first of which is the input layer while the last 

one is an output layer (see Figure 1.a); in the middle, one or more hidden neuron layers may be present 

(Figure 1.b).  

In a feedforward ANN, the information flux occurs always from the input layer to the output one.  

An artificial neuron works by calculating a weighted sum of external inputs (xk1…..n) and adding 

constants (bias – bk) to generate an intermediate vk function for which connections have to be still 

verified.   

𝒗𝒌 = ∑ 𝒘𝒌𝒋𝒙𝒋

𝒏

𝒋=𝟎

                      (𝟒) 

This step is governed by the application of an activation function (e.g. (v)) able to activate (or not) a 

connection and finally give back an output answering to a specific query. Usually, a sigmoid activation 

function is used in ANN construction (Figure 1.c); its values range from 0 to +1 and it is mathematically 

defined by the equation: 

𝝋(𝒗) =  𝟏/(𝟏 + 𝒆−𝒂𝒗 )                  (𝟓) 

where a is the slope parameter of the sigmoid function. Another activation function widely used is the 

hyperbolic tangent function (𝝋(𝒗) = 𝐭𝐚𝐧𝐡 (𝒗)) , which values range from -1 to +1.   
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Figure 1. (a) Schematic representation of ANN architecture and basic operations, (b) example of a simple feed 

forward ANN consisting in three neuron layers and (c) example of sigmoidal activation function and (modified from 

[26]). 

 

The main feature of neural network is its ability to learn from its environment and to improve its performance 

through consecutive learning steps (i.e., adjustments applied to weight sums and bias and/or application 

of correction factors). Two different learning process can be used: i) supervised learning, in which the 

network is trained by providing known information as inputs and by matching output patterns; ii) 

unsupervised learning, in which output units are trained creating correlation with groups into the input 

series, without a priori set of categories into which the patterns are classified. The learning process is achieved 

undergoing a training session. A set of input patterns along with the category to which each particular pattern 

belongs is repeatedly submitted to the network; thus, the prediction ability of the network can be verified by 

testing an unclassified pattern, which classification criteria are extracted from the training data.  

ANNs activate a certain number of correlations by subdividing the multidimensional decision space into 

regions, each one associated with a class. The decision boundaries are determined within the training process 

and the construction of these boundaries is based on the inherent variability within and between classes. 

Specifically, an ANN without hidden layer produces a linear decision boundary (Figure 2.a) (likewise in linear 

discriminant analysis); on the contrary, one or more hidden layer (named multi layers neural network – MLNN) 

permit to obtain a non-linear decision boundary (Figure 2.b). 
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Figure 2. Decision boundaries determined in case of (a) absence or (b) presence of hidden layers. 

 

The basis of the ANN computational model clarify its advocacy to every possible scientific field, including 

archeological datasets. Nevertheless, comprehensive studies able to point out merits of neural network in 

comparison of other multivariate analysis are largely lacking [7,27].  

To fill this gap and demonstrate potential of ANNs in archeological researches, especially for provenance 

attribution of archaeological ceramics, an artificial neural network based on clay sediments compositional 

database was trained and successfully tested. In detail, the learning process was carried out considering 

mathematically determined clay mixings of Plio-Pleistocene Sicilian clays, extensively employed in ancient 

times to produce ceramics [11,28–33]. Thus, the prediction ability of the ANN in classifying ceramics was 

tested on selected artifacts previously studied and classified [11,28–30,34,35]. Finally, merits of the method 

were explored by comparing ANN results with other classical statistical methods (PCA and LDA).  

 

2. Research aim  

The creation of a (i) Plio-Pleistocenic Sicilian clay sediments database, (ii) clay sediment mixings 

mathematically determined and (iii) an artificial neural network trained by using clays composition data and 

tested with archaeological ceramics represents the workflow steps of this research, finalized to improve 

provisional attribution based on chemical composition. The main aim of this study is therefore to test the neural 

network approach using reference groups of ceramics materials already characterized by archaeometric studies 

and identified as certain local productions, avoiding a priori assumptions. The comparison of correct 

provenance attribution obtained by using different statistical methods, and the final refinement of the created 

neural network by using probability factors able to take in consideration historical and archaeological 

evidences, highlighted merits of ANNs in archaeometric studies of archeological ceramics.  
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3. Materials  

3.1 Clay sediments  

Plio-Plestocenic clays and marly clay sediments were considered to create mathematically determined clay 

mixes and to train the artificial neural network. From the geological point of view, these clays represent a 

sedimentation phase occurred in submerged areas during Pliocene and Pleistocene, after the main Miocenic 

phase of orogenic building of the Sicilian chain, and the Messinian Salinity crisis [36]. Plio-Pleistocenic clays 

(Figure 3) were deposited in different tectonic setting (forearc, piggy back and foreland basins) [37] and 

geographic context of Sicily, being therefore widely available through the island.  

For this study, 65 samples of Plio-Plestocenic clays belonging to different geological Fm. and outcropping in 

different areas of the east and south Sicily were sampled and analysed: 

i) Rometta Fm. (Upper Pliocene – Lower Pleistocene) sampled near Tracoccia and Barcellona 10 km from 

Milazzo; 14 samples;  

ii) Bluish Clay Fm. (Lower – Middle Pleistocene) sampled near Catania, Aci Trezza (10 km from Catania) and 

Sferro (25 km from Catania); 10 samples 

iii) Bluish Clay Fm. (Lower – Middle Pleistocene) sampled near Lentini; 13 samples; 

iv) Bluish Clay Fm. (Lower – Middle Pleistocene) sampled near Siracusa; 10 samples; 

v) Mt. Narbone Fm (Middle – Upper Pliocene) sampled near Gela; 8 samples; 

vi) Mt. Narbone Fm (Middle – Upper Pliocene) sampled near Agrigento; 10 samples. 

The studied clays outcrop on different geological environments [37]: (i) on high-medium grade metamorphic 

basement, in Milazzo area; ii) on volcanic edifice, in Catania (on the slopes of Mt. Etna); iii) on basaltic lava 

cover and limestone sequences, in foreland setting in Lentini territory; iv) in foreland area characterized by 

limestone sequences, in Siracusa; and v) at the front of the Sicilian trust belt, in Gela and Agrigento. 

These geological Fm. were extensively used for local ceramic manufacture in antiquity; however, 

compositional overlapping among different Fm. as well as compositional difference within the same site 

due to genetic reasons can determine relevant uncertainties in provenance studies. 
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Figure 3. Geological sketch map showing the distribution of  Sicilian Plio-Pleistocene clays and marly clay 

sediments. For a complete description of the geological Formations constituting these sedimentary basins see 

[37]. The sampling areas are reported in the map. 

 

3.2 Ceramics 

The neural network was tested by an unclassified pattern consisting in 118 pottery samples with medium and 

fine grain size to avoid miscalculations in the computational process due to the occurrence of tempers 

intentionally added in the clay paste. They include ancient ceramics characterized in previous studies by using 

classical minero-petrographic and chemical methods allowing certain attribution as local reference groups of 

different Greek colonies of Sicily (Milazzo, Catania, Lentini, Siracusa, Gela, Agrigento). Previous studies 

have in fact demonstrated the use of local Plio-Pleistocenic sediments in manufacturing these artefacts. 

For this reason, the different ceramic groups from the Greek colonies reflect, in their chemical 

composition, the variability of the employed geological sources and the already discussed compositional 

overlap. 

In detail, they account the following productions: i) black glazed pottery, dated from VI to III B.C., from 

Milazzo (11 samples) [35]; black glazed pottery (10 samples) and common ware (11 samples) of the 

hellenistic period from Catania [11]; common ware of the hellenistic period from Lentini [11] (32 samples); 

black glazed pottery (6 samples), common ware (3 samples) and lamps (8 samples) of the Hellenistic-Roman 

period from Siracusa [30]; fine unpainted and black glazed pottery from the archaic to the Hellenistic period 

[28] and transport amphorae of VI -V century B.C., from Gela [34]; transport amphorae of VI-V century B.C. 

from Agrigento [29].  
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4. Methods 

4.1 Characterization of clays and ceramics 

Clays were characterized by textural and compositional point of view with the aim to provide a complete 

characterization of sediments and complement chemical data for the construction of the ANN network. Particle 

size analyses were carried out to determine particle size distribution; the fraction greater than 32 m was 

separated by wet sieving, while < 32 m fraction was obtained by sedimentation.  

Mineralogical composition of clay sediments was obtained by X-ray diffraction (XRD), using a SIEMENS 

D5000, with Cu-Kα radiation and Ni-filter. Whole-rock randomly oriented powders were scanned from 5° to 

65° 2θ, with a 0.02° 2θ step size and a count time of 2 s per step. The tube current and the voltage were 30 mA 

and 40 kV, respectively. Oriented slides (<2 μm grain-size fraction) were scanned from 2° to 45° 2θ with a 

0.02° 2θ step size and a 4 sec counting time, at 30 mA and 40 kV. The presence of swelling clay minerals was 

determined by treating samples with ethylene glycol at 60 °C for 12 h. MIF (Mineral Intensity Factor) method 

was employed to estimate the composition of whole-rock and fine fraction (Ø<2 μm) from XRD patterns 

[38,39].  

Chemical analyses of major and trace elements were performed on clays and ceramics by X-ray fluorescence 

(XRF) spectrometry (PHILIPS PW 2404/00) on powder-pressed pellets.  In spite of the availability of 

compositional data from literature, ceramics were reanalyzed to minimize measurement errors and 

improve the affordability of the method. Total loss on ignition (L.O.I.) was gravimetrically estimated after 

overnight heating at 950 °C. Quantitative analysis was carried out using a calibration line based on 45 

international rocks standards. The lower detection limits (LDL) were: SiO2=1 wt.%, TiO2=0.01 wt.%, 

Al2O3=0.1 wt.%, Fe2O3=0.05 wt.%, MnO=0.01 wt.%, MgO=0.02 wt.%, CaO=0.05 wt.%, Na2O=0.01 

wt.%,K2O=0.05 wt.%, P2O5=0.01 wt.%, Cr=5 ppm, Ni=5 ppm, Zn=15 ppm, Rb=5 ppm, Sr=10 ppm, Y=3 pm, 

Zr=20 ppm, La=5 ppm, Ce=10 ppm. The precision was monitored by routinely running a well-investigated 

house standard (obsidian). The average relative standard deviations (RDS%) were less than 5%. Finally, 

accuracy was evaluated using an international standard that is compositional similar to the samples analysed. 

Accuracy was good for major elements (<3%) except MnO, and for trace elements (≤5%). 

 

4.2 Creation of clay mixing and feed forward ANN 

Chemical compositional data obtained by XRF on clays were used to create mathematical clay mixings, 

keeping in consideration all the possible triplets of samples and varying the mass fraction of 20% following 

the equation 

𝐶𝑀 = 𝑥 ∙ 𝐶𝑎 + 𝑦 ∙ 𝐶𝑏 + 𝑧 ∙ 𝐶𝑐            (6) 
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in which: CM = composition of calculated clay mixing; Ca, Cb and Cc = compositions of three randomly selected 

clay samples (a,b and c); x, y and z = mass fractions each varying in turns 0.2, 0.4, 0.6, 0.8 and calculated so 

that x + y + z = 1. 

Among of all the obtained mixings, 5000 CM  samples for each site (30000 samples considering the six sites) 

were randomly selected. The frequency distribution in the compositional space of calculated mixed samples 

reflects, thus, the original distribution of the sampled clayey sediments; in this way, the mixed samples are 

more numerous near clusters of end members and conversely sparse where there are not clusters of end 

members. The 30000 clay sediment mixings were therefore used to train the ANN; the input analysis was 

given by a standardization function [𝑿 − �̅�/𝝈] (where �̅� is the mean value and 𝝈 is the standard 

deviation), while the output layer was due to the six investigated sites (Agrigento, Catania, Gela, Lentini, 

Milazzo and Siracusa). A Multilayer Perceptron Model (MLP) was applied to construct a feed forward neural 

network by SPSS version 23.0.0.0 software [40].  

 

 

5. Results and Discussion 

5.1 Clays characterization 

Chemical composition of studied sediments (see Table S1) is quite variable, even within the same outcropping 

area. On average, Milazzo samples exhibit the higher amount in Rb than the other Plio-Pleistocene sediments, 

while clays from Catania and Lentini are characterized by the highest Cr and Fe2O3 values (Figure 4). In spite 

of these trends, due to the compositional variability within the same locality, wide overlapping areas are 

evident (see Figure 4). 

The textural and mineralogical characterization of clays allows better defining the whole features of studied 

sediments and complementing chemical data, supporting evidences about similarities among samples from 

different areas (Figure S1). As far as texture [41], it mainly ranges from silty clay to clayey silt, along with 

few samples classified as clay + silt + sand, regardless geographic location and/or stratigraphic position of 

samples. Bulk rocks mineralogical composition is dominated by clay minerals (mean = 43.1; Dev. St. = 12.0), 

quartz (mean = 23.3; Dev. St. = 7.6) and calcite (mean = 25.2; Dev. St. = 10.4), with subordinate feldspars 

(mean = 6.9; Dev. St. = 4.6). A higher level of clay minerals and feldspars is shown by Catania and Milazzo 

samples, respectively, while Siracusa and Gela clays are on average richer in calcite. As regard the fine 

fraction (< 2 mm), in all samples clays are mainly due to smectite (mean = 50.0; Dev. St. = 11.9), along with 

illite (mean = 21.0; Dev. St. = 7.2) kaolinite (mean = 19.9; Dev. St. = 6.3), and chlorite (mean = 5.3; Dev. St. 

= 2.1). 
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Figure 4. Examples of binary diagrams of major elements (a) SiO2 vs CaO and (b) Fe2O3 vs Al2O3. Binary diagrams 

of trace elements (c) Rb vs Sr and (d) Zr vs Cr relevant in showing compositional overlapping fields for clay 

sediments. 

 

 

5.2 Classical statistical analysis 

In order to propose a cross-validation, classical statistical methods were applied to the mathematically created 

clay mixings.  

Firstly, principal component analysis (PCA) was performed considering trace elements, expressing the major 

variance. The rotated varimax principal components diagrams are reported in Figure 5. As a result, Lentini 

and Catania clay sediment mixes accounts the higher PC1 score, while Milazzo mixes are controlled by PC3. 

Beside these discriminating criteria, the other Plio-Pleistocenic clay mixes show largely overlapped plot fields.  

An overall, the calculated first three principal components (PC) describe the 74.7% of the total variance. 
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Figure 5. Plots of the first three principal component (PC) obtained by the multivariate statistical analysis of the 30000 

mathematically created clay mixes (5000 for each site). In table, the weights of PC accounting trace elements are 

reported. 

 

Secondly, linear discriminant analysis was applied to the clay mixings, considering also in this case trace 

element content. The obtained Discriminant Functions (DF) are reported in Table 1. 

Discriminant function 
Chemical element weights expressing the new 

variables 

1DF 

Sr = -0.070, Cr = 0.569, Ni = 0-.302, Zn = 0-.034, 

Rb = -1.158, Y = -0.294, Zr = 0.336, La = 0.473, 

Ce = 0.594 

2DF 

Sr = -0.329, Cr = 0.575, Ni = -0.198, Zn = 0.751, 

Rb = 0.030, Y = -0.247, Zr = 0.366, La = -0.277, 

Ce = -0.031 
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3DF 

Sr = 0.782, Cr = 0.561, Ni = -0.461, Zn = 0.622, 

Rb = -0.440, Y = 0.264, Zr = -0.202, La = -0.351, 

Ce = -0.204 

4DF 

Sr = -0.128, Cr = -0.578, Ni = 0.989, Zn = -0.313, 

Rb = 0.204, Y = 0.903, Zr = -0.763, La = -0.234, 

Ce = 0.461 

5DF 

Sr = 0.018, Cr = 0.589, Ni = -0.372, Zn = -0.838, 

Rb = 0.529, Y = 0.679, Zr = -0.077, La = 0.203, Ce 

= -0.176 

Table 1. Discriminant functions obtained by LDA analysis. 

LDA seems to improve provisional attribution, with an average 91.5% of correct classification, as reported 

in Table 2. 

 Predicted site  

 Agrigento Catania Gela Lentini Milazzo Siracusa 

Agrigento 4698 (94.0%) 0 (0.0%) 224 (4.5%) 76 (1.5%) 0 (0.0%) 0 (0.0%) 

Catania 0 (0.0%) 5000 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Gela 1499 (30.0%) 121 (2.4%) 2896 (57.9%) 0 (0.0%) 0 (0.0%) 484 (9.7%) 

Lentini 77 (1.5%) 0 (0.0%) 0 (0.0%) 4843 (96.9%) 0 (0.0%) 80 (1.6%) 

Milazzo 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 5000 (100.0%) 0 (0.0%) 

Siracusa 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 5000 (100.0%) 

Table 2. LDA based provenance classification for clay sediments mixes 

 

5.3 ANN network 

After numerous trials, the best architecture for the ANN was pinpointed in a not excessively restrictive 

network, consisting in one hidden layer of 5 units (neurons) able to  clearly separate the mathematically 

constructed mixes during the  learning procedure [42]. The transfer function used in the back propagation 

(BP) optimization algorithm to produce the output was a hyperbolic tangent (𝑓(𝑥) = tanh(𝑥) = 2/1 +

𝑒−2𝑥 − 1) [43] while for output layer, softmax (𝑓(𝑥) = 𝑒𝑖
𝑥/ ∑ 𝑒𝑚

𝑥𝑀
𝑚=1 ) and cross-entropy were used as transfer 

and error functions, respectively.  

Once the best MLP was established, a multiple averaging method was applied to refine the network and 

assure predictions based on robust data; it consists in repeating the analysis run several times, by 

changing each time the input order of variables and evaluating the averaging probability obtained. After 

eleven runs (Figure 6.a), the network reaches the 95 % of correct prediction in training and the 75.5% 

in testing (see Table 3), with a plateau of the values after the first three runs (see Figure 6.b). Noteworthy 

is that Rb, and secondary Cr and Sr, seem to have the greater importance in input weights, as shown in 

Figure 6.c. 

 

 Training Testing 

Number of run Cross Entropy Error Percent correct Predictions Cross Entropy Error Percent correct Predictions 

1 14997 84.9% 97 70.3% 

2 10610 81.7% 106 72.9% 

3 4180 95.9% 136 67.0% 

4 11378 90.7% 107 66.1% 

5 8918 86.7% 135 59.3% 



13 

 

6 9665 89.7% 132 61.8% 

7 11910 85.1% 139 54.3% 

8 10010 92.3% 136 65.2% 

9 2904 96.4% 151 67.0% 

10 6556 92.1% 118 73.7% 

11 5051 95.0% 141 75.5% 

Table 3. Prediction and relative errors for each training and testing runs performed during the optimization of the ANN. 

 

 

 

Figure 6. (a) Example of ANN architecture after eleven training run. (b) Affordability of predictions in function of 

number of training and testing runs. (c) Importance of independent variable as inputs of the constructed ANN. 

 

The extremely flexibility of such computational model allows the application of correction factors to 

improve the role of the activation function in creating correct correlations. The Bayesian probability 

factor allows to refine the correlation activated by neurons by assigning a M class {Ci: i = 1.. . . . M} to 

an input vector X with elements {xi: i = 1.. . . . D}. Minimum-error Bayesian classifiers perform this task 

by calculating the Bayesian probability 𝒑(𝑪𝒊|𝑿) for each class, and assigning the input to the class with 

the highest Bayesian probability, expressed as: 

𝒑(𝑪𝒊|𝑿) = 𝒑(𝑿|𝑪𝒊)𝒑(𝑪𝒊)/𝒑(𝑿)                      (𝟕)  

where 𝒑(𝑿|𝑪𝒊) is the conditional probability of producing the input if the class is Ci, 𝒑(𝑪𝒊) is the a priori 

probability of class Ci, and 𝒑(𝑿) is the unconditional probability of the input. 

The possibility to use a correction factor is particularly relevant in archaeological studies, improving 

the output of the testing procedure by considering archaeological, historical and geographic variables. 

In this prospective, a Bayesian probability correction factor 𝒀𝒊𝒋 was applied to the constructed ANN to 

provide a refinement of the provisional attribution based on the clay mixes: 
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𝑝(𝐶𝑖|𝑋)𝑐𝑜𝑟 = 𝑝(𝐶𝑖|𝑋)𝑌𝑖𝑗                        (8)  

With values ranging from 0 to 1, it accounts the probability that a sample X found in the site i is produced in 

the site j.  

In order to validate the constructed artificial neural network and evaluate the merits of the method in 

comparison with classical statistical analysis, LDA, PCA and the constructed ANN learned by clay sediment 

mixes were applied on archaeological ceramics compositional data (see Table S2). 

The principal component analysis carried out on the 118 selected potteries showed that the first three 

PC explain 79.5% of the total variance, with evident overlapping of the different provenance fields 

(Figure 7, Table 4). 

  

Figure 7. Plots of the first three principal component (PC) obtained by the multivariate statistical analysis of studied 

potteries. 

 

 Components 

 PC 1 PC 2 PC 3 

Sr 0.05 0.13 0.95 

Cr 0.90 0.22 0.14 

Ni 0.88 -0.19 0.26 

Zn 0.90 0.13 -0.03 

Rb 0.52 0.58 -0.14 

Y 0.28 0.87 0.18 

Zr -0.02 0.86 0.08 
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La 0.71 0.41 -0.03 

Ce 0.75 0.34 -0.14 

Table 4. Rotated component matrix. Weights of PC accounting trace elements are reported. 

 

As far as LDA analysis, DFs were calculated for pottery samples in relation to clay sediments compositional 

data; the data processing allows to observe only a 50% of correct provenance attribution (Table 5).  

On the contrary, the application of ANN computational model accounts overall the 78% of correct 

provenance classification. In particular, the most accurate provenance attribution is verified for Catania 

(100%), Lentini (93.8%) and Milazzo (81.8%), while up to 50-60% correct classification is verified for 

Siracusa, Gela and Agrigento (Table 6), with a general improvement of provisional attribution respect to 

classical statistical methods. 

 

 Predicted site  

 Agrigento Catania Gela Lentini Milazzo Siracusa 

Agrigento 4 (26.7%) 0 (0.0%) 7 (46.7%) 3 (20.0%) 0 (0.0%) 1 (6.7%) 

Catania 0 (0.0%) 21 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Gela 2 (9.1%) 1 (4.5%) 7 (31.8%) 5(22.7%) 0 (0.0%) 7 (31.8%) 

Lentini 2 (6.3%) 24 (75.0%) 0 (0.0%) 5 (15.6%) 1 (3.1%) 0 (0.0%) 

Milazzo 0 (0.0%) 1 (9.1%) 0 (0.0%) 0 (0.0%) 8 (72.7%) 2 (18.2%) 

Siracusa 0 (0.0%) 0 (0.0%) 0 (0.0%) 3 (17.6%) 0 (0.0%) 14 (82.4%) 

Table 5. LDA based provenance classification for ceramic samples 

 Predicted site  

 Agrigento Catania Gela Lentini Milazzo Siracusa 

Agrigento 8 (53.3%) 0 (0.0%) 4 (26.7%) 3 (20.0%) 0 (0.0%) 0 (0.0%) 

Catania 0 (0.0%) 21 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Gela 3 (13.6%) 0 (0.0%) 14 (63.6%) 5 (22.7%) 0 (0.0%) 0 (0.0%) 

Lentini 0 (0.0%) 2 (6.3%) 0 (0.0%) 30 (93.8%) 0 (0.0%) 0 (0.0%) 

Milazzo 0 (0.0%) 1 (9.1%) 0 (0.0%) 0 (0.0%) 9 (81.8%) 1 (9.1%) 

Siracusa 1 (5.9%) 0 (0.0%) 0 (0.0%) 6 (35.3%) 0 (0.0%) 10 (58.8%) 

       

%tot 78.0%      

Table 6. ANN based provenance classification for ceramic samples 

 

Finally, an improvement of the provisional attribution based on ANN computational model was 

obtained by the application of correction factors 𝑌𝑖𝑗 (Table 7), weighted on the basis of historical and 

archaeological evidences informing us about political and social relationship among the selected Greek 

colonies, geographic location, connections, trades route, hostilities vs. and alliances. Taking in account the 

corrected Bayesian probability in the two different selected scenario (the second scenario more restrictive than 

the first one), an increasing of the corrected attribution was obtained, from 78% to 81.4% and 88.1%, 

respectively (see Tables 8 a-b). 
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(a) Predicted site  

 Agrigento Catania Gela Lentini Milazzo Siracusa 

Agrigento 1 0.6 0.8 0.6 0.4 0.4 

Catania 0.6 1 0.6 0.8 0.6 0.6 

Gela 0.8 0.6 1 0.6 0.4 0.4 

Lentini 0.6 0.8 0.6 1 0.6 0.6 

Milazzo 0.4 0.4 0.4 0.6 1 0.4 

Siracusa 0.4 0.6 0.4 0.4 0.4 1 

(b) Predicted site  

 Agrigento Catania Gela Lentini Milazzo Siracusa 

Agrigento 1 0.3 0.4 0.3 0.2 0.2 

Catania 0.3 1 0.3 0.4 0.3 0.3 

Gela 0.4 0.3 1 0.3 0.2 0.2 

Lentini 0.3 0.4 0.3 1 0.3 0.3 

Milazzo 0.2 0.2 0.2 0.3 1 0.2 

Siracusa 0.2 0.3 0.2 0.2 0.2 1 

Table 7. Bayesian probability correction factors 𝑌𝑖𝑗for (a) less and (b) more restrictive cases 

 

 (a) Predicted site  

 Agrigento Catania Gela Lentini Milazzo Siracusa 

Agrigento 8 (53.3%) 0 (0.0%) 4 (26.7%) 3 (20.0%) 0 (0.0%) 0 (0.0%) 

Catania 0 (0.0%) 21 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Gela 3 (13.6%) 0 (0.0%) 15 (68.2%) 4 (18.2) 0 (0.0%) 0 (0.0%) 

Lentini 2 (6.3%) 0 (0.0%) 0 (0.0%) 30 (93.8%) 0 (0.0%) 0 (0.0%) 

Milazzo 0 (0.0%) 1 (9.1%) 0 (0.0%) 0 (0.0%) 10 (90.9%) 0 (0.0%) 

Siracusa 0 (0.0%) 1 (5.9%) 0 (0.0%) 4 (23.5%) 0 (0.0%) 12 (70.6%) 

       

%tot 81.4%      

(b) Predicted site  

 Agrigento Catania Gela Lentini Milazzo Siracusa 

Agrigento 12 (80.0%) 0 (0.0%) 1 (6.7%) 2 (13.3%) 0 (0.0%) 0 (0.0) 

Catania 0 (0.0%) 21 (100.0) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Gela 2 (9.1%) 0 (0.0%) 16 (72.7%) 4 (18.2%) 0 (0.0%) 0 (0.0%) 

Lentini 0 (0.0%) 1 (3.1%) 0 (0.0%) 31 (96.9%) 0 (0.0%) 0 (0.0%) 

Milazzo 0 (0.0%) 1 (9.1%) 0 (0.0%) 0 (0.0%) 10 (90.9%) 0 (0.0%) 

Siracusa 0 (0.0%) 1 (5.9%) 0 (0.0%) 2 (11.8%) 0 (0.0%) 14 (82.3%) 

       

%tot 88.1%      

Table 8. ANN based membership prediction, applying (a) less and (b) more restrictive Bayesian probability factor 
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6. Conclusion 

In this work, mathematically created clay mixes based on a clay sediment database were used to learn an 

artificial neural network for provisional provenance attribution of archaeological ceramics.  

As far as the testing process assessed on clays mixes, the obtained results favor the ANN method, 

suggesting that the computational model allows overpassing the uncertainties of PCA and LDA, especially in 

the case of wide overlapping compositional ranges. Actually, the application of the learned ANN on 30000 

clay mixes gives backs the 95% and 75.5% of correct attribution in training and testing procedures, 

respectively, in view of 74.7% obtained by PCA method; average comparable results are obtained by LDA 

method, accounting the 91.5% of correct attribution.  

The merits of ANN are particularly evident when the network is tested with archaeological ceramics; in fact, 

in the case of potteries, the computation gives back the 78% of correct provenance attribution, improving 

predictions of 28% respect to LDA (accounting the 50% of correct provisional attribution) as well as the 

discrimination provided by PCA analysis. Moreover, the introduction of the Bayesian probability factor, 

which takes in account historical and archaeological evidences, allows to largely improve provenance 

attributions, reinforcing the importance of critically evaluate analytical data.  

Thus, it is possible to conclude that if a neural network is properly learned and a representative database of 

reference material is available, ANN is a powerful supervised recognition technique in archaeometric studies. 

The outcome of the research enlarges therefore the prospective of ANN application as successful method in 

provenance studies of archaeological ceramics, especially in discriminating production sites characterized by 

similar cultural and geological characteristics, which are therefore almost indistinguishable both in the 

morphological-typological aspects and in the macroscopic/microscopic ceramic paste features.  
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Supplementary materials 

Figure S1. (a) Sand – Clay – Silt triangular plot ([41] ). The gray area includes grain size of analysed clay 

sediments. (b) Bulk and (c) <2 mm grain size fraction mineralogical composition of clay sediments grouped 

by geographic location (feld: feldspar; qtz: quartz; c.m.: clay minerals).  

Table S1. Major and trace elements chemistry of clay sediments used to create clay mixes obtained by 

XRF analysis. Data are normalized to 100% on LOI-free basis. 

Table S2. Chemical composition of selected potteries obtained by XRF analysis. Major and minor 

elements are expressed in wt% and ppm, respectively. Data are normalized to 100% on LOI-free basis. 

 

 


