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Abstract— We construct the time-optimal synthesis for 3

problems that are linear in the control and with polytopic
constraints in the controls. Namely, the Brockett integrator,
the Grushin plane, and the Martinet distribution. The main
purpose is to illustrate the steps in solving an optimal control
problem and in particular the use of second order conditions.
The Grushin and the Martinet case are particularly important:
the first is the prototype of a rank-varying distribution, the
second of a non-equiregular structure.

I. INTRODUCTION

Constructing a time-optimal synthesis for problems that

are affine in the controls and have polytopic constraints in

the controls

ṗ = F0(p)+

m
∑

i=1

uiFi(p), u1, . . . , un ∈ [−1, 1], p(0) = p0

is a difficult and challenging problem. Usually the steps are

the following

• STEP 1: FIRST ORDER NECESSARY CONDITIONS.

In optimal control, the first order necessary conditions

for optimality are given by the celebrated Pontryagin

Maximum Principle [PBGM83] (PMP for short) that

extends the Euler-Lagrange equations of calculus of

variations to problems with non-holonomic constraints.

The PMP restricts the set of candidate optimal trajecto-

ries starting from p0 to a family of trajectories, called

extermals, parameterised by a covector λ(0) ∈ T ∗
p0
M .

• STEP 2. HIGHER ORDER CONDITIONS. These con-

ditions are used to restrict further the set of candidate

optimal trajectories.

• STEP 3. SELECTION OF THE OPTIMAL TRAJEC-

TORIES. One should check that each extremal starting

from p0 does not intersect another extremal (starting

from p0) having a smaller cost at the intersection point.

Even if the techniques described above are very powerful,

in general computing explicitly an optimal synthesis is hard

and the complexity grows quickly with the dimension of the

space. The main difficulties are:

• the integration of the Hamiltonian equations given by

the PMP (which in general is not integrable, unless there

are many symmetries);
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• the characterisation of singular trajectories (which are

extremals corresponding to controls that are not given

directly by the maximum condition of the PMP);

• the verification of higher order conditions;

• the selection of optimal trajectories. This is the most

difficult step since the comparison should be done not

only among extremals that are close one to the other,

but among all of them. The problem is indeed global.

For these reasons, the construction of optimal syntheses is

already challenging in dimension 2 [BP04] and few examples

have been solved in dimension 3 [SL96].

In this paper we show that a careful use of the steps

mentioned above and in particular a careful use of higher

order conditions permits to solve some important problems

as the Brockett integrator, the Grushin plane and the Martinet

distribution. Beside the well known Brockett integrator (also

known as the Heisenberg group) for which the time optimal

synthesis was constructed in [BLD13] with different tech-

niques, the Grushin and Martinet case are very important.

Indeed, the Grushin case is the simplest example of control

problem where the dimension of the admissible velocities

could drop down and the Martinet example is the simplest

example in which the number of brackets necessary to

get the Lie-bracket generating condition varies with the

point. They appeared often in the literature as prototypes of

more complicated systems. They where deeply studied when

controls are bounded on the disk. However to our knowledge,

the case with controls bounded in a polytope is new.

II. PROBLEM SETTING AND CONNECTION WITH FINSLER

GEOMETRY

We study in this paper time-optimal control problems of

the following type. Let M be a smooth manifold, k ∈ N

and take X1, . . . , Xk in the space Vec(M) of smooth vector

fields on M . Assume that X1, . . . , Xk satisfy the Lie bracket

generating condition (Lie(X1, . . . , Xk))p = TpM for all

p ∈ M . Here, given a family F of vector fields, we denote

by Lie(F) and Fp the Lie algebra generated by F and the

evaluation of the elements of F at a point p, respectively.

We consider the problem of minimizing the time T ≥ 0 for

which there exist p : [0, T ] → M absolutely continuous and

u : [0, T ] → R
k measurable such that







ṗ(t) = u1(t)X1(p(t)) + · · ·+ uk(t)Xk(p(t)),
u(t) ∈ [−1, 1]k,
p(0) = p, p(T ) = q.

(1)

The condition u(t) ∈ [−1, 1]k can be rewritten as

|u(t)|∞ ≤ 1, using the notation | · |∞ for the max norm in



R
k. If we replace such a constraint by |u(t)| ≤ 1 (with |·| the

Euclidean norm), the value function of the problem would be

the sub-Riemannian distance for the sub-Riemannian struc-

ture for which X1, . . . , Xk is an orthonormal basis of the

corresponding distribution. In this sense we are considering

here a sub-Finsler problem, whose solutions are sub-Finsler

geodesics.

A. Hamiltonian formalism and Pontryagin Maximum Prin-

ciple

If a pair (p(t), u(t)) is a time minimizer for (1), then

it satisfies the first order necessary conditions given by the

Pontryagin Maximum Principle (PMP).

Define the Hamiltonian

H(λ, p, u) := 〈λ, f(p, u)〉 =

k
∑

i=1

ui〈λ,Xi(p)〉, (2)

for λ ∈ T ∗
pM , p ∈ M , and u ∈ R

k. For every u ∈ R
k, let

~H(·, ·, u) be the vector field on T ∗M uniquely determined

by the relation

σ(·, ~H(λ, p, u)) = d(λ,p)H(λ, p, u),

where σ is the canonical symplectic form on T ∗M .

Define the maximized Hamiltonian

H(λ, p) =

k
∑

i=1

|〈λ,Xi(p)〉|. (3)

Theorem 1 (PMP): Let (p(t), u(t)) be a time minimizer

for Problem (1). Then there exist an absolutely continuous

function λ : [0, T ] → T ∗M and a constant λ0 ≥ 0 such that

(i) λ(t) ∈ T ∗
p(t)M \ {0}, for every t ∈ [0, T ],

(ii) the pair (λ(t), p(t)) satisfies the Hamiltonian equation

(λ̇(t), ṗ(t)) = ~H(λ(t), p(t), u(t))),

for almost every t ∈ [0, T ].
(iii) H(λ(t), p(t), u(t)) = H(λ(t), p(t)) = λ0, for almost

every t ∈ [0, T ].
If λ(·), p(·) satisfy for some u(·) and λ0 the conditions (i),

(ii), (iii) of Theorem 1, we say that (λ(·), p(·)) is an extremal

pair, that p(·) is an extremal trajectory, and that λ(·) is an

extremal lift of p(·).
For every vector field Y , if (λ(·), p(·)) is an extremal

pair, then the function t 7→ 〈λ(t), Y (p(t))〉 is absolutely

continuous and its derivative satisfies

d

dt
〈λ(t), Y (p(t))〉 = 〈λ(t),

k
∑

j=1

uj(t)[Xj , Y ](p(t))〉, (4)

for almost every t.

B. Second order optimality conditions

Our aim is to recall necessary conditions for the optimality

of an extremal trajectory whose corresponding control is

piecewise constant. We refer to [AG90]. (See also [AS03],

[Sig05].)

Theorem 2: Let (p(·), u(·)) be an extremal pair for Prob-

lem (1) and let λ(·) be an extremal lift of p(·). Assume that

λ(·) is the unique extremal lift of p(·), up to multiplication by

a positive scalar. Assume that there exist 0 = τ0 < τ1 < τ2 <
· · · < τK < τK+1 = T and u0, . . . , uK ∈ R

k such that u(·)
is constantly equal to uj on (τj , τj+1), with j = 0, . . . ,K .

Fix j = 1, . . . ,K . Let Yi = f(·, ui) ∈ Vec(M), for all

i = 0, . . . ,K . Recursively define the following operators

Pj = Pj−1 = idVec(M),

Pi = Pi−1 ◦ e
(τi−τi−1)ad(Yi−1), ∀i ∈ {j + 1, . . . ,K},

Pi = Pi+1 ◦ e
−(τi+2−τi+1)ad(Yi+1), ∀i ∈ {0, . . . , j − 2}.

Define the vector fields

Zi = Pi(Yi), ∀i ∈ {0, . . . ,K}.

Let Q be the quadratic form

Q(α) =
∑

0≤i<l≤K

αiαl〈λ(τj), [Zi, Zl](p(τj))〉 , (5)

defined on the space

W =

{

α ∈ R
K+1 |

K
∑

i=0

αi = 0,

K
∑

i=0

αiZi(p(τj)) = 0

}

.

(6)

If Q is not negative semi-definite, i.e., if there exists α ∈ W
such that Q(α) > 0, then p(·) is not time-minimizing.

C. Switching functions, singular, abnormal, and regular arcs

With every extremal pair (λ(·), p(·)), for each j = 1, . . . , k
we associate the switching functions

t 7→ ϕj(t) := 〈λ(t), Xj(p(t))〉.

By formula (4) we have that

ϕ̇j(t) = 〈λ(t),

k
∑

i=1

uj(t)[Xi, Xj](p(t))〉. (7)

The maximality condition (iii) of the PMP and (3) imply

that

|ϕ1(t)|+ · · ·+ |ϕk(t)| = λ0, for all t (8)

and that, for all j = 1, . . . , k and almost all t,

ϕj(t) 6= 0 =⇒ uj(t) = signϕj(t). (9)

The restriction of an extremal pair (λ(·), p(·)) to some

open nonempty interval I ⊂ [0, T ] is called

(i) an abnormal arc if ϕj(t) ≡ 0 on I for all j = 1, . . . , k;

(ii) a ϕj-singular arc if ϕj(t) ≡ 0 on I;

(iii) a regular arc if ϕj(t) 6= 0 for every t ∈ I and for every

j = 1, . . . , k.

(iv) a bang arc if the control u(·) associated with the

trajectory is constant and takes values in {1,−1}k.

Notice that a regular arc is a bang arc, but the converse is

not true. Indeed, bang arcs can be singular (see Section V).

A bang-bang trajectory is a curve corresponding to a

control that is piecewise constant with values {1,−1}k. In

particular, a concatenation of regular arcs is a bang-bang

trajectory, called regular bang-bang trajectory.



Remark 3: An arc is abnormal if and only if it is ϕj-

singular for all j = 1, . . . , k and if and only if λ0 = 0.

The latter equivalence follows from (8). In particular, if a

trajectory contains an abnormal arc then the whole trajectory

is an abnormal arc.

III. BROCKETT INTEGRATOR

In this section we provide a description of the time-

minimizing trajectories for the Brockett integrator called also

the Heisenberg group. The same results have been previously

obtained in [BLD13] using methods of metric geometry.

The aim of this section is to illustrate how to exploit the

geometric-control tools presented above to recover such

results.

We consider Problem (1) on the Heisenberg group H ≃ R
3

determined by the vector fields

X1 = ∂x −
y

2
∂z, X2 = ∂y +

x

2
∂z. (10)

Let us introduce the vector field X3 = ∂z , which satisfies

[X1, X2] = X3 and [X1, X3] = [X2, X3] = 0.

We use the notation from the previous section. Formula

(7) gives immediately

ϕ̇1 = −u2ϕ3, ϕ̇2 = u1ϕ3, ϕ̇3 = 0, (11)

where ϕ3(t) = 〈λ(t), X3(p(t))〉.
In the next sections we characterize the abnormal, singular,

and regular arcs for the associated time-optimal control

problem.

A. Abnormal arcs

Lemma 4: The only abnormal arcs on H are the constant

curves.

Proof: From Remark 3, we have ϕ1(t) = ϕ2(t) = 0
for all t. By non-triviality of the covector λ(·), we deduce

that ϕ3(t) 6= 0 for every t. By the first two equations in (11),

we get u1(t) = u2(t) = 0 for almost every t.

B. Singular arcs

Lemma 5: On H the nonconstant trajectories that have

singular arcs are exactly those for which there exists j ∈
{1, 2} such that uj is constantly equal to 1 or −1. All of

them consist of a single singular arc and are time minimizers.

Proof: In what follows the roles of u1 and u2 are

symmetric. Consider a nontrivial extremal trajectory that is

ϕ1-singular when restricted to an interval I , i.e., ϕ1 ≡ 0 on I .

Because of Lemma 4, the trajectory does not have abnormal

arcs, i.e., λ0 6= 0. Hence, by (8), ϕ2 never vanishes on I . By

(9), u2 is constantly equal to 1 or −1 on I . From the first

equation in (11) we have ϕ3 = 0 on I , and hence on the

whole interval of definition of the trajectory. In particular,

by (11) we have that the whole trajectory is ϕ1-singular.

Conversely, every trajectory corresponding to u2 = ±1
constant and u1 measurable with |u1| ≤ 1 has a ϕ1-singular

extremal lift with ϕ2 = 1 and ϕ1 = ϕ3 = 0.

Moreover, each such curve p̄ = (x̄, ȳ, z̄) : [0, T ] → H is

time-minimizing since T = |ȳ(0) − ȳ(T )| and |ẏ| ≤ 1 for

every trajectory of ṗ = u1X1(p)+u2X2(p) with |u1|, |u2| ≤
1.

C. Regular arcs

Lemma 6: On H the trajectories that have a regular arc are

regular bang-bang. Moreover, all arcs have the same length

s except possibly the last and the first arc, whose lengths

are less than or equal to s. At the junction between regular

arcs the components u1 and u2 of the control switch sign

alternately.

Proof: Let I be an interval on which the trajectory

forms a regular arc. Without loss of generality, ϕ1, ϕ2 > 0
on I . Hence, by (9) we have u ≡ (1, 1) on I . Fix t0 ∈ I .

Two cases are possible:

(a) Assume ϕ3(t0) = 0. By (11) we have that ϕ1 and ϕ2

are constant along the entire trajectory, which is then a

single regular arc.

(b) Assume ϕ3(t0) 6= 0. Denote by a the constant value of

ϕ3. Using (11) we find

ϕ1(t) = ϕ1(t0)−a(t−t0), ϕ2(t) = ϕ2(t0)+a(t−t0).

Without loss of generality a > 0. Set t1 = t0 +ϕ1(t0)/a. If

the trajectory is defined up to time t1, then ϕ1 and ϕ2 are

positive in the interval (t0, t1) and ϕ1(t1) = 0.

Since u2 = 1 in a neighborhood of t1, we deduce that

ϕ1 is affine in a neighborhood of t1, with slope −a. Hence

ϕ1 < 0 < ϕ2 in a right-neighborhood of t1. Then t1 is the

starting time of another regular arc with control u = (−1, 1).
Repeating this argument, backwards in time as well, we

conclude that the extremal trajectory is the concatenation of

regular arcs of length ϕ2(t1)/a = (ϕ1(t0)+ϕ2(t0))/ϕ3(t0),
except possibly for the first and last arc, see Figure 1. The

switching occur alternately for u1 and u2.

ϕ2(0)

s s

t

ϕ2

ϕ1
ϕ1(0)

Fig. 1: The switching functions for the Brockett integrator,

when ϕ3 6= 0.

Let us mention that, up to reflection with respect to the

t-axes, that amount to change the sign of ϕ3, and a time

shifting , these are all the possible cases when ϕ3 6= 0.

D. Bound on number of optimal regular arcs

Proposition 7: A regular bang-bang trajectory with more

than 5 arcs is not optimal.

Proof: Let us consider a trajectory with 6 bang arcs.

By Lemma 6, without loss of generality we can assume that

the successive values of the control are

(−1,−1), (−1, 1), (1, 1), (1,−1), (−1,−1), (−1, 1).



Denote the length of the internal bang arcs by s (recall that

the length of the arcs are the same, except possibly the first

and last).

We are going to apply Theorem 2 by taking j = 3. Let

τ3 be the third switching time. Since at τ3 the function ϕ2

switches sign, we have that ϕ2(τ3) = 0.

Up to multiplication of λ(·) by a positive scalar, we can

normalize ϕ3, which is constant, to −1. Hence, ϕ1(τ3) =
s, which implies that λ(·) is uniquely determined by the

sequence of switching times. Set

X+ = X1 +X2, X− = X1 −X2.

We have

Z0 = e−s ad(X+)es ad(X−
)(−X+) = −X+ − 2sX3,

Z1 = e−s ad(X+)(−X−) = −X− − 2sX3,

Z2 = X+, Z3 = X−,

Z4 = es ad(X−
)(−X+) = −X+ − 2sX3,

Z5 = es ad(X−
)es ad(−X+)(−X−) = −X− − 2sX3.

A simple calculation shows that

σ01 = σ05 = σ12 = σ23 = σ34 = σ45 = 2,

σ02 = σ04 = σ13 = σ15 = σ24 = σ35 = 0,

σ03 = σ14 = σ25 = −2.

Decomposing the relation
∑5

i=0 αiZi(p(τ3)) = 0 on the

basis {X+(p(τ3)), X−(p(τ3)), X3(p(τ3))}, and solving in

α0, α1, α2, gives

α3 = −α2, α4 = −α0 + α2, α5 = −α1 − α2.

Notice that the relation
∑5

i=0 αi = 0 is automatically

satisfied. Then we can parameterize the space W appearing

in the statement of Theorem 2 by α = (α0, α1, α2), i.e.,

W = {(α0, α1, α2,−α2,−α0 + α2,−α1 − α2) | α ∈ R
3},

and write the quadratic form Q as

Q(α) = 4α0α1 + 4α0α2 − 4α2
2.

In particular, Q(1, 1, 0) = 4 > 0, which implies that the

trajectory is not optimal.

E. Optimal trajectories and shape of the unit ball

Here we summarize the results obtained in the previous

sections and we plot the unit ball for the Brockett integrator.

Recall that once we characterize the controls u1(t) and

u2(t) associated with an extremal trajectory, to recover

the trajectory itself it is sufficient to solve the differential

equation γ̇(t) = u1(t)X1(γ(t)) + u2(t)X2(γ(t)), i.e.,










ẋ = u1,

ẏ = u2,

ż = 1
2 (u2x− u1y).

(12)

In particular, the trajectory is determined by its projection

onto the xy-plane, since the z coordinate of the trajectory can

be found by integration. As it is well-known, it computes the

x

y

(x(t), y(t))

(a) Singular arcs

x

y

(b) Regular bang arcs

Fig. 2: Singular and regular arcs for the Brockett integrator

(a) Sphere (b) Front

Fig. 3: Sphere and front for the Brockett integrator

signed area defined by the closed curve given by following

γ and then coming back to the origin along a line segment.

As discussed in Lemma 5, the singular trajectories corre-

spond to u1(t) constantly equal to ±1 and u2(t) free (or the

symmetric situation). In Figure 2a we can see an example of

such a curve when u1(t) = 1. Recall that these curves are

optimal for all times.

Regular bang-bang trajectories correspond to switching

functions as in Figure 1, where the controls switch sign

alternatively. These trajectories draw squares in the xy-plane

as in Figure 2b. If such a trajectory has more than 5 bang

arcs, then Proposition 7 guarantees that the trajectory is not

optimal.

Notice that there are time-minimizing curves of this kind

with 5 regular bang arcs, as illustrated in Figure 2b. However,

not all bang-bang trajectories with 5 bang arcs are time-

minimizing. Indeed, if such a square is swept more than

once, then it is no more a minimizer. Finally, let us also

remark that for every minimizer with 5 regular bang arcs

there exists a minimizer with 4 regular bang arcs joining the

same endpoints (see again Figure 2b).

Once the shape of optimal trajectories is known, a picture

of the unit sphere for the Brockett integrator can be easily

drawn. See Figures 3a. Figure 3b shows the so called unit

front, i.e., the end point of all geodesics at time 1.

IV. GRUSHIN STRUCTURE

In this section we provide a description of the time-

minimizing trajectories in the Grushin plane. The classical

sub-Riemannian structure on the Grushin plane is the metric

structure on R
2 determined by the choice of the orthonormal



vector fields

X1 = ∂x, X2 = x∂y. (13)

Let us introduce the vector field X3 = ∂y .

The Lie algebra generated by X1, X2, X3 satisfies the

same commutator relations as in the Heisenberg group,

namely

[X1, X2] = X3, [X1, X3] = [X2, X3] = 0.

Thus identity (4) gives the equations for the switching

functions along an extremal trajectory

ϕ̇1 = −u2ϕ3, ϕ̇2 = u1ϕ3, ϕ̇3 = 0. (14)

In particular, ϕ3 is constant. From X2 = xX3 we have the

additional relation

ϕ2 = xϕ3.

In the case ϕ3 = 0, we get ϕ2 ≡ 0 and ϕ1 equals

a nonzero constant (otherwise the covector is identically

zero). Reasoning as in Lemma 5, we have immediately the

following result

Lemma 8: The nonconstant trajectories that have singular

arcs are exactly those for which u1 is constantly equal to 1
or −1. All of them consist of a single singular arc and are

time minimizers.

Let us then assume in what follows ϕ3 6= 0.

Lemma 9: The only abnormal arcs are the constant curves

contained in the set {x = 0}. Consequently, no minimizer

joining two distinct points is abnormal.

If ϕ3 6= 0 and the trajectory is not abnormal, then as in

Lemma 6 it is regular bang-bang, all arcs have the same

length s except possibly the last and the first arc, whose

lengths are less than or equal to s. At the junction between

bang arcs the components u1 and u2 of the control switch

sign alternately.

Moreover, on a regular bang-bang trajectory, u2 switches

on the line x = 0, since, if ϕ2(t) = 0 at a point t, then

x(t)ϕ3 = 0. Therefore if a bang-bang trajectory has an

internal bang arc whose length is s, then u1 switches on

the lines x = ±s. Moreover, we claim that, for trajectories

with a single u1-switch the function u1 goes from 1 to −1
if the switch occurs in the half-plane x > 0 while it goes

from −1 to 1 in the half-plane x < 0. Indeed,

sign(ϕ̇1) = −sign(u2ϕ3) = −sign(ϕ2ϕ3)

= −sign(xϕ2
3) = −sign(x).

1) Bound on number of optimal regular arcs: Regarding

optimality, we prove in this section the following lemma.

Lemma 10: A regular bang-bang trajectory with more

than 3 arcs is not optimal. If, moreover, the trajectory starts

on the y-axis and it is optimal, it has at most 2 arcs.

Contrarily to what happens for the Brockett integrator,

the role of the two vector fields X1, X2 is not symmetric.

The replacement of (u1, u2) by (−u1,−u2) coupled with the

reversion in the order of bangs, on the contrary, still yields

a symmetric, equivalent, situation. This is a general fact,

since it simply corresponds to reverse the parameterization

of the curve. Looking at regular bang-bang trajectories (see

Figure 5) one immediately recognises that the proof of the

lemma can be given by looking at two types of bang-bang

trajectories, whose successive values of the control are

(1,−1), (1, 1), (−1, 1), (−1,−1)

and

(1, 1), (−1, 1), (−1,−1), (1,−1),

respectively. In the first case, one notices that reflecting the

second and third bang arcs with respect to the y-axis yields

another horizontal curve with the same length, which is not

extremal. Hence the curve is not optimal. This argument also

shows that regular bang-bang trajectories starting from the

y-axis and with more than 2 bang arcs are not optimal.

In the second case, let us apply Theorem 2 at the second

switching time. One gets

Z0 = X1 +X2 + 2sX3, Z1 = −X1 +X2,

Z2 = −X1 −X2, Z3 = X1 −X2 + 2sX3.

Parameterizing the space W by the coordinates α0, α1 we get

that W = {(α0, α1,−α1,−α0) | α0, α1 ∈ R}. Normalizing

ϕ3 = 1 (uniqueness of the covector up to a positive factor

is proved as in the case of the Brockett integrator), we write

the quadratic form Q as

Q(α0, α1) = 2α2
0 + 4α0α1 − 2α2

1.

Since Q(1, 0) is positive, the considered trajectory is not

optimal. This concludes the proof of Lemma 10.

2) Optimal trajectories and shape of the unit ball: In the

Grushin plane we have singular trajectories that are similar

to the ones obtained for the Brockett integrator, see Figure 4.

Let us stress that in this case the tangent vector of the curve

is forced to be inside a cone whose width increase with the x
coordinate. The picture of the regular bang bang trajectories

y = x2

2

y

(x(t), y(t))

x

Fig. 4: Singular trajectories in the Grushin plane

is in Figure 5. These trajectories lose optimality as soon as

they reach the vertical axes. The picture of the unit ball in

the Grushin plane with this structure is in Figure 6.



y = x2/2

y

x

t/2−t/2

t2/4

Fig. 5: Bang trajectories in the Grushin plane

(a) Sphere (b) Front

Fig. 6: Sphere in the Grushin structure

V. MARTINET STRUCTURE

In this section we provide a description of the time-

minimizing trajectories for the Martinet structure. This is

the easiest example where nontrivial abnormal minimizers

appear.

The classical sub-Riemannian structure on the Martinet

space is the metric structure on R
3 determined by the choice

of the orthonormal vector fields

X1 = ∂x + ∂y + y2∂z, X2 = ∂x − ∂y + y2∂z . (15)

Let us introduce the vector fields

X3 = [X1, X2] = 4y∂z, X4 = [X1, X3] = 4∂z,

X5 = [X2, X3] = −4∂z.
(16)

The associated switching functions are

ϕi(p, q) = 〈p,Xi(q)〉, i = 1, . . . , 5.

They satisfy the system of differential equations

ϕ̇1 = −u2ϕ3, ϕ̇2 = u1ϕ3, ϕ̇3 = u1ϕ4 + u2ϕ5,

ϕ̇4 = 0, ϕ̇5 = 0.
(17)

Remark 11: It follows from the bracket relations (16) that

ϕ4 and ϕ5 = −ϕ4 are constants and we have ϕ3 = yϕ4 =
−yϕ5. In particular, if ϕ4 = 0, then ϕ3 is also constantly

equal to zero, and ϕ1, ϕ2 are constant.

Lemma 12: The nontrivial abnormal arcs are the horizon-

tal lines contained in the plane {y = 0}.

Proof: Assume that the trajectory is not reduced to a

point and it is abnormal on some interval I . In particular

we have ϕ1(t) = ϕ2(t) = 0 for all t ∈ I , while its control

(u1(t), u2(t)) is not identically zero on I . From (17) one

gets that −u2(t)ϕ3(t) = u1(t)ϕ3(t) = 0. Hence, if we have

ϕ3(t) = y(t)ϕ4 = 0 for every t (recall that ϕ4 is constant),

then y(t) = 0 for all t ∈ I , otherwise ϕ4 = 0 and the

covector is identically zero.

3) Singular arcs: Let us now consider a singular arc. We

show that in this case we can recover its (singular) control

by differentiation of the adjoint equations.

Indeed assume that the trajectory is ϕ1-singular, i.e., ϕ1 ≡
0 on I , and we want to recover its associated control u1.

Notice that |u2| = 1 is constant and ϕ̇1 = −u2ϕ3 is

continuous, hence ϕ1 is C1 on I . Because ϕ̇1(t) ≡ 0, we

have ϕ3(t) ≡ 0 for all t ∈ I (recall that u2 is different from

zero). We deduce that either ϕ4 = 0 or u1 = u2 on I . We

have two possibilities:

(i) if ϕ4 = 0 then u1 is free;

(ii) if ϕ4 6= 0 then u1 = u2 and we obtain a special type of

trajectory with bang arcs (the one that is horizontal), but

there is no constraint in the length of the arc. Moreover

one has y = 0 on this arc.

The trajectories corresponding to singular arcs of type (i)

coincide with those obtained for the Brockett integrator. The

trajectories corresponding to singular arcs of type (ii) are of

the same type as a regular bang arc, but with free time of

switching (see below). The situation with ϕ2-singular arcs is

perfectly symmetric.

4) Regular arcs: Assume that both ϕ1(0), ϕ2(0) 6= 0.

Because of Remark 11, we can assume that ϕ4 6= 0
(otherwise the trajectory is made of a single bang arc). We

want to show that

(a) If ϕ1(0)ϕ2(0) > 0 then ϕ1, ϕ2 are linear in a left

neighborhood of 0.

(b) If ϕ1(0)ϕ2(0) < 0 then ϕ1, ϕ2 are quadratic in a left

neighborhood of 0.

On a bang arc the controls satisfy |u1| = |u2| = 1 and thus

we can differentiate the identity (17) and get

ϕ̈1 = −u2ϕ̇3 = −4u2(u1 − u2)ϕ4,

ϕ̈2 = u1ϕ̇3 = 4u1(u1 − u2)ϕ4.

In case (a) we have that u1 = u2 = ±1, that implies ϕ̈1 =
ϕ̈2 = 0. In case (b) we have u1−u2 = ±2 and consequently

ϕ̈1 and ϕ̈2 are constant and nonzero (recall that ϕ4 6= 0 is

constant). The equations for case (a) are

ϕ1(t) = ϕ1(0) + tϕ̇1(0) = ϕ1(0)− u2ϕ3(0)t,

ϕ2(t) = ϕ2(0) + tϕ̇2(0) = ϕ2(0) + u1ϕ3(0)t,

ϕ3(t) = ϕ3(0).

Notice that ϕ3(0) = y(0)ϕ4 is zero if we start on the

abnormal set. The equations for case (b) are

ϕ1(t) = ϕ1(0)− u2ϕ3(0)t− u2(u1 − u2)ϕ4
t2

2
,

ϕ2(t) = ϕ2(0) + u1ϕ3(0)t+ u1(u1 − u2)ϕ4
t2

2
,

ϕ3(t) = ϕ3(0) + (u1 − u2)ϕ4t.

In particular, the constant ϕ4 determines the convexity of the

quadratic arc of the switching functions.



Lemma 13: A regular bang arc can enter in a singular arc

only if the switching function is quadratic and has vanishing

derivative at the switching point.

Proof: Assume, for instance, that at some time t0 ∈
I we have ϕ1(t0) = 1 and ϕ2(t0) = 0. Then the control

u1(t) = signϕ1(t) is constantly equal to 1 in a neighborhood

Ut0 of t0 and since ϕ3 is continuous we deduce that ϕ̇2 =
u1ϕ3 is also continuous in Ut0 . Since on the singular arc

ϕ̇2 = 0, we conclude.

Let us assume that ϕ1(0) > 0 and ϕ2(0) < 0. In particular

ϕ1 and ϕ2 are quadratic on a left neighborhood of 0.

We are reduced to three possible cases for the the switch-

ing function ϕ1:

- it never vanishes in the quadratic part (we say that ϕ1

is of type NI, for not intersecting),

- it vanishes in the quadratic part and is tangent to the

zero level (type T for tangent),

- it vanishes in the quadratic part and is transversal to the

zero level (type I for intersecting).

In Figure 7 we picture the switching functions when ϕ1 is

of type NI, while Figures 8 and 9 correspond to type T and

type I, respectively.

ϕ1

t1 t2 t1

ϕ1

ϕ2

t

ϕ1(0)

ϕ2(0)
ϕ2

Fig. 7: Switching functions for the Martinet structure when

ϕ1 is of type NI.

t1sing

ϕ1

ϕ2

t2
2

t2 t2t2singt2

Fig. 8: Switching functions for the Martinet structure when

ϕ1 is of type T. The relation between the third and fourth

bang arcs can be easily deduced from the expression of the

switching functions.

Assuming that there are only regular bang arcs along the

trajectory (as it is always the case when ϕ1 is of type NI or

I) we have the following result.

Proposition 14: The switching functions of a trajectory

that has only regular bang arcs are periodic.

The proof of Proposition 14 is a simple consequence of the

formulas of the switching functions and Lemma 13. When ϕ1

ϕ2
ϕ1

ϕ2

t

t3

ϕ1

t1 t2 t2 t1

Fig. 9: Switching functions for the Martinet structure when

ϕ1 is of type I.

is of type T, the only freedom is in the length of singular arcs.

The order in which the switching occur is as in Figures 7,

8 and 9, up to the symmetry which sends (ϕ1, ϕ2, ϕ3, ϕ4)
into (−ϕ1,−ϕ2, ϕ3,−ϕ4) (which corresponds to a reflection

y → −y).

5) Bound on number of optimal regular arcs: The goal

of this section is to prove the following result.

Proposition 15: A bang-bang trajectory with at least one

regular arc and with more than 7 arcs (either bang or

singular) is not optimal.

We distinguish in what follows trajectories for which the

switching functions are of one of the three types NI, T, and

I. In order to reduce the number of cases to be studied, we

use the fact that time-reversion and reflection y → −y lead

to trajectories with equivalent optimality properties.

Switching functions of type NI: We start by considering

ϕ1 of the type NI, as in Figure 7.

Lemma 16: A regular bang-bang trajectory of type NI

with more than 5 arcs is not optimal.

Proof: We prove the first part of the lemma by showing

that concatenations of the type

(1,−1), (1, 1), (−1, 1), (1, 1), (1,−1) (18)

are not optimal. All concatenations of 6 bang arcs, indeed,

contain a concatenation of this type, up to symmetries.

For concatenations of type (18), applying Theorem 2 at

the second switching time, we get by computations as the

one seen in the previous sections that the space W and the

quadratic form Q in the statement of Theorem 2 can be

written as

W = {(α0, α1, 0,−α1,−α0) | α0, α1 ∈ R},

Q(α0, α1) = 8(t1α
2
0 + t2α0α1).

Since Q is not negative semidefinite, the corresponding

trajectory is not optimal.

Switching functions of type T: We prove here the following

result concerning trajectories corresponding to switching

functions of the type T as in Figure 8.

Lemma 17: A trajectory of type T with more than 7 arcs

is not optimal.

Proof: We first consider the situation where tksing > 0
for every k. We notice that every concatenations of 8 arcs



contains, up to symmetries, a concatenation of 6 arcs of the

type

(1,−1), (1, 1), (−1, 1), (−1,−1), (−1, 1), (1, 1). (19)

We are going to show that a concatenation as in (19) is not

optimal.

For concatenations of type (19), applying Theorem 2 at the

third switching time (at which y = 0), we get that the space

W and the quadratic form Q in the statement of Theorem 2

are written as

W = {(α0, α1, α2,−α0, α0 − α2,−α0 − α1) | α ∈ R
3},

Q(α0, α1, α2) = 2(t2 − 2t2sing)α
2
0 + 8t2α0α1+

8t2singα0α2 − 4t2singα
2
2.

Notice that Q is not negative semidefinite, since

Q(ε, 1/ε, 0) = 2ε2(t2 − 2t2sing) + 8t2 > 0 for ε small

enough. Hence, the corresponding trajectory is not optimal.

In the case where t2sing = 0, a concatenation as in (19)

reduces to a concatenation of 4 bang arcs

(1,−1), (1, 1), (−1, 1), (1, 1).

Considering the following arc, we recover a concatenation as

in (18), for which the same computations as in the previous

section show non optimality.

Switching functions of type I: We consider here trajec-

tories corresponding to switching functions of type I as in

Figure 9. Notice that such trajectories never cross the plane

{y = 0}.

Lemma 18: A regular bang-bang trajectory of type I with

more than 5 arcs is not optimal.

Proof: By the same symmetry considerations as in the

cases NI and T, we are left to prove that concatenations of

the type

(1,−1), (−1,−1), (−1, 1), (1, 1), (1,−1), (−1,−1) (20)

and

(−1, 1), (1, 1), (1,−1), (−1,−1), (−1, 1), (1, 1) (21)

are not optimal. Notice than in both cases the trajectory is

contained in {y < 0}.

The application of Theorem 2 to the two cases is very

similar leading (computing the quadratic form Q at the

second switching time τ2) to the expressions

Q(α0, α1, α2) = −4(t1 − t3)α
2
0 − 4y(τ2)α0α1

− 4(−2t2 + 2t3 + y(τ2))α0α2 − 4(2t2 − t3 − y(τ2))α
2
2

and

Q(α0, α1, α2) = −4(t1 − t3)α
2
0 − 4y(τ2)α0α1

− 4(−2t1 + 2t2 + y(τ2))α0α2 − 4(t1 − 2t2 − y(τ2))α
2
2

respectively. In both cases, since y(τ2) < 0, one has that

Q(ε, 1/ε, 0) = −4y(τ2) + O(ε2) is positive for ε small

enough. Theorem 2 then allows to conclude that the cor-

responding trajectories are not optimal.

By using the previously described optimality results one

gets a picture of the unit ball as in Figure 10 and Figure 11.

Fig. 10: Unit sphere for the Martinet structure (15). View 1

Fig. 11: Unit sphere for the Martinet structure (15). View 2
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