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13 Abstract

14 Three samples of (Tl,Sb,As)-rich pyrite from the ore deposits of southern Apuan Alps (Tuscany, Italy) 

15 were studied through a multi-technique approach in order to constrain the speciation and incorporation 

16 mechanism of thallium in pyrite. High concentrations of Tl, Sb, and As were detected in all the studied 

17 samples through laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS). Average 

18 Tl contents were 1,299 ppm, 1,967 ppm, and 2,623 ppm in samples from Sennari, Canale della Radice, 

19 and Fornovolasco, respectively. The LA-ICP-MS time-resolved down-hole ablation profiles were 

20 smooth indicating that Tl, Sb, and As are dissolved in the pyrite matrix, or occur in homogeneously 

21 distributed nanoparticles (NPs). X-ray absorption spectroscopy (XAS) data revealed that Tl, Sb, and As 

22 occurs as Tl+, Sb3+, As3+, and As1-. In all the studied samples, bond distances and coordination numbers 

23 for Sb3+ and As3+ are constant, whereas Tl displays a range of coordination numbers (~3 to ~6), 
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24 revealing the occurrence of different local environments. Moreover, no hints of features corresponding 

25 to coordination shells higher than the first were observed, suggesting an extremely disordered 

26 environment around Tl. Transmission electron microscopy (TEM) investigations revealed the presence 

27 of dislocations and As-rich “fluid” inclusions, whereas no Tl-rich NPs were observed. The study 

28 suggests that Tl+ could occur in structural defects in pyrite, lacking any long-range order. The ‘loose’ 

29 nature of Tl in pyrite favours its ready loss during the metamorphic recrystallization of pyrite and its 

30 redistribution within ore bodies and country rocks, with important implications from an economic and 

31 environmental point of view. 

32

33 Key-words: pyrite; thallium; speciation; LA-ICP-MS; XAS; TEM

34

35 1 Introduction

36

37 Thallium has received much scientific attention over the last few decades, given that even low 

38 concentrations are highly toxic for humans, more toxic than As, Hg, Cd or Pb (e.g., Nriagu, 1998; Peter 

39 and Viraraghavan, 2005). Thallium tends to bioaccumulate in living organisms once it enters the 

40 biosphere (Karbowska, 2016), making it a dangerous contaminant in the environment. As such, Tl has 

41 been classified as one of the 13 priority metal pollutants (Keith and Telliard, 1979).

42 Although the crust is richer in Tl (average continental crust concentration of 0.52 ppm - 

43 Wedepohl, 1995) than, for example, Ag or Au, this element is rarely concentrated in significant 

44 abundance as other metals may be. Having both lithophile and chalcophile geochemical behaviour, Tl 

45 is generally dispersed within minerals. Given the similarity in ionic radii of Tl+ and K+ (1.70 Å and 1.64 

46 Å in twelve-fold coordination, respectively - Shannon, 1976), Tl commonly substitutes for K in 

47 feldspars and phyllosilicates. Moreover, the ionic radius of Tl+ is very close to that of NH4
+ (e.g., 

48 Zelenski et al., 2009) and consequently it could occur in rocks enriched in organic matter, especially 

49 under reducing conditions.

50 Thallium may become significantly concentrated in sulphides, as proved by the large amounts 

51 of Tl occurring in some sulphide mineral deposits. For instance, Xiangquan, China, the world’s solitary 
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52 Tl-only mine, hosts around 250 tons of Tl (Zhou et al., 2005), whereas Meggen, Germany, contains 960 

53 tons of Tl, the largest accumulation on Earth (Laznicka, 2010). Thallium is mainly produced as a by-

54 product of pyrite-rich ore smelting (e.g., Peter and Viraraghavan, 2005) and, indeed, up to 3.5 wt. % Tl 

55 is hosted in some pyrite from Xiangquan, clearly demonstrating the ability of pyrite to host significant 

56 concentrations of this heavy metal.

57 Recently, the Tl-rich nature of several small pyrite ± baryte ± iron oxide ores hosted in the 

58 metamorphic units of the southern Apuan Alps (northern Tuscany, Italy) was recognised (e.g., Biagioni 

59 et al., 2013; D’Orazio et al., 2017). This is primarily expressed as Tl-rich pyrite (some pyrite samples 

60 concentrate over 4,200 ppm Tl - George et al., 2018a), and as assemblages comprising rare Tl-sulfosalts 

61 (e.g., Orlandi et al., 2012, 2013; Biagioni et al., 2014) mobilised in part as Tl-rich melts after release 

62 from pyrite during greenschist facies metamorphic recrystallization (Biagioni et al., 2013; George et 

63 al., 2018a). Release of Tl from pyrite due to oxidation has also caused severe Tl contamination in both 

64 stream waters and a public water supply system in the vicinity of the Apuan Alps pyrite ores (e.g., 

65 Biagioni et al., 2017; D’Orazio et al., 2017). 

66 Despite pyrite being such an important Tl host worldwide, and its potential to release Tl into 

67 the environment under a range of physico-chemical conditions, the speciation of Tl in pyrite has never 

68 been unequivocally determined. Monovalent Tl should be the dominant oxidation state for Tl in most 

69 natural environments (Vink, 1993; Xiong, 2007). Nevertheless, trivalent Tl, the other naturally 

70 occurring oxidation state of Tl, may be stabilized by the anionic complexes Cl− or OH− (Batley and 

71 Florence, 1975), or oxidized from Tl+ by Tl-oxidizing bacteria or UV irradiation (Karlsson et al., 2006). 

72 As such, some authors have suggested a trivalent, or even native occurrence, of Tl in pyrite (e.g., Huston 

73 et al., 1995; Zhou et al., 2005). Moreover, it has not been clearly shown whether Tl enters the crystal 

74 structure of pyrite or tends to occur as micro- to nano-particles of Tl-bearing phases. Deditius and Reich 

75 (2016) reported a wedge-shaped trend on a Tl vs. As plot, similar to the trend observed by Reich et al. 

76 (2005) for Au vs. As. This was interpreted to define a field where concentrations of Tl are likely present 

77 in solid solution, and thus that the solid solubility of Tl in pyrite is strongly dependent on As 

78 concentration. Similarly, George et al. (2018a) showed an approximately one-to-one correlation 

79 between (Tl + Cu + Ag) and Sb in pyrite from the southern Apuan Alps ore deposits, possibly indicating 
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80 that Tl (as well as Cu and Ag) could be hosted in pyrite following the substitution mechanism 2Fe2+ ↔ 

81 Tl+ + Sb3+. However, as will be discussed below, the difference in ionic radius between Fe on the one 

82 hand, and Tl and Sb on the other, is likely too large and the proposed substitution mechanism seems 

83 difficult to envision. 

84 Thus, Deditius and Reich (2016) suggested that further work was necessary to elucidate the 

85 speciation of Tl in pyrite. The aforementioned authors recommended that such efforts should combine 

86 determination of Tl composition and depth-profiling by laser ablation inductively-coupled plasma mass 

87 spectrometry (LA-ICP-MS), transmission electron microscopy (TEM) studies to detect the presence of 

88 any potential nano-particles, and synchrotron-based X-ray absorption near edge structure (XANES) and 

89 extended X-ray absorption fine structure (EXAFS) studies to determine the oxidation state and the local 

90 bonding environment of Tl.

91 Here, we attempt to combine these different methods (LA-ICP-MS, XANES, EXAFS, and 

92 TEM) in order to determine the speciation of Tl in the (Tl, Sb, As)-rich pyrite from the southern Apuan 

93 Alps. We report XANES and EXAFS data for Tl, as well as for Sb and As. Moreover, LA-ICP-MS and 

94 TEM investigations were made with the aim to determine if Tl is hosted in the pyrite crystal structure, 

95 or in micro- to nanoparticles (NPs) of other Tl-bearing phases. Understanding the speciation of Tl in 

96 pyrite is important since it should help clarify the mechanisms of release and dispersion of Tl in natural 

97 systems, particularly during pyrite oxidation, with significant environmental implications. 

98

99 2 Sample material

100

101 Three Tl-rich pyrite samples, previously investigated by George et al. (2018a), were used in 

102 this study. One was collected from Sennari (SEN1), a small occurrence of pyrite cropping out on the 

103 road from Sant’Anna di Stazzema to Case Sennari, in the southern Apuan Alps, Tuscany, Italy. Another 

104 sample came from the Canale della Radice mine (sample CDR4) and the last from the Fornovolasco 

105 mine (sample FOR19). These two mines exploited small orebodies belonging to a series of pyrite ± 

106 baryte ± iron oxide ore deposits located within a ~10 km NE-SW belt in the southern Apuan Alps 

107 (D’Orazio et al., 2017 and references therein). The Apuan Alps represent a tectonic window exposing 
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108 the most complete succession of northern Apennine units in a complex tectonic nappe formed due to 

109 numerous over-thrusts during the Tertiary Apennine Orogeny (Fellin et al., 2007 and references 

110 therein).

111 The orebodies at Canale della Radice and Fornovolasco were mostly monomineralic lens-

112 shaped bodies with pyrite or magnetite and minor baryte. The geological setting of these deposits is 

113 described in D’Orazio et al. (2017) and references therein. The orebodies were metamorphosed to the 

114 greenschist facies during the Apennine Orogeny, partly remobilising the ore and recrystallizing pyrite 

115 (George et al., 2018a and references therein). While the Sennari sample does not come from a mine, it 

116 is hosted in the same metamorphic units and shares similar mineralogy, textures and pyrite 

117 geochemistry to samples from Apuan Alps deposits (George et al., 2018a). 

118 SEN1 contains networks and bands of very fine to fine subhedral to anhedral pyrite in baryte, 

119 benstonite and lesser ankerite (Fig. 1A); accessory cymrite was observed. Pyrite sometimes forms 

120 granoblastic aggregates (Fig. 1B). CDR4 hosts coarse, sometimes granoblastic, aggregates and 

121 disseminations of very fine to fine grained euhedral to anhedral pyrite (Fig. 1C, D), sometimes aligned 

122 in rough bands. Some medium to coarse-grained relict euhedral pyrite and very fine grained framboidal 

123 pyrite is also present. Matrix minerals include siderite, dolomite, “chlorite”, “biotite”, cymrite, albite 

124 and quartz. FOR19 contains very coarse grained colloform banded pyrite (Fig. 1E, F) and lesser fine 

125 grained anhedral pyrite in siderite, dolomite and quartz. In some places, finer grained pyrite is being 

126 replaced by pyrrhotite and arsenopyrite. 

127

128 3 Methodology

129

130 3.1 Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS)

131

132 LA-ICP-MS data were collected using an ASI M-50-LR 193 nm Excimer laser attached to an 

133 Agilent 7700cx Quadrupole inductively coupled-mass spectrometer (Adelaide Microscopy, University 

134 of Adelaide) following the methods set out in George et al. (2018a). LA-ICP-MS spot analyses were 

135 used for accurate quantitative concentration measurements and monitoring of potential micro- to nano-
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136 inclusions in pyrite using time-resolved down-hole ablation profiles. LA-ICP-MS element mapping was 

137 used to monitor trace element variation and zonation. Laser repetition rate was maintained at 5 Hz for 

138 spot analysis and 10 Hz for mapping. The total acquisition time for each individual spot analysis was 

139 70 s: 30 s of background measurement followed by 40 s of sample ablation. For mapping, a 10 s 

140 background measurement was acquired before the ablation of each trench. A 20 s delay time was 

141 allowed after each spot or trench analysis to ensure the ablation cell was sufficiently washed-out and 

142 the gases had stabilized. 

143 During spot analysis and mapping, the following suite of isotopes were measured: 27Al, 29Si, 

144 43Ca, 49Ti, 53Cr, 55Mn, 57Fe, 59Co, 60Ni, 65Cu, 66Zn, 69Ga, 71Ga, 75As, 77Se, 95Mo, 107Ag, 111Cd, 115In, 118Sn, 

145 121Sb, 125Te, 137Ba, 182W, 197Au, 202Hg, 205Tl, 206Pb, 207Pb, 208Pb and 209Bi. During spot analysis, the dwell 

146 time for most elements was set at 0.02 s, while Se, Au and Tl were set at 0.04 s, Co, Ni, Cu and Zn were 

147 set at 0.01 s and Al, Si, Ca, Mn, Fe and Ba were set at 0.005 s. Aluminium, Si, Ca and Ba counts were 

148 monitored to ensure gangue phases were not analysed; these elements were not quantified. During 

149 mapping, the dwell time for most elements was 0.01 s, while Ti, Cr, Mn, Co, Ni, Cu, Zn, As, Ba, Pb 

150 and Bi were set at 0.005 s and Al, Si, Ca and Fe were set at 0.002 s. 

151 Two 51-µm analyses were made on the STDGL3 standard (Belousov et al., 2015) every 20 

152 unknown spot analyses, as well as before and after a map acquisition. All data calculations were carried 

153 out using Iolite (Paton et al., 2011), an open source software package for ICP-MS data processing 

154 developed by the Melbourne Isotope Group as an add-in for the data analysis program Igor by 

155 WaveMetrics. Iron was used as the internal standard assuming stoichiometric pyrite.

156

157 3.2 X-ray absorption spectroscopy (XAS)

158

159 X-ray absorption spectroscopy (XAS) measurements on pyrite at the Tl L3-edge (12,658 eV), 

160 As K-edge (11,867 eV) and Sb K-edge (30,491 eV) were made at the LISA beamline (BM-08; d’Acapito 

161 et al., 2019) at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) during three 

162 different experimental sessions. Pyrite was selected in order to avoid the gangue minerals and an aliquot 

163 of the powdered samples was checked through X-ray powder diffraction using a Bruker D2 Phaser 
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164 diffractometer operating at 30 kV and 10 mA (Ni-filtered Cu Kα radiation) and equipped with a one-

165 dimensional Linxeye detector. Pyrite was the only mineral above detection limit (> 1 vol%). However, 

166 the occurrence of minor amounts of accessory sulphides and gangue minerals cannot be avoided.

167 Since measurements were taken in a wide energy range, Pd- or Pt-coated mirrors were used for 

168 harmonics rejection (Ecutoff ≈ 18 KeV and 40 KeV, respectively). Model compounds and sample material 

169 were powdered, mixed with cellulose and pressed in pellets. The amount of material used was such as 

170 to keep the maximum total absorption (μ) around 1.5. All samples were measured in fluorescence mode 

171 by means of a 12-element solid state (high purity Germanium) detector while all reference compounds, 

172 with the exception of protochabournéite at the Tl L3-edge (see text below), were measured in 

173 transmission mode. All the fluorescence detected data were deadtime corrected; in order to check for 

174 the presence of over-absorption effects, self-absorption corrections were run on collected spectra at all 

175 absorption edges in ATHENA (Ravel and Newville, 2005), using the FLUO (available on Daniel Haskel 

176 webpage at APS, https://www3.aps.anl.gov/haskel/) and Booth (Booth and Bridges; 2005) algorithms 

177 for XANES and EXAFS regions, respectively. Results of self-absorption corrections (see Appendix A) 

178 rule out the possibility of over-absorption effects since experimental and absorption-corrected data are 

179 essentially superimposed at all measured edges. In order to reduce the damping of the signal due to the 

180 thermal contribution and to prevent possible beam-induced redox reactions, all samples were measured 

181 at 80 K using a liquid N2 cold finger cryostat (Puri et al., 2019). 

182 Spectra at the Tl L3-edge were acquired in the energy range 12,458-13,206 eV. The energy 

183 sampling interval in the higher resolution near edge region (12,638–12,688 eV) was 0.5 eV. A fixed 

184 exit sagittally focusing monochromator (d’Acapito et al., 2014) with a pair of Si [311] crystals were 

185 used; beam size was ~2000 (H) μm × 150 (V) μm. Measured reference compounds were Tl2O3, 

186 protochabournéite (~Tl2Pb(Sb9–8As1–2)Σ10S17 - Orlandi et al., 2013) and Tl2SO4. Synthetic Tl2O3 and 

187 Tl2SO4 were collected in transmission mode. Suitable filters were used for fluorescence measurements 

188 in order to attenuate for Fe and As fluorescence emission. Pyrite samples bearing significant As, as well 

189 as protochabournéite, showed strong As fluorescence emission (Kα1 = 10,543 eV) which almost 

190 superimposes on the Tl emission line (Lα1 = 10,269 eV) considering that the energy resolution of the 

191 detector is about 300 eV. Therefore, spectra were collected with a Ga filter (K-edge = 10,367 eV) 
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192 associated with a 40 μm Al filter to damp the Ga fluorescence. The Ga filter was specifically prepared 

193 for this experiment by deposing Ga2O3 on various layers of teflon filters to obtain a thickness equivalent 

194 to 80 μm of Ga2O3, absorbing most part of the fluorescence emission above the Ga K-edge. The teflon 

195 layers are very fragile and, probably due to the presence of holes and fractures in the filter, the final 

196 effect was closer to a filter with an equivalent thickness of 30 μm of Ga2O3. The actual effect of the 

197 filter on transmissivity at the different energies is summarized in Appendix B; the count rate on the 

198 detector in the Tl emission region was ~500 cts/s (with total counts on the detector always lower than 

199 10/20k cts/s). The small Se amounts (Table 1) present in the samples were found to be below detection 

200 limit; besides, the Se emission line (Kα1 = 11,224 eV) is well separated from that of Tl and its emission 

201 would be mainly absorbed by the Ga filter. A Se (Se K-edge = 12,657.8 eV) model compound was 

202 placed in a second experimental chamber, allowing simultaneous spectrum acquisition with each 

203 measurement on the samples and thus accurate energy calibration. A minimum of ten spectra were 

204 collected for each sample and no hints of beam damage effects were shown in each series of 

205 measurements.

206 For As investigation, samples were measured after the first part of the BM08 refurbishment 

207 (d’Acapito et al., 2019) using a pair of flat Si [111] monochromator crystals. Beam size was ~2000 (H) 

208 μm × 150 (V) μm Spectra were acquired in the energy range 11,667-12,850 eV. Seven As compounds 

209 were also measured as standards in transmission mode: skutterudite (CoAs3), protochabournéite (As3+ 

210 sulphide), arsenopyrite (FeAsS), adamite (Zn2AsO4OH), orpiment (As2S3), As2O3 and As2O5 

211 (hydrated). 

212 For Sb investigation, samples were measured with the BM08 setup (d’Acapito et al., 2019), 

213 using a pair of flat Si [311] monochromator crystals and Pt coated focusing mirrors (Ecutoff ≈ 40 KeV). 

214 Beam size was ~200 (H) μm × 200 (V) μm. Measured reference compounds were Sb2S3, Sb2O3 and 

215 Sb2O5. A reference Sb foil was also measured at the same time in order to accurately calibrate the 

216 energy. For each sample, six spectra were collected and no hints of beam damage effects were shown 

217 in each series of measurements.

218 The software ATHENA (Ravel and Newville, 2005) was used to average multiple spectra. 

219 Standard procedures (Lee et al., 1981) were followed to extract the structural EXAFS signal (k•χ(k)): 
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220 pre-edge background removal, spline modelling of bare atomic background, edge step normalization 

221 using a far above the edge region, and energy calibration. Model atomic clusters centred on the absorber 

222 atom were obtained by ATOMS (Ravel, 2001); theoretical amplitude and phase functions were 

223 generated using the FEFF8 code (Ankudinov et al., 1998). EXAFS spectra were fitted through the 

224 ARTEMIS software (Ravel and Newville, 2005) in the Fourier-Transform (FT) space.

225

226 3.3 Transmission electron microscopy (TEM)

227

228 Transmission electron microscopy investigations were performed on the samples FOR19 and 

229 CDR4 (the samples having the highest average Tl content) at the Dipartimento di Scienze della Terra e 

230 Geoambientali of the University of Bari, and at the Dipartimento di Scienze Fisiche, della Terra e 

231 dell’Ambiente of the University of Siena, with two analogous JEOL-JEM 2010, having the following 

232 characteristics: operating voltage 200 kV, LaB6 source, nominal point resolution of ~2.0 Å and spherical 

233 aberration of 0.5 mm. In order to distinguish between artefacts induced by sample preparation and the 

234 intrinsic micro/nano structures of the samples, two different methods, ion milling and grinding, were 

235 used. For ion milled mounts, the samples were prepared as 30 m thick double polished petrographic 

236 thin sections using a hot melt adhesive to fix the mineral to the glass slide. Copper-rings, 3 mm in 

237 diameter, were then glued on selected areas of the sections using Araldite®. Once hardened, the rings 

238 and the underneath mineral were detached with the aid of a scalpel and a hot plate. The mineral was 

239 finally ion milled down to electron transparency with Ar ions in a Gatan Precise Ion Polishing System 

240 (PIPS) at the Dipartimento di Scienze della Terra of the University of Milan. Before TEM experiments, 

241 ion milled mounts were carbon coated to avoid electrostatic charging during observations. Some 

242 fragments from the same FOR19 sample were also manually ground in a carborundum mortar. The 

243 obtained powder was ultrasonically dispersed in acetone, thereafter a few drops of the suspension were 

244 deposited onto a 3 mm wide holey carbon Cu-grid. Both single and double-tilt specimen holders (±20°) 

245 were used for powdered samples and polished samples.

246 Digital images were recorded with a Gatan US 1000 CCD (Bari) and an Orius CCD camera 

247 (Siena). Energy-dispersive qualitative X-ray analyses (EDS) were obtained with Oxford Link (Siena) 
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248 and Oxford-INCA (Bari) EDS spectrometers, both equipped with a Si(Li) detector and ultra-thin 

249 window. Quantitative analyses were obtained using the standard-less method within the Van Cappellen 

250 and Doukhan (1994) approximation.

251 High Resolution Transmission Electron Microscopy (HRTEM) images were rotationally 

252 filtered (Kilaas, 1998) with the HRTEM filter (Mitchell, 2007), as implemented in the Gatan Digital 

253 Micrograph version 3.9, in order to remove noise contrast from amorphous materials.

254

255 4. Results

256

257 4.1 Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

258

259 Pyrite in all three samples contained high concentrations of Tl, Sb and As (Figure 2 and Table 

260 1). On average, pyrite in SEN1 contained 1,299 ppm Tl, 1,299 ppm Sb and 364 ppm As, CDR4 pyrite 

261 hosted 1,967 ppm Tl, 1,871 ppm Sb and 1,857 ppm As, while FOR19 hosted 2,623 ppm Tl, 1,896 ppm 

262 Sb and 1,602 ppm As. Based on LA-ICP-MS mapping of a handful of samples from Canale della Radice 

263 and Fornovolasco, minor zoning of trace elements was only noted in some coarse inclusion-free late 

264 metamorphic pyrite, and the colloform bands in FOR19 (Figure 2B). 

265 For elements hosted in solid solution in a mineral, LA-ICP-MS time-resolved down-hole 

266 ablation profiles will appear smooth, whereas sub-surface inclusions usually show as peaks on such 

267 profiles if they are sufficiently large and not homogeneously distributed (e.g., Cook et al., 2009; George 

268 et al., 2015, 2018b). Using Iolite, the LA-ICP-MS down-hole ablation profile for each element in each 

269 analysis was carefully checked for peaks that may indicate an inclusion was accidentally ablated. 

270 Overall, spectra were smooth. While some spectra revealed occasional tiny peaks that may be due to 

271 nano-inclusions of distinct phases, the selected time interval for integration always excluded tiny peaks 

272 (Figure 2). Thus, the LA-ICP-MS data may be assumed to reflect trace elements in solid solution or 

273 related to homogeneously distributed NPs. Especially for Tl, Sb and As, most LA-ICP-MS down-hole 

274 ablation profiles appeared smooth, even those corresponding to exceptionally rich concentrations of Tl, 
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275 i.e., colloform banded pyrite in FOR19 (Figure 2B and C). Similarly, LA-ICP-MS element maps 

276 revealed smooth distributions of Tl, Sb and As, even when some zonation is present, i.e., Figure 2B.

277 Figure 3A shows a positive correlation between Tl and Sb (as mol. %). Such a correlation may 

278 be explained by a coupled substitution between these elements into the pyrite structure, i.e., 2Fe2+ ↔ 

279 Tl+ + Sb3+. George et al. (2018a) noted that Tl does not correlate well with As in pyrite from the southern 

280 Apuan Alps ore deposits, as shown here in Figure 3B. Pyrite in FOR19 and CDR4 typically contains 

281 far more As than Tl (comparing mol. %), likely reflecting the possible incorporation of anionic As as 

282 well as As3+, in agreement with XANES data. Indeed, As-1 is the most common oxidation state of As in 

283 pyrite in deposits that are not oxidised, e.g., high-sulfidation epithermal and porphyry deposits (Simon 

284 et al., 1999a, 1999b; Savage et al., 2000; Reich et al., 2005, 2013; Deditius et al., 2008; Qian et al., 

285 2013).

286

287 4.2 X-ray absorption spectroscopy (XAS)

288

289 4.2.1 Tl L3-edge 

290

291 XANES spectra of measured samples and reference compounds indicate that Tl in pyrite is 

292 present as Tl+ (Figure 4). Pyrite samples and protochabournéite show a single absorption peak, typical 

293 of monovalent Tl compounds (e.g., Scheckel et al., 2004; Agarwal and Vishnoi, 2005; Dutrizac et al., 

294 2005; Peacock and Moon, 2012; Biagioni et al., 2017) at 12,663 eV (first derivative maximum) while 

295 Tl2O3 shows a weak peak, followed by a shoulder on rising absorption, culminating in a marked 

296 peak at at 12,669 eV (first derivative maximum)..

297 Results of EXAFS quantitative analysis are shown in Table 2. Thallium L3-edge EXAFS and 

298 Fourier transforms of measured samples are shown in Figure 5; the corresponding multiparameter fits 

299 are also shown. Fit results (Table 2) indicate that Tl in the analysed pyrite samples has a first 

300 coordination shell constituted by S atoms; attempts to fit the first shell with oxygen atoms or with a 

301 combination of S and O were unsuccessful. First shell distances show substantial variations among the 
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302 three studied samples. Specifically, Tl–S distances are much lower in FOR19 pyrite compared to CDR4 

303 and SEN1 pyrite. Given the high error on refined distances and the frequent extreme inhomogeneity of 

304 the Tl+ coordination environment (e.g., Sabrowsky et al., 1979; Gostojić et al., 1982; Orlandi et al., 

305 2013), it is difficult to determine a precise coordination number (CN) for the studied samples. 

306 Nevertheless, a crystal chemical comparison of Tl–S distances in the studied samples with data on Tl 

307 minerals allows these results to be strengthened. Indeed, coordination numbers appear in agreement 

308 with those expected by the bond valence model (BVM; Brown and Altermatt, 1985), according to which 

309 the distance fitted in the quantitative analyses would be compatible with a coordination of ~3.2(2), 

310 5.3(7) and 6.0(4) for FOR19, SEN1 and CDR4, respectively. The choice of the R0 value (2.545 Å) 

311 proposed by Brown and Altermatt (1985) seems the most suitable for Tl–S bonds; Biagioni et al. (2014) 

312 have indeed noticed that the R0 reported by Brese and O’Keeffe (1991), i.e. 2.63 Å, usually results in 

313 an overbonding of Tl and suggested an R0 of 2.55 Å, almost identical to the one proposed by Brown 

314 and Altermatt (1985). Figure 6 shows the relationship between CN and Tl–S average bond distances 

315 taken from the Tl sites of several Tl minerals. The position of the studied samples fit well with data 

316 from the literature, confirming a substantially different environment for Tl between FOR19, which 

317 shows features similar to carlinite (Tl2S - Giester et al., 2002), where Tl is at the vertex of a pyramid 

318 coordinating 3 S atoms, and CDR4 and SEN1, which appear more similar to phases such as raguinite 

319 (TlFeS2 - Welz et al., 1989), ellisite (Tl3AsS3 - Gostojić, 1980) and fangite (Tl3AsS4 - Wilson et al., 

320 1993) (Tl2 site), where Tl is hosted in 5/6-coordinated sites. Coordination numbers obtained by the 

321 EXAFS multiparameter fits and BVM are in excellent agreement with only a very small discrepancy 

322 shown by sample FOR19, thus supporting the choice of the bond valence parameters and the fact that 

323 no self-absorption effects played a significant role in the data collection.

324 No hints of features corresponding to coordination shells higher than the first could be 

325 distinguished in the EXAFS signal. This may be due to the quality of available data that could be related 

326 to an extremely disordered environment around Tl atoms or to the very small size of Tl-rich clusters 

327 within pyrite.

328

329 4.2.2 As K-edge
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330

331 Measurements at the As K-edge were focused on the XANES region. Despite the fact that 

332 measurements were taken in vacuum at 80 K, there was no way to avoid the partial oxidation of As to 

333 As5+. The effect is clear by looking at the linear combination fit (LCF) results (Table 3) performed with 

334 ATHENA (Ravel and Newville, 2005), and it is evidenced by the presence of a small bump on the 

335 measured spectra at ~11874 eV, in correspondence of the main edge crest of adamite [Zn2(AsO4)(OH)]  

336 (Figure 7). All the studied samples’ spectra can indeed be approximated by a combination of 

337 arsenopyrite, protochabournéite, and adamite (see Table 3 and Figure 7). The oxidation was markedly 

338 evident for FOR19 where oxidation gradually increased after each measurement, while in the case of 

339 SEN1 and CDR4 the process does not seem to increase with the exposure time. This effect is illustrated 

340 in Appendix C, where the gradual oxidation of As in sample FOR19 in three consecutive measurements 

341 is shown. Data indicated that As oxidises mainly at the expense of arsenopyrite, while the contribution 

342 of As3+ sulphide does not seem to change with the exposure to the beam. According to the correlation 

343 observed in Appendix A, the oxidized contribution should reach the 0 value with an arsenopyrite content 

344 of ~0.8 (relative fraction of total As), which would be in good agreement with the approximately 

345 constant value of As3+ sulphide of ~0.2. As a consequence of this effect, only the first measured 

346 spectrum has been used for the analysis of sample FOR19, while the sum of four consecutive spectra 

347 was employed for the other samples.

348 It is reasonable to conclude that all the “arsenate” contributions in pyrite highlighted by the 

349 LCF is likely due to the oxidation of As during the preparation of the pellets and exposure to the X-ray 

350 beam. Indeed, following the mineralogical characterization performed by George et al. (2018) on these 

351 samples, the occurrence of natural arsenates seems to be unlikely. The contribution of the As5+ 

352 component is not always negligible, nonetheless it is possible to infer that As is present at least as both 

353 As-1 and As3+, the latter bonded to S.

354  

355 4.2.3 Sb K-edge

356
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357 XANES spectra at the Sb K-edge for measured samples and standards are shown in Figure 8. 

358 The edge position clearly indicates that Sb is present in the trivalent state with all the studied samples 

359 having the maximum of the first derivative at 30,492.1 eV, in perfect agreement with that shown by 

360 Sb2S3. Sb K-edge EXAFS and Fourier transform of measured samples and standard compounds are 

361 shown in Figure 9, as are the corresponding multiparameter fits; fit results are shown in Table 4. Both 

362 the period of oscillations and the position of the main peak in the Fourier transform space indicate 

363 considerable similarity between the studied samples and pure Sb2S3. The EXAFS quantitative analyses 

364 (see Table 4) shows that Sb has a first coordination shell constituted by S atoms; first shell distances 

365 show no substantial variations among the three studied samples and are very similar to those of Sb2S3. 

366 On the contrary, it is possible to notice from Figure 9 how the spectrum of Sb2O3 shows a markedly 

367 different oscillation period. Nonetheless, attempts to fit the first shell with oxygen atoms or with a 

368 combination of S and O were tentatively tried resulting unsuccessful.

369

370 4.3 Transmission electron microscopy (TEM)

371

372 The TEM-EDS investigations on samples CDR4 and FOR19 revealed different nano-structural 

373 features. The prominent ones are dislocations which appear either long and curved, straight and long, 

374 or short and straight (Figure 10A). The different appearance of the dislocations may be due to different 

375 operating Burgers vectors and to different orientations of the dislocation lines (Figure 10A, B). High 

376 resolution images of short and straight dislocations, tagged with black arrows in Figure 10A, were taken 

377 along [0 1] and showed (011) lattice planes offset by ½ [011] from one side to the other of the 1

378 dislocation line (Figure 10C, D).

379 Another nano-structural feature of the investigated samples is the occurrence of “fluid” 

380 inclusions with polygonal shape (Figure 11). High-resolution images of the inclusions taken along [01

381 1] show they are confined within the {011}, {111}, and {100} crystallographic planes of pyrite (Figure 

382 11). The absence of lattice fringes other than those of pyrite and/or moiré suggests that no crystalline 

383 precipitate is present within the inclusions. The attenuation, up to disappearance, of lattice fringes 
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384 towards the interior of the inclusions indicates that these inclusions may contain amorphous material. 

385 Qualitative EDS chemical data indicate an As-rich nature of these inclusions (Figure 12A). 

386 TEM-EDS analyses reveal no significant compositional differences between defect-free pyrite 

387 and pyrite showing dislocations. Arsenic is homogenously distributed, even if areas with high density 

388 of “fluid” inclusions show a significant As-enrichment, up to 2.4(5) wt% (Figure 12A). Thallium 

389 content is generally below the detection limit for TEM-EDS. However, some areas of the ground sample 

390 FOR19 exhibit locally detectable levels of Tl [1.9(8) wt%] and Sb [0.8(2) wt%] (Figure 12B). 

391 Unfortunately, these areas are too thick to obtain images with microstructural contrasts.

392

393 5. Discussion

394

395 5.1 A step in the understanding of thallium speciation in pyrite

396 In accord with previous investigations (e.g., D’Orazio et al., 2017; George et al., 2018a), Table 

397 1 shows the complex geochemistry of pyrite samples from the southern Apuan Alps ore deposits, having 

398 variable amounts of trace elements. These trace elements may be incorporated into pyrite through 

399 complex mechanisms and their speciation and concentration are controlled by several factors (e.g., 

400 Reich et al., 2005; Deditius et al., 2014; Deditius and Reich, 2016). In particular, two types of speciation 

401 can be identified, i.e. structurally bound elements vs. nanoparticle-hosted elements. Several crystal-

402 chemical considerations (i.e., atomic radii, formal charges) constrain the possibility of hosting elements 

403 in the crystal structure of pyrite, whereas NPs can have varying degrees of crystallinity (e.g., amorphous 

404 Fe-As-S inclusions in arsenian pyrite from Pueblo Viejo, Dominican Republic – Deditius et al., 2009) 

405 and complexity, i.e., from native elements to complex nanophases (e.g., Deditius et al., 2011).

406

407 5.1.1 Thallium in pyrite from the southern Apuan Alps ore deposits and the role of As and Sb

408

409 The high Tl content of pyrite ores from the ore deposits of the southern Apuan Alps was first 

410 noted by Biagioni et al. (2013) and fully described by D’Orazio et al. (2017). George et al. (2018a) 

411 detailed the geochemical evolution of pyrite during metamorphic recrystallization and the relationships 
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412 occurring among several hosted elements, suggesting the potential role played by the coupled 

413 heterovalent substitution 2Fe2+ ↔ Tl+ + Sb3+. Indeed, SEM observations of pyrite samples and the 

414 smooth nature of the LA-ICP-MS profiles did not reveal the occurrence of Tl-bearing inclusions. These 

415 results agree with previous studies on Tl-bearing pyrite, that were not able to detect the occurrence of 

416 Tl-bearing NPs (e.g., Kouzmanov et al., 2010), suggesting that Tl preferentially dissolves in the pyrite 

417 matrix. However, as noted by Cook et al. (2009), the occurrence of homogeneously distributed NPs of 

418 Tl-bearing phases (only few tens of nanometers in size) could lead to misinterpretation of the LA-ICP-

419 MS data.

420 Previous authors suggested that the occurrence of anionic or cationic As species (As1-, Simon 

421 et al., 1999a; Abraitis et al., 2004; As3+, Deditius et al., 2008), as well as cationic Sb (Sb3+, George et 

422 al., 2018a), favours the incorporation of several trace elements in pyrite as a result of the combination 

423 of electrical (p-type conductivity vs n-type conductivity) and crystal-chemical (expansion of the unit 

424 cell and creation of structural distortion) effects that As and Sb may induce in pyrite. In addition, another 

425 important factor controlling the concentration of trace elements in pyrite is the crystal size: the smaller 

426 the crystal size the larger is the specific surface is, which favours the adsorption of trace elements. 

427 However, nanoparticulate semiconductors experience self-purification, expelling non-stoichiometric 

428 impurities toward grain boundaries (Erwin et al., 2005 and references therein). Consequently, for trace 

429 elements incorporation from adsorption, the growth rate of pyrite must exceed the equilibration and 

430 removal rate of trace elements. The fine crystal size and the colloform banded texture shown by pyrite 

431 from the ore deposits of southern Apuan Alps suggest it formed through pristine kinetically-controlled 

432 crystallization under lower T conditions, promoting the distortion of the pyrite structure and the 

433 incorporation of abundant trace elements. This incorporation is likely further favoured by the 

434 occurrence of Sb3+, as first proposed by George et al. (2018a).

435

436 5.1.2 Speciation of thallium in pyrite

437

438 Whereas some authors proposed the occurrence of Tl3+ in collomorphic pyrite (Huston et al., 

439 1995), EXAFS and XANES data proves that Tl is present as Tl+. This valence state is the most common 
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440 in natural Tl compounds; indeed, among the 69 known Tl minerals, only three contain Tl3+, i.e. 

441 avicennite, Tl2O3, chrysothallite, K6Cu6Tl3+Cl17(OH)4·H2O, and kalithallite, K3Tl3+Cl6·2H2O. The 

442 occurrence of Tl+ in pyrite from southern Apuan Alps ores is coupled with the presence of Sb3+ and 

443 As3+, as indicated by XAS data. Arsenic also occurs as As-1, implying a dual crystal-chemical role for 

444 this element in the studied samples. The role played by trivalent Sb and As in favouring the 

445 incorporation of Tl+ in pyrite agrees with previous data reported by Deditius and Reich (2016).

446 EXAFS data indicate that the thallium coordination numbers range from ~3 to ~6 in the studied 

447 samples, thus differing from the usually higher coordination numbers observed in sulfosalts (e.g., 

448 Makovicky, 2018). Thus the occurrence of sulfosalt NPs may be excluded. 

449 The Tl–S distances are in the range ~3-3.2 Å, significantly larger than Fe–S distances (~2.26 

450 Å, Rieder et al., 2007). Arsenic–S and Sb–S distances are ideally 2.26 and 2.45 Å. In agreement with 

451 XAS data, these two elements display the typical trigonal pyramidal coordination, observed in As3+ and 

452 Sb3+-compounds. The range of different Tl coordination numbers among the three studied samples 

453 indicate the occurrence of different local environments around this element. This observation is not 

454 compatible with a simple coupled substitution 2Fe2+ ↔ Tl+ + Sb3+. Indeed, assuming the incorporation 

455 of Tl through this substitution, the same local environment around Tl should be observed in all the 

456 studied samples. Moreover, the complete lack of signal about coordination shells higher than the first 

457 in the EXAFS signal may be hypothetically related the occurrence of an extremely disordered 

458 environment around Tl atoms, possibly with the absence of long-range order, i.e., an amorphous 

459 environment. This is not entirely surprising, since the replacement of Fe by Tl would cause too short 

460 metal–S distances, requiring an important reorganization of the local structure of pyrite. TEM imaging 

461 revealed a number of defects affecting the pyrite structure, such as dislocations and “fluid” inclusions, 

462 but no Tl enrichment could be detected on these defects, since Tl was always below the detection limit 

463 as in defect-free pyrite. However, the possibility that Tl, ‘loosely’ tied to the pyrite structure, could 

464 diffuse away during sample preparation and/or observation should not be discarded, as it is well known 

465 that during ion milling there is non-negligible local heating of the sample (e.g., Barna et al., 1999), and 

466 that the highly focused electron beam required for EDS analysis may cause severe elemental diffusion 

467 (e.g., Capitani et al., 2016). Significant Tl levels were only detected in few thick grains in samples 
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468 prepared by grinding. In this case, the greater thickness of the sample, and therefore the lower electron 

469 dose, may have prevented elemental diffusion. The drawback of this situation is that the thickness of 

470 the sample also prevents any microstructural information to be obtained.

471 The ‘loose’ nature of the Tl incorporation in pyrite is further confirmed by its expulsion under 

472 pyrite low-grade metamorphic recrystallization. As shown by George et al. (2018a), after 

473 recrystallization, pyrite from the ore deposits of southern Apuan Alps is depleted in As, Sb, Tl, Hg, Cu, 

474 Zn, Ag, and Mn, whereas Ni, Co, and As are sometimes even enriched. These results fully agree with 

475 those reported by Large et al. (2007, 2011), who suggested that trace elements occurring as 

476 nanoinclusions or that are ‘loosely’ held in the pyrite structure are readily expelled during 

477 metamorphism, whereas those elements replacing Fe or S in the crystal structure remain and even 

478 become enriched during metamorphic recrystallization.

479 At the present stage of investigation, Tl-hosting NPs have not been observed in pyrite. On the 

480 contrary, XAS data suggest its occurrence as a monovalent cation, with variable local environments, 

481 compatible with its occurrence in structural defects lacking long-range order. In conclusion, we 

482 confidently suggest that Tl could be present in the defective structure of pyrite.

483

484 5.1.3 Arsenic-rich “fluid” inclusions in pyrite

485

486 An interesting feature shown by HRTEM is the occurrence of As-rich “fluid” inclusions, similar 

487 to those observed by Deditius et al. (2009) who revealed As-enrichment in amorphous Fe-As-S 

488 nanoscale “liquid” inclusions in arsenian pyrite from Pueblo Viejo, Dominican Republic. There are two 

489 alternative ways to interpret the occurrence of these inclusions. Following Deditius et al. (2009), a 

490 possible interpretation is that these inclusions are primary features, trapped during the crystallization of 

491 host pyrite, in agreement with the observation of the precipitation of an amorphous Fe-As-S phase via 

492 bacterial activity by some authors (e.g., Morin and Calas, 2006). On the contrary, taking into account 

493 the results reported by George et al. (2018a), these As-rich “liquid” inclusions could be sulphide melt 

494 nano-droplets exsolved during the final stages of the Apuan Alps metamorphism. According to Deditius 

495 and Reich (2016), these kinds of nanoparticles may be able to sequester migrating/diffusing elements, 
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496 like, for instance, Tl. It is worth noting that Guillemin et al. (1970) reported the occurrence of an 

497 amorphous Tl(As,Sb)10S16 phase in the Jas Roux deposit, Hautes-Alpes, France.

498

499 5.2 Environmental implications

500

501 The confirmation that Tl is present in the monovalent state in pyrite has significant 

502 environmental implications. Xiong (2009) calculated that Tl+ is the dominant Tl species over 

503 geochemically reasonable pH ranges for soils. Similarly, Vink (1993) showed that Tl+ is the most stable 

504 state of Tl under ‘normal’ Eh-pH conditions. Monovalent Tl is very mobile in the environment, being 

505 easily transported in aqueous form due to its high solubility (e.g., Vink, 1993; Peter and Viraraghavan, 

506 2005). In a study of the toxicity and availability of both monovalent and trivalent Tl, Ralph and Twiss 

507 (2002) showed that, though Tl3+ is likely orders of magnitude more toxic than Tl+ to algae, 

508 concentrations of available Tl3+, even in polluted environments, are far below dangerous toxicity levels. 

509 This is because Tl3+ is largely locked within Tl(OH)3 under near-neutral pH conditions. On the contrary, 

510 the bioavailable fraction of Tl+ is approximately equal to the total amount of dissolved Tl+ in water. 

511 Thus, Tl+ is far more of an environmental concern than Tl3+.

512 Given the stability of Tl+ in the environment, as well as its high mobility in this state, the release 

513 of Tl+ from pyrite will lead to its uninhibited movement into the environment. Under normal Eh-pH 

514 conditions, free Tl+ may readily be transported in ground or surface waters and dispersed. Importantly, 

515 Tl in the monovalent state is readily bioavailable; no chemical transformation is thus necessary, after 

516 release from pyrite, before Tl can be transported and made available for uptake into biota. The thallium 

517 contamination related to the ore deposits of southern Apuan Alps is an interesting case study (e.g., 

518 Biagioni et al., 2017). Given that, historically, Tl has not been as economically valuable as many other 

519 trace metals present in sulphide ores, it has rarely been recovered during the processing of such ores 

520 (Zitko et al., 1975). As such, Tl-bearing pyrite would be frequently discarded with ore tailings. 

521 Therefore, the oxidation of pyrite contained in mine dumps and tailings in Tl-rich mining areas 

522 worldwide potentially represents a severe environmental hazard. 

523
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1 Figure captions 

2

3 Figure 1

4

5 Textures shown by pyrite samples studied in this work. Samples are from Sennari (A, B), Canale della Radice (C, 

6 D), and Fornovolasco (E, F).

7

8 Figure 2

9

10 Representative LA-ICP-MS time-resolved down-hole ablation profiles from CDR4 (A), FOR19 (B) and (C), and 

11 SEN1 (D). Y axis = counts per second, X axis = time (s). Relatively flat spectra reflect solid solution or 

12 homogeneously distributed NPs. Reflected light images of the respective pyrite grains are also shown. Red dots 

13 indicate where the LA-ICP-MS spot was made (dot not to scale). LA-ICP-MS element map of Tl in colloform 

14 pyrite from FOR19 also shown in (B).

15

16 Figure 3

17

18 Plots showing inter-element correlations in pyrite. (A) Tl vs. Sb and (B) Tl vs. As. Data plotted as mol. %. Straight 

19 line is ideal 1:1 correlation.

20  

21 Figure 4 

22

23 Normalized Tl L3-edge XANES for measured samples and standards. The vertical dashed lines indicate the 

24 position of the main inflection point, which, by convention, is considered to be the absorption edge energy. It can 

25 be seen that all Tl+ standard compounds have an absorption edge at ~12663 eV, while Tl2O3 at ~12669 eV.

26

27 Figure 5

28

29 (A) Tl L3-edge k2-weighted EXAFS region of measured samples. (B) Fourier transforms (uncorrected for phase 

30 shifts) of the EXAFS of measured samples. Solid lines are data, red lines are fits. Fits were performed in R space.
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31

32 Figure 6

33

34 Coordination numbers (CNs) vs. Tl–S average bond distances for several Tl sulphide sites. Data from: Pasava et 

35 al., 1989 (bernardite); Giester et al., 2002 (carlinite); Ohmasa and Nowacki, 1971 (vrbaite); Brown and Dickson, 

36 1976 (christite); Balić-Žunić and Engel, 1983 (edenharterite); Orlandi et al., 2013 (protochabournéite); Rey et al., 

37 1983 (weissbergite); Engel, 1980 (parapierrotite); Berlepsch, 1996 (jentschite); Engel et al., 1982 (simonite); 

38 Balić-Žunić et al., 2008 (picotpaulite); Berger, 1989 (thalcusite); Fleet, 1973 (lorándite); Bindi et al., 2014 

39 (philrothite); Graeser et al., 2001 (sicherite); Wilson et al., 1983 (fangite); Gostojić, 1980 (ellisite); Engel et al., 

40 1983 (pierrotite).

41

42 Figure 7

43

44 Calibrated and normalized As K-edge XANES spectra of studied samples (black line) and measured reference 

45 compounds (black dotted line). Linear combination fit (LCF) of studied samples are shown in red. Vertical dashed 

46 lines in correspondence of the main inflection point of arsenopyrite (As-), protochabournéite (As3+) and adamite 

47 (As5+).

48

49 Figure 8

50

51 Normalized Sb K-edge XANES for measured samples and standards. Vertical dashed lines in correspondence of 

52 the main inflection point of Sb2O3, Sb2S3 and Sb2O5.

53

54 Figure 9

55

56 (A) Sb K-edge k2-weighted EXAFS region of measured samples. (B) Fourier transforms (uncorrected for phase 

57 shifts) of the EXAFS of measured samples. Solid lines are data, red lines are fits. Fits were performed in R space.
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60 Ion-milled sample CDR4. (A) BF image showing different dislocations whose contrast is due to different 

61 operating Burger vectors and to different orientations of dislocation lines. White arrows mark long and curved 

62 dislocations; black arrows show short and straight dislocations. (B) BF image showing a lamella (white arrow) 

63 and several straight dislocations. (C) HR image taken along [011] (SAED pattern shown in the inset) on two short 

64 and straight dislocations. (D) Enlargement of the square region in C (see text for details) showing HR image taken 

65 along [011] with (011) lattice planes offset by ½ [011] from one side to the other of the dislocation line.

66

67 Figure 11

68

69 (A) BF images showing inclusions with polygonal shape (some them indicated by arrows) of the ion-milled 

70 sample CDR4. (B) HRTEM images taken along [011] (related SAED pattern in the inset) of the ion-milled sample 

71 CDR4. The polygonal shape of the inclusion in the HR image is determined by pyrite crystallographic planes 

72 (indexed).

73

74 Figure 12

75

76 (A) EDS spectrum of fluid inclusions showing As-enrichment. (B) EDS spectrum of thick area from the ground 

77 FOR19 sample, exhibiting Tl and Sb. Nickel, Cu and Cr peaks are due to grid. 
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Table 1. Summary of trace element concentrations in pyrite determined by LA-ICP-MS (data in ppm).
Deposit Sample Mn Co Ni Cu Zn As Se Mo Ag Cd In Sn Sb Te W Au Hg Tl Pb Bi

Mean 14 14 151 10 20 364 1.0 18 0.74 0.7 0.002 0.06 1299 <MDL 1.1 <MDL 75 1299 99 0.01
Sennari SEN1

St. Dev. 12 29 196 7.5 20 269 0.73 22 0.78 0.7 0.001 0.03 1382 - 2.5 - 66 981 116 0.01
Mean 80 60 836 90 65 1857 3.3 41 0.92 0.8 0.02 0.69 1871 28.06 2.05 0.02 40 1967 91 2.43Canale della 

Radice CDR4 St. Dev. 87 74 1047 89 85 988 4.7 59 1.1 1.1 0.03 1.64 1156 23.18 6.55 0.01 50 1360 83 1.98
Mean 35 5.9 88 8.5 40 1602 5.3 45 2.4 0.3 0.00 <MDL 1896 <MDL 1.74 0.02 77 2623 18 <MDL

Fornovolasco FOR19
St. Dev. 22 5.7 70 6.3 20 892 6.7 26 1.7 0.2 0.00 - 914 - 1.11 0.02 47 1068 19 -

1 MDL = Minimum Detection Limi
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Table 2. EXAFS multiparameter fit details for Tl L3-edge
 Path CN R (Å) σ2 (Å2) k range (Å-1)

SEN1 Tl–S 5(2) 3.16(5) 0.03(1) 2.6-5.3
FOR19 Tl–S 2.1(3) 2.98(2) 0.013(3) 2.6-7.4
CDR4 Tl–S 6(1) 3.21(2) 0.036(4) 2.4-6.4

Protochabournéite Tl–S I 6(1) 3.25(2) 0.014(1) 2.4-8.3
 Tl–S II 3(1) 3.50(2) // //

CN = coordination number. R = path length. σ2 = Debye-Waller factor. Errors, as calculated by ARTEMIS, 
are indicated in parentheses.

1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59



Table 3. Relative weight of As species from linear combination fit (LCF) of pyrite samples (As K-
edge). 

Protochabournéite Arsenopyrite Adamite R factor
 

(As3+ sulfide) (As-1) (As5+, arsenate) (Σ(data-fit)2/Σ(data)2)

SEN1 0.35(1) 0.58(1) 0.07(1) 0.0002

CDR4 0.30(1) 0.63(1) 0.07(1) 0.0002

FOR19 0.18(1) 0.67(1) 0.14(1) 0.0001

All measured As standards were used for the fit allowing a maximum number of 4 standards for each fit; 
relative weights were constrained to be positive and to sum to 1. Results for sample FOR19 are relative to the 
sole first measurement. Errors in parentheses are 1-sigma errors generated in ATHENA.
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Table 4. EXAFS multiparameter fit details for Sb K-edge

 Path CN R (Å) σ2 (Å2) k range (Å-1)

SEN1 Sb–S 2.4(2) 2.498(8) 0.005(1) 3.3-10.5
FOR19 Sb–S 3.0(4) 2.53(1) 0.012(2) 3.3-8.8
CDR4 Sb–S 2.4(5) 2.52(2) 0.008(2) 3.3-10.5
Sb2S3 Sb–S 0.80(5) 2.515(5) 0.0088(7) 3.3-11.7

// 1.6(1) 2.535(5) // //
 Sb–Sb 3.2(2) 3.826(8) 0.018(2) //

Sb2O3 Sb–O 4.9(5) 2.218(7) 0.003(1) 3.3-12.3
Sb–Sb 1.9(2) 3.38(1) 0.006(1) //

// 0.97(9) 3.66(1) // //
// // 3.72(1) // //
// 1.9(2) 3.92(1) // //
// // 4.06(1) // //

CN = coordination number. R = path length. σ2 = Debye-Waller factor. Errors, as calculated by ARTEMIS, 
are indicated in parentheses. The reported Sb–O first shell for Sb2O3 represents the average of five Sb-O paths 
with Sb–O distances ranging from 1.97 to 2.60 Å.
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Appendix A

Comparison between raw and self-absorption corrected data on the XANES (left) and EXAFS (right) 
regions of collected spectra. Corrections were run at all absorption edges using the ATHENA 
software. A) XANES region at As K-edge; B) XANES region at Tl L3-edge; C) Tl L3-edge EXAFS 
region; D) XANES region at Sb K-edge; E) Sb K-edge EXAFS region.

Appendix B. Ga2O3 filter transmissivity at selected energies
Transmissivity (%)

Fe Kα1 = 6405.2 eV 7
Tl Lα1 = 10,269 eV 50
As Kα1 = 10,543 eV 4
Calculations were made using the Xpower tool, included in the XOP package (del Rio and Dejus, 1998).
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Appendix C

Relative proportions of As phases as obtained from LCF analysis on three consecutive 
measurements on sample FOR19.
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