
Equivalence and Independence in Controlled
Graph-Rewriting Processes

Géza Kulcsár1 ?[0000�0002�5387�8277], Andrea Corradini2[0000�0001�6123�4175],
and Malte Lochau1[0000�0002�8404�753X]

1 Real-Time Systems Lab, TU Darmstadt, Germany
{geza.kulcsar,malte.lochau}@es.tu-darmstadt.de

2 Dipartimento di Informatica, University of Pisa, Italy
andrea@di.unipi.it

Abstract. Graph transformation systems (GTS) are often defined as
sets of rules that can be applied repeatedly and non-deterministically to
model the evolution of a system. Several semantics proposed for GTSs
are relevant in this case, providing means for analysing the system’s
behaviour in terms of dependencies, conflicts and potential parallelism
among the relevant events. Several other approaches equip GTSs with an
additional control layer useful for specifying rule application strategies,
for example to describe graph manipulation algorithms. Almost invari-
ably, the latter approaches consider only an input-output semantics, for
which the above mentioned semantics are irrelevant.
We propose an original approach to controlled graph transformation,
where we aim at bridging the gap between these two complementary
classes of approaches. The control is represented by terms of a simple
process calculus. Expressiveness is addressed by encoding in the calculus
the Graph Processes defined by Habel and Plump, and some initial re-
sults are presented relating parallel independence with process algebraic
notions like bisimilarity.

1 Introduction

Graph-rewriting systems are used for many di↵erent purposes and in various
application domains. They provide an expressive and theoretically well founded
basis for the specification and the analysis of concurrent and distributed sys-
tems [7]. Typically, a set of graph-rewriting rules describes the potential changes
of graph-based, abstract representations of the states of a system under con-
sideration. Each rule can be applied when a certain pattern occurs in the state,
producing a local change to it. Thus, graph-rewriting systems are inherently non-
deterministic regarding both the rule sequencing and the selection of the match,
i.e. the pattern to rewrite. Several semantics have been proposed for graph trans-
formation systems (gts), which emphasize the parallelism that naturally arises

? This work has been funded by the German Research Foundation (DFG) as part of
project A1 within CRC1053–MAKI.

Andrea Corradini
This final publication is avaliable at Springer via https://doi.org/10.1007/978-3-319-92991-0_9

2 Géza Kulcsár, Andrea Corradini, Malte Lochau

between rules that are applied to independent parts of the distributed state.
They include, among others, the trace-based, the event structure and the process
semantics summarized and compared in [2]. The common intuition is that the
semantic domain should be rich enough to describe the computations of a system
(i.e., not only the reachable states), but also abstract enough to avoid distin-
guishing computations that di↵er for irrelevant details only, or for the order in
which independent rule applications are performed.

Sometimes however, mainly in the design of graph manipulation algorithms,
a finer control on the order of application of graph rules is desirable, for exam-
ple including sequential, conditional, iterative or even concurrent composition
operators. To address this problem, several approaches to programmed graph
grammars or controlled graph rewriting have been proposed, which generalize
the controlled string grammars originally introduced with the goal of augment-
ing language generation with constraints on the order of application of produc-
tions [6]. One of the first approaches to programmed graph grammars is due to
Bunke [3]. Regarding the semantics of controlled graph rewriting, Schürr pro-
poses a semantic domain including possible input/output graph pairs [14], which
has been the basis for the development of several tools (such as PROGRES [15],
Fujaba (SDM) [9] and eMoflon [12]). Habel and Plump [10] propose a minimal
language for controlled graph rewriting (see Section 4) with the goal of showing
its computational completeness, for which an input/output semantics is su�-
cient. Also Plump and Steinert propose an input/output semantics, presented
in an operational style, for the controlled graph rewriting language GP [13].

In this paper, we propose an original approach to controlled graph rewrit-
ing, where control is specified with terms of a simple process calculus able to
express non-deterministic choice, parallel composition, and prefixing with non-
applicability conditions, thus constraining in a strict but not necessarily se-
quential way the order of application of rules of a given system. In the present
paper we introduce the relevant definitions and start exploring the potentiali-
ties of the approach, while the long-term goal is to equip such systems with an
abstract truly-concurrent semantics, suitable as foundation of e�cient analysis
techniques (like for example [1] for contextual Petri nets). We start by intro-
ducing process terms which specify a labeled transition system (LTS) where
transitions represent potential applications of possibly parallel rules. This corre-
sponds conceptually to the code of an algorithm, or to an unmarked net in the
theory of Petri nets, an analogy that we adopt by calling those processes un-
marked. Next, we define the operational semantics of such process terms when
applied to a graph, yielding the marked LTS where transitions become concrete
rule applications. The LTS semantics involves explicit handling of parallel inde-
pendence (i.e., arbitrary sequentialization) of rule applications, if they are fired
by controlled processes running in parallel: our notion of synchronization allows
for single shared transitions of parallel processes whenever there are parallel in-
dependent rule applications of the involved processes. Particularly, synchronized
actions represent a first step towards adequately capturing true concurrency of
independent rule applications in a controlled setting.

Equivalence and Independence in Controlled Graph-Rewriting Processes 3

From an expressiveness perspective, in order to enrich controlled graph-
rewriting processes by conditional branching constructs as necessary in any con-
trol mechanism, we introduce non-applicability conditions formulated over rules,
corresponding to the condition that a given rule is not applicable. We also prove,
as a sanity check, that our control language including non-applicability condi-
tions is able to encode in a precise way the language proposed by Habel and
Plump in [10]: an input/output semantics is su�cient to this aim.

The LTS framework is exploited next to start exploring other potentialities
of the approach. We introduce an abstract version of the marked LTS showing
that it is finite branching under mild assumptions, and define trace equivalence
and bisimilarity among marked processes. Besides some pretty obvious results
concerning such equivalence, we show that in a simple situation bisimilarity can
be used to check that two derivations are not parallel independent: a link between
the classical theories of GTSs and of LTSs that we intend to explore further.

2 Preliminaries

We introduce here the basic definitions related to (typed) graphs, algebraic
Double-Pushout (dpo) rewriting, parallel derivations and shift equivalence [7].

Definition 1 (Graphs and Typed Graphs). A (directed) graph is a tuple G =
hN,E, s, ti, where N and E are finite sets of nodes and edges, and s, t : E ! N
are the source and target functions. The components of a graph G are often
denoted by NG, EG, sG, tG. A graph morphism f : G! H is a pair of functions
f = hfN : NG ! NH , fE : EG ! EHi such that fN � sG = sH � fE and
fN � tG = tH � fE; it is an isomorphism if both fN and fE are bijections.

Graphs G and H are isomorphic, denoted G ⇠= H, if there is an isomorphism
f : G ! H. We denote by [G] the class of all graphs isomorphic to G, and
we call it an abstract graph. We denote by Graph the category of graphs and
graph morphisms, by |Graph| the set of its objects, that is all graphs, and by
[|Graph|] the set of all abstract graphs.

The category of typed graphs over a type graph T is the slice category
(Graph # T), also denoted GraphT [4]. That is, objects of GraphT are pairs
(G, t) where t : G! T is a typing morphism, and an arrow f : (G, t)! (G0, t0)
is a morphism f : G! G0 such that t0 � f = t.

Along the paper we will mostly work with typed graphs, thus when clear
from the context we omit the word “typed” and the typing morphisms.

Definition 2 (Graph Transformation System). A (dpo T -typed graph) rule is

a span (L
l K

r! R) in GraphT where l is mono. The graphs L, K, and R
are called the left-hand side, the interface, and the right-hand side of the rule,
respectively. A graph transformation system (gts) is a tuple G = hT,R,⇡i,
where T is a type graph, R is a finite set of rule names, and ⇡ maps each rule
name in R into a rule.

4 Géza Kulcsár, Andrea Corradini, Malte Lochau

The categorical framework allows to define easily the parallel composition of
rules, by taking the coproduct of the corresponding spans.

Definition 3 (Parallel Rules). Given a gts G = hT,R,⇡i, the set of parallel
rule names R⇤ is the free commutative monoid generated by R, R⇤ = {p1| . . . |pn |
n � 0, pi 2 R}, with monoidal operation “ |” and unit ". We use ⇢ to range over
R⇤. Each element of R⇤ is associated with a span in GraphT , up to isomor-
phism, as follows:

1. " : (; ; ! ;), where ; is the empty graph;

2. p : (L
l K

r! R) if p 2 R and ⇡(p) = (L
l K

r! R);

3. ⇢1|⇢2 : (L1+L2
l1+l2 ��� K1+K2

r1+r2����! R1+R2) if ⇢1 : (L1
l1 � K1

r1�! R1) and

⇢2 : (L2
l2 � K2

r2�! R2), where G+H denotes the coproduct (disjoint union)
of graphs G and H, and if g : G! G0 and h : H ! H 0 are morphisms, then
g + h : G+H ! G0 +H 0 denotes the obvious mediating morphism.

For ⇢ 2 R⇤, we denote by h⇢i the set of rule names appearing in ⇢, defined
inductively as h"i = ;, hpi = {p} if p 2 R, and h⇢1|⇢2i = h⇢1i [h⇢2i.

Note that the above definition is well-given because coproducts are asso-
ciative and commutative up to isomorphism. Clearly, the same rule name can
appear several times in a parallel rule name. In the following, we assume that
G = hT,R,⇡i denotes an arbitrary but fixed gts.

Definition 4 (Rule Application, Derivations). Let G be a graph, let ⇢ : (L
l

K
r! R) be a possibly parallel rule, and let m be a match, i.e., a (possibly non-

injective) graph morphism m : L ! G. A dpo rule application from G to H
via ⇢ (based on m) is a diagram � as in (1), where both squares are pushouts in

GraphT . In this case we write G
�
=) H or simply G

⇢@m
===) H. We denote by D

the set of dpo diagrams, ranged over by �. For a rule p 2 R and a graph G, we

write G 6 p=) if there is no match m such that G
p@m
===) H for some graph H.

A (parallel) derivation ' from a graph G0

is a finite sequence of rule applications ' =

G0
�1=) G1 · · ·Gn�1

�n=) Gn, via ⇢1, . . . , ⇢n 2
R⇤. A derivation is linear if ⇢1, . . . , ⇢n 2 R.

L Kl

G

m

D

(PO)

f

k

R

H

r

n

g

(PO) (1)

Intuitively, two rule applications starting from the same graph are parallel
independent if they can be sequentialized arbitrarily with isomorphic results.
This property is captured categorically by the following definition [5].

Equivalence and Independence in Controlled Graph-Rewriting Processes 5

Definition 5 (Parallel Independence). Given

two (possibly parallel) rules ⇢1 : (L1
l1 � K1

r1�!
R1) and ⇢2 : (L2

l2 � K2
r2�! R2) and two

matches L1
m1��! G

m2 �� L2 in a graph G, the rule
applications ⇢1@m1 and ⇢2@m2 are parallel in-
dependent if there exist arrows a1 : L1L2 ! K1

and a2 : L1L2 ! K2 such that l1 � a1 = ⇡1 and
l2 � a2 = ⇡2 as in Diagram (2), where L1L2 is

the pullback object over L1
m1��! G

m2 �� L2.

L1 K1l1

G

m1

L1L2

⇡1

L2

⇡2

a1

(PB)

m2

K2l2

a2

(2)

As discussed in [5], this definition is equivalent to others proposed in litera-
ture, but does not need to compute the pushout complements to be checked.

As recalled by the next result, two parallel independent rule applications can
be applied in any order to a graph G obtaining the same resulting graph, up
to isomorphism. Furthermore, the same graph can be obtained by applying to
G the parallel composition of the two rules, at a match uniquely determined by
the coproduct construction.

Proposition 1 (Local Church-Rosser and Parallelism Theorems [7]). Given

two rule applications H1
⇢1@m1(==== G

⇢2@m2====) H2 with parallel independent matches
m1 : L1 ! G and m2 : L2 ! G, there exist matches m0

1 : L1 ! H2, m0
2 : L2 !

H1 and m : L1 + L2 ! G such that there are rule applications H1
⇢2,m

0
2===) H12,

H2
⇢1,m

0
1===) H21 and G

⇢1|⇢2,m
=====) H, and graphs H12, H21 and H are pairwise

isomorphic.

3 Controlled Graph-Rewriting Processes

In this section, we first motivate diverse aspects of our approach by presenting a
(simplified) application of controlled graph-rewriting processes (Sec. 3.1). Then,
in Sec. 3.2, we start to develop the theory by first introducing unmarked pro-
cesses, representing a process-algebraic control-flow specification, i.e., a process
whose executions specify permitted derivations. Afterwards (Sec. 3.3), we intro-
duce marked processes as pairs of unmarked processes and graphs, and compare
marked traces to parallel derivations [2].

3.1 An Illustrative Example: WSN Topology Control

We illustrate controlled graph-rewriting processes by an example: a simplified
wireless sensor network (wsn) model in which autonomous sensors communi-
cate through wireless channels, represented as typed graphs where nodes denote
sensors and edges denote bidirectional communication links via channels. We
use di↵erent edge types to represent the link status: active (a) indicates that the
link is currently used for communication, whereas link status inactive (i) de-
notes links currently not in use. Links with status unclassified (u) require status
revision.

6 Géza Kulcsár, Andrea Corradini, Malte Lochau

n1 x

n4

z

n5

y

aa
u

Le

n1 x

n4

z

n5

y

Ke

aa
n1 x

n4

z

n5

y

Re

aa
i

(a) Rule pe: Eliminate Active Triangle

n1 x

n4

z

n5

y

a
a

Lu

n1 x

n4

z

n5

y

Ku

a
n1 x

n4

z

n5

y

Ru

a
u

(b) Rule pu: Unclassify Active Neighbor

n1

y

n4

z

u

La

n1

y

n4

z

Ka

n1

y

n4

z

Ra

a

(c) Rule pa: Activate Edge

Fig. 1: Topology Control Operations as dpo Rules

The dpo rules shown in Figures 1a-1c represent topology control (tc) opera-
tions [11]: pe and pu reduce link redundancy either conservatively by eliminating
u-edges from active triangles (pe), or through unclassifying edges with active
neighbors (pu), whereas pa is a stability counter-measure, activating unclassified
edges. We use the rules in Fig. 1 to specify controlled graph-rewriting processes
expressing di↵erent topology control strategies. Due to the decentralized nature
of wsn, both sequential rule control with non-applicability conditions and parallel
processes are inherent in topology control strategies. As a concrete example for
a tc strategy, let us consider (using a yet informal process-algebraic notation)

PTC := Pe ||Pu Pe := pe.Pe + (pa, {pe}).Pe Pu := pu.Pu

Here, each P (with a subscript) is a process name that can appear in other
processes, allowing to express recursion. The dot (“.”) operator represents prefix-
ing, while “+” represents non-deterministic choice and “ || ” parallel composition.
Actions can be either plain rule applications (like pe in Pe) or rule applications
with additional non-applicability conditions (as in (pa, {pe})). The second com-
ponent of the action is a set of rule names (here, containing only pe), denoting
that pa should be applied only if pe is not applicable. (Here, as also later in the
paper, we omit the second component of an action if it is empty, writing for
example pe for (pe, ;).)

PTC defines a strategy where, in parallel, unclassified edges get inactivated if
being part of a triangle or activated otherwise (Pe), while Pu repeatedly unclas-
sifies edges with active neighbors. Although this strategy specification provides
an intuitive separation of classification and unclassification, and guarantees us-
ing a non-applicability condition that no a-triangles arise, still, the possibly

Equivalence and Independence in Controlled Graph-Rewriting Processes 7

overlapping applications of pe and pu might create unwanted triangles in our
concurrent setting. The above example illustrates the need for a formal analysis
methodology to reason about controlled parallel graph-rewriting processes.

3.2 Unmarked Processes

As suggested by the example in the previous section, unmarked processes are
terms of a process calculus including prefixing of actions, non-deterministic
choice, parallel composition, as well as recursion to express iteration and in-
tended non-termination (e.g., for specifying reactive behaviors).

An action � = (⇢, N) consists of a (possibly parallel) rule name ⇢ 2 R⇤ and
a set N of rule names, N = {p1, . . . , pk}. Intuitively, given a graph G such an
action can be fired by applying ⇢ to G only if none of the rules in N is applicable
to G. For the definition of unmarked processes, we use the following sets: K is
a set of process identifiers, ranged over by A, and P is the set of (unmarked)
processes, ranged over by P,Q.

Definition 6 (Unmarked Process Terms). The syntax of an unmarked process
term P 2 P is inductively defined as

P,Q ::= 0 | �.P | A | P +Q | P ||Q

where A 2 K and � ranges over R⇤ ⇥ 2R.

The process 0 is the inactive process incapable of actions. Given a process P ,
�.P represents an action prefix, meaning that this process can perform an action
� and then continue as P . Process identifiers are used to represent process terms
through defining equations, and thus might be used to describe recursive process
behavior. A defining equation for A 2 K is of the form A := P with P 2 P.
We assume that each A 2 K has a unique defining equation. P + Q represents
a process which non-deterministically behaves either as P or as Q. The parallel
composition of P and Q, denoted as P ||Q, is a process which might interleave
the actions of P and Q or even execute them in parallel.

There are some syntactically di↵erent processes which we treat as equivalent
in each context. This relation is called structural congruence and denoted ⌘.

Definition 7 (Structural Congruence of Unmarked Processes). The relation ⌘
on unmarked process terms is the least equivalence relation s.t.

P ||0 ⌘ P P +Q ⌘ Q+ P P ||Q ⌘ Q ||P

The semantics of an unmarked process term is a labeled transition system
having processes as states and moves labeled by actions as transitions. We first
recall the standard definition of labeled transition systems and of their traces.

Definition 8 (Labeled Transition System, Trace, Trace Equivalence). A labeled
transition system (LTS) is a tuple (S,A,�!X), where S is a set of states, A is a
set of actions containing the distinguished element “X” representing successful

8 Géza Kulcsár, Andrea Corradini, Malte Lochau

struct

P ⌘ Q P
↵�! P 0

Q
↵�! P 0

pre

�.P
��! P

stop

0
X�! 0

choice

P
↵�! P 0

P +Q
↵�! P 0

par

P
��! P 0

P ||Q ��! P 0 ||Q
rec

A := P P
↵�! P 0

A
↵�! P 0

sync

P
(⇢1,N1)�����! P 0 Q

(⇢2,N2)�����! Q0 h⇢1i \N2 = ; h⇢2i \N1 = ;

P ||Q (⇢1|⇢2,N1[N2)����������! P 0 ||Q0

Fig. 2: Transition Rules of Unmarked Processes

termination, and �!X ✓ S ⇥ A ⇥ S is a transition relation. As usual, we will
write s

a�! s0 if (s, a, s0) 2�!X .
A trace t = a1a2 . . . an 2 A⇤ of a state s 2 S is a sequence of actions such

that there exist states and transitions with s
a1�!X s1

a2�!X . . .
an��!X sn. A trace

is successful if its last element, and only it, is equal to X.
States s, s0 2 S are trace equivalent w.r.t. !X , denoted as 'T

X , if s and s0

have the same set of traces.

The LTS for unmarked process terms is defined by inference rules as follows.

Definition 9 (Unmarked Transition System). The unmarked transition system
(UTS) of G is an LTS (P, (R⇤ ⇥ 2R) [{X},�!) with �! being the least relation
satisfying the rules in Fig. 2, where ↵ ranges over (R⇤ ⇥ 2R) [{X}, � ranges
over R⇤ ⇥ 2R, and N over 2R.

Rule struct expresses that structural congruent processes share every tran-
sition. Rule pre states that any action � appearing as a prefix induces a transi-
tion labeled by � and then the process continues as specified. Rule rec says that
process identifiers behave as their defining processes. Rule choice expresses that
P +Q can proceed as P or Q by firing any of their transitions (commutativity of
+ is provided by struct). In the case of parallel composition, interleaved actions
as in rule par mean that one side of the composition proceeds independently of
the other. In contrast, sync represents synchronization, i.e., that the two sides
agree on performing their respective actions in parallel, which in the case of rules
amounts to performing the composed rule, where the non-applicability conditions
of both sides hold, while both sides proceed. Finally, stop introduces the special
X-transition to denote termination, i.e. that the empty process 0 was reached.
Note that termination is global, in the sense that a process of the shape P ||0
does not have a X-transition unless P ⌘ 0.

3.3 Marked Processes

Now, we extend unmarked process specifications by letting them not only specify
potential rule sequences, but also operate on a given graph. The states of a

Equivalence and Independence in Controlled Graph-Rewriting Processes 9

marked process are pairs containing an unmarked process and a graph, while
the marked transitions correspond to rule applications. Since a concrete rule
application is characterized by a dpo diagram (as in Diagram (1)), we include
in the labels of the marked transition system not only the names of the applied
(parallel) rule and of the rules in the non-applicability condition, but also the
resulting dpo diagram.

Definition 10 (Marked Transition System). The marked transition system
(mts) is an LTS (P ⇥ |GraphT |,R ⇥ D ⇥ 2R [{X},�!D) where �!D is the
least relation satisfying the following rules and � is a dpo diagram over ⇢:

MARK
P

(⇢,N)���! P 0 G
⇢@m
===) H 8p 2 N : G 6 p=)

(P,G)
(⇢,�,N)����!D (P 0, H)

STOP
P

X�! P 0

(P,G)
X�!D (P 0, G)

It easily follows from the definition that, as desired, traces of controlled graph-
rewriting processes correspond to the parallel derivations of Definition 4. In par-
ticular, Proposition 2.1 states that every successful trace of a marked process
naturally determines a(n underlying) parallel derivation; Proposition 2.2 pro-
vides a process definition by recursive choice, which has a successful trace for
each linear derivation starting from a given graph, while Proposition 2.3 does the
same for parallel (i.e., not necessarily linear) derivations by providing a recursive
process allowing for arbitrary parallel composition of the rules as well.

Proposition 2 (Traces and Derivations). 1. Given a marked process (P,G),
each of its successful traces uniquely identifies an underlying parallel deriva-
tion of G starting from G. In particular, if (⇢1, �1, N1) · · · (⇢n, �n, Nn)X is a
successful trace of (P,G), then �1; · · · ; �n is its underlying derivation.

2. Let PR be the unmarked process defined as follows:
PR = 0+

P
p2R p.PR

Then for each graph G and for each linear derivation ' starting from G there
is a successful trace of (PR, G) such that ' is its underlying derivation.

3. Let QR be the unmarked process defined as follows:
QR = 0+

�
(
P

p2R p.0+ ".0) ||QR
�

Then for each graph G and for each parallel derivation ' starting from G
there is a successful trace of (QR, G) such that ' is its underlying derivation.

4 On the Expressiveness of Unmarked Processes

Unmarked processes are intended to provide a high-level, declarative language
for specifying the evolution of systems modeled using graphs and rewriting rules
on them. In a trace of the corresponding marked system, as it results from Propo-
sition 2, all the relevant information about the computation are recorded, and
this can be exploited for analyses concerned with the truly concurrent aspects
of such computations, including causalities, conflicts and parallelism among the
individual events. Some preliminary results in this direction are presented in the
next section.

10 Géza Kulcsár, Andrea Corradini, Malte Lochau

In this section, as a proof of concept for the choice of our unmarked processes,
we consider an alternative control mechanism for graph rewriting and discuss
how it can be encoded into ours. The chosen approach is declarative and abstract
like ours, therefore the encoding is pretty simple. Still, it may provide some
insights for encoding more concrete and expressive control structures (like those
of [15]) which is left as future work.

Habel and Plump [10] interpret computational completeness as the ability
to compute every computable partial function on labelled graphs: we refer the
reader to the cited paper for motivations and details of this notion. They show
in [10] that three programming constructs su�ce to guarantee computational
completeness: (1) non-deterministic choice of a rule from a set of dpo rules, (2)
sequential composition, and (3) maximal iteration, in the sense that a program
is applied repeatedly as long as possible. Graph Programs are built using such
constructs, and their semantics is defined as a binary relation on abstract graphs
relating the start and end graphs of derivations, as recalled by the following
definitions.

Definition 11 (Graph Programs [10]). Graph programs over a label alphabet C
are inductively defined as follows:
(1) A finite set of dpo rules over C is an elementary graph program.
(2) If GP1 and GP2 are graph programs, then GP1;GP2 is a graph program.
(3) If GP is a graph program by (1) or (2), then GP# is a graph program.
The set of graph programs is denoted as GP.

Notice that Graph Programs are based on graphs labeled on a label alphabet
C = hCE , CN i, and the main result of completeness exploits constructions based
on this assumption. It is an easy exercise to check that such graphs are one-to-
one with graphs typed over the type graph TC = hCN , CN ⇥ CE ⇥ CN ,⇡1,⇡3i. It
follows that AC , the class of abstract graphs labeled over C introduced in [10],
is actually isomorphic to

⇥
|GraphTC |

⇤
. Nevertheless, we still use AC in defini-

tions and results of the rest of this section, when they depend on the concrete
representation of graphs as defined in [10].

Definition 12 (Semantics of Graph Programs [10]). Given a program GP over
a label alphabet C, the semantics of GP is a binary relation !GP on AC, which
is inductively defined as follows:
(1) !GP =)GP if GP = {p1, . . . , pn} is an elementary program;
(2) !GP1;GP2 = !GP2 � !GP1 ;
(3) !GP# = {hG,Hi | G!⇤

GP H and H is a normal form w.r.t. !GP }.

We show that there is an encoding of Graph Programs in unmarked processes
that preserves the semantics.

Definition 13 (Encoding Graph Programs as Processes). Given unmarked pro-
cesses P and Q, their sequentialization is the process P # Q := P [AQ/0] where
AQ 2 K is a fresh identifier with AQ := Q and t[x/y] denotes the syntactic
substitution of x for y in a term t.

The encoding function [[]] : GP ! P is defined as follows:

Equivalence and Independence in Controlled Graph-Rewriting Processes 11

– If GP = {p1, . . . , pn} is an elementary graph program, then [[GP]] :=
Pn

i=1 pi.0.
– [[GP1;GP2]] := [[GP1]] # [[GP2]].

– [[GP#]] := AGP# 2 K where AGP# := [[GP]] # AGP# +\[[GP]].

Process \[[GP]] is a process which acts as the identity (and terminates successfully)
on all and only the graphs which are normal forms with respect to [[GP]]. It is
defined inductively as follows:

– \[[GP]] := (", {p1, . . . , pn}).0 if GP = {p1, . . . , pn} is an elementary program;

– \[[GP1;GP2]] := \[[GP1]] + [[GP1]] # \[[GP2]];

– \[[GP#]] := (p, {p}).0, where p is any rule.

Proposition 3 (Encoding Preserves Semantics). For each graph program GP
and graph G in GraphTC it holds G!GP H i↵ ([[GP]], G)!⇤

D (0, H).

An easy consequence of this precise encoding is that the main result of [10],
stating the computational completeness of graph programs, also holds for un-
marked processes.

Corollary 1. Given a label alphabet C and subalphabets C1 and C2, for every
computable partial function f : AC1 ! AC2 , there exists an unmarked process
that computes f .

5 Equivalence and Independence

In this section, we elaborate on the semantics of marked processes by first in-
troducing an abstraction of DPO diagrams to provide a more compact rep-
resentation of marked transition systems. Afterwards, we investigate di↵erent
equivalence notions (trace, bisimilarity) and re-interpret parallel independence
of actions in marked processes.
Abstract Labels. When reasoning about a system in terms of graphs repre-
senting its possible states and of graph transformations modeling its evolution,
a natural attitude is to abstract from irrelevant details like the identity of the
involved nodes and edges. Formally, this corresponds to considering individual
graphs, or also diagrams in the category of graphs, up to isomorphism. By ap-
plying this standard abstraction technique to our marked transition systems we
define an abstract variant of them having the advantage of exhibiting a state
space where branching is bounded under some obvious, mild assumptions. This
is certainly valuable for the analysis of such systems, but this is left as future
work. On the contrary, note that the marked transition systems of Definition 10
are infinitely branching even for a single rule and a single state, because the
pushout object is defined only up to isomorphism.

Definition 14 (Abstract dpo Diagrams). Given two dpo diagrams �1 and �2
as in Fig. 1 with each graph indexed by 1 and 2, respectively, they are equivalent,
denoted as �1 ⇠= �2, if there exist isomorphisms L1 ! L2,K1 ! K2, R1 !
R2, G1 ! G2, D1 ! D2, H1 ! H2, such that each arising square commutes.

An abstract dpo diagram is an equivalence class [�] = {�0 | � ⇠= �0}. We
denote by [D] the set of abstract dpo diagram.

12 Géza Kulcsár, Andrea Corradini, Malte Lochau

Definition 15 (Abstract Marked Transition System). The abstract marked
transition system (amts) of G is an LTS (P ⇥ [|GraphT |] ,R ⇥ [D] ⇥ 2 6R [
{X},�![D]) with �![D] being the least relation satisfying the following rule as
well as rule STOP from Def. 10:

MARK
P

(⇢,N)���! P 0 G
⇢@m
===) H 8p 2 N : G 6 p=)

(P, [G])
(⇢,[�],N)�����![D] (P

0, [H])

where [�] is an abstract DPO diagram over ⇢.

Proposition 4 (amts is Finite Branching). If for each rule p : (L
l K

r! R)
in R the left-hand side l is not surjective, then the amts of G is finite-branching,
i.e., for each unmarked process P and T -typed graph G there is a finite number
of transitions from (P, [G]).

Considering graphs and dpo diagrams only up to isomorphism is safe for
the kind of equivalences of systems considered below, based on traces or on
bisimilarity, but it is known to be problematic for example for a truly concurrent
semantics of gtss [2]. For instance, rule pu in Sec. 3.1 has two di↵erent matches
in a graph identical to its left-hand side, but it induces a single abstract dpo

diagram. If only the latter is given, it could be impossible to determine whether
such rule application is parallel independent or not from another one.

Equivalences. To capture the equivalence of reactive (non-terminating) pro-
cesses in a branching-sensitive manner, finer equivalence notions are required.
Bisimilarity is a well-known branching-sensitive equivalence notion.

Definition 16 (Simulation, Bisimulation). Given an LTS (S,A,!X) and s, t 2
S. A simulation is a relation R ✓ S ⇥ S s.t. whenever s R t, for each transition
s

↵�!X s0 (with ↵ 2 A), there exists a transition t
↵�!X t0 with s0 R t0. State s is

simulated by t if there is a simulation relation R such that s R t.
A bisimulation is a symmetric simulation. States s and t are bisimilar, de-

noted s 'BS
X t, if there is a bisimulation R such that s R t.

Note that as we compare labels containing full DPO diagrams involving also
input graphs, in order for twoMTS processes to be bisimilar, their graphs should
be the same concrete graphs. In the case of AMTS, both graphs should be in
the same isomorphism class, i.e., they are isomorphic.

First, we state that simulation is “faithful” to synchronization, i.e., a parallel
process simulates a sequential one if the latter can apply the corresponding
parallel rule.

Proposition 5. Given unmarked processes P1, P2, P3, Q with bisimilar associ-
ated UTSs and actions �1 = (⇢1, N1), �2 = (⇢2, N2), �c = (⇢1|⇢2, N1 [N2). Let
P0 := �1.�2.P1 + �2.�1.P2 + �c.P3 and Q0 := �1.Q || �2.0.

Then, the process (P0, G) is simulated by (Q0, G). Moreover, (P0, G) and
(Q0, G) are bisimilar if P1 := 0, P2 := 0, P3 := 0 and Q := 0.

Equivalence and Independence in Controlled Graph-Rewriting Processes 13

The following proposition states that, as expected, “concrete” equivalence
implies abstract equivalence w.r.t. trace equivalence as well as bisimilarity.

Proposition 6. Given P,Q 2 P and G,H 2 |GraphT |, (1) (P,G) 'T
D (Q,H)

implies (P, [G]) 'T
[D] (Q, [H]) and (2) (P,G) 'BS

D (Q,H) implies (P, [G]) 'BS
[D]

(Q, [H]).

Now, to conclude the di↵erent kinds of transition systems and their equiv-
alences, we show that unmarked process equivalence and graph isomorphism
implies marked process equivalence for both trace equivalence and bisimilarity,
in both a concrete and an abstract setting, as expected. (The abstract case is a
direct consequence of Proposition 6.)

Proposition 7. For any P,Q 2 P and G 2 |GraphT |, (1) P 'T Q implies
(P,G) 'T

D (Q,G) and (2) P 'BS Q implies (P,G) 'BS
D (Q,G).

For a bisimilarity relation, it is an important property if the processes retain
bisimilarity if put into di↵erent contexts, i.e., if it is a congruence. In the fol-
lowing, we show that our abstract amts bisimilarity has the desired property of
being retained if the control processes are expanded by a further context. (We
have a similar result for 'BS

D if we set the same concrete starting graph G for
both sides.)

Theorem 1. Given P,Q 2 P with P 'BS Q as well as G 2 |GraphT |. Then,
the following hold (with R 2 P):

1. (P +R, [G]) 'BS
[D] (Q+R, [G]),

2. (P ||R, [G]) 'BS
[D] (Q ||R, [G]), and

3. (�.P, [G]) 'BS
[D] (�.Q, [G]) for any � 2 R⇤ ⇥ 2R.

Proof. First, we prove that UTS bisimilarity ('BS) is a congruence w.r.t. those
operators. In particular, P 'BS Q implies the following:

1. P +R 'BS Q+R: The resulting transition system on both sides arises as a
union (i.e., “gluing” at the root) of P and R on the left-hand side as well as
Q and R on the right-hand side. Then, the statement follows from P 'BS Q.

2. P ||R 'BS Q ||R: The proof is done by coinduction. At the starting state,
there are three possibilities for firing transitions: (i) P (Q) fires, (ii) R fires
or (iii) synchronization (cf. rule sync in Fig. 2) takes place.
Transitions of case (i) are covered w.r.t. bisimilarity through the assumption.
If R fires as in case (ii), proceeding to R0, the resulting marked states consti-
tute a pair which is of the same form as our starting pair: P ||R0 and Q ||R0.
Thus, the statement holds by coinduction. In case (iii), we have the same
situation as in case (ii): if each of the partaking processes X 2 {P,Q,R}
proceeds to X 0 and synchronization takes place, the resulting processes are
P 0 ||R0 and Q0 ||R0. Moreover, P 0 'BS Q0 due to P 'BS Q. Thus, the
statement holds by coinduction.

14 Géza Kulcsár, Andrea Corradini, Malte Lochau

3. �.P 'BS �.Q: Here, on both sides, the outgoing transitions of the starting
state correspond to transitions over �, after which the two sides become P
and Q, respectively. Thus, the statement follows from P 'BS Q.

The statements in the Theorem are easy consequences of the fact that UTS
bisimilarity is a congruence, as well as Propositions 6 and 7.

Note that a similar result would hold only for choice if we do not require
unmarked bisimilarity; assuming only marked bisimilarity, parallel composition
and prefixing might introduce fresh rule applications, leading to fresh graph
states where the behavior of the two sides might diverge. For instance, using
rules from Sec. 3.1, (⇢u.0, G) 'BS

[D] (⇢u.0+ ⇢e.0, G) if G has no triangle to apply

⇢e on; however, a parallel (or prefix) context where ⇢a might create a match for
⇢e ruins bisimilarity as the right-side process has a ⇢e-transition that the other
cannot simulate.

Summarizing, an abstract representation of a marked transition system might
be a useful tool in order to gain a finite representation. Investigating equivalence
notions, amts exhibits a trade-o↵ between hiding some execution details on the
one hand, but enabling a bisimilarity congruence for control processes on the
other hand.
Independence. In this section, we demonstrate how abstract marked processes
allow for a novel characterization of parallel independence in the context of
controlled graph-rewriting processes. Intuitively, two rule applications available
simultaneously are parallel independent if after performing any of the applica-
tions, the other rule is still applicable on the same match image as in the original
rule application (cf. Proposition 1). In the following, we refer to a 4-tuple of DPO
diagrams �02, �1, �2, �

0
1 as strictly confluent [7] if they correspond to some matches

m0
2,m1,m2,m0

1 as in Proposition 1. Now, we are ready to re-interpret the notion
of parallel independence for marked transitions.

Definition 17 (Parallel Transition Independence). Given an abstract marked

process (P, [G]) with outgoing transitions (P, [G])
(⇢1,[�1],N1)�������![D] (P1, [H1]) and

(P, [G])
(⇢2,[�2],N2)�������![D] (P2, [H2]), these outgoing transitions are parallel inde-

pendent if there exist the following transitions:

(i) (P1, [H1])
(⇢2,[�

0
2],N2)�������![D] (P12, [H12]), and

(ii) (P2, [H2])
(⇢1,[�

0
1],N1)�������![D] (P21, [H21])

such that there is a 4-tuple of (representative) elements of [�02], [�1], [�2], [�
0
1] which

is strict confluent and (P12, [H12]) 'BS
[D] (P21, [H21]).

The following proposition states that parallel transition independence implies
parallel independence of the involved rule applications. Note that the inverse
implication does not hold, as parallel independence is defined only for rules
and their matches; thus, it might happen that some non-applicability conditions
prevent a subsequent rule application even if the applications themselves are
parallel independent.

Equivalence and Independence in Controlled Graph-Rewriting Processes 15

Proposition 8. Given two parallel independent transitions (P, [G])
(⇢1,[�1],N1)�������![D]

(P1, [H1]) and (P, [G])
(⇢2,[�2],N2)�������![D] (P2, [H2]), the corresponding rule applica-

tions ⇢1@m1 and ⇢2@m2, respectively, are parallel independent.

For instance, in our example in Sec. 3.1, if (PTC , G) has outgoing transitions
for both pa and pu (on some graph G), then we know that the rule applications
inducing those transitions were parallel independent. In that case, those appli-
cations can be executed also as a synchronized action. Note, instead, that if we
consider a di↵erent pair of rules like pe and pu, not each of their applications to
the same graph is independent as their left-hand sides have common elements
and thus their matches might overlap.

Finally, we elaborate on the consequences of parallel independence in the
presence of synchronization. Particularly, (1) for actions without non-applicability
conditions, the absence of a synchronized transition indicates the parallel depen-
dence of transitions, and (2) parallel transition independence is equivalent to
the existence of a synchronized action in parallel processes, i.e., synchronization
implies strict confluence.

Theorem 2 (Bisimilarity and Parallel Independence).
Given bisimilar unmarked processes P1, P2, Q1, Q2 and actions �1 = (⇢1, N1),

�2 = (⇢2, N2) with rules ⇢1, ⇢2.

1. Let P 0
0 := ⇢1.(⇢2 ||P1) + ⇢2.(⇢1 ||P2) and Q0 := ⇢1.Q1 || ⇢2.0. There exist

no parallel independent applications ⇢1@m1, ⇢2@m2 on G, if and only if
(P 0

0, [G]) 'BS
D (Q0, [G]).

2. Let (Q0
0, [G]) := (�1.Q1 || �2.Q2, [G]). Two transitions (Q0

0, [G])
(⇢1,�1,N1)������![D]

(Q1 || �2.Q2, [H1]), (Q0
0, [G])

(⇢2,�2,N2)������![D] (�1.Q1 ||Q2, [H2]) are parallel in-

dependent if and only if there are transitions (Q0
0, [G])

(⇢1|⇢2,�c,N1[N2)�����������![D]

(Q1 ||Q2, [H]), (Q1 || �2.Q2, [G])
(⇢2,�

0
2,N2)������![D] (Q1 ||Q2, [H]), and

(�1.Q1 ||Q2, [H2])
(⇢1,�

0
1,N1)������![D] (Q1 ||Q2, [H]).

Proof.

1. If: We prove the statement indirectly. First, let us observe that if there
is a pair of outgoing transitions over ⇢1 and ⇢2 in (P 0

0, [G]), then those
transitions are also present in (Q0, G). Thus, let us assume that there are
⇢1@m1, ⇢2@m2 parallel independent. Then, there is also an outgoing transi-
tion (⇢1|⇢2, [�c], ;): We set mc : L1+L2 ! G of �c such that mc = m1+m2.
This transition cannot be mimicked by (P 0

0, [G]), a contradiction.
Only if: If there are no parallel independent transitions of ⇢1 and ⇢2, then
(Q0, [G]) is unable to synchronize: If there would be a matchmc of ⇢1|⇢2, then
there also would be parallel independent matches m1,m2 of ⇢1, ⇢2 separately,
by taking m1 = mc � e1 and m2 = mc � e2, where e1 and e2 are the obvious

16 Géza Kulcsár, Andrea Corradini, Malte Lochau

embeddings of the left-hand sides in the coproduct, i.e., L1
e1�! L1 + L2

e2 �
L2. Thus, the transition sequences induced by ⇢1, ⇢2 are the same in (P 0

0, [G])
and (Q0, [G]).

2. If: The existence of a transition (⇢1|⇢2, [�c], N1 [N2) implies the existence
of parallel independent matches m1,m2 for ⇢1, ⇢2 due to the construction in
Clause 1 above. Thus, there are parallel independent transitions from (Q0

0, G)
over ⇢1@m1 and ⇢2@m2, respectively, as we know from the synchronized
transition that both N1 and N2 hold in G. By the assumption, we also know
that there is at least one application of ⇢1 after which ⇢2 is applicable and N2

holds, and the same vice versa. If those applications were using other matches
than m1,m2, i.e., if the corresponding DPO diagrams were not isomorphic
to �1, �2, �01, �

0
2, then at least one of the graphs resulting from the sequences

⇢1.⇢2 and ⇢2.⇢1 were not isomorphic to H, the result of the synchronized
rule application.
Only if: This is a direct consequence of Definition 17 and the construction
of mc in Clause 1 above.

6 Conclusions and Future Work

In this paper we have introduced an original approach to controlled graph-
rewriting, where the control layer is described using terms of a simple pro-
cess calculus, instead of standard programming constructs as in most other ap-
proaches. We have presented an operational semantics for processes, enabling a
novel perspective on the equivalence of those processes on the one hand, and
(in)dependence of processes running in parallel on the other hand. Among other
things, we have shown that congruence of the bisimilarity relation is achieved
by abstracting from concrete graph details. Furthermore, we have re-interpreted
the notion of parallel independence in our operational setting and shown that
synchronization and bisimulation captures parallel (in)dependence as present in
controlled graph-rewriting processes.

Among the several topics that we intend to address in future work, we men-
tion (i) to study conditions of bisimilarity and/or simulation among marked
processes which are more interesting than those pretty elementary addressed in
this paper; (ii) to compare our notion of process bisimulation with the graph-
interface bisimulation of Ehrig and König [8] by including their generalized no-
tion of graph-rewriting steps in our framework; (iii) to investigate a Petri net
interpretation, particularly the connection between the non-applicability con-
ditions introduced here and inhibitor arcs ; (iv) exploiting the process calculus
framework, to explore composition (or synchronization) operations that are not
conservative with respect to linear derivations, like for example amalgamation;
(v) to consider a more elaborate notion of transition independence for capturing
true concurrency of rule applications more faithfully.

Equivalence and Independence in Controlled Graph-Rewriting Processes 17

References

1. Baldan, P., Bruni, A., Corradini, A., König, B., Rodŕıguez, C., Schwoon, S.: Ef-
ficient unfolding of contextual Petri nets. Theor. Comput. Sci. 449, 2–22 (2012).
https://doi.org/10.1016/j.tcs.2012.04.046

2. Baldan, P., Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Löwe, M.: Con-
current Semantics of Algebraic Graph Transformation. In: Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 3. pp. 107–187. World
Scientific (1999)

3. Bunke, H.: Programmed graph grammars. In: Claus, V., Ehrig, H., Rozenberg,
G. (eds.) Graph-Grammars and Their Application to Computer Science and Bi-
ology, International Workshop. LNCS, vol. 73, pp. 155–166. Springer (1978).
https://doi.org/10.1007/BFb0025718

4. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae
26(3/4), 241–265 (1996)

5. Corradini, A., Duval, D., Löwe, M., Ribeiro, L., Machado, R., Costa, A., Azzi,
G.G., Bezerra, J.S., Rodrigues, L.M.: On the essence of parallel independence for
the double-pushout and sesqui-pushout approaches. In: Graph Transformation,
Specifications, and Nets: In Memory of Hartmut Ehrig. LNCS, vol. 10800, pp.
1–18. Springer (2018)

6. Dassow, J., Păun, G., Salomaa, A.: Grammars with Controlled Derivations. In:
Handbook of Formal Languages: Volume 2. pp. 101–154. Springer (1997)

7. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (2006)

8. Ehrig, H., König, B.: Deriving bisimulation congruences in the dpo approach to
graph rewriting. In: Walukiewicz, I. (ed.) FoSSaCS. LNCS, vol. 2987, pp. 151–166.
Springer (2004)

9. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A New Graph
Rewrite Language Based on the Unified Modeling Language and Java. In: TAGT
98. LNCS, vol. 1764, pp. 157–167. Springer (2000)

10. Habel, A., Plump, D.: Computational completeness of programming languages
based on graph transformation. In: FoSSaCS. LNCS, vol. 2987, pp. 230–245.
Springer (2001)

11. Kluge, R., Stein, M., Varró, G., Schürr, A., Hollick, M., Mühlhäuser, M.: A system-
atic approach to constructing families of incremental topology control algorithms
using graph transformation. Software & Systems Modeling 38, 47 – 83 (2017)

12. Leblebici, E., Anjorin, A., Schürr, A.: Developing eMoflon with eMoflon. In: ICMT.
LNCS, vol. 8568, pp. 138–145. Springer (2014)

13. Plump, D., Steinert, S.: The Semantics of Graph Programs. In: RULE. EPTCS,
vol. 21 (2009)

14. Schürr, A.: Logic-Based Programmed Structure Rewriting Systems. Fundam. Inf.
26(3,4), 363–385 (1996)

15. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES-Approach: Lan-
guage and Environment. In: Handbook of Graph Grammars and Comput-
ing by Graph Transformation, Vol. 2, pp. 487–550. World Scientific (1999).
https://doi.org/10.1142/9789812815149 0013

