1	Evaluation of two invasive plant invaders in Europe (Solidago canadensis and Solidago
2	gigantea) as possible sources of botanical insecticides
3	
4	Giovanni Benelli ^{a,b} *, Roman Pavela ^{c,d} , Kevin Cianfaglione ^{e,f} , David U. Nagy ^g , Angelo Canale ^a
5	Filippo Maggi ^h
6	
7	^a Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80,
8	56124 Pisa, Italy
9	^b The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34,
10	56025 Pontedera, Pisa, Italy
11	^c Crop Research Institute, Drnovska 507, 161 06 Prague, Czech Republic
12	^d Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences
13	Prague, Kamýcká 129, 165 00 Praha 6 – Suchdol, Czech Republic
14	^e EA7462 Géoarchitecture, UFR Sciences & Techniques, Université de Bretagne Occidentale,
15	Brest, France
16	^f School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
17	^g Department of Ecology, Faculty of Sciences, University of Pécs, Pécs, Hungary
18	^h School of Pharmacy, University of Camerino, via Sant'Agostino 1, Camerino, Italy
19	
20	* Corresponding author. Phone: +390502216141. Fax: +30-0502216087. E-mail address:
21	benelli.giovanni@gmail.com (G. Benelli)
22	

23 Abstract

24

25	Solidago gigantea and Solidago canadensis (Asteraceae) are two invasive weeds native to
26	North America and introduced in Europe and Asia, where they are spreading quickly
27	threatening the stability of native ecosystems. These two plant invaders may represent an
28	ideal bioresource to be exploited for production of green pesticides. Therefore, herein we
29	evaluated the efficacy of the essential oils (EOs) obtained from their different parts, i.e.,
30	leaves, inflorescences and roots, against Culex quinquefasciatus, Spodoptera littoralis, and
31	Musca domestica. The essential oil composition was investigated by gas chromatographic-
32	mass spectrometry (GC-MS) analysis. Solidago canadensis leaf EO was the most toxic to
33	C. quinquefasciatus, with a LC ₅₀ of 89.3 μ l L ⁻¹ . The two most effective oils against M.
34	domestica adults were S. canadensis leaf and flower EOs, with LD ₅₀ values of 206.9 and
35	207.1 µg adult ⁻¹ , respectively. Three EOs highly toxic to S. littoralis were also identified,
36	namely S. gigantea leaf EO, S. canadensis leaf EO and S. gigantea flower EO, with LD ₅₀
37	values of 84.5, 98.9 and 107.4 µg larva ⁻¹ , respectively. Since the S. canadensis leaf EO was
38	the only green product effective against all the tested insect pests, we selected it for non-
39	target toxicity assays on <i>E. fetida</i> earthworms, along with the leaf EO from <i>S. gigantea</i> .
40	Both the S. canadensis and S. gigantea leaf EOs did not led to mortality on E. fetida adult
41	earthworms, at variance with the positive control α -cypermethrin, allowing us to propose
42	them for pest control purposes in IPM and organic farming.
43	

Keywords: essential oil; *Culex quinquefasciatus*; insect pest; mosquito vector control; *Musca domestica; Spodoptera littoralis*

47	Key message
48	
49	• Solidago invasive species may represent an ideal green resource to be exploited for
50	production of green pesticides.
51	• Solidago gigantea and S. canadensis essential oils from various plant parts was tested or
52	3 insect pests.
53	• Solidago canadensis leaf oil was the most toxic to Culex quinquefasciatus and
54	Musca domestica
55	• Solidago gigantea leaf oil was the most toxic to Spodoptera littoralis larvae.
56	• Solidago essential oils were not toxic to non-target earthworms, Eisenia fetida.
57	
58	

59 Introduction

60

The eco-friendly management of insect pests is a timely challenge nowadays (Isman 61 62 2006; Desneux et al. 2007; Benelli 2015, 2018a,b; Athanassiou et al. 2018). In this framework, essential oils extracted from plants may represent a promising reservoir of effective products for 63 pesticide development (Pavela 2016; Stevenson et al. 2017; Benelli and Pavela 2018a,b; Pavela 64 et al. 2018), due to a wide number of favourable characteristics that are compatible with well 65 66 Integrated Pest Management (IPM) criteria, including multiple mechanisms of action and low toxicity to vertebrates (Isman 2000, 2015; Pavela and Benelli 2016a,b). 67 Solidago canadensis L. (Canada goldenrod) and Solidago gigantea Aiton (giant 68 69 goldenrod) are rhizomatous, long-lived, perennial herbs native to North America. When introduced to Europe and Asia, they became invasive and, by their increased dominance, 70 threatened the stability of native ecosystems (Ledger et al. 2015; Pal et al. 2015). Solidago 71 *canadensis* and *S. gigantea* are generally described as having a broad tolerance with respect to 72 73 soil moisture, light, nutrient contents, temperature or pH range, although they prefer ruderal habitats, where they are dominant (Werner et al. 1980; Weber and Jakobs 2004). However, their 74 ecological needs overlap and regularly co-exist both in their native and introduced range: S. 75 canadensis prefers loose and drier soils than S. gigantea, hence S. canadensis occurs near to 76 urban areas, roadsides and railways more often and S. gigantea occurs mainly on riverside and 77 embankments (Botta-Dukát and Dancza 2004). 78 79 Solidago species (both the two-aforementioned species and S. virgaurea L., which is native to Europe) are well-known for their medicinal use in Europe: They are ingredients of the 80 so-called Herba Solidaginis included in the ESCOP publication (Kalemba and Thiem 2004). This 81 82 preparation is used to treat disorders of urinary tract, prostate and kidney. Regarding the

83 secondary metabolites, several groups are reported in the two species, mainly flavonoids,

84 phenolic acids, diterpenes, saponosides and essential oils (Apáti et al. 2003; Kołodziej et al.

85 2011; Kraujalienė et al. 2017; Zihare and Blumberga 2017). These compounds have been shown

to exert anti-inflammatory, antimicrobial, antioxidant, antispasmodic and diuretic properties (Liuet al. 2016).

Although these species are close relatives, they have distinct chemical profiles suggesting a possible influence of the geographic origin, genetics (e.g., polyploidy level) and plant part investigated (Radusiene et al. 2018; Kalemba and Thiem 2004; Grul'ová et al. 2016; Shelepova et al. 2018; Kalemba et al. 2001; Hull-Sanders et al. 2009).

Solidago gigantea and S. canadensis are consumed by many specialist herbivores in their 92 93 native range (Pilson and Rausher 1995; Carson and Root 2000; Meyer et al. 2005). On the other hand, in their introduced ranges there are only few generalist insects consuming them (Botta-94 Dukát and Dancza 2004; Jakobs et al. 2004) suggesting there are no specialist herbivores in the 95 place of introduction. However, Hull-Sanders et al. (2009a) reported lower foliar concentrations 96 97 of monoterpenes and diterpenes in the introduced S. gigantea populations, than in the native populations. The same authors found a higher growth rate of a generalist herbivore, Spodoptera 98 exigua (Hubner), fed on introduced plants than on native ones, while the specialist Trirhabda 99 virgata LeConte was not influenced (Hull-Sanders et al. (2009b). In contrast, in a common 100 101 garden experiment, Nagy et al. (2017) found a higher insect resistance of S. gigantea populations 102 introduced in Europe compared with native ones. This might support the potential of introduced 103 Solidago populations under natural conditions as a source of insecticidal compounds.

Since *S. gigantea* and *S. canadensis* may represent an ideal bioresource to be exploited
 for production of highly-valued products, in the present work we evaluated the efficacy of the
 EOs obtained from their different parts (i.e. leaves, inflorescences and roots), whose

107	compositions were analysed by gas chromatography-mass spectrometry (GC-MS), as insecticidal
108	agents. For the purpose, we assayed them on larvae of the filariasis vector and Zika virus vector
109	Culex quinquefasciatus Say (Benelli and Romano 2017) and the tobacco cutworm Spodoptera
110	littoralis (Boisduval), as well as against adults of the housefly, Musca domestica L. The most
111	effective essential oils were tested to evaluate potential non-target effects on adult earthworms,
112	Eisenia fetida (Savigny). The insecticidal effects of Solidago EOs from different plant parts of
113	the two studied species were compared, linking their bioactivity against insects to the chemical
114	profiles obtained.
115	
116	Materials and methods
117	
118	Plant material and sample preparation
119	
120	The sample collection was performed in the flowering phenophase of <i>S. canadensis</i> and <i>S.</i>
121	gigantea, during a three-week period in August 2017 (Fig. 1). Weather conditions were sunny,
122	slightly windy and there was no rainfall for 48 h before each sampling day. Sample collection
123	took place in the introduced range of both species, i.e., a semi-humid meadow close to an
124	agricultural field and a canal in Szentlőrinc, Hungary (46°02'47.3"N; 17°58'37.4"E; elevation:
125	114.5 m above sea level). The selection of goldenrod populations was based on the high
126	dominance of both species (alone or together at least 70 % vegetation cover), open, unshaded
127	vegetation and the co-occurrence of the investigated species to exclude the effect of different
128	environmental conditions on the overall chemical composition. An area of 400 x 500 m was
129	sampled randomly throughout its entire range. For the analyses, young and intact (without any
130	injury or infection) materials were collected from around 50-100 individuals of both species,

which were located at least 5 m apart from another, to reduce the risk of resampling the same 131 clone. Individuals were removed, using a hand shovel; rhizomes, leaves and inflorescences were 132 separated immediately with secateurs and placed separately into plastic bags. Collection 133 134 continued until 2 kg fresh mass were reached from all organs except for roots of S. canadensis (1 kg). After collections, samples were air-dried separately, at 24-28 °C in a storage room, without 135 136 direct light, for one month. The herbarium specimens of the two species were deposited in the 137 Herbarium of the University of Pécs, Hungary, under the codes JPU 82/3630 (S. gigantea) and JPU 82/3631 (S. canadensis). 138

139

140 Chemicals

141

Analytical standards of some essential oil constituents (Table 1) were purchased from
Sigma-Aldrich (Milan, Italy) and used for GC-MS peak assignment. Viridiflorol was kindly
furnished by Michael Russell, Department of Primary Industries, Industry and Investment NSW,
Wollongbar, NSW, Australia. A mix of *n*-alkanes, ranging from octane (C₈) to triacontane (C₃₀)
was obtained from Supelco (Bellefonte, CA, USA) and injected using the analytical conditions
reported below to determine the temperature-programmed retention index (RI) according to the
following formula:

149

$$RI_x = 100_n + 100(t_x - t_n)/(t_{n+1} - t_n),$$

....

Where n is the number of carbon atoms of the alkane eluting before the compound x, tn and tn+1 are retention times of the reference alkanes eluting before and after compound x, and tx is the retention time of the compound x (Van den Dool and Kratz 1963). All compounds were of analytical standard grade. Analytical grade *n*-hexane solvent was bought from Carlo Erba (Milan, Italy) and distilled by a Vigreux column before use.

- 156 Isolation of *Solidago* essential oils
- 157

Different amounts of dry plant organs of *S. gigantea* and *S. canadensis*, namely roots (700 and 625 g, respectively), leaves (650 and 500 g, respectively) and inflorescences (200 and 300 g, respectively) were reduced into small pieces and inserted in 10 L flasks filled with 5-6 L of deionized water, then subjected to hydrodistillation using a Clevenger-type apparatus for 4 h. The EOs were decanted, separated from water and dehydrated using anhydrous Na₂SO₄. They were stored in amber vials capped with PTFE-faced silicon septa at 4°C until analysed. The yield was calculated as g of EO/100 g of dry matter.

165

```
166 GC-MS analysis
```

167

Chemical analysis of the EOs from various plant parts of the two Solidago species was 168 169 performed by using an Agilent 6890N gas chromatograph coupled to a single quadrupole 5973N 170 mass spectrometer. Separation was achieved on a HP-5 MS (5% phenylmethylpolysiloxane, 30 m, 0.25 mm i.d., 0.1 µm film thickness; J&W Scientific, Folsom) capillary column. The 171 temperature programme used was as follows: 5 min at 60 °C then 4°C min⁻¹ up to 220 °C, then 172 11°C min⁻¹ up to 280 °C, held for 15 min. Injector and detector temperatures: 280 °C; carrier gas: 173 He; flow rate: 1 ml min⁻¹; split ratio: 1:50; acquisition mass range: 29–400 m/z; mode: electron-174 impact (EI, 70 eV). The EO was diluted 1:100 in n-hexane, and 2 µl of the solution were injected 175 176 into the GC-MS system twice. The MSD ChemStation software (Agilent, Version G1701DA D.01.00) and the NIST Mass Spectral Search Program for the NIST/EPA/NIH EI and NIST 177 Tandem Mass Spectral Library v. 2.3 were used to analyze data. For identification of EO 178

179	components, co-injection with the above standards was used, together with correspondence of
180	retention indices and mass spectra with those of ADAMS, NIST 17 and FFNSC2 libraries
181	(Adams 2007, NIST 17 2017, FFNSC2 2012). Some oxygenated sesquiterpenes were identified
182	by comparison of RI and MS with those reported by Kalemba et al. (2001). Semi-quantification
183	of EO components was made by peak area normalisation considering the same response factor
184	for all volatile components. Percentages values were the mean of two independent
185	chromatographic analyses.
186	
187	Insect and earthworm rearing
188	
189	Culex quinquefasciatus 3rd instar larvae and M. domestica adult females were reared as
190	reported by Benelli et al. (2018a,b). Spodoptera littoralis early 3rd instar larvae were reared
191	following Sut et al. (2017). Insects were maintained at 25±1 °C, 70±3 % R.H. and 16:8 h (L:D).
192	Eisenia fetida adults (weight 350–500 mg) were reared as reported by Pavela (2018) in artificial
193	soil (OECD 1984). Room temperature was 20±1 °C. Soil maximum water-holding capacity (35
194	%) was monitored weekly.
195	
196	Toxicity on Culex quinquefasciatus larvae
197	
198	In insecticidal assays, we tested the EOs extracted from various plant parts of S .
199	canadensis and S. gigantea, except for the root EO of S. canadensis, since the yield of this one
200	was too scarce to be considered in insecticidal assays (see paragraph 3.1). The 5 Solidago EOs
201	were diluted in dimethyl sulfoxide (DMSO), formulated at the concentrations of 100 ml L ⁻¹ , then
202	tested on C. quinquefasciatus 3 rd instar larvae following Benelli et al. (2017). Based on

203	preliminary assays, we tested dilution series ranging from 50 to 200 ml L ⁻¹ to estimate the EO
204	lethal concentration values. For each concentration, we conducted 4 duplicate trials. Negative
205	control was distilled water with the same amount of DMSO used testing S. canadensis and S.
206	gigantea EOs. α-cypermethrin (Vaztak®) was tested as positive control (Benelli et al. 2018c).
207	Larval mortality was noted after 24 h.
208	
209	Toxicity on Musca domestica adults
210	
211	Topical application tests were conducted to evaluate the acute toxicity of 5 EOs extracted
212	from various plant parts of S. canadensis and S. gigantea on M. domestica adult females (3-6
213	days old). According to Benelli et al. (2018b), 1 μ L of acetone (Sigma-Aldrich, Germany)
214	carrying a given Solidago EO at the dose of 200 μ g adult ⁻¹ (each replicated at least 4 times), was
215	applied through a microelectric applicator on the pronotum of fly adults anesthetized using CO ₂ .
216	Acetone without the Solidago EO served as negative control. α -cypermethrin (Vaztak®) was
217	tested as positive control (Benelli et al. 2018c). Houseflies were then moved to a recovery box
218	(10×10×12 cm, 26±1 °C 16:9 L:D) for 24 h, before checking mortality rates. We tested the
219	following dilution series ranging from 50 to 400 μ g adult ⁻¹ to estimate the lethal doses.
220	
221	Toxicity on Spodoptera littoralis larvae
222	
223	Toxicity of the 5 EOs extracted from various plant parts of S. canadensis and S. gigantea
224	on 3 rd instar larvae of <i>S</i> . <i>littoralis</i> was evaluated through topical application of the EO diluted in
225	acetone, as detailed by Sut et al. (2017). Larvae were treated on the dorsum with 1 μ L of acetone
226	containing of the selected Solidago EO at dose of 150 µg larva ⁻¹ . We did four duplicate replicates

(n=20 larvae per replicate) for each tested Solidago EO concentration. Acetone without EO 227 served as negative control. α-cypermethrin (Vaztak®) was tested as positive control (Benelli et 228 229 al. 2018c). Then, S. littoralis larvae were moved to a recovery box (10×10×7 cm, with thin holes on each wall to avoid fumigation effects, 26±1 °C, 70±3% R.H., and 16:8 L:D) for 24 h, before 230 checking mortality. We tested the following dilution series ranging from 30 to 250 µg larva⁻¹ to 231 232 estimate the lethal doses. 233 Toxicity on non-target earthworms 234 235 Since the S. canadensis leaf EO was the only tested product effective against the three 236 237 selected insect pests, it was selected for non-target tests, along with the leaf EO from S. gigantea. The standard OECD (1984) method was followed to test the Solidago leaf EO toxicity on E. 238 *fetida* adult earthworms. The artificial soil had the same composition and pH as described for E. 239 fetida rearing; the soil was prepared by adding the Solidago EOs at concentrations of 200, 100 240 and 50 mg kg⁻¹, mixed with Tween 80 (ratio 1:1 v:v), equivalent to 100, 50 and 25 mg EO a.i. per 241 kg of dry weight basis soil. α -cypermethrin at 50.0, 25.0 and 12.5 mg kg⁻¹ of dry soil [i.e., 242 Vaztak® at 1000, 500 and 250 μ L kg⁻¹ (v/v)] was the positive control. Distilled water with Tween 243 80 at concentration of 100 mg kg⁻¹ of dry soil was used as negative control. An aqueous 244 formulation containing the leaf EO from the two studied *Solidago* species, pure water or α -245 cypermethrin was mixed into the soil (650 g) and 10 E. fetida adults were added. Treated and 246 control soil samples were stored in glass pots (1 L) covered with gauze to ensure aeration. 247

248 *Eisenia fetida* mortality was noted 7 and 14 days post-exposure to the treatments at 20 ± 1 °C,

249 R.H. 80-85%, 16:8 (L:D) and 600 lux (Pavela, 2018).

250

251 Statistical analysis

252 253 If control mortality was >20%, the treatment mortality rates were corrected by the Abbott's formula (Abbott 1925). Lethal dose LD₅₀₍₉₀₎ or concentration LC₅₀₍₉₀₎ values, with 254 associated 95% LCL and UCL, were estimated by probit analysis (Finney 1971) using BioStat 255 256 version 5. 257 Results 258 259 Chemical analysis of Solidago essential oils 260 261 The hydrodistillation of leaves, inflorescences and roots of S. gigantea and S. canadensis 262 gave similar EO yields, with leaf and flower being richer (0.15-0.16 and 0.18-0.20 %, 263 respectively) than root (0.06 and 0.04 %, respectively). The GC analysis performed by using a 264 265 combination of MS and RI and, whenever possible, co-elution with available standards, allowed us to identify 121 volatile compounds in the six EOs from the two Solidago species (Table 1). 266 267 Overall, the chemical profiles of leaves of S. gigantea and S. canadensis species were quite similar, whereas those of inflorescences (Fig. 2 a,b) and, to a major extent, roots exhibited 268 269 noteworthy differences (Fig. 2 c-f). A total of 80 volatile components were identified in the leaf EO from S. gigantea, 270 accounting for 83.3% of the total. This EO was dominated by oxygenated sesquiterpenes 271 272 (45.1%), followed by sesquiterpene hydrocarbons (19.5%) and oxygenated monoterpenes (15.1%), with cyclocolorenone (15.6%), bornyl acetate (13.7%) and germacrene D (6.3%) as the 273 major compounds. Other components occurring at noteworthy levels were the sesquiterpenes 274

eudesma-4(15),7-dien-1 β -ol (4.4%), spathulenol (4.3%) epoxysalvial-4(14)-ene (4.1%) and

isospathulenol (3.0%). A total of 43 compounds were detected in percentages below 1% and 19 at
trace levels (<0.1%).

Solidago canadensis leaf EO yielded a total of 66 components, corresponding to 85.5% of
the total composition, were identified. The oxygenated sesquiterpenes 42.1%) were still the major
fraction of this oil, along with similar levels of sesquiterpene hydrocarbons (17.9%) and

oxygenated monoterpenes (17.2%), and minor amounts of monoterpene hydrocarbons (8.3%).

282 The most abundant components were again bornyl acetate (13.4%), germacrene D (11.0%) and

283 cyclocolorenone (8.8%), accompanied by minor components like eudesma-4(15),7-dien-1 β -ol

284 (7.1%), α -pinene (4.6%), torilenol (4.1%), and salvial-4(14)-en-1-one (3.0%). Thirty-two

compounds were present in percentages lower than 1% and 13 at trace levels.

286 The EO from inflorescences of S. gigantea showed a chemical profile (84 identified components accounting for 88.1% of the EO) similar to that of leaf EO, of the same species with 287 oxygenated sesquiterpenes (34.5%), sesquiterpene hydrocarbons (19.1%) and oxygenated 288 289 monoterpenes (17.7%), and an additional occurrence of monoterpene hydrocarbons (16.0%). Here, the major components were bornyl acetate (11.4%), germacrene D (9.0%), α -pinene 290 291 (8.1%) and cyclocolorenone (6.4%). Minor contributions derived from eudesma-4(15),7-dien-1 β -ol (4.6%), *p*-cymene (3.5%), spathulenol (3.4%) and epoxysalvial-4(14)-ene (3.0%). A total 292 293 of 56 components were present in percentages below 1% and 6 at trace levels. 294 A different profile was found in the EO from inflorescences of S. canadensis, where a total of 71 compounds, accounting for 94.3% of the total, was identified. Here, monoterpenoids 295

296 (monoterpene hydrocarbons 42.3%, oxygenated monoterpenes 30.8%) dominated over

- sesquiterpenes (oxygenated sesquiterpenes 13.6%, sesquiterpene hydrocarbons 5.9%). The major

compounds were α-pinene (29.5%) and bornyl acetate (12.2%), with minor contributions of
limonene (5.1%), *trans*-verbenol (3.9%) and *p*-mentha-1,5-dien-8-ol (3.8%). Main leaf volatile
components such as cyclocolorenone and germacrene D were here poorer (2.9 and 1.0%,
respectively). A total of 34 components was present in percentages lower than 1.0% and 14 at
trace levels.

The chemical profiles of the two Solidago root EOs differed considerably from each 303 other. In S. gigantea EO, we identified 88 compounds accounting for 83.5% of the total 304 composition. Sesquiterpene hydrocarbons (29.2%) were the most abundant fraction, followed by 305 306 oxygenated sesquiterpenes (23.1%), alkenes (14.5%) and monoterpene hydrocarbons (12.9%). Germacrene D (14.4%) and 1-nonene (13.1%) were the most abundant constituents, with minor 307 amounts of β -pinene (4.6%), spathulenol (4.6%), isospathulenol (3.6%), limonene (3.1%) and 308 α -gurjunene (3.0%). A total of 53 constituents were present in percentages below 1% and 12 at 309 trace levels. *Solidago canadensis* EO showed a different profile, with a total of 69 constituents, 310 corresponding to 96.2% of the oil. The EO was dominated by monoterpene hydrocarbons 311 accounting for 74.0% of the total composition. The remaining compounds comprised 312 313 sesquiterpene hydrocarbons (9.0%), oxygenated monoterpenes (6.2%) and alkenes (4.9%). The 314 oil composition was dominated by two components, namely limonene (32.7%) and β -pinene (31.3%), whereas germacrene D (3.9%), β-elemene (3.4%), methylcamphenoate (3.2%) and 2,6-315 316 dimethyl-1,3,6-heptatriene (3.0%) were present in low concentrations. Thirty-eight constituents were below 1% and 19 at trace levels. 1-nonene, i.e., one of the major volatile constituents in the 317 318 roots of S. gigantea, was here present at scant amounts (1.6%).

319

320 Insecticidal activity and toxicity on non-target earthworms

321	

322	The acute toxicity of the EOs extracted from various plant parts of <i>S. canadensis</i> and <i>S.</i>
323	gigantea varied consistently among the tested insect pests. Tables 2, 3 and 4 show the bioactivity
324	of the tested five EOs on C. quinquefasciatus, M. domestica and S. littoralis, respectively. At the
325	maximum tested concentration, i.e., 100 µl L ⁻¹ , mortality rates on C. quinquefasciatus 3 rd instar
326	larvae varied from 22.0 % (S. gigantea root EO) to 61.0 % (S. canadensis leaf EO). According to
327	the criteria exposed by Pavela (2015), Solidago EOs achieving mortality rates lower than 50 %
328	when tested at the highest concentration of 100 μ l L ⁻¹ , were excluded from probit analysis.
329	Therefore, the only Solidago EO of interest for developing C. quinquefasciatus larvicides was
330	from S. canadensis leaves, with a LC ₅₀ of 89.3 μ l L ⁻¹ and a LC ₉₀ of 189.6 μ l L ⁻¹ (Table 2).
331	Concerning toxicity assays on <i>M. domestica</i> adults, <i>Solidago</i> EOs tested at the maximum
332	dose of 200 µg adult ⁻¹ led to fly mortality rates ranging from 30 % (S. gigantea flower EO) to
333	67.5 % (S. canadensis flower EO) (Table 3). The two most effective EOs were those from S.
334	canadensis leaf and flowers, with LD_{50} values of 206.9 and 207.1 µg adult ⁻¹ , respectively. LD_{90}
335	values were 355.6 and 426.4 μ g adult ⁻¹ , respectively (Table 3).
336	Furthermore, three out of the five tested Solidago EOs showed relevant toxicity against
337	3^{rd} instar larvae of <i>S. littoralis</i> . EOs tested at the highest dose of 150 µg larva ⁻¹ led to caterpillar
338	mortality rates ranging from 33.3 % (S. canadensis flower EO) to 93.5 % (S. gigantea leaf EO)
339	(Table 4). Three highly effective EOs were identified, including S. gigantea leaf EO, S.
340	canadensis leaf EO and S. gigantea flower EO, with LD_{50} values of 84.5, 98.9 and 107.4 µg
341	larva ⁻¹ , respectively. LD ₉₀ values were 149.4, 200.4 and 264.6 µg larva ⁻¹ , respectively (Table 4).
342	For all the tested insect pests, the toxicity results achieved testing α -cypermethrin as positive
343	control are provided in Tables 2, 3 and 4.

344	Since the S. canadensis leaf EO was the only tested bioproduct effective against the three
345	selected tested pests, we selected it for non-target toxicity tests on E. fetida earthworms, along
346	with the leaf EO from S. gigantea. Results, given in comparison with the positive control α -
347	cypermethrin, are provided in Table 5. Notably, neither of the EOs produced any earthworm
348	mortality on adults of the <i>E</i> . <i>fetida</i> earthworms, at variance with the positive control α -
349	cypermethrin, which led to 100% mortality when applied at 25 and 50 mg.kg ⁻¹ in the soil (Table
350	5).
351	
352	Discussion
353	
354	Chemical analysis of Solidago essential oils
355	
356	Results highlighted a chemical polymorphism in the vegetative and reproductive organs
357	of the two Solidago species, with bornyl acetate, germacrene D and cyclocolorenone as marker
358	compounds of the leaves, α -pinene, bornyl acetate and germacrene D characterizing the
359	inflorescence EOs, and 1-nonene, germacrene D, β -pinene and limonene as markers of the root
360	EOs (Fig. 3).
361	Germacrene D is a ubiquitous sesquiterpene occurring in many plant EOs (Casiglia et al.
362	2017). It is a chiral compound arising from the methylerythritol phosphate pathway and playing
363	an important role in the plant cell metabolism as the precursor of many sesquiterpenes
364	(Steliopoulos et al. 2002). In addition, it has been recognized as an important pheromone for the
365	males of Periplaneta americana L. (Kitamura et al. 1996), and has been indicated as a useful
366	compound for pest control (Stranden et al., 2002; Zihare and Blumberga 2017). Bornyl acetate is

an ester of the monoterpenoid borneol having camphoraceous smell and occurring in many EOs 367 such as those of conifers and valerian (Matsubara et al. 2011). This compound has been proved to 368 exert anti-inflammatory activity (Tung et al. 2008). Interestingly, bornyl acetate is used by some 369 insects, such as Corythucha marmorata (Uhler) (Hemiptera: Tingidae), as a source of sex 370 pheromones (Watanabe and Shimizu 2017). 1-Nonene is a linear alkene occurring in the 371 372 defensive secretions of tenebrionid beetles (Tschinkel 1975). Cyclocolorenone is a tricyclic 373 sesquiterpene ketone occurring also in other species, namely *Pseudowintera colorata* (Raoul) Dandy, Ledum palustre L., Magnolia grandiflora L. and S. canadensis (Kalemba et al. 2001). 374 This compound has been also reported as an allopathic and antimicrobial agent (Jacyno et al. 375 1991). 376

377 When comparing our data on Hungarian Solidago species with those of previously published reports, we found both similarity and differences. For instance, Kalemba et al. (2001) 378 379 examined a population of S. gigantea growing in Poland and reported germacrene D (23.5%) and cyclocolorenone (32.4%) as the major essential oil constituents of aerial parts. The same authors 380 381 examined the chemical profile of the EO from inflorescences of Polish S. canadensis and 382 reported α -pinene (13.0%), limonene (12.0%) and γ -cadinene (27.1%) as the most abundant constituents (Kalemba et al. 1990). The same group also analysed the volatile fraction of 383 micropropagated plants of S. gigantea and S. canadensis and found α -gurjunene (16.6%), 384 germacrene D (12.8%) and cyclocolorenone (32.8%) as the major compounds in the former, and 385 386 α -pinene (59.5%), limonene (9.7%) and germacrene D (15.2%) in the latter (Kalemba and Thiem, 2004). Fujita (1980) reported germacrene D (66-77%) and bornyl acetate (5-7%) as the major 387 components of S. gigantea EO. Weyerstahl et al. (1993) studied the chemical profile of the EO 388 from S. canadensis growing in Poland and found α -pinene (14.7%), germacrene D (19.8%) and 389

390	β -sesquiphellandrene (10.4%) as the most abundant constituents. Synowec et al. (2017) reported
391	α -pinene (26.0%), limonene (11.5%) and germacrene D (27.5%) as the major EO constituents of
392	Polish S. canadensis. Grul'ová et al. (2016) analysed Slovak populations of S. gigantea and S.
393	canadensis and found a significant chemical polymorphism depending on the collection site and
394	species. S. gigantea was found rich in sesquiterpenes, namely curlone (14.4%), tumerone (14.0%)
395	and δ -cadinene (5.4%); on the other hand, <i>S. canadensis</i> contained α -pinene (36.3%), limonene
396	(7.8%) and germacrene D (9.9%) as the main EO constituents. Shelepova et al. (2018) studied
397	different populations of S. canadensis growing in Europe (i.e. Austria, Ukraine, Kazakhstan and
398	Russia) and found α -pinene (12.6-52.4%), germacrene D (2.9-36.2%), bornyl acetate (3.4-26.3%)
399	and limonene (6.4-22.5%) as the major EO components. Watanabe and Shimizu (2017) reported
400	bornyl acetate (20.2%) and germacrene D (54.0%) as the major EO components of S. canadensis
401	growing in Japan. This oil was slightly phytotoxic against four common weeds (Synowec et al.
402	2017). Chanotiya and Yadav (2008) analyzed Indian S. canadensis and found limonene (0.2-
403	12.5%) and germacrene D (56.7-75.5%) as the main EO constituents. Liu et al. (2016) examined
404	the EO from leaves of Chinese S. canadensis and found α -pinene (53.6%) as the major
405	compound followed by germacrene, limonene and β -pinene.
406	In conclusion, EOs from these two invasive species show significant variability that can
407	be linked to several factors, such as the geographic origin of samples, together with the cytotype,
408	phenological stage and part studied.
409	

410 Insecticidal activity and toxicity on non-target earthworms

412	The insecticidal efficacy of botanical insecticides based on EOs depends on
413	multiple factors, such as the size and species of target organisms, mode of application, post-
414	application temperature and, in particular, chemical composition and mutual ratios of major
415	substances, which may exhibit both synergistic and antagonistic relationships (Pavela
416	2015a,b; Pavela and Benelli 2016b; Pavela and Sedlák 2018). Herein, the efficacies of the
417	five tested Solidago EOs were different. Solidago canadensis leaf EO was most toxic to C.
418	quinquefasciatus, with an LC ₅₀ of 89.3 μ l L ⁻¹ . Therefore, it can be viewed as promising for
419	the development of botanical larvicides given that EOs are generally considered as
420	prospective if their LC_{50} is lower than 100 ppm (Pavela 2015a). The two most effective
421	EOs against M. domestica adults were S. canadensis leaf EO and S. canadensis flower EO,
422	with LD ₅₀ values of 206.9 and 207.1 μ g adult ⁻¹ , respectively. Three EOs highly toxic to <i>S</i> .
423	littoralis were also identified, namely S. gigantea leaf EO, S. canadensis leaf EO and S.
424	gigantea flower EO, with LD_{50} values of 84.5, 98.9 and 107.4 µg larva ⁻¹ , respectively.
425	Although these lethal concentrations were relatively higher compared to other EOs
426	or plant extracts (Pavela et al. 2008 and 2017; Benelli at al. 2018b), they can still be
427	considered as suitable for the development of botanical insecticides, particularly the S.
428	canadensis leaf EO, which showed efficacy against all three tested insect species.
429	The Solidago EOs studied here contained a high number of various substances of
430	which none exhibited a major share exceeding 50% (Table 1). No major constituents can
431	thus be identified, which could be believed to be responsible for the insecticidal efficacy.
432	However, it can be noted that the efficacy was related to the overall amount of oxygenated
433	sesquiterpenes, where the EO efficacy rose correspondingly with increasing amounts of
434	these substances. The closest relationship between oxygenated sesquiterpenes and achieved
435	mortality rate was found for the EOs applied in the dose of 150 μ g larva ⁻¹ against S.

436	<i>littoralis</i> larvae, while a significant linear relationship was observed (Fig. 4). Based on this
437	finding, it is likely that oxygenated terpenes are substances with a significantly higher
438	insecticidal efficacy compared to non-oxygenated terpenes, which agrees with earlier
439	research (Bakkali et al. 2008; Pavela 2014, 2015b). The position of the functional group in
440	the molecule and the shape of the molecule both result in diverse mechanisms of action.
441	The compounds exert their activities on insects through neurotoxic effects involving several
442	mechanisms, notably through GABA, octopamine synapses, and the inhibition of
443	acetylcholinesterase (Pavela and Benelli 2016; Jankowska et al. 2017).
444	Developing eco-friendly pesticides is important in Integrated Pest Management
445	(Lucchi and Benelli 2018), as well as a One Health perspective (Benelli and Duggan 2018).
446	Herein, since the S. canadensis leaf EO was the only tested bioproduct effective against the
447	three selected tested pests, we selected it for non-target toxicity tests on E. fetida
448	earthworms, along with the leaf EO from S. gigantea. Both the S. canadensis and S.
449	gigantea leaf EOs did not led to mortality when used to treat E. fetida adult earthworms, at
450	variance with the positive control α -cypermethrin. This fact is very important given that
451	earthworms rank among significant soil organisms. Earthworms are necessary for the
452	development and maintenance of the nutritional value and structure of soil (Datta et al.
453	2016), and they play an important role in the conversion of biodegradable materials and
454	organic waste to vermicast, which is rich in nutrients (Jansirani et al. 2012). Protection of
455	these organisms is thus clearly important.
456	Even though earthworms can consume a wide range of contaminated organic
457	materials including sewage sludge and industrial waste (Lim et al. 2016), they are very
458	sensitive to insecticides (Datta et al. 2016; Vasantha-Srinivasan et al. 2017). Generally,

459 insecticides exhibit a negative effect on the survival of earthworms, especially in

460 concentrations over 25 mg.kg⁻¹ (Datta et al. 2016).

More in general, it is expected that *S. gigantea* and *S. canadensis* EOs are harmless
against pollinators and natural predators such as honeybees and ladybird beetles,
respectively. In this regard, it has been reported that goldenrod is an important source of

464 nectar for honeybees (Stefanic et al. 2003). Besides, the fact that some major leaf volatile

465 constituents of *S. gigantea* and *S. canadensis* EOs, such as germacrene D and bornyl

466 acetate, are pheromones within species belonging to cockroaches and lacewings (Kitamura

467 et al. 1996; Watanabe and Shimizu 2017), should give a low risk from an ecotoxicological

standpoint. Notably, *Solidago* spp. have are used as feed for cattle and other mammalian

herbivores (Botta-Dukát and Dancza 2004; Werner et al. 1980). Furthermore, *Solidago* spp.

470 host beneficial invertebrates, such as aphid predators, e.g. *Harmonia axyridis* (Pallas)

471 (Genung et al. 2012; Kamo et al. 2010). Regarding the impact on aquatic ecosystems, it has

472 been reported that the S. canadensis extracts exert low toxicity on Daphnia magna Straus

473 and zebrafish, *Danio rerio* Hamilton (Huang et al. 2014).

In a broader perspective, the relatively high tolerance of insect pollinators, includingsocial bees, to plant EOs used for pest management purposes has been confirmed by several

476 researches (Umpierrez et al, 2017, Ribeiro et al., 2018, Palmer-Young et al., 2018). In

477 addition, this is also substantiated by the fact that EOs are used at relatively high

478 concentrations to protect bees against *Varroa destructor* (Andreson and Trueman) (Acari:

479 Varroidae) (Ramzi et al., 2017). Besides, the selectivity of EOs was also determined against

480 other non-target organisms including native predators of pests (Castilhos et al 2018; Pavela

481 2018) or larvivorous fish (Govindarajan et al. 2016a,b; AlShebly et al. 2017; Pavela and

482 Govindarajan 2017).

483	It has been earlier noted that S. gigantea and S. canadensis can represent a serious
484	threat for the preservation of autochthonous ecosystems. However, the high biomass
485	produced by them may be a resource to be exploited for fair purposes. Indeed, they are
486	extremely common in Europe, North America and Asia so that they can satisfy a huge
487	demand for the manufacture of insecticides. In this regard, their distribution throughout
488	several regions, namely British Isles, Germany, North America and Europe is mapped on
489	several websites (http://www.floraweb.de/webkarten/karte.html?taxnr=5680;
490	http://www.brc.ac.uk/plantatlas/plant/solidago-gigantea;
491	http://www.brc.ac.uk/plantatlas/plant/solidago-canadensis;
492	https://www.cabi.org/isc/datasheet/50575#toDistributionMaps;
493	https://www.cabi.org/isc/datasheet/50599). Therefore, we believe that the production of
494	botanical insecticides from these two plant invaders may be scalable since both species are
495	renewable resources being able to easily regenerate from their rhizomes. Cooperation
496	among agrochemical industry and landscape managers will be a key point to make the
497	production of botanical insecticides from goldenrod sustainable through a correct
498	management of mowing.
499	Overall, from a natural product research standpoint, herein we have succeeded in
500	finding these two Solidago EOs as prospective, environmentally acceptable and active
501	ingredients utilizable in botanical insecticides to be employed in Integrated Pest
502	Management.
503	
504	Acknowledgments

506	The authors are grateful to University of Camerino (Fondo di Ateneo per la Ricerca, FAR
507	2014/2015, FPI 000044) for financial support. Dr. R. Pavela would like to thank the Ministry of
508	Agriculture of the Czech Republic for its financial support concerning botanical pesticide and
509	basic substances research (Project MZE-RO0418).
510	
511	Conflict of Interest
512	
513	The authors declare no conflict of interest.
514	
515	Author contributions
516	
517	GB, RP and FM conceived and designed research. All authors conducted experiments
518	and/or analysed data. GB, RP and FM wrote the manuscript. All authors read and approved the
519	manuscript.
520	
521	Compliance with ethical standards
522	
523	Animals and human rights
524	
525	All applicable international and national guidelines for the care and use of animals were
526	followed. All procedures performed in studies involving animals were in accordance with the
527	ethical standards of the institution or practice at which the studies were conducted.
528	
529	Ethical approval

531	This article does not contain any studies with human participants performed by any of the
532	authors.
533	
534	References
535	
536	Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol
537	18:265–267
538	Adams R (2007) Identification of Essential Oil Components by Gas Chromatography/Mass
539	Spectrometry, fourth ed. Allured Publishing Corp., Carol Stream, IL, USA
540	AlShebly MM, AlQahtani FS, Govindarajan M, Gopinath K, Vijayan P, Benelli G (2017)
541	Toxicity of ar-curcumene and epi-β-bisabolol from <i>Hedychium larsenii</i> (Zingiberaceae)
542	essential oil on malaria, chikungunya and St. Louis encephalitis mosquito vectors.
543	Ecotoxicol Environ Saf 137:149-157
544	Apáti P, Szentmihályi K, Kristó SzT, Papp I, Vinkler P, Szőke É, Kéry Á (2003) Herbal remedies
545	of Solidago-correlation of phytochemical characteristics and antioxidative properties. J
546	Pharm Biom Anal 32:1045-1053
547	Athanassiou CG, Kavallieratos NG, Benelli G, Losic D, Rani PU, Desneux N (2018)
548	Nanoparticles for pest control: current status and future perspectives. J Pest Sci 91:1-15
549	Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils -a
550	review. Food Chem Toxicol 46:446–475
551	Benelli G (2018a) Plant-borne compounds and nanoparticles: challenges for medicine,
552	parasitology and entomology. Environ Sci Pollut Res 25:10149-10150

- 553 Benelli G (2018b) Mode of action of nanoparticles against insects. Environ Sci Pollut Res doi:
- 554 10.1007/s11356-018-1850-4
- 555 Benelli G, Duggan MF (2018) Management of arthropod vector data Social and ecological

dynamics facing the One Health perspective. Acta Trop 182:80-91

- 557 Benelli G, Romano D (2017) Mosquito vectors of Zika virus. Entomol Gen 36:309–318
- Benelli G, Pavela R (2018) Repellence of essential oils and selected compounds against ticks a
 systematic review. Acta Trop 179:47–54
- Benelli G, Pavela R (2018) Beyond mosquitoes Essential oil toxicity and repellency against
 bloodsucking insects. Ind Crops Prod 117:382–392
- 562 Benelli G, Pavela R, Iannarelli R, Petrelli R, Cappellacci L, Cianfaglione K, Afshar FH, Nicoletti
- 563 M, Canale A, Maggi F (2017) Synergized mixtures of Apiaceae essential oils and related
- plant-borne compounds: larvicidal effectiveness on the filariasis vector *Culex*

565 *quinquefasciatus* Say. Ind Crops Prod 96:186-195

- 566 Benelli G, Pavela R, Giordani C, Casettari L, Curzi G, Cappellacci L, Petrelli R, Maggi F
- 567 (2018a) Acute and sub-lethal toxicity of eight essential oils of commercial interest against
- the filariasis mosquito *Culex quinquefasciatus* and the housefly *Musca domestica*. Ind
 Crops Prod 112:668–680
- 570 Benelli G, Pavela R, Lupidi G, Nabissi M, Petrelli R, Ngahang Kamte SL, Cappellacci L, Fiorini
- 571 D, Sut S, Dall'Acqua S, Maggi F (2018b) The crop-residue of fiber hemp cv. Futura 75:
- 572 from a waste product to a source of botanical insecticides. Environ Sci Pollut Res
- 573 25:10515-10525
- 574 Benelli G, Pavela R, Petrelli R, Cappellacci L, Santini S, Fiorini D, Sut S, Dall'Acqua S, Canale
- 575 A, Maggi F (2018c) The essential oil from industrial hemp (*Cannabis sativa* L.) by-

products as an effective tool for insect pest management in organic crops. Ind Crops Prod

577 doi: 10.1016/j.indcrop.2018.05.032

- 578 Botta-Dukát Z, Dancza I (2004) Magas aranyvessző és kanadai aranyvessző. In: Mihály B, Botta-
- 579 Dukát Z (eds.) Özönnövények. A KvVM Természetvédelmi Hivatalának Tanulmánykötetei
- 580 9. Természet Búvár Alapítvány Kiadó, Budapest, pp. 289–314
- 581 Carson WP, Root RB (2000) Herbivory and plant species coexistence: community regulation by
- an outbreaking phytophagous insect. Ecol Monogr 70:73-99
- 583 Castilhos RV, Grutzmacher AD, Coats JR (2018) Acute toxicity and sublethal effects of
- terpenoids and essential oils on the predator *Chrysoperla externa* (Neuroptera:
- 585 Chrysopidae). Neotrop Entomol 47:311-317
- 586 Casiglia S, Bruno M, Bramucci M, Quassinti L, Lupidi G, Fiorini D, Maggi F (2017)
- 587 *Kundmannia sicula* (L.) DC: a rich source of germacrene D. J Essent Oil Res 29:437-442
- 588 Chanotiya CS, Yadav A (2008) Natural variability in enantiomeric composition of bioactive
- chiral terpenoids in the essential oil of *Solidago canadensis* L. from Uttarakhand, India. Nat
- 590 Prod Comm 3:263-266
- Datta S, Singh J, Singh S, Singh J (2016) Earthworms, pesticides and sustainable agriculture: a
 review. Environ Sci Pollut Res 23:8227–8243
- Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial
 arthropods. Annu Rev Entomol 52:81-106
- 595 FFNSC 2 (2012) Flavors and fragrances of natural and synthetic compounds. Mass spectral
- 596 database. Shimadzu Corps, Kyoto
- 597 Finney DJ (1971) Probit Analysis. Cambridge University, London, pp. 68–78
- 598 Fujita S (1980) Koen Yoshishu-Koryo, Terupen oyobi Seiyu Kagaku ni Konsuru Toronkai.
- 599 Chem. Abstr. 92, 143284f

600	Genung MA, Crutsinger GM, Bailey JK, Schweitzer JA, Sanders NJ (2012) Aphid and ladybird
601	beetle abundance depend on the interaction of spatial effects and genotypic diversity.
602	Oecologia 168:167-174.
603	Govindarajan M, Rajeswary M, Benelli G (2016a) Chemical composition, toxicity and non-target
604	effects of Pinus kesiya essential oil: an eco-friendly and novel larvicide against malaria,
605	dengue and lymphatic filariasis mosquito vectors. Ecotoxicol Environ Saf 129:85-90
606	Govindarajan M, Kadaikunnan S, Alharbi NS, Benelli G (2016b) Acute toxicity and repellent
607	activity of the Origanum scabrum Boiss. & Heldr. (Lamiaceae) essential oil against four
608	mosquito vectors of public health importance and its biosafety on non-target aquatic
609	organisms. Environ Sci Poll Res 23(22):23228-23238
610	Gruľová D, Baranová B, Ivanova V, De Martino L, Mancini E, De Feo V (2016) Composition
611	and bio activity of essential oils of Solidago spp. and their impact on radish and garden
612	cress. Allelopathy J 39:129-142
613	Huang Y, Bai Y, Wang Y, Kong H (2014) Solidago canadensis L. extracts to control algal
614	(Microcystis) blooms in ponds. Ecol Eng 70:263-267
615	Hull-Sanders HM, Johnson RH, Owen HA, Meyer GA (2009a) Effects of polyploidy on
616	secondary chemistry, physiology, and performance of native and invasive genotypes of
617	Solidago gigantea (Asteraceae). Am J Bot 96:762-770
618	Hull-Sanders HM, Johnson RH, Owen HA, Meyer GA (2009b) Influence of polyploidy on insect
619	herbivores of native and invasive genotypes of Solidago gigantea (Asteraceae). Plant
620	Signal Behav 4:893-895
621	Isman MB (2000) Plant essential oils for pest and disease management. Crop Protection 19(8-
622	10):603-608

623	Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an
624	increasingly regulated world. Annu Rev Entomol 51:45-66
625	Isman MB (2015) A renaissance for botanical insecticides? Pest Manag Sci 71(12):1587-1590
626	Jacyno JM, Montemurro N, Bates AD, Cutler HG (1991) Phytotoxic and antimicrobial properties
627	of cyclocolorenone from Magnolia grandiflora L. J Agric Food Chem 39:1166-1168
628	Jakobs G, Weber E, Edwards PJ (2004) Introduced plants of the invasive Solidago gigantea
629	(Asteraceae) are larger and grow denser than conspecifics in the native range. Divers
630	Distrib 10:11-19
631	Jankowska M, Rogalska J, Wyszkowska J, Stankiewicz M (2017) Molecular Targets for
632	Components of Essential Oils in the Insect Nervous System—A Review. Molecules 23:34
633	Jansirani D, Nivethitha S, Singh MVP (2012) Production and utilization of vermicast using
634	organic wastes and its impact on Trigonella foenum and Phaseolus aureus. Int J Res Biol
635	Sci 2:187–189
636	Kalemba D, Thiem B (2004) Constituents of the essential oils of four micropropagated Solidago
637	species. Flavour Fragr J 19:40-43
638	Kalemba D, Góra J, Kurowska A (1990) Analysis of the essential oil of Solidago canadensis.
639	Planta Med 56:222-223
640	Kalemba D, Marschall H, Bradesi P (2001) Constituents of the essential oil of Solidago gigantea
641	Ait. (giant goldenrod). Flavour Fragr J 16:19-26
642	Kamo T, Tokuoka Y, Miyazaki M (2010) Influence of aphid-host plant pairs on the survivorship
643	and development of the multicolored Asian ladybird beetle: implications for the
644	management of vegetation in rural landscapes. Ecol Res 25:1141-1149

645	Kołodziej	B.	, Kowalski R.	, Ke	edzia B	(2011)) Antibacterial	and	antimutagenic	activity	of v	extracts
-----	-----------	----	---------------	------	---------	--------	-----------------	-----	---------------	----------	------	----------

- 646 aboveground parts of three Solidago species: Solidago virgaurea L., Solidago canadensis
- 647 L. and *Solidago gigantea* Ait. J Med Plant Res 5:6770-6779
- 648 Kraujalienė V, Pukalskas A, Venskutonis PR (2017) Biorefining of goldenrod (Solidago
- 649 *virgaurea* L.) leaves by supercritical fluid and pressurized liquid extraction and evaluation
- of antioxidant properties and main phytochemicals in the fractions and plant material. J
- 651 Funct Foods 37:200-208
- Ledger KJ, Pal RW, Murphy P, Nagy DU, Filep R, Callaway RM (2015) Impact of an invader on
 species diversity is stronger in the non-native range than in the native range. Plant Ecol
- 654 216:1285-1295
- Lim SL, Lee LH, Wu TY (2016) Sustainability of using composting and vermicomposting
 technologies for organic solid waste biotransformation: recent overview, greenhouse gases
 emissions and economic analysis. J Clean Prod 111:262–278
- Liu S, Shao X, Wei Y, Li Y, Xu F, Wang H (2016) Solidago canadensis L. essential oil vapor
- effectively inhibits *Botrytis cinerea* growth and preserves postharvest quality of strawberryas a food model system. Front Microbiol 7:1179
- Lucchi A, Benelli G (2018) Towards pesticide-free farming? Sharing needs and knowledge

promotes Integrated Pest Management. Environ Sci Poll Res 25:13439–13445

663 Matsubara E, Fukagawa M, Okamoto T, Ohnuki K, Shimizu K, Kondo R (2011) (-)-Bornyl

acetate induces autonomic relaxation and reduces arousal level after visual display terminal

- work without any influences of task performance in low-dose condition. Biomed Res
- 666 32:151-157
- 667 Meyer G, Clare R, Weber E (2005) An experimental test of the evolution of increased
- 668 competitive ability hypothesis in goldenrod, *Solidago gigantea*. Oecologia 144:299-307

- Nagy DU, Stranczinger Sz, Godi A, Weisz A, Rosche C, Suda J, Mariano M, Pal RW (2017)
- Does higher ploidy level increase the risk of invasion? A case study with two geo-cytotypes
 of *Solidago gigantea* Aiton (*Asteraceae*). J Plant Ecol 11:317–327
- 672 NIST 17 (2017) Mass Spectral Library (NIST/EPA/NIH). Gaithersburg, USA: National Institute
- 673 of Standards and Technology.
- Pal RW, Chen S, Nagy DU, Callaway RM (2015) Impacts of *Solidago gigantea* on other species
 at home and away. Biol Invasions 17:3317-3325
- 676 Palmer-Young EC, Calhoun AC, Mirzayeva A, Sadd B (2018) Effects of the floral
- 677 phytochemical eugenol on parasite evolution and bumble bee infection and preference. Sci678 Reports 8:2074
- 679 Pavela R, Sajfrtová M, Sovova H, Bárnet M (2008) The insecticidal activity of Satureja hortensis
- L. extracts obtained by supercritical fluid extraction and traditional extraction techniques.
 Appl Entomol Zool 43:377–382
- 682 Pavela R (2014) Acute, synergistic and antagonistic effects of some aromatic compounds on the

683 *Spodoptera littoralis* Boisd. (Lep., Noctuidae). Ind Crops Prod 60:247–258

- Pavela R (2015a) Essential oils for the development of eco-friendly mosquito larvicides: a
- review. Ind Crops Prod 76:174-187
- 686 Pavela R (2015b) Acute toxicity and synergistic and antagonistic effects of the aromatic
- compounds of some essential oils against *Culex quinquefasciatus* Say larvae. Parasitol
 Res 114:3835–3853
- 689 Pavela R (2016) History, presence and perspective of using plant extracts as commercial
- botanical insecticides and farm products for protection against insects–a review. Plant
- 691 Prot Sci 52:229–241

692 Pavela R (2018) Essential oils from *Foeniculum vulgare* Miller as a safe environmental

- 693 insecticide against the aphid *Myzus persicae* Sulzer. Environ Sci Pollut Res 25:10909694 10910
- Pavela R, Benelli G (2016a) Ethnobotanical knowledge on botanical repellents employed in the
 African region against mosquito vectors a review. Exp Parasitol 167:103–108
- Pavela R, Benelli G (2016b) Essential oils as eco-friendly biopesticides? Challenges and
 constraints. Trends Plant Sci 21:1000–1007
- Pavela R, Govindarajan M (2017) The essential oil from *Zanthoxylum monophyllum* a potential
 mosquito larvicide with low toxicity to the non-target fish *Gambusia affinis*. J Pest Sci
 90:369-378
- Pavela R, Sedlák P (2018) Post-application temperature as a factor influencing the insecticidal
 activity of essential oil from *Thymus vulgaris*. Ind Crops Prod 113:46-49
- Pavela R, Maggi F, Lupidi G, Cianfaglione K, Dauvergne X, Bruno M, Benelli G (2017)
- Efficacy of sea fennel (*Crithmum maritimum* L., Apiaceae) essential oils against *Culex quinquefasciatus* Say and *Spodoptera littoralis* (Boisd.). Ind Crops Prod 109:603-610

707 Pavela R, Maggi F, Lupidi G, Mbuntcha H, Woguem V, Womeni HM, Barboni L, Tapondjou

- 708 LA, Benelli G (2018) Clausena anisata and Dysphania ambrosioides essential oils: from
- ethno-medicine to modern uses as effective insecticides. Environ Sci Pollut Res 25:1049310503
- Pilson D, Rausher MD (1995) Clumped distribution patterns in goldenrod aphids: genetic and
 ecological mechanisms. Ecol Entomol 20:75-83
- 713 OECD (1984) Guideline for testing of chemicals no. 207. Earthworm, acute toxicity tests,
- 714 OECD—guideline for testing chemicals. Paris, France

715	Radusiene J, Marksa M, Karpaviciene B (2018) Assessment of Solidago×niederederi origin
716	based on the accumulation of phenolic compounds in plant raw materials. Weed Sci doi:
717	10.1017/wsc.2018.8
718	Ramzi H, Ismaili MR, Aberchane M, Zaanoun S (2017) Chemical characterization and acaricidal
719	activity of Thymus satureioides C. & B. and Origanum elongatum E. & M. (Lamiaceae)
720	essential oils against Varroa destructor Anderson & Trueman (Acari: Varroidae). Ind Crop
721	Prod 108:201-207
722	Ribeiro AV, Farias ED, Santos AA, Filomeno CA, dos Santos IB, Barbosa LCA, Picanco MC
723	(2018) Selection of an essential oil from Corymbia and Eucalyptus plants against Ascia
724	monuste and its selectivity to two non-target organisms. Crop Prot 110:207-213
725	Shelepova O, Vinogradova Y, Zaitchik B, Ruzhitsky A, Grygorieva O, Brindza J (2018)
726	Constituents of the essential oil in Solidago canadensis L. from Eurasia. Potravinarstvo
727	Slovak Journal of Food Sciences 12:20-25
728	Stefanic E, Puskadija Z, Stefanic I, Bubalo D (2003) Goldenrod: a valuable plant for beekeeping
729	in north-eastern Croatia. Bee World 84:86-90
730	Steliopoulos P, Wüst M, Adam KP, Mosandl A (2002) Biosynthesis of the sesquiterpene
731	germacrene D in Solidago canadensis: 13C and 2H labeling studies. Phytochemistry 60:13-
732	20
733	Stevenson PC, Isman MB, Belmain SR (2017) Pesticidal plants in Africa: a global vision of new
734	biological control products from local uses. Ind Crop Prod 110:2-9
735	Stranden M, Borg-Karlson AK, Mustaparta H (2002) Receptor neuron discrimination of the
736	germacrene D enantiomers in the moth Helicoverpa armigera. Chem Senses 27:143-152

738	Isobutyrylshikonin and isovalerylshikonin from the roots of Onosma visianii inhibit larval
739	growth of the tobacco cutworm Spodoptera littoralis. Ind Crops Prod 109:266–273
740	Synowiec A, Kalemba D, Drozdek E, Bocianowski J (2017) Phytotoxic potential of essential oils

Sut S, Pavela R, Kolarčik V, Lupidi G, Maggi F, Dall'Acqua S, Benelli G (2017)

- from temperate climate plants against the germination of selected weeds and crops. J PestSci 90:407-419
- Tschinkel WR (1975) A comparative study of the chemical defensive system of tenebrionid
 beetles: chemistry of the secretions. J Insect Physiol 21:753-783
- Tung YT, Chua MT, Wang SY, Chang ST (2008) Anti-inflammation activities of essential oil
 and its constituents from indigenous cinnamon (*Cinnamomum osmophloeum*) twigs.
- 747 Bioresour Technol 99:3908-3913

- Umpierrez ML, Paullier J, Porrini M, Garrido M, Santos E, Rossini C (2017) Potential botanical
 pesticides from Asteraceae essential oils for tomato production: activity against whiteflies,
 plants and bees. Ind Crop Prod 109:686-692
- Van den Dool H, Kratz PD (1963) A generalization of the retention index system including linear
- temperature programmed gas—liquid partition chromatography. J Chromatogr A 11:463471
- 754 Vasantha-Srinivasan P, Senthil-Nathan S, Ponsankar A, Thanigaivel A, Chellappandian M,
- Edwin ES, Selin-Rani S, Kalaivani K, Hunter WB, Duraipandiyan V, Al-Dhabi NA (2017)
- Acute toxicity of chemical pesticides and plant-derived essential oil on the behavior and
- 757 development of earthworms, *Eudrilus eugeniae* (Kinberg) and *Eisenia fetida* (Savigny).
- 758 Environ Sci Pollut Res 25:10371-10382
- Watanabe K, Shimizu N (2017) Identification of a sex pheromone of the chrysanthemum lace
 bug *Corythucha marmorata* (Hemiptera: Tingidae). Sci Rep 7:7302

761	Weber E, Jakobs G (2005) Biological flora of central Europe: Solidago gigantea Aito	on. Flora
762	200:109–118	

763 Werner PA, Gross RS, Bradbury IK (1980) The biology of Canadian weeds: 45. Solidago

canadensis L. Can J Plant Sci 60:1393-1409.

- Weyerstahl P, Marschall H, Christiansen C, Kalemba D, Góra J (1993) Constituents of the
 essential oil of *Solidago canadensis* ("Goldenrod") from Poland-A Correction. Planta Med
 59:281-282
- 768 Zihare L, Blumberga D (2017) Insight into bioeconomy. *Solidago canadensis* as a valid resource.
- 769Brief review. Energy Procedia 128:275-280

Figure 1. Solidago gigantea (a) and S. canadensis (b) in the collection site (Szentlőrinc, Hungary).

2 0 0 0 0 0 * 0 0 0 0 0 500000 0 0 0 0

72

8

ú

83

18

7 IC: 26 1 0 1 7 0 2 2 . D 1 d a ta.m a

T 1C : 2 8 1 8 1 7 8 1 9 . D 1 4 a ta .m s

Figure 3. Marker volatile compounds in the essential oils extracted from different plant parts of Solidago gigantea and Solidago canadensis.

Figure 4. A relationship between *Spodoptera littoralis* larval mortality and the oxygenated sesquiterpene content characterizing the five tested *Solidago* essential oils (all at 150 μ g larva⁻¹) was observed. A significant linear relationship was noted (P=0.001). The same was not observed analysing *C. quinquefasciatus* data.

S	Componenta	DI own b	RI L	.it.°	Solid	ago gigantea (^b (%	Soliday	go canadei	ısis
IND	Component	NI exp.	ADAMS	NIST 17	Leaves	Flowers	Roots	Leaves	Flowe	ers
1	1-octene,7-methyl	847		847			$0.9{\pm}0.2$			
2	2,6-dimethyl-1,3,6-heptatriene	861		858			$0.6{\pm}0.1$			
ω	1-nonene	888		889	$0.1{\pm}0.0$	$0.1{\pm}0.0$	13.1±2.5			
4	tricyclene	916	921	921					$0.1{\pm}0.0$	
S	a-thujene	921	924	922		$0.1{\pm}0.0$		Ħ	tr	
6	a-pinene	926	932	925	$1.5 {\pm} 0.3$	8.1±1.5	$0.2{\pm}0.0$	$4.6{\pm}0.9$	29.5±4.5	
Γ	camphene	939	946	940	$0.5 {\pm} 0.1$	$0.7{\pm}0.2$		$1.0 {\pm} 0.2$	$1.9{\pm}0.5$	
8	thuja-2,4(10)-diene	945	953	945	Ħ	$0.2{\pm}0.0$		$0.1 {\pm} 0.0$	$1.4{\pm}0.4$	
9	sabinene	967	696	896	Ħ	$0.4{\pm}0.1$	$0.1{\pm}0.0$	$0.1{\pm}0.0$	$0.1{\pm}0.0$	
10	β-pinene	896	974	896	$0.4{\pm}0.1$	$1.3{\pm}0.3$	$4.6 {\pm} 0.9$	$1.2{\pm}0.3$	$2.4{\pm}0.5$	
11	1-octen-3-ol	977	974	978			Ħ			
12	2-pentyl-furan	987	984	066			$0.1{\pm}0.0$	tr	$0.1{\pm}0.0$	
13	myrcene	686	886	886	$0.3{\pm}0.0$	$0.6{\pm}0.2$	2.1 ± 0.4	tr		
14	α-phellandrene	1003	1002	1003	$0.1{\pm}0.0$	$0.2{\pm}0.0$	$0.4{\pm}0.1$	tr		
15	<i>p</i> -methyl-anisole	1009	1015	1009			$0.1{\pm}0.0$			
16	α-terpinene	1014	1014	1014		$0.1{\pm}0.0$	ť		tr	
17	<i>p</i> -cymene	1022	1020	1020	$0.4{\pm}0.1$	3.5±0.7	2.5 ± 0.5	$0.2{\pm}0.0$	$1.5 {\pm} 0.3$	
18	limonene	1025	1024	1025	$0.2{\pm}0.0$	$0.6{\pm}0.2$	$3.1{\pm}0.6$	$1.0 {\pm} 0.2$	5.1±1.1	
19	1,8-cineole	1027	1026	1027			$0.3{\pm}0.1$			
20	2-ethyl-hexanol	1030		1031			$0.1{\pm}0.0$			
21	benzene acetaldehyde	1043	1036	1042	Ħ					
22	(E) - β -ocimene	1047	1044	1047					tr	
23	γ-terpinene	1055	1054	1055		$0.1{\pm}0.0$	Ħ.		$0.1{\pm}0.0$	
24	1-nonen-3-ol	1080		1081			0.7±0.2			
25	terpinolene	1085	1086	1085		tr	tr		tr	
26	<i>p</i> -cymenene	1087	1089	1089	Ħ	$0.1{\pm}0.0$		Ħ	$0.2{\pm}0.0$	
27	3-nonanone	1087		1089			$0.6{\pm}0.1$			
28	1-undecene	1091		1093			$0.6{\pm}0.1$			
29	3-nonanol	1098		1099			$0.2{\pm}0.0$			

Table 1. Chemical composition of the essential oils obtained from leaves, inflorescences and roots of Solidago gigantea and Solidago canadensis.

p,c				Ħ			1328	1323	1327	methyl decanoate	61
b,c				$0.1{\pm}0.0$			1330	1326	1325	silphiperfol-5-ene	60
a,b,c	tr	ť		Ħ	$0.1{\pm}0.0$	tr	1302	1298	1302	carvacrol	59
b,c					ť		1292	1288	1293	lavandulyl acetate	58
a,b,c	$0.2{\pm}0.0$	$12.2{\pm}2.0$	13.4±2.8	Ħ	11.4 ± 2.4	13.7±2.5	1281	1287	1282	bornyl acetate	57
b,c	$3.2{\pm}0.7$			$0.2{\pm}0.0$			1250		1248	methylcamphenoate	56
a,b,c	tr	$0.7{\pm}0.1$	tr		tr	tr	1241	1239	1241	carvone	55
b,c	$0.1{\pm}0.0$			$0.1{\pm}0.0$			1244	1242	1243	carvacrol, methyl ether	54
b,c		tr		Ħ	$0.1{\pm}0.0$		1235	1238	1235	cumin aldehyde	53
b,c	$0.1{\pm}0.0$			Ħ			1235	1232	1234	thymol, methyl ether	52
b,c		tr					1229	1226	1228	<i>cis</i> -carveol	51
b,c		$0.9{\pm}0.2$	$0.1{\pm}0.0$		$0.1{\pm}0.0$	tr	1216	1215	1216	trans-carveol	50
a,b,c		0.7±0.2	$0.2{\pm}0.0$		$0.1{\pm}0.0$	tr	1205	1204	1205	verbenone	49
a,b,c	$0.1{\pm}0.0$	$1.1{\pm}0.2$	$0.2{\pm}0.0$	Ħ	$0.4{\pm}0.1$	$0.1{\pm}0.0$	1191	1194	1191	myrtenol	48
a,b,c	$0.3{\pm}0.0$	$1.1{\pm}0.3$	$0.3{\pm}0.1$	Ħ	$0.3 {\pm} 0.1$	$0.1{\pm}0.0$	1190	1195	1190	myrtenal	47
a,b,c	$0.5 {\pm} 0.1$	$0.1{\pm}0.0$		$0.1{\pm}0.0$	$0.1{\pm}0.0$	tr	1186	1186	1187	a-terpineol	46
b,c	t	$0.3{\pm}0.1$	tr	Ħ	$0.1{\pm}0.0$	tr	1184	1179	1184	<i>p</i> -cymen-8-ol	45
b,c				$0.1{\pm}0.0$			1174	1165	1174	<i>n</i> -nonanol	44
a,b,c	$0.2{\pm}0.0$	$0.2{\pm}0.0$		$0.1{\pm}0.0$	$0.3{\pm}0.0$	t	1174	1174	1173	terpinen-4-ol	43
p,c				$0.2{\pm}0.0$			1171	1163	1170	(2E)-nonenol	42
b,c		3.8±0.7	$0.2{\pm}0.0$		$0.5{\pm}0.1$	$0.1{\pm}0.0$	1165	1166	1164	<i>p</i> -mentha-1,5-dien-8-ol	41
a,b,c	$0.2{\pm}0.0$	$0.3{\pm}0.0$	$0.2{\pm}0.0$	$0.2{\pm}0.0$	$0.3{\pm}0.0$	$0.4{\pm}0.0$	1160	1165	1160	borneol	40
b,c	$0.3{\pm}0.1$	0.8±0.2	$0.2{\pm}0.0$	Ħ	$0.3{\pm}0.0$	tr	1164	1160	1157	pinocarvone	39
þ,c		$0.1{\pm}0.0$			$0.1{\pm}0.0$		1156	1158	1155	trans-pinocamphone	38
a,b,c	tr						1151	1155	1151	isoborneol	37
b,c		$3.9{\pm}0.8$	$1.4{\pm}0.3$		$1.7{\pm}0.4$	$0.2{\pm}0.0$	1142	1140	1141	trans-verbenol	36
b,c		$1.1{\pm}0.3$	$0.2{\pm}0.0$		$0.5 {\pm} 0.1$	tr	1139	1137	1138	<i>cis</i> -verbenol	35
a,b,c	$0.2{\pm}0.0$	2.1±0.4	$0.4{\pm}0.1$	Ħ	0.7±0.2	$0.1{\pm}0.0$	1133	1135	1133	trans-pinocarveol	34
b,c	tr	$1.5 {\pm} 0.3$	$0.3{\pm}0.0$		$0.6{\pm}0.2$	$0.1{\pm}0.0$	1123	1122	1123	α-campholenal	33
b,c		$0.1{\pm}0.0$					1117	1119	1118	trans-p-mentha-2,8-dien-1-ol	32
b,c	$0.1 {\pm} 0.0$						1110	1114	1109	endo-fenchol	31
a,b,c		$0.1{\pm}0.0$			$0.1{\pm}0.0$	tr	1100	1095	1101	linalool	30

93	92	91	90	68	88	87	98	85	84	83	82	81	08	79	78	77	76	75	74	73	72	71	70	69	89	67	66	65	64	63	62
δ-cadinene	<i>trans</i> -calamenene	γ-cadinene	β-bisabolene	δ-amorphene	α-muurolene	bicyclogermacrene	α-selinene	epi-cubebol	β-selinene	germacrene D	γ-muurolene	γ-gurjunene	cis-cadina-1(6),4-diene	geranyl acetone	α-humulene	6,9-guaiadiene	a- <i>trans</i> -bergamotene	β-copaene	(E)-caryophyllene	α-gurjunene	β-elemene	β-cubebene	β-bourbonene	a-isocomene	modheph-2-ene	α-copaene	α-ylangene	eugenol	α-cubebene	7- <i>epi</i> -silphiperfol-5-ene	δ-elemene
1518	1517	1506	1505	1500	1494	1488	1487	1487	1476	1472	1470	1463	1453	1453	1443	1436	1431	1420	1409	1400	1386	1383	1376	1376	1374	1368	1363	1355	1344	1343	1332
1522	1521	1513	1505	1511	1500	1500	1498	1493	1489	1484	1478	1475	1461	1453	1452	1442	1432	1430	1417	1409	1389	1387	1387	1387	1383	1376	1373	1356	1345	1345	1335
1520	1517	1507	1505		1494	1490	1488	1488	1476	1473	1469	1465		1453	1444			1424	1412	1400	1387	1383	1376	1376	1376	1367	1364	1355	1345	1348	
$1.5{\pm}0.4$	$1.5 {\pm} 0.3$	0.7±0.2		$0.1{\pm}0.0$	$0.2{\pm}0.0$	0.7±0.2	$0.2{\pm}0.0$		$0.4{\pm}0.1$	6.3±1.1	$1.2{\pm}0.2$	$1.3{\pm}0.3$		$0.1{\pm}0.0$	$0.2{\pm}0.0$	tr	$0.1 {\pm} 0.0$	$0.2{\pm}0.0$	$0.5 {\pm} 0.1$	$2.6 {\pm} 0.5$	$0.6{\pm}0.2$	$0.1{\pm}0.0$	$0.2{\pm}0.0$			$0.1{\pm}0.0$	$0.1 {\pm} 0.0$	tr	$0.1 {\pm} 0.0$		$0.1{\pm}0.0$
$1.2{\pm}0.3$	$0.1{\pm}0.0$	$1.2{\pm}0.3$		$0.1{\pm}0.0$	$0.1{\pm}0.0$	0.5±0.1	$0.1{\pm}0.0$		$0.4{\pm}0.1$	9.0±1.6	$0.8{\pm}0.2$	$0.9{\pm}0.2$	$0.2{\pm}0.0$		$0.1{\pm}0.0$		$0.1{\pm}0.0$	$0.2{\pm}0.0$	$0.8{\pm}0.2$	2.3 ± 0.4	$0.2{\pm}0.0$	ť	$0.1{\pm}0.0$			$0.1{\pm}0.0$	tr	Ħ	$0.1 {\pm} 0.0$		$0.1{\pm}0.0$
2.6 ± 0.5	$0.2{\pm}0.0$	$1.5 {\pm} 0.3$		$0.1{\pm}0.0$	$0.3{\pm}0.1$	$1.2{\pm}0.3$	$0.3{\pm}0.0$		$0.4{\pm}0.1$	14.4±2.8	$0.1{\pm}0.0$	$0.6{\pm}0.2$			$0.2{\pm}0.0$	Ħ	$0.5 {\pm} 0.1$	$0.4{\pm}0.1$	1.1 ± 0.2	3.0±0.7	$0.1 {\pm} 0.0$	$0.2{\pm}0.0$		Ħ		$0.4{\pm}0.1$	$0.2{\pm}0.0$		$0.4{\pm}0.1$	$0.1{\pm}0.0$	$0.3{\pm}0.1$
$0.3{\pm}0.1$		$0.1{\pm}0.0$			$0.1{\pm}0.0$			$0.2{\pm}0.0$	$0.8{\pm}0.0$	11.0±2.2		$0.6{\pm}0.2$		$0.1{\pm}0.0$	$0.3{\pm}0.0$	Ħ	t	$0.2{\pm}0.0$	$0.8 {\pm} 0.2$	$1.3{\pm}0.3$	$1.7{\pm}0.4$	$0.1{\pm}0.0$	$0.3{\pm}0.1$			$0.1{\pm}0.0$		t	Ħ		tr
$0.2{\pm}0.0$			tr		tr				1.6 ± 0.3	$1.0{\pm}0.2$		0.6±0.2			$0.1{\pm}0.0$		t	Ħ	$0.2{\pm}0.0$	$1.3{\pm}0.4$	0.7±0.2	tr	$0.1{\pm}0.0$			$0.1{\pm}0.0$		t	tr		
$0.2{\pm}0.0$	$0.1{\pm}0.0$	$0.1{\pm}0.0$					$0.1{\pm}0.0$		$0.4{\pm}0.1$	$3.9{\pm}0.8$	$0.1{\pm}0.0$				ť		ŧ		$0.1{\pm}0.0$	$0.2{\pm}0.0$	3.4±0.7				$0.2{\pm}0.0$				ť		tr
b,c	b,c	b,c	p,c	p,c	b,c	b,c	p,c	b,c	p,c	p,c	b,c	b,c	b,c	p,c	a,b,c	p,c	b,c	p,c	a,b,c	a,b,c	a,b,c	p,c	p,c	p,c	p,c	a,b,c	p,c	a,b,c	p,c	p,c	b,c

		121	120	119	118	117	116	115	114	113	112	111	110	109	108	107	106	105	104	103	102	101	100	99	86	97	96	95	94
Total identified (%)	Oil yield (%)	kaurene	phytone	cyclocolorenone	10-nor-calamenen-10-one	eudesma-4(15),7-dien-1β-ol	cadalene	a-cadinol	opposita-4(15),7(11)-dien-1β-ol ^g	<i>epi-</i> α-muurolol	<i>epi</i> -α-cadinol	isospathulenol	torilenol ^g	humulene epoxide II	rosifoliol	ledol	salvial-4(14)-en-1-one	viridiflorol	eudesm-4(15)-en-1-one ^g	caryophyllene oxide	spathulenol	(E)-nerolidol	β-calacorene	epoxysalvial-4(14)-ene	epi-torilenol ^g	α-calacorene	α-cadinene	trans-cadina-1,4-diene	β-sesquiphellandrene
		2028	1844	1748	1692	1676	1666	1646	1636	1634	1633	1621	1601	1597	1597	1592	1583	1581	1575	1571	1568	1562	1556	1556	1546	1534	1530	1524	1519
		2025				1687	1675	1652	1633	1640	1640	1622	1599	1608	1600	1602	1594	1592	1574	1583	1576	1561	1564		1546	1542	1537	1533	1521
		2030	1845	1748	1702	1674	1665	1646		1635	1633	1621		1596	1595	1593	1584	1583		1571	1570	1562	1555	1557		1535	1533	1525	1520
83.3	0.16		Ħ	15.6±3.1	$0.1{\pm}0.0$	$4.4{\pm}0.9$	$0.2{\pm}0.0$	0.7±0.2	$1.4{\pm}0.3$	$0.3{\pm}0.0$	$0.3{\pm}0.1$	$3.0{\pm}0.6$	$0.5 {\pm} 0.1$	$1.3{\pm}0.3$		$2.9{\pm}0.6$	2.0 ± 0.4	$0.4{\pm}0.1$	$0.7{\pm}0.1$	$0.9{\pm}0.2$	4.3±0.8	$0.3{\pm}0.0$		4.1±0.7	$1.7{\pm}0.3$	$0.4{\pm}0.1$	tr	t	
88.1	0.15		$0.4{\pm}0.1$	$6.4{\pm}1.3$	$0.1{\pm}0.0$	$4.6 {\pm} 0.9$	$0.2{\pm}0.0$	$0.6{\pm}0.1$	$1.2{\pm}0.3$	$0.2{\pm}0.0$	$0.2{\pm}0.0$	2.8±0.6	2.5±0.4	$1.3{\pm}0.3$		$1.7{\pm}0.4$	$1.4{\pm}0.3$	$0.2{\pm}0.0$	1.0 ± 0.2	$1.8{\pm}0.4$	3.4±0.7	$0.1{\pm}0.0$		$3.0{\pm}0.6$	2.1 ± 0.3	0.3±0.1	$0.2{\pm}0.0$		
83.5	0.06	0.3±0.1		$0.2{\pm}0.0$		$2.8{\pm}0.6$	$0.3{\pm}0.0$	0.8±0.2	0.8±0.2	$0.2{\pm}0.0$	$0.2{\pm}0.0$	3.6±0.7	$1.4{\pm}0.3$		0.5 ± 0.1	0.5 ± 0.1	1.5 ± 0.3	2.0 ± 0.4	$0.6{\pm}0.1$	$0.6{\pm}0.2$	4.6±0.9		$0.2{\pm}0.0$	1.5 ± 0.3	1.3 ± 0.3	$0.2{\pm}0.0$	$0.1{\pm}0.0$	Ħ	
85.5	0.20		Ħ	8.8±1.6		7.1±1.5			2.1±0.4	$0.1{\pm}0.0$	$0.1{\pm}0.0$	2.4±0.5	4.1±0.7	$1.7{\pm}0.4$		2.6 ± 0.5	3.0±0.6	$0.8{\pm}0.2$	$0.6{\pm}0.1$	2.1±0.5	2.1±0.4	$0.3{\pm}0.0$		$1.8{\pm}0.4$	$2.1{\pm}0.4$	$0.1{\pm}0.0$			
94.3	0.18		0.1	$2.9{\pm}0.6{\pm}0.0$		$1.2{\pm}0.3$			$0.3{\pm}0.0$			0.8±0.2	$0.6{\pm}0.1$	0.7±0.1		$1.1{\pm}0.3$	0.7±0.1	$0.4{\pm}0.1$	$0.1{\pm}0.0$	2.1±0.5	$1.1{\pm}0.3$	$0.1{\pm}0.0$		2.5±0.5	$0.5 {\pm} 0.1$	$0.1{\pm}0.0$			
96.2	0.04			$0.2{\pm}0.0$		$0.3{\pm}0.0$	$0.1{\pm}0.0$	$0.3{\pm}0.1$	$0.1{\pm}0.0$	tr	tr	$0.3{\pm}0.1$	$0.1{\pm}0.0$		$0.2{\pm}0.0$	$0.1{\pm}0.0$	$0.3{\pm}0.0$	tr			tr			$0.1{\pm}0.0$		tr			$0.1{\pm}0.0$
		b,c	b,c	p,c	oʻq	oʻq	p,c	a,b,c	oʻq	oʻq	b,c	b,c	b,c	a,b,c	b,c	b,c	b,c	a,b,c	b,c	a,b,c	oʻq	a,b,c	oʻq	oʻq	oʻq	b,c	oʻq	b,c	b,c

Monoterpene hydrocarbons	3.5	16.0	12.9	8.3	4.
Oxygenated monoterpenes	15.1	17.7	1.2	17.2	30.8
Sesquitepene hydrocarbons	19.5	19.1	29.2	17.9	5.9
Oxygenated sesquiterpenes	45.1	34.5	23.1	42.1	15.2
Others	0.1	0.5	17.4	Ħ	0.1

homologous series of C_8-C_{30} alkanes. ^c Linear retention index taken from Adams (2007) and NIST 17 (2017). ^d Relative percentage values are means of three determinations \pm SD. ^c Identification methods: a, based on comparison with authentic compounds; b, based on comparison with WILEY, ADAMS, FFNSC2 and NIST 17 MS databases; c, based on comparison of calculated RJ with those reported in ADAMS, FFNSC 2 and NIST 17. ^ftr, % below 0.1%. ^g RJ and MS taken from Kalemba et al. (2001)

Table 2. Acute toxicity of the essential oils from various plant parts of Solidago canadensis and Solidago gigantea on Culex quinquefasciatus 3rd

instar larvae.

Treatment Solidago gigantea flowers Solidago gigantea leaves Solidago gigantea roots Solidago canadensis flowers	Mortality at 100 µl.L ⁻ 28.0±3.3 44.8±3.3 22.0±2.3 38.9±2.8 61.0±8.2	⁻¹ LC ₅₀ μl.L ⁻¹ ND ND ND	CI95 - - - - - 72.9-92.3	LC ₉₀ µl.L ⁻¹	C195 - - - - - - - - - - - - - - - - - - -	3
Solidago gigantea roots	22.0±2.3	ND	ı	I	ı	
Solidago canadensis flowers	38.9±2.8	ND		ı		
Solidago canadensis leaves	61.0±8.2	89.3	72.9-92.3	189.6	172.3-19	9.8
Negative control	0.0±0.0	ı		I	I	
Positive control, <i>a</i> -cypermethrir	1 100.0±0.0	0.0005	0.0003-0.0007	0.0018	0.0009-0.()023

ND = not determined.

ns = not significant (P > 0.05).

Table 3. Acute toxicity of the essential oils from various plant parts of Solidago canadensis and Solidago gigantea on Musca domestica adult

females.

Treatment	Mortality at 200 µg.adult ⁻¹	LC ₅₀ µg.adult ⁻¹	CI95	LC ₉₀ µg.adult ⁻¹	CI95	Chi square
Solidago gigantea flowers	32.5±2.5	ND	·		ı	ı
Solidago gigantea leaves	42.5±7.5	ND			ı	ı
Solidago gigantea roots	30.0±0.0	ND			I	ı
Solidago canadensis flowers	67.5±12.5	207.1	191.3-226.2	355.6	310.1-369.8	1.718 ns
Solidago canadensis leaves	57.8±12.5	206.9	187.5-232.4	426.4	401.8-471.5	5.246 ns
Negative control	0.0±0.0	I		ı		
Positive control, <i>a</i> -cypermethrir	n 100.0±0.0	0.19	0.16-0.35	0.85	0.78-1.15	3.121 ns

ND = not determined.

ns = not significant (P > 0.05).

instar larvae. Table 4. Acute toxicity of the essential oils from various plant parts of Solidago canadensis and Solidago gigantea on Spodoptera littoralis 3rd

Positive control, <i>α</i> -cypermethrir	Negative control	Solidago canadensis leaves	Solidago canadensis flowers	Solidago gigantea roots	Solidago gigantea leaves	Solidago gigantea flowers	Treatment
	0.0±0.0	73.3±2.5	33.3±12.5	40.8±8.2	93.5±2.5	60.0±8.2	Mortality at 150 µg.larva ⁻¹
0.0032		98.9	ND	ND	84.5	107.4	LC ₅₀ µg.larva ⁻¹
0.0022-0-0039		83.4-124.1		T	72.9-89.5	94.6-118.9	CI95
0.0082		200.4	·		149.4	264.6	LC ₉₀ µg.larva ⁻¹
0.0057-0.0105		180.4-256.7		ı	122.7-178.5	173-7-316.1	C195
2.482 ns		2.517 ns		ı	1.787 ns	0.044 ns	Chi square

ND = not determined.

ns = not significant (P>0.05).

Table 5. Toxicity of the essential oils extracted from *Solidago canadensis* and *Solidago gigantea* leaves, and *a*-cypermethrin on *Eisenia fetida* earthworms. Herein, the *S. canadensis* leaf essential oil was the only tested product effective against the three selected tested pests, therefore it was selected for non-target tests, along with the leaf essential oil from *S. gigantea*.

* *E. fetida* mortality (\pm SD) achieved on the 7th and 14th day post-application of *Solidago canadensis* and *Solidago gigantea* essential oils. Numbers within a column follower by the same letter do not differ significantly according to ANOVA, Tukey's HSD test at P<0.05.