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Abstract

A common source of poor control performance in industrial processes is represented by stiction in control valves, which often
induces offset, oscillating behavior, and even loss of stability. Recent studies have investigated the effectiveness of embedding
stiction models into model predictive controller (MPC) schemes, moving from stiction unaware to different stiction aware formu-
lations, which help to remove fluctuations and may guarantee higher set-point tracking ability. To this aim, along with the process
model the controller needs to use a dynamic model of sticky valves. This paper proposes an efficient, computational approach to
obtain both valve and process dynamics, under the framework of Hammerstein system identification, which is based on nonlinear,
gradient-based, numerical optimization. In order to improve the computational behavior and effectiveness of the methodology, a
recently proposed smoothed model of stiction is deployed. The proposed methodology is validated in several (single-input single-
output, and multivariable) examples, where the effectiveness of the obtained stiction aware MPC regulator is also evaluated against
a stiction unaware counterpart.
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1. Introduction

Industrial control loops often suffer from performance degra-
dation due to valve stiction, i.e. excessive static friction be-
tween the stem and packing, which causes sustained oscilla-
tions of process variables, ultimately leading to shorter actuator
life and inferior overall performance of the plant [2]. These os-
cillations are induced by controller integral action which forces
the input to the actuator to change while the actual actuator po-
sition remains stuck until this position difference becomes so
large that the valve jumps. In this way, the valve typically jumps
between two extreme positions, above and below the desired
operating point. A partial remedy to the problem is retuning
the controller, slowing down the integral action, to reduce am-
plitude and frequency of oscillations [3]. However, this comes
at expense of slower rate of disturbance rejection and set-point
tracking. Furthermore, the behavior can become sluggish again
depending on the operating conditions [4].

In the context of Model Predictive Control (MPC) systems,
industrial offset-free formulations (i.e. which include integral
action via disturbance estimation) also show a similar oscil-
lating behavior, unless a dynamic model of the actuator mal-
function is taken into account in the controller formulation. In-
deed, stiction compensation via MPC and other advanced con-
trol methods is an area of recent activity, as witnessed by other
several works published in the last years [5, 6, 7, 8, 9, 10].

In two recent works [6, 10] we showed that stiction embed-
ding MPC, in which the MPC model is augmented with valves

IA preliminary version of this paper has been presented in [1].

dynamics, is a suitable approach to obtain good set-point track-
ing ability and stiction compensation. Relatively good robust-
ness to valve model errors has been shown, but performance
tend to deteriorate even significantly when such errors increase.
It is therefore important to have reliable and possibly non-
invasive methods to estimate the sticky valve dynamics.

Pneumatic sliding stem valves are the most spread final con-
trol elements. In such devices, stiction can be described both by
detailed physical models and by empirical (data-driven) models
[11]. For practical purposes, only the latter are actually useful,
as few parameters and relatively simple algebra are involved.
The most established data-driven models have been proposed
in [12], [13] and [14].

The ability of providing an estimate of stiction amount is a
crucial step for shortlisting the most critical valves, schedul-
ing valve maintenance, and also performing on-line compen-
sation. Methods available in the literature can be broadly di-
vided into four main categories: apparent stiction techniques
[15], Hammerstein-based methods (e.g., [16, 17, 18, 19, 20]),
nonlinear process model-based methods (e.g., [21, 22]), mixed
approaches (e.g., [23, 24, 25]). Some techniques perform detec-
tion and quantification of valve stiction in a single stage, while
other methods can be applied only once stiction is clearly de-
tected by suitable methods.

Among others techniques, the methods proposed in [18] and
[26] used global and gradient-free optimization approaches.
The first one implemented genetic and path search algorithms,
but, despite being quite robust, high computational resources
are required. The second one proved to be an improvement as
one-stage identification is performed by means of a determin-
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istic algorithm that is no longer dependent on the initial guess
of stiction parameters, obtained via the ellipse fitting method of
[15].

The objective of this paper is to propose a reliable and effi-
cient methodology to estimate valve stiction amount, on the ba-
sis of a recently proposed smoothed model [6]. This procedure,
previously defined for SISO linear systems [1], is extended to
MIMO systems in this work. Moreover, in the case of SISO
processes, the time-delay is also estimated.

The remainder of the work is organized as follows. Prelimi-
naries about problem definition and valve stiction modeling are
given in Section 2. The proposed identification and estimation
method is described in Section 3. Several numerical examples
are then presented in Section 4, to test both the identification re-
sults and the enhancements obtained in the MPC. Finally, con-
clusions are drawn in Section 5.

2. Problem definition

The plant under study is formed by control valves followed
by the process dynamics as depicted in Figure 1. In detail, χ

represents the valve output, that is, the process input; y is the
process output; u is the output of the model predictive con-
troller, and, finally, v is white Gaussian noise.

Figure 1: The closed-loop system with (sticky) control valves followed by the
process.

The systems analyzed in the current work are both SISO and
MIMO. The whole plant dynamics can be written as:

zk+1 = f (zk,uk)

yk = h(zk)+ vk
(1)

where the valve output χ represents the first m components of
the state vector of whole plant, that is, zk = [χk−1,ξk]

T ∈ Rnz .
When the valves stiction nonlinearity is followed by a linear

process dynamics, the whole plant forms an extended Hammer-
stein structure [27]. Valves dynamics is described by a data-
driven stiction model later presented, while the linear process
dynamics can be expressed by ARX, ARMAX, or state-space
models. In this latter case, we can write:

zk+1 =

[
χk

ξk+1

]
=

[
ϕ(χk−1,uk)

Aξk +Bϕ(χk−1,uk)

]
yk = Cξk + vk

(2)

where ξ ∈ Rn is the process state vector, A ∈ Rn×n, B ∈
Rn×m, C ∈ Rp×n, being n the process model dimension, m the
number of inputs (and valves) and p the number of outputs,

i.e. u ∈ Rm, χ ∈ Rm, and y ∈ Rp. The first m states χ of aug-
mented state z is given by the stiction nonlinearity, expressed
by the function ϕ(·): Rm×Rm→ Rm, later discussed. As pre-
viously explained in Section 1, the most used and established
data-driven methods for valve stiction modeling adopt rela-
tively simple algebra schemes. The standard empirical model
by He and coworkers [14] and its revised version, the so-called
semi-physical model [28], have been proved suitable to repro-
duce the valve response generated by physical stiction models
without involving computationally intensive numerical integra-
tion. As a matter of fact, only two parameters are used: the
dynamic ( fD) and the static ( fS) friction coefficients.

In these two stiction models, the transient valve dynamics is
ignored, i.e. a fast response from the valve is assumed. On the
other hand, a static – but with memory – nonlinear function is
used, that is, only the stationary-state values of stem position
are considered.

The discontinuous stiction model. He’s standard data-driven
model [14] can be rewritten so that the sticky valve has a non-
linear dynamics χ

( j)
k = ϕ(χ

( j)
k−1,u

( j)
k ). Hence, the generic j-th

valve is expressed by the following relation:

χ
( j)
k =

{
χ
( j)
k−1 +[e( j)

k − sign(e( j)
k ) f ( j)

D ] if |e( j)
k |> f ( j)

S

χ
( j)
k−1 if |e( j)

k | ≤ f ( j)
S

(3)
where f ( j)

S and f ( j)
D are static and dynamic friction parameters,

respectively, and e( j)
k = u( j)

k −χ
( j)
k−1, with j = 1, . . . ,m. Note that

e( j)
k can be interpreted as the valve position error, while f ( j)

S ≥
f ( j)
D by definition. The valve dynamics (3) can be rewritten by

expanding the nonlinear sign function, and finally by solving
the inequalities, as follows:

χ
( j)
k =


u( j)

k − f ( j)
D if u( j)

k −χ
( j)
k−1 > f ( j)

S

u( j)
k + f ( j)

D if u( j)
k −χ

( j)
k−1 <− f ( j)

S

χ
( j)
k−1 if |u( j)

k −χ
( j)
k−1| ≤ f ( j)

S

(4)

Therefore, the stiction nonlinearity ϕ(·) is formed by a set of
three linear, mutually exclusive relations, thus constituting a
sort of switching “multi-mode” model, which acts as a discon-
tinuous model.

The smoothed stiction model. It is evident that the presence of
such if-else statements implies two hard discontinuities in the
input-output relation of each valve. Therefore, model (4) may
affect the performance of the considered optimization problem,
thus producing a bad quality parameters identification. Hence,
to avoid this issue, in this work the smoothed stiction model
introduced in [6] is used and a smoother optimization problem
is obtained. Model (4) is expressly approximated by using a
smoothing function ϕS(·) such that:

χ
( j)
k = η1(e

( j)
k )χ

( j)
k−1 +(1−η1(e

( j)
k ))u( j)

k +η2(e
( j)
k ) f ( j)

D (5)
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where η1(e
( j)
k ) and η2(e

( j)
k ) are the sum of two hyperbolic func-

tions, defined as below:

η1(e
( j)
k ) =

1
2

tanh(τ(e( j)
k + f ( j)

S ))+
1
2

tanh(τ(−e( j)
k + f ( j)

S ))

η2(e
( j)
k ) =

1
2

tanh(−τ(e( j)
k + f ( j)

S ))+
1
2

tanh(τ(−e( j)
k + f ( j)

S ))

(6)

where τ is a smoothing parameter. Extensive simulations have
verified that, using τ ≥ 104, the valve signature given by the
proposed smoothed model (5) matches precisely the original
He’s model results (see [6] for more details). It is to be noted
that the proposed identification method can also be applied with
other smoothing functions derived on the basis of the various
discontinuous data-driven stiction models available in the liter-
ature, e.g. [13] and [29].

3. The proposed methodology

In this section the proposed stiction identification and quan-
tification method is presented.

3.1. Hammerstein Model
As stated in Section 2, the linear part of the extended Ham-

merstein system to be identified can be expressed by various
model. In the proposed approach, an AutoRegressive eXoge-
nous (ARX) structure in discrete-time form is considered.

The approach used to build multiple input - multiple output
(MIMO) models is to write a series of multiple input - single
output (MISO) relations, for each output y(i), with i = 1, . . . , p,
by identifying the parameters of the following linear difference
equation:

y(i)k +a(i)1 y(i)k−1 + . . .+a(i)
n(i)a

y(i)
k−n(i)a

= b(i)1,1χ
(1)
k−1 + . . .+

b(i)
1,n(i)b1

χ
(1)

k−n(i)b1

+ . . .+b(i)m,1χ
(m)
k−1 + . . .+b(i)

m,n(i)bm

χ
(m)

k−n(i)bm

+ v(i)k

(7)

where χ
( j)
k is the j-th valve output, that is, the j-th process in-

put, and y(i)k is the i-th output; n(i)a is the i-th output order, n(i)b j is
the j-th input order associated with the i-th output.

Using the backward shift operator q−1 (i.e. such that x( j)
k =

q−1 x( j)
k+1), the ARX system can be described by the following

polynomials:

A(i)(q) = 1+a(i)1 q−1 + . . .+a(i)
n(i)a

q−n(i)a (8a)

B(i)
j (q) = b(i)j,1q−1−t(i)d j + . . .+b(i)

j,n(i)b j

q−n(i)b j−t(i)d j (8b)

where t(i)d j is the j-th input time-delay of the process associated
with the i-th output. Hence, the system (7) can be rewritten as:

A(i)(q)y(i)k =
m

∑
j=1

B(i)
j (q)χ( j)

k−t(i)d j

+ v(i)k (9)

in which the valve position χ is calculated from the controller
output u using the aforesaid smoothed stiction model ϕS(·) (5).

3.2. Optimization problem structure

The core of the proposed stiction quantification method is
comprised by a nonlinear optimization problem. Let us define
X as the vector of optimization variables, formed by stacking
2m stiction parameters, the static and dynamic friction of (5),
with Na + Nb coefficients of the ARX process model (9), where
Na = ∑

p
i=1 n(i)a and Nb = ∑

p
i=1 ∑

m
j=1 n(i)b j . The optimization vari-

able vector can be thus written as:

X = [ f̂ (1)S , . . . , f̂ (m)
S , f̂ (1)D , . . . , f̂ (m)

D , θ̂ T ]T (10)

where:

θ̂ = [a(1)1 , . . . ,a(1)
n(1)a

, . . . , a(p)
1 , . . . ,a(p)

n(p)
a
,

b(1)1,1, . . . ,b
(1)

1,n(1)b1

, . . . ,b(p)
m,1, . . . ,b

(p)

m,n(p)
bm

]T (11)

The parameters of the optimization problem, instead, are
the controller outputs u and corresponding plant outputs y se-
quences, i.e. yyy = [y0, . . . ,yN ] ∈ R(p×N) and uuu = [u0, . . . ,uN ] ∈
R(m×N) in which N is the number of data-points collected. For
the sake of simplicity, the orders on the autoregressive and ex-
ogenous terms (n(i)a ,n(i)b j ) ∀ i = 1, . . . , p, ∀ j = 1, . . . ,m are as-
sumed known a priori. If process orders are not known, they
could be evaluated by applying an information criterion (see
e.g. [30]).

Let us define the symbol yyy(i)
[k:k+ρ]

= [y(i)k , . . . ,y(i)k+ρ
] ∈ R(1×ρ),

being ρ a generic time sample; therefore, the nonlinear opti-
mizer finds an optimal solution solving the following one-stage
problem:

X∗ = argmin
X

1
p

p

∑
i=1

SE(yyy(i)
[εi:N]

, ŷyy(i)
[εi:N]

) (12a)

subject to:

χ̂
( j)
k = ϕS(χ̂

( j)
k−1,u

( j)
k ) ∀k = 1, . . . ,N; j = 1, . . . ,m (12b)

ŷyy(i)
[εi:N]

= Φ
(i)

θ̂
(i) (12c)

f ( j)
min ≤ f ( j)

S , f ( j)
D ≤ f ( j)

max ∀ j = 1, . . . ,m (12d)

f ( j)
S ≥ f ( j)

D ∀ j = 1, . . . ,m (12e)

σ
2(χ̂χχ( j))≥ σ

2
min, j ∀ j = 1, . . . ,m (12f)

where εi = max(n(i)a ,N(i)
b ), with N(i)

b = ∑
m
j=1 n(i)b j + t(i)d j , repre-

sents the number of unidentifiable data-points for each output
y(i) and χ̂χχ

( j) = [χ̂
( j)
1 , . . . , χ̂

( j)
N ] ∈ R(1×N) is the estimated j-th

valve position sequence. The regressor matrix for the i-th out-

put, Φ(i) ∈ RN−εi×n(i)a +N(i)
b , is built by stacking singular regres-

sor vectors φ
(i)
k at each sample time k, with values of valves

position estimated from the nonlinear model (5), i.e.:
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φ
(i)
k = [−y(i)k−1, . . . ,−y(i)

k−n(i)a
, χ̂

(1)

k−1−t(i)d1

, . . . , χ̂
(1)

k−n(i)b1−t(i)d1

,

. . . , χ̂
(m)

k−1−t(i)dm

, . . . , χ̂
(m)

k−n(i)bm−t(i)dm

] (13)

The term θ̂ (i) represents the subset of coefficients of θ̂ associ-
ated with the i-th output and defined consistently with (11).

The objective function is the Square Error (SE) between the
output of actual process and of identified model ŷ, where:

SE(yyy(i)
[εi:N]

, ŷyy(i)
[εi:N]

) = (yyy(i)
[εi:N]
− ŷyy(i)

[εi:N]
)T (yyy(i)

[εi:N]
− ŷyy(i)

[εi:N]
) (14)

Remark 1. The only data points taken into consideration in the
objective function are in the range [εi : N]. The components of
the estimated output corresponding to the first εi data points,
necessary to build the output predictor, are imposed equal to
the real ones, i.e. ŷyy(i)

[0:εi−1] = yyy(i)
[0:εi−1].

Remark 2. It has to be underlined how the real valve positions
χ are not known, since these measurements may not be avail-
able in many industrial plants. It is thus not possible to insert
these variables into the objective function. Therefore, being
model (2) an extended Hammerstein model composed by two
parts, it may happen that a minimization on the process out-
put error (12a) does not reflect a minimization on valve output
error, that is, the quantity 1

m ∑
m
j=1(χχχ

( j)− χ̂χχ
( j))T (χχχ( j)− χ̂χχ

( j)).

We note that constraints (12d) and (12e) describe the stic-
tion parameters domain. As a matter of fact, this domain has a
triangular shape: 0 = f ( j)

min ≤ f ( j)
D ≤ f ( j)

S ≤ f ( j)
max. Indeed, the so-

called overshoot stiction cases are excluded, since waveforms
generated by these parameters combinations are rarely observed
in the industrial practice. The largest value of stiction parame-
ters can be assumed equal to the span of sustained oscillation of
the corresponding controller output: f ( j)

max = ∆u( j). As known,
under boundary conditions, when f ( j)

S + f ( j)
D = ∆u( j), the valve

jumps between two extreme positions, thus generating an ex-
actly square-shaped signal.

Constraint (12f) is imposed on the variance of the identified
sequence of valve position, σ2(χ̂χχ( j)). This assures avoiding un-
common waveforms, that is, the stem position of a sticky valve
cannot be fully or mostly steady when the input is oscillating,
so that χ̂χχ

( j) is forced to oscillate just because of the presence
of stiction. A safe choice is considering the controller output
variance, e.g. σ2

min, j = ασ2(uuu( j)), with α = 0.1.

3.3. Routine initialization and implementation

Problem (12) calculates the optimal solution starting from
a suitable initial point X0. In particular, the coefficient vec-
tor θ̂ of linear process dynamics is initialized by performing
a first-guess identification with an ARX model between con-
troller outputs u and process variables y, that is, no stiction is

firstly assumed within the m valves. Hence, for the i-th output,
by reversing (12c), θ̂

(i)
0 is calculated by:

θ̂
(i)
0 = pinv(Φ(i)

0 )yyy(i)
[εi:N]

= [Φ
(i)T
0 Φ

(i)
0 ]−1

Φ
(i)T
0 yyy(i)

[εi:N]
(15)

where Φ
(i)
0 ∈R

N−εi×n(i)a +N(i)
b is the initial regressor matrix of the

measurements, computed by stacking singular linear regressor
vectors φ

(i)
0,k at each sample time k:

φ
(i)
0,k = [−y(i)k−1, . . . ,−y(i)

k−n(i)a
,u(1)

k−1−t(i)d1

, . . . ,u(1)
k−n(i)b1−t(i)d1

,

. . . ,u(m)

k−1−t(i)dm

, . . . ,u(m)

k−n(i)bm−t(i)dm

] (16)

Considerations made about θ̂ (i) stand also for θ̂
(i)
0 , that is, θ̂

(i)
0

contains all the process dynamics coefficients related to the i-th
output.

Initialization of the stiction parameters f ( j)
S and f ( j)

D is done
by multiple iterations. As a matter of fact, in order to avoid to
be stuck in a local minimum, a multiple starting algorithm has
been implemented thus improving robustness of the optimiza-
tion routine. The proposed approach (12) is hence iterated by
setting M initial guesses. A good method is starting from the
boundaries of the triangular-shaped domain of stiction parame-
ters, by fixing a suitable step, e.g. ∆ f ( j)

S = ∆ f ( j)
D = 0.5. Further

initial points can be obtained from the ellipse-fitting method
[15]. An estimate of the so-called apparent stiction S0 on the
x-width of polar plot PV(OP), that is, y(i)(u( j)), is computed,
and a limited set of combinations which satisfy S0 = f ( j)

S + f ( j)
D

are added. Thus, respecting feasibility constraints and stability
conditions of the identified linear process, the best solution in
terms of objective function value is extracted.

Finally, note that, being integer variables, the various time-
delays t(i)d j cannot be considered as optimization variables in the
proposed framework, but only as parameters, as they would re-
quire the redefinition of problem (12) in a Mixed-Integer Non
Linear Programming (MINLP) way. Therefore, an iterative ap-
proach can be derived by repeating the aforesaid initialization
and computing the optimization problem, for different time-
delay matrices Θd , by varying the single elements within preset
ranges. This approach is robust, but becomes computationally
very expensive for large MIMO systems, as tested combinations
are T m·p, being T the number of possible time-delays for each
input-output channel.

In the current work, implementation of the above described
algorithm, is performed on a code written in Python 3.6 with
the use of symbolic framework CasADi 3.4 [31]. As nonlin-
ear programming solver, the optimization problem implements
IPOPT, a well-established interior point algorithm [32].

4. Simulation analysis

The performance of the proposed methodology is investi-
gated on two numerical examples.
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4.1. Example 1: SISO case with time-delay

For the linear process dynamics, a third order transfer func-
tion with time-delay is considered:

P(s) =
1

(10s+1)(5s+1)(s+1)
e−5s (17)

which corresponds to the following ARX process in discrete-
time form with sample period Ts = 1 and (na,nb, td) = (3,3,5):

yk = 2.0914yk−1−1.3749yk−2 +0.2725yk−3

+0.002445χk−1−td +0.007181χk−2−td +0.001278χk−3−td +vk
(18)

The output white noise v is a random sequence with normal
distribution, zero-mean and standard deviation σ = 10−2. Valve
stiction is described by standard discontinuous He’s model (3)
with parameters fS = 5 and fD = 2.

Closed-loop data are generated in Python by using a model
predictive controller (MPC) [33] and imposing some set-point
changes. This controller formulation is stiction unaware, as
valve dynamics ϕ(·) of (2) is completely neglected and only the
process model P(s) in the corresponding state-space discrete-
time form is embedded.

The Finite Horizon Optimal Control Problem (FHOCP)
solved at each time k is defined as following:

min
xxx,,,uuu

NH−1

∑
i=0

[
(ξi−ξs,k)

T Q(ξi−ξs,k)+(ui−ui−1)
T S(ui−ui−1)

]
+

(ξNH −ξs,k)
TVF(ξNH −ξs,k) (19a)

subject to:

ξ0 = ξ̂k (19b)
ξi+1 = Aξi +Bui (19c)

yi = Cξi + d̂k (19d)
ξi ∈ X, ui ∈ U, yi ∈ Y (19e)

where NH is a positive integer representing the horizon length,
Q, S, and VF are the various penalty matrices, ξ̂ and d̂ are
the current state and disturbance estimate of the model (2), the
triple (ξs,k,us,k,ys,k) represents the steady-state values satisfy-
ing (2), and the triple (X,U,Y) forms the constraint set. For
more details see [6].

The smoothed stiction model of (5) is used in the identifi-
cation stage, on the basis of controller output u and process
variable y, vectors of length N = 2500. The ARX model orders
are assumed known; the time-delay is estimated by using the
iterative approach presented in Section 3.3, by testing T = 11
values in the interval [0,10].

The proposed nonlinear optimization method proves to be
effective, as it obtains very accurate valve stiction parameters:
f̂S = 4.95, f̂D = 2.06. The estimated process time-delay is equal
to the true value t̂d = 5, and the other identified process param-
eters are not too far from the actual values:

Figure 2: Example 1. Unit step response of the actual and the identified process
dynamics.

θ̂ = [−1.281,−0.1107,0.413,0.0030,0.0073,0.0099]

In particular, the step response of the actual linear process P(s)
and the identified dynamics P̂(s) are really close, as shown in
Figure 2. Time-delay is perfectly estimated and the identified
transitory response is very accurate; only the static gain is af-
fected by a little error.

Note that the computational time required by the proposed
method is quite short: about 195 s for M = 7. Figure 3 shows
measured time trends and estimated signals for a data window
of sustained oscillation with a set-point variation. It is to be ob-
served that the fitting on process variable is high, and also the
estimation of valve position is very accurate even when larger
changes of input and valve position occur right due to the set-
point change.

The same data set is then analyzed with a traditional grid-
search method over the space of nonlinear model parameters,
as explained by [20]. A triangular grid of stiction parameters
( fS, fD) is built, and for each possible combination valve out-
put is generated from measured controller output by using the
smoothed stiction model (5). Then, ARX model coefficients are
identified by least-squares regression on the basis of the gener-
ated valve output and the measured process output. The opti-
mal combination of stiction parameter is evaluated as the one
that minimizes the SE on process variable (14). The step size
of the grid is set to ∆ fS = ∆ fD = 0.1, the largest possible value
of stiction parameters are set equal to the sustained oscillation
span of the controller output fS,max = fD,max = ∆u, and the true
combination is included. Not surprisingly, stiction parameters
are identified exactly, but at the expense of much higher com-
putational time (about 10500 s). In addition, the grid method
finds the exact stiction parameter values as expected, although
the estimated time-delay is incorrect (td = 6). This is due to the
presence of white noise, which induces the minimum value of
SE being calculated with a different value of time-delay.

It is evident that the computational time of the proposed
optimization-based method is definitely shorter than grid-
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Figure 3: Example 1. Measured and estimated time trends.

Figure 4: A multivariable system: the Continuous Stirred Tank.

search, thus offering a remarkable advantage in on-line appli-
cations. The validity of the proposed technique is further inves-
tigated in the following multivariable example.

4.2. Example 2: a MIMO case

As multivariable system, a continuous stirred tank (CST)
mixer is here studied. A schematic diagram of the system is
shown in Figure 4. The target is to control the output concen-
tration Cout and the output temperature Tout by means of two
control valves (V1, V2), which can be subject to stiction, de-
scribed by He’s standard model (4). Valve V1 is sticky, with
f (1)S = 8, f (1)D = 1, while valve V2 is healthy ( f (2)S = f (2)D = 0),
so that χ(2) = u(2). The process dynamics is described by the
transfer matrix G(z) reported in Table 1. Further details on the
CST and the derivation of linear process model from the orig-
inal nonlinear system dynamics are reported in Appendix A.

A standard model predictive controller based only on the lin-
ear process model of Table 1 is considered. As said in Section
4.1, this controller formulation is stiction unaware, as it totally
disregards valve dynamics. A data set is obtained in closed-loop
mode by imposing some set-point changes to process outputs.
Each output of the system is corrupted by measurement white
noise v, whose covariance matrix is set to Rwn = 10−4. The pre-
diction horizon and the sampling period are set to NH = 50 and
Ts = 1 min, respectively.

On the basis of the generated data, i.e. the sequences of con-
troller outputs uuu and process variables yyy, the smoothed stiction
model (5) and the MIMO ARX model (9) are used in the iden-
tification stage. The ARX model orders and the time-delay
matrix (T = 000m×p) are supposed known for the sake of sim-
plicity. The proposed nonlinear optimization method proves
to be effective, as it obtains very accurate stiction parameters:
f̂ (1)S = 7.99, f̂ (1)D = 1.01, and f̂ (2)S = 0.0, f̂ (2)D = 0.0. The corre-
sponding process parameters are also reasonably close to their
actual values, as shown in Table 2. As a matter of fact, the unit
step response of the actual linear process G(z) and the identified
process dynamics Ĝ(z) are really close, as shown in Figure 5. It
is important to remark that the actual transfer function g12 is es-
sentially null, whereas the identified one shows practically zero
steady-state gain and some minor, transient oscillations around
the origin. Note that the computational time required is very
short: about 43 seconds for M = 5 starting points.

This data set is also analyzed with the traditional grid-
search method [20]. For a MIMO case, such approach has
to be repeated for each f ( j)

s and f ( j)
d , causing an exponential

growth of the computational cost with the number of stiction
parameter to be identified. The step size of the grid chosen is
∆ fS = ∆ fD = 1, ten times bigger than the SISO case, and the
true combination is included. Each parameter f ( j)

s or f ( j)
d is

spaced in a range of the maximum periodic oscillation of uuu( j).
Not surprisingly, stiction parameters are still identified exactly,
but even with such a loose grid, the resulting computational
time is about 6200 s. Decreasing the grid step size to 0.1, as
used in the SISO case, makes the computational time nearly
reaching a week.

Then, a stiction model with the newly identified parameters
is implemented within two other formulations of MPC in order
to build stiction aware controllers, as proposed in [6, 10].

• The first structure, named stiction embedding controller,
is thus derived by augmenting the plant model with esti-
mated valves dynamics with the smoothed model ϕS(·).

• The second controller, named stiction inversion, is also
aware of stiction, but it has an explicit model for the in-
verse dynamics of He’s standard stiction model (ϕ−1).

In stiction inversion MPC, the controller output ũ, subject to
linear optimization, forms input to stiction inverse model, so
that u = ϕ−1(ũ) is the output of the whole controller, as firstly
proposed by [34]. Note that, for a perfect stiction inversion, one
gets ϕ(ϕ−1(ũ)) = ũ, and then ũ≡ χ .

The following scenario is studied: the linear model of CST
used within both stiction aware MPC formulations is the exact
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Table 1: MIMO linear model G(z) used for the nonlinear dynamics of CST.

Input 1 Input 2

Output 1 g11 =
0.0024z4−0.0086z3+0.01167z2−0.0070z+0.0016

z5−4.5130z4−8.1438z3−7.3452z2+3.3117z−0.5969 g12 =
−9.0795·10−6z4+3.2188·10−5z3−4.2938z2+2.5550z−5.7232·10−6

z5−4.5130z4−8.1438z3−7.3452z2+3.3117z−0.5969

Output 2 g21 =
−0.0169z4+0.0608z3−0.0823z2+0.0494z−0.0111

z5−4.5130z4−8.1438z3−7.3452z2+3.3117z−0.5969 g22 =
0.0281z4−0.1014z3+0.1371z2−0.0823z+0.0185

z5−4.5130z4−8.1438z3−7.3452z2+3.3117z−0.5969

Table 2: Identified ARX MIMO system Ĝ(z).

Input 1 Input 2

Output 1 g11 =
0.0022z4+0.0020z3+0.0009z2+0.0014z+0.0015

z5−0.1111z4−0.1135z3−0.1432z2−0.1436z−0.1584 g12 =
−0.0168z4−0.0111z3−0.0075z2−0.044z−0.0010

z5−0.1111z4−0.1135z3−0.1432z2−0.1436z−0.1584

Output 2 g21 =
−0.0160z4+0.0168z3+0.0213z2−0.0229z+0.0007

z5−0.2079z4−0.2279z3−0.1270z2−0.1125z−0.1104 g22 =
0.0905z4−0.0653z3+0.0495z2+0.0590z−0.0699

z5−0.2079z4−0.2279z3−0.1270z2−0.1125z−0.1104

one shown in Table 1, and only stiction embedding MPC has a
globally nonlinear model, as it also implements valves nonlin-
earity, while stiction inversion MPC is purely linear.

The performance of these two MPC formulations is tested in
closed-loop mode, under the same conditions in terms of state
observer and disturbance model previously used for the stiction
unaware controller. The prediction horizon and the sampling
period are also the same. The peculiarities lay in a suitable
stiction compensation sequence and in a revised cost function,
which are respectively used within dynamic optimization mod-
ule of the stiction embedding MPC formulation as warm-start
and as objective function, as introduced in [6] and then further
discussed in [10].

The warm-start for stiction-compensation. In order to get good
tracking performance and move variables to their targets by
avoiding sustained oscillations induced by valve stiction, a suit-
able warm-start is given to the stiction embedding MPC non-
linear programming solver. That is, the FHOCP (19) is solved
by IPOPT starting from the warm-start computed as follows.

At each sampling time, the steady-state optimization mod-
ule can compute a suitable steady-state target (χss) also for the
valve output:

zss =

[
χss
ξss

]
=

[
ϕ(χss,uss)

Aξss +Bϕ(χss,uss)

]
yss = Cξss = ysp

(20)

A general formulation of warm-start can be obtained by solv-
ing a dynamic optimization problem, as explained in [6, 10].
Alternatively, a particular input sequence could be used as first-
guess trajectory within the dynamic module. This suitable
warm-start is inspired by a new version of the well-known two-
move stiction compensation method [35].

In the present work, the following sequence is given as warm-
start to input signal of each m valve on the basis of standard

He’s stiction model (4):

uk =

{
uk−1 +a fS if uk−1 ≥ χss

uk−1−a fS if uk−1 < χss

uk+1 =

{
χk + fD if uk ≥ χk

χk− fD if uk < χk

uk+2 =

{
χss− fD if uk+1 ≥ χss

χss + fD if uk+1 < χss

uk+ j = uk+2(= uss) if j > 2

(21)

The first input uk moves the valve stem away from its stuck
position, if a > 2. By observing (4), it is evident that the max-
imum value of the difference between valve input and output
that does not cause a movement in the valve is |uk−χk−1|= fS.
If uk−1 ≥ χss, in the worst case uk−1 − χk−1 = − fS. There-
fore, if a > 2, one gets |uk− χk−1| > fS and moves the valve:
χk 6= χk−1. Then, for the second movement uk+1, the input is
moved towards the actual valve position χk and set at a distance
fD. The third movement brings the stem position to its steady-
state value (χss) in order to eliminate error on control variable
and set the input at distance fD, so that χk+2 = χss. After that,
the stem cannot move from steady-state position since the input
signal uk+ j (with j > 2) is always kept constant.

The controller tuning. For all three MPC formulations, tuning
parameters of the static module and the terminal penalty matrix
are the same: Qss = I2, Rss = 0, and VF = 103Inz . Some differ-
ences lay in the dynamic modules. Both stiction unaware (SU)
and stiction inversion (SI) MPC adopt the dynamic problem
(19) with the following penalty values: Q = CT C

maxc2
i j
+ 0.01Inξ

,

where maxc2
i j is the maximum element of matrix C, and S =

diag[10,100].
In addition, within stiction embedding (SE) MPC, the objec-

tive function (19a) is modified as follows:

`(zi,ui) = (zi− zss)
T Qz(zi− zss)+∆χ̂

T
i Qs∆χ̂i

+(ui−us,k)
T R(ui−us,k) (22)
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Figure 5: Example 2. Unit step response of the actual and the identified process dynamics.

where R ∈ Rm×m is the control penalty matrix, ∆χ̂i = χ̂i− χ̂i−1
is the rate of change of the estimated valve position, and Qs
∈ Rm×m is the corresponding difference penalty matrix. Matri-
ces values are: Qz = diag[103,103,1,1,1,1,1], QS = diag[1,1],
R = diag[10,10]. Note that limitations on rate of changes of
process input are now imposed directly on the estimated valve
position and not on controller output. This refined approach has
proved to further reduce offset and speed up response, but at
the expense of a slightly larger input variation and wider valve
movements in transitory dynamics [1].

Result discussion. Figure 6 shows time trends of the process
outputs, controller outputs, and valve positions with the three
stiction MPC formulations for the same set-points, comprised
of sequences of step changes. It is evident that this tradi-
tional MPC does not remove fluctuations induced by stiction,
as the disturbance estimate, obtained with the output distur-
bance model, cannot be brought to zero, but the state estimator
(the Luenberger observer) keeps sustained oscillations which
unavoidably propagate to the other variables. Stiction embed-
ding formulation can guarantee very good tracking performance
with negligible offsets on both process variables, thus an effec-
tive stiction compensation is possible. Note that valve stiction
is compensated so well to reproduce the behavior of the stic-
tion unaware controller in stiction-free environment, as shown
in [10]. It has to be recalled that such high performance for stic-
tion embedding MPC are not achievable only by augmenting
plant model with the valve dynamics and an accurate estima-
tion of stiction parameters. As a matter of fact, the appropriate
warm-start and the revised cost function previously discussed
are essential features to avoid the solver being stuck in local
minima where the valve does not move at all [10].

On the opposite, stiction inversion MPC, despite being aware

of the valve malfunction, cannot yield good control, as sus-
tained oscillations can arise. This happens since the condi-
tions on input sequence defined in [6], which allow to get a
perfect stiction inversion, are not verified in closed-loop opera-
tion. Note that fluctuations produced by this MPC formulation
are caused by the disturbance estimate which is not zero, due to
the approximation adopted in valve inverse dynamics [6]. Fi-
nally, note that controller retuning cannot completely remove
these stable oscillations, but simply alters occurrences, ampli-
tudes and frequencies.

5. Conclusions

This paper has presented a non-invasive, reliable and efficient
method to identify stiction in control valves for industrial pro-
cesses controlled by MPC. By the use of Hammerstein model
and nonlinear optimization, the proposed approach can accu-
rately estimate the valve stiction parameters of a recently pro-
posed smoothed model. Applications to simulation case stud-
ies, both SISO and MIMO systems, have been presented to
demonstrate the validity of the proposed method. This tech-
nique can be implemented in a on-line routine in order to im-
prove the performance of a stiction unaware model predictive
controller, which otherwise would exhibit sustained oscillations
in the presence of valve stiction. In fact, it has been shown that
by means of the identified stiction model, the MPC regulator
can be eventually turned into stiction aware formulations, thus
improving control behavior.
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Appendix A. Details on the CST mixer

The meaning of variables and parameters are detailed in Ta-
ble A.3. Seven variables could be considered as inputs to the
system: two manipulated variables, the input flow rate of stream
A, FA

in , and the steam flow rate into the jacket, W ; and five dis-
turbance variables, the input concentrations of stream A and B,
(CA

in, CB
in), the two input temperatures, (T A

in , T B
in ), and the input

flow rate of stream B, FB
in . Therefore, process inputs are u1 and

u2, that is, the output signals from MPC, while process states,
which correspond to process outputs, are concentration Cout and
temperature T out .

Table A.3: Variables and parameters of Continuous Stirred Tank.

Parameter
or Variable

Description [Unit] Value or Constraints

V tank volume [m3] 10.0
ρ solution density [kg/m3] 1100.0
cp specific heat [kJ/kg K] 4.180
λ latent heat [kJ/kg] 2272.0

Ci concentration [kg solute/m3 solution]
Cin

A = 10
Cin

B = 5
Cout = 0 ÷ 20

Ti temperature [°C]
T in

A = 25
T in

B = 30
T out = 0 ÷ 100

Fi solution flow rate [m3/min]
F in

A = 0 ÷ 1
F in

B = 0.5

W steam flow rate [kg/min] 0 ÷ 60
u(i) valve input / controller output [%] 0 ÷ 100
χ(i) valve position [%] 0 ÷ 100

K(i)
proportional constant, valve position
vs. flow rate

K(1) = Fmax
A /100

valves have linear characteristic K(2) = W max/100

Mass and energy balances yield to the following continuous-

time nonlinear process dynamics:

ρF in
A +ρF in

B = ρFout

Cin
A F in

A +Cin
B F in

B −CoutFout =V
dC
dt

ρcpF in
A T in

A +ρcpF in
B T in

B −ρcpFoutT out +Wλ =V ρcp
dT
dt

(A.1)

Note that for the sake of simplicity, cp, λ , ρ and then V are con-
sidered constant with temperature, and a perfect level control is
assumed, so that Fout = F in

A +F in
B at each time. In addition, no

disturbance is active, so that, input concentration of stream A
and B, two input temperatures, and the input flow rate of B, are
all fixed at their steady-state values. Note also that manipulated
variables can be rewritten as F in

A = K(1)χ(1) and W = K(2)χ(2).
Continuous-time nonlinear dynamics of stirred tank (A.1) is

integrated using explicit Runge-Kutta 4th order method, in or-
der to match discrete-time dynamics of two valves:

zP
k+1 =

[
χk

ζk+1

]
= φP(zP

k ,uk) =

[
ϕ(χk−1,uk)

fP(ζk,ϕ(χk−1,uk))

]
yk =Cζk + vk =

[
1 0
0 1

]
ζk + vk

(A.2)

where two valves output and two nonlinear process states com-
pose the state vector of the complete plant zP

k = [χT
k−1,ζ

T
k ]T .

For the sake of simplicity, a linear model is identified in
open-loop mode in order to describe the nonlinear dynam-
ics fP(·) of the CST. Therefore, the two valve inputs (u1,u2)
are changed independently as pseudo-random binary sequences
(PRBS) with a switch probability equal to 0.05 and amplitudes
equal to 20% of the corresponding ranges around the follow-
ing equilibrium point: F in

A,0 = 0.4 m3min−1, W0 = 24 kg min−1.
Once data are collected, a recently developed package for sys-
tem identification is employed [30]. The well-known N4SID
method is used with a fixed model order (n = 5), so that n new
linear process states are considered for the whole plant model 2.
The following state-space model is thus identified in discrete-
time and then used within the three different MPC formulations:

A =


0.8987 −0.0035 −0.0204 0.0099 0.0065
−0.0064 0.9038 −0.0224 −0.0269 −0.0062
0.0307 0.0136 0.9801 −0.0183 0.0365
−0.0031 0.0013 −0.0188 0.8319 −0.1507
0.0038 −0.0018 0.0020 0.0127 0.8985

 ,

B =


−2.7524 ·10−3 1.7493 ·10−4

1.1984 ·10−3 −2.5430 ·10−3

6.4088 ·10−4 2.7857 ·10−4

−6.1987 ·10−5 1.3907 ·10−6

1.0405 ·10−4 −3.4249 ·10−5

 ,

C =

[
−0.9168 −0.0684 −0.0777 0.0360 0.0327
1.1241 −11.0733 −0.8478 −1.5393 −0.4602

]
(A.3)
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