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Nomenclature

B = virtual body
−−→
BP = position vector of point P in T , km
e = reference orbit eccentricity
H = displacement distance, km

î, ĵ, k̂ = unit vectors of T
îI , ĵI , k̂I = unit vectors of TI
N = number of impulsive maneuvers per revolution
O = primary body center-of-mass
−−→
OP = position vector of point P in TI , km
P = maneuver point
P = DNKO plane
p = reference orbit semilatus rectum, km
r = relative position vector, km
T = orbital reference frame
TI = inertial reference frame
v = relative velocity vector, km/s
x, y, z = components of r in T , km
∆v = velocity variation vector, m/s
∆v = total velocity variation per revolution, m/s
∆ν = true anomaly variation within each arc, rad
µ = primary body gravitational parameter, km3/s2

ν = true anomaly, rad
ω = angular velocity vector, rad/s

Subscripts

c = continuous thrust case
e = end of ballistic arc
i = i-th ballistic arc or impulsive maneuver
max = maximum value
s = start of ballistic arc
⊕ = Earth
� = Sun

Superscripts

· = time derivative
′ = derivative with respect to ν
∼ = transformed variable

Introduction
A displaced non-Keplerian orbit (DNKO) is a closed, two-dimensional, trajectory whose orbital plane does not contain

the primary body center-of-mass, and is maintained by a continuous thrust that balances the centrifugal and gravitational
forces acting on the spacecraft [1, 2]. Since the pioneering work of Forward [3–5], DNKOs have been extensively studied in
both geocentric [6–8] and heliocentric [9, 10] mission scenarios. In principle, a DNKO can be approximated with a sequence
of Keplerian arcs patched by impulsive maneuvers, so that the points where the impulses are applied coincide with points
belonging to the original DNKO [11,12]. Such a trajectory type, which will be referred to as closed patched orbit (CPO), has
been thoroughly investigated by McInnes [13], who proposed an elegant mathematical model useful for approximating DNKOs
of circular shape.

The aim of this Note is to extend the results of Ref. [13] to the case of two-body elliptic DNKOs, by obtaining a general
method to calculate the propulsive performance of a spacecraft that covers the corresponding CPOs. In particular, the proposed
approach gives the analytical expression of the total velocity variation per revolution around the primary body, required to
approximate an assigned DNKO with a sequence of (azimuthally) equally spaced impulsive maneuvers. The value of the total
velocity variation in the continuous thrust scenario is also obtained as a special case of the mathematical model.
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To this end, the spacecraft motion along the CPO is investigated using the linearized Hill-Clohessy-Wiltshire equations
for elliptic orbits [14], which describe the relative motion between the spacecraft and a virtual body that follows a reference
(elliptic) Keplerian trajectory obtained by setting the DNKO displacement equal to zero. The only limitation of the proposed
method is in the assumption of a small distance between the virtual body and the spacecraft, which, in its turn, implies a
sufficiently small value of DNKO displacement. A nonlinear numerical simulation of the problem, obtained by solving a series
of targeting problems, shows that the proposed set of equations gives an accurate approximation of the actual total velocity
variation per revolution.

Problem description
Consider a virtual body B in a reference elliptic (Keplerian) orbit of semilatus rectum p and eccentricity e < 1, which

moves around a primary body of gravitational parameter µ and center-of-mass O. Let ν ∈ [0, 2π] rad be the true anomaly
of B, and ω its angular velocity, with ‖ω‖ = ν̇. Introduce an inertial reference frame TI with origin at O and unit vectors

{̂iI , ĵI , k̂I} with k̂I ≡ ω/ν̇, and an orbital reference frame T with origin at B and unit vectors {̂i, ĵ, k̂} with ĵ = −k̂I . The

plane (̂iI , ĵI) ≡ (̂i, k̂) contains the reference orbit whose pericenter belongs to the direction of îI , and k̂ points towards O, see
Fig. 1.
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Figure 1 Reference frames.

Consider now a DNKO obtained by moving the reference orbit by a given distance H with a translation (without rotation)

along the positive direction of k̂I . The orthogonal projection of O on the plane P of the DNKO, which coincides with the
focus of the displaced ellipse, is denoted by o. Let {P1, P2, . . . , PN}, with N ≥ 3, be a set of angularly equally spaced points
along the DNKO, so that the generic point Pi (with i = 1, 2, . . . , N) coincides with the projection of B on the plane P when
the true anomaly of the virtual body is ν = νi, where

νi = (i− 1)∆ν with ∆ν ,
2π

N
(1)

Since ν1 = 0, P1 is the DNKO pericenter, whereas the assumption of N ≥ 3 implies that ∆ν ≤ 2π/3. The position vector of
the generic point Pi in the inertial reference frame TI is given by

−−→
OP i = cos νi îI + sin νi ĵI +H k̂I (2)

while the position vector of Pi in the orbital reference frame T is

−−→
BP i = −H ĵ (3)

The given DNKO is approximated by a CPO, made up of a sequence of N ballistic arcs, each one starting at Pi and ending
at Pi+1, and N impulsive maneuvers, each one occurring at the generic point Pi [13], see Fig. 1. The problem is to find the
total velocity variation per revolution around the primary body ∆v, required to maintain the CPO. In particular, a spacecraft
S that follows the CPO intersects the DNKO at points Pi where the vehicle reaches its minimum distance (equal to H) from

the (̂iI , ĵI) plane. In the limit as N →∞, the spacecraft S maintains a constant distance H from the (̂iI , ĵI) plane. In that
case, the CPO coincides with the DNKO, and the multiple impulse analysis gives the same results (that is, the same ∆v) as
the continuous thrust case.

Mathematical model
The value of ∆v can be obtained by analyzing the motion of S relative to B from ν = νi to ν = νi + ∆ν (that is, in the

generic i-th ballistic arc), where {νi,∆ν} are given by Eq. (1) as a function of the given number N of impulsive maneuvers.
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Note that, at the beginning (or at the end) of i-th ballistic arc, the spacecraft position coincides with point Pi (or P(i+1)),
which belongs to the y-axis at a distance H from B, see Eq. (3).

Paralleling the procedure described by Yamanaka and Ankersen [14], when the distance between B and S is small compared
to the distance between O and B, that is, when the spacecraft is close to the DNKO and the displacement H is sufficiently
small, the motion of S relative to B in the i-th ballistic arc is approximated by the following set of linear differential equations

ẍ = −k
√
ν̇3 x+ 2 ν̇ ż + ν̈ z + ν̇2 x (4)

ÿ = −k
√
ν̇3 y (5)

z̈ = 2 k
√
ν̇3 z − 2 ν̇ ẋ− ν̈ x+ ν̇2z (6)

where

k , 4

√
µ

p3
(7)

is a constant parameter that depends on the semilatus rectum of the reference orbit, and {x, y, z} are the components of the

(relative) position vector r ,
−→
OS −

−−→
OB in the orbital reference frame T , see Fig. 2, viz.

r = x î + y ĵ + z k̂ (8)

Using the true anomaly ν ∈ [νi, νi + ∆ν] as independent variable and introducing the transformation
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Figure 2 Relative position vector.

x̃ , ρ x , ỹ , ρ y , z̃ , ρ z with ρ , 1 + e cos ν (9)

the linearized equations of relative motion Eqs. (4)–(6) reduce to [14]

x̃′′ = 2 z̃′ (10)

ỹ′′ = −ỹ (11)

z̃′′ =
3 z̃

ρ
− 2 x̃′ (12)

where the prime symbol denotes a derivative with respect to ν. The velocity vector of S relative to B, that is, v , ṙ, is [14]

v = k2 (e sin ν r̃ + ρ ṽ) (13)

where k is given by Eq. (7), and {r̃, ṽ} are defined as

r̃ = ρ r ≡ x̃ î + ỹ ĵ + z̃ k̂ , ṽ = x̃′ î + ỹ′ ĵ + z̃′ k̂ (14)

From Eqs. (10) and (12), the spacecraft motion in the plane (x, z) can be represented in a compact form as[
x̃(ν), z̃(ν), x̃′(ν), z̃′(ν)

]T
= Φ

[
x̃(νi), z̃(νi), x̃

′(νi), z̃
′(νi)

]T
(15)

where Φ = Φ(e, ν) ∈ R(4×4) is the state transition matrix, whose entries are detailed in Ref. [14]. Also, from Eq. (11), the
motion of S along the y-axis is a free harmonic oscillation, that is

ỹ(ν) = ỹ′(νi) sin (ν − νi) + ỹ(νi) cos (ν − νi) (16)

ỹ′(ν) = ỹ′(νi) cos (ν − νi)− ỹ(νi) sin (ν − νi) (17)

Note that at both the beginning and the end of the i-th ballistic arc the spacecraft S lies in the y-axis, see Eq. (3), or

x̃(νi) = z̃(νi) = x̃(νi + ∆ν) = z̃(νi + ∆ν) = 0 (18)
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Therefore, from Eq. (15), it follows that x̃′(νi) = z̃′(νi) = 0, that is

x̃(ν) = z̃(ν) = x̃′(ν) = z̃′(ν) = 0 (19)

As a result, with the approximation of Eqs. (10)–(12), the spacecraft motion only evolves along the (negative) y-axis of the
orbital reference frame according to Eqs. (16)–(17).

Bearing in mind that y(νi) = y(νi + ∆ν) = −H, the following constraints are obtained from the second of Eqs. (9)

ỹ(νi)

1 + e cos νi
=

ỹ(νi + ∆ν)

1 + e cos (νi + ∆ν)
= −H (20)

Combining Eq. (16) with (20), the expression of ỹ′(νi) is

ỹ′(νi) =
H (e sin ∆ν sin νi + cos ∆ν − 1)

sin ∆ν
(21)

Note that Eq. (21) is free of singularity at ∆ν = 0 since, by assumption, N ≥ 3, see Eq. (1). An explicit expression of ỹ(ν)
and ỹ′(ν) in the i-th ballistic arc may now be obtained by substituting Eqs. (20) and (21) into Eqs. (16)–(17). The result is

ỹ(ν) =

[
H (e sin ∆ν sin νi + cos ∆ν − 1)

sin ∆ν

]
sin (ν − νi)−H (1 + e cos νi) cos (ν − νi) (22)

ỹ′(ν) =

[
H (e sin ∆ν sin νi + cos ∆ν − 1)

sin ∆ν

]
cos (ν − νi) +H (1 + e cos νi) sin (ν − νi) (23)

and the value of ỹ′(ν) at the end of the i-th ballistic arc reduces to

ỹ′(νi + ∆ν) =
H [2− 2 cos ∆ν + e cos νi − e cos(2 ∆ν + νi)]

2 sin ∆ν
(24)

The spacecraft velocity vector vsi (or vei) relative to B at the start (or end) of the i-th ballistic arc is obtained from
Eq. (13) as

vsi = k2
[
e ỹ(νi) sin νi + (1 + e cos νi) ỹ

′(νi)
]
ĵ (25)

vei = k2
[
e ỹ(νi + ∆ν) sin(νi + ∆ν) + (1 + e cos(νi + ∆ν)) ỹ′(νi + ∆ν)

]
ĵ (26)

Using Eqs. (20)–(21) and (24), the last two relations reduce to the compact form

vsi = k2H
(cos ∆ν − 1) (1 + e cos νi)

sin ∆ν
ĵ (27)

vei = k2H
2− 2 cos ∆ν + 2 e cos(νi + ∆ν)− e cos νi − e cos(νi + 2 ∆ν)

2 sin ∆ν
ĵ (28)

Equations (27) and (28) are the starting point for calculating the total velocity variation per revolution ∆v, in an N -impulse
maneuver, necessary for a CPO to approximate a given DNKO.

Total velocity variation analysis
At the end of (i − 1)-th ballistic arc, when the spacecraft is at point Pi and its position in the inertial frame is given by

Eq. (2), an impulsive maneuver removes the discontinuity in the velocity and the vehicle is immediately inserted into the
succeeding i-th arc, see Fig. 2. The velocity variation ∆vi at Pi is

∆vi = ‖vsi − ve(i−1)
‖ (29)

where vsi is given by Eq. (27), while ve(i−1)
is the spacecraft velocity vector relative to B at the end of (i − 1)-th ballistic

arc. An expression for ve(i−1)
is obtained from Eq. (28) by formally substituting νi with ν(i−1) ≡ (νi − ∆ν). After some

simplification, the result is

ve(i−1)
= k2H

(1− cos ∆ν) (1 + e cos νi)

sin ∆ν
ĵ (30)

Substituting Eqs. (27) and (30) into Eq. (29), the expression of ∆vi becomes

∆vi = 2 k2H
(1− cos ∆ν)

sin ∆ν
(1 + e cos νi) (31)

so that the total velocity variation per revolution can be written as a sum of ∆vi, viz.

∆v =

N∑
i=1

∆vi = 2 k2H
(1− cos ∆ν)

sin ∆ν

(
N + e

N∑
i=1

cos νi

)
(32)
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Recalling that N ≥ 3, from Eq. (1) the summation in Eq. (32) is [15]

N∑
i=1

cos νi =

N∑
i=1

cos

(
2π (i− 1)

N

)
= 0 (33)

and, therefore, Eq. (32) becomes

∆v = 2N k2H
(1− cos ∆ν)

sin ∆ν
with ∆ν =

2π

N
(34)

In particular, in the limit as N →∞, Eq. (34) reduces to the very compact expression

lim
N→∞

∆v = ∆vc , 2π k2H = 2πH

√
µ

p3
(35)

where ∆vc is the total velocity variation per revolution in the continuous-thrust case. Notably, ∆vc depends on the orbital
shape through the semilatus rectum only and, as such, it is not explicitly dependent on the orbital eccentricity. The previous
equation generalizes the result obtained by Spilker [12] for a circular orbit of radius R, that is, ∆vc = 2πH

√
µ/R3.

In the special case of circular orbit, Eqs. (31) and (34) give also the interesting result

∆vi =
∆v

N
= 2 k2H

(1− cos ∆ν)

sin ∆ν
if e = 0 (36)

which states that ∆vi takes the same value for all impulses, due to the cylindric symmetry of the problem. In an elliptic orbit
such a symmetry is lost and, indeed, ∆vi is maximum at P1 (pericenter) and minimum when Pi is near the apocenter (when
cos νi is minimum and negative), see Eq. (31). Finally, recalling Eq. (1), Eqs. (34) and (35) may be combined to obtain the
dimensionless total velocity variation per revolution around the primary as

∆v

∆vc
=
N [1− cos(2π/N)]

π sin(2π/N)
(37)

Note that the ratio ∆v/∆vc depends on the number of impulsive maneuvers only, whereas the DNKO characteristics, that is, its
semilatus rectum and displacement, are included in the expression of ∆vc given by Eq. (35). Therefore, under the assumption
of azimuthally equally spaced (impulsive) maneuvers, the total ∆v in the elliptic case can be obtained by considering a virtual,
circular, DNKO with the same displacement as the original orbit, and a radius equal to the semilatus rectum of the actual
reference orbit. Figure 3 shows the variation of ∆v/∆vc with N . Note that ∆v/∆vc < 5% when N ≥ 9, and ∆v/∆vc < 1%
when N ≥ 19. Accordingly, it may be concluded that an accurate approximation of an elliptic DNKO, in terms of total
velocity variation per revolution, is possible using a CPO with about ten equally spaced maneuvers.
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Figure 3 Dimensionless velocity variation ∆v/∆vc as a function of N , see Eq. (37).

Model validation and mission application
The previous mathematical model has been validated through results taken from the literature [13] and by simulation,

using the spacecraft nonlinear equations of motion.
Consider first a displaced geostationary orbit (e = 0), which is the same example as that discussed in Ref. [13]. Assuming

a continuous thrust and observing that
√
µ⊕/p3 = 2π/(1 day), the velocity variation per revolution is, from Eq. (35)

∆vc =
4π2H

1 day
(38)
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Let the displacement be H = 35 km and N = 10. From Eq. (38) ∆vc = 15.99 m/s, whereas Eq. (37) gives ∆v/∆vc ' 1.03425,
so that ∆v = 16.54 m/s. In this case the velocity variation of the i-th maneuver is simply ∆vi = ∆v/N = 1.654 m/s, according
to Eq. (31). These values coincide with the results discussed in section 4 of Ref. [13]. Finally, the function y = y(ν) in the
generic i-th ballistic arc can be obtained from Eq. (22) as

y(ν) ≡ ỹ(ν) =
H [cos(2π/N)− 1]

sin(2π/N)
sin (ν − νi)−H cos (ν − νi) (39)

whose maximum modulus is obtained when ν = νi + ∆ν/2 ≡ νi + π/N , viz.

|y|max =
H

cos(π/N)
' 36.8 km (40)

A second interesting application of the proposed mathematical model consists in the generation of a CPO above the
dwarf planet Ceres, which could allow a spacecraft to observe the polar zones of the celestial body. In this case the Keplerian
reference trajectory is a heliocentric orbit (µ = µ�), with eccentricity e = 0.079 and semilatus rectum p = 2.7477 au. Assuming
a displacement H = 80000 km, the continuous thrust case requires a velocity variation per revolution (around the Sun) of
about ∆vc = 21.972 m/s. Using N = 10 impulses, Eq. (34) gives ∆v ' 22.724 with, again, ∆v/∆vc ' 1.03425. These results
may be compared with those found by solving a series of targeting problems using the spacecraft nonlinear equations of motion
in an inertial reference frame, where (̂iI , ĵI) coincides with the orbital plane of Ceres. The components of the velocity variation
required in the i-th maneuver are reported in Tab. 1 along with those obtained from Eq. (31).

Table 1 Ceres mission case: components of ∆vi (m/s) obtained by numerical simulation.

Point ∆vi · î× 105 ∆vi · ĵ ∆vi · k̂ × 103 ∆vi by Eq. (31)
P1 0 −2.4520 0.7255 2.4520
P2 0.2077 −2.4177 0.7054 2.4177
P3 0.3235 −2.3280 0.6541 2.3280
P4 0.3079 −2.2170 0.5935 2.2170
P5 0.1825 −2.1272 0.5465 2.1272
P6 0 −2.0930 0.5291 2.0930
P7 −0.1825 −2.1272 0.5465 2.1272
P8 −0.3079 −2.2170 0.5935 2.2170
P9 −0.3235 −2.3280 0.6541 2.3280
P10 −0.2077 −2.4177 0.7054 2.4177

Unlike the linear model, according to which the velocity variation vector is parallel to ĵ, the actual ∆vi has a nonzero

component in the P plane. This component is however several order of magnitude smaller than that along ĵ and, therefore, the
value of ∆vi given by Eq. (31) and reported in the last column of Tab. 1, is an accurate approximation of the actual velocity
variation required by the i-th maneuver. This conclusion is further confirmed by the total velocity variation per revolution,
since

∑N
i=1‖∆vi‖ ' 22.725 m/s nearly coincides with the value obtained from Eq. (34). Table 1 also shows a symmetry of

the results with respect to the point P6, which coincides with the orbit aphelion. Finally, the small differences of ‖∆vi‖ at
different points are due to the small value of the reference orbit eccentricity.

The last example is a CPO over the Mercury’s poles. In this case e = 0.2056 and p = 0.3707 au, whereas the velocity
variation per revolution (around the Sun), given by Eq. (34), is drawn in Fig. 4 as a function of H ∈ [110, 250] × 103 km
and N = {3, 4, 5, 10}. In particular, the figure confirms that a CPO generated by N = 10 equally spaced impulses requires a
velocity variation per revolution close to ∆vc. Assuming, for example, N = 10 and H = 150000 km, the velocity variations are
∆v ' 0.8598 km/s and ∆vc ' 0.8313 km/s, while the values of ∆vi are shown in Fig. 5. In this case the non-negligible orbital
eccentricity induces a marked ∆vi variation along the orbit.

Conclusions
An elliptic displaced orbit may be suitably approximated by a set of ballistic arcs patched by impulsive maneuvers, which

take place at azimuthally equally spaced points. The use of Hill-Clohessy-Wiltshire equations allows the required velocity
variation per revolution to be obtained at linear order with a compact and closed-form solution. The total velocity variation
depends on the orbital displacement, is a function of the semilatus rectum of the displaced orbit and of the number of impulses
but, notably, has not an explicit dependence on the orbital eccentricity. The special case of continuous thrust is obtained in
the limit as the number of impulses tends to infinity, thus extending similar results available in the literature in the special
case of circular orbit. The proposed mathematical model may be used in a more general set-up, when the impulses are applied
at generic points along the orbit. Although in that case a compact solution for the total velocity variation per revolution is
lost, the required velocity variation at any maneuver point is given analytically, and so an estimate of the mission performance
can be obtained with a reduced computational cost.
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