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ABSTRACT

We perform an envelope-function based numerical analysis of the effect of a sequence of randomly spaced potential barriers on the conductance
and shot noise of an armchair graphene ribbon. The behavior is dominated by Klein tunneling and by resonant tunneling and strongly depends
on the geometrical details of the device. Klein tunneling effectively filters the modes that can propagate through the device. For a large number
of cascaded barriers, this gives rise to different transport regimes for metallic and semiconducting ribbons, with diverging shot noise behaviors.
Resonant tunneling is instead energy selective and has quite a different effect depending on whether the barriers are identical or not. We also
explore the effect of tilting the barriers with respect to the ribbon edges, observing a transition toward a diffusive transport regime and a one-
third shot noise suppression. We investigate this effect, and we find that it takes place also in more traditional semiconducting materials. The
results of our analysis could be instrumental for the fabrication of mode-filtering and energy-filtering graphene-based nanodevices. Moreover,
our study highlights the importance of the measurement of shot noise as a probe for the nature of the transport regime.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5092512

I. INTRODUCTION

Starting from the seminal work of Geim and Novoselov,?
many efforts have recently focused on the study of graphene.
This two-dimensional material has many fascinating properties,
including high electrical and thermal conductance, mechanical
strength and flexibility, transparency and chemical stability, which
make it interesting in different application fields, spanning from
the fabrication of composites, coatings, and membranes, to energy
storage systems, sensors, electronic, optoelectronic, and phonon-
based devices.”™"” Graphene is made up of a hexagonal lattice of
sp* hybridized carbon atoms. The unit cell of this lattice contains
two inequivalent atoms, generally specified with letters A and B,
which give rise to two triangular sublattices."™'® Unconfined
monolayer graphene has no energy gap: its highest valence band
and lowest conduction band touch each other at two inequivalent
degeneration points K and K’ (Dirac points) of the reciprocal
space. Around these points, the dispersion relations are linear
(which means that graphene has a zero effective mass) and the

behavior of graphene can be approximately described in terms
of four envelope functions Fg (which correspond to the two sublat-
tices S = A, B and to the two Dirac points & = K, K")."* Due to
the particular lattice structure of graphene, these functions Fg’ have
to satisfy an envelope-function equation that formally coincides
with the Dirac-Weyl equation,”’18 which also describes the behav-
ior of massless spin-1/2 particles in relativistic quantum mechan-
ics. As a consequence, graphene exhibits very peculiar properties,
previously expected only at relativistic speeds. Among these exotic
phenomena are'”*’ Klein tunneling”'~*° (the property that a parti-
cle impinging against an orthogonal barrier has a unitary probabil-
ity to transmit across it, whatever its width and height),
Zitterbewegung’ (an oscillatory behavior deriving from the inter-
ference between the components of the wave packet with positive
and negative energy), the anomalous integer quantum Hall
effect””*™*" (an unusual type of quantum Hall effect characterized,
among other peculiarities, by the presence of a zero-energy Landau
level), and Veselago lensing’"*’* (an optical phenomenon based on
negative refraction).
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In graphene, the conductance through a single tunnel barrier is
dominated by Klein tunneling and by resonant tunneling through
the states which are quasilocalized inside the barrier.”"”"~**

In this paper, we will focus on ribbons with armchair edges,
which can present either a (quasi)metallic or a semiconducting
behavior, depending on the exact number of dimer lines across
their width'>*>"" [while zigzag ribbons are always (quasi)metallic;
for a discussion on the effect of a potential step or barrier in a
zigzag ribbon, see Refs. 41-44].

In particular, we will numerically simulate the transport behav-
ior of an armchair graphene ribbon with a series of randomly spaced
potential barriers. This potential profile could be obtained, for
example, by negatively biasing a series of parallel top gates (separated
from the underlying ribbon by a dielectric layer) with random inter-
gate distances (see the sketch in Fig. 1). We will analyze the role that
Klein tunneling and resonant tunneling play in this structure and the
dependence on the specific geometrical details. Moreover, we will
study how this affects the shot noise properties of the device.

As we will show, the structure has different properties from
the case of evenly spaced tunnel barriers (the conductance behavior
of which has been analyzed in Refs. 45-54). Indeed, the presence,
in the structures we will consider, of different random interbarrier
distances excludes the presence of oscillations due to the resonance
with the states quasilocalized in the regions between adjacent
barriers and to the appearance of new Dirac points, oscillations
which instead have been predicted and observed in the case of
evenly spaced tunnel barriers.**’~*

In our devices, Klein tunneling will operate a selection of the
modes propagating through the ribbon, on the basis of their angle of
incidence. For a sufficiently large number of barriers, the behavior
will differ depending upon whether the ribbon is semiconducting or
metallic. In a semiconducting ribbon, no transport mode has a wave
vector (measured with respect to the Dirac points) with zero trans-
verse component and thus travels in a direction exactly orthogonal to

Left Top gates
contact

Right
contact

/

\ Graphene

ribbon

(a)

AN \

Bottom gate

(b)

FIG. 1. Armchair graphene ribbon with a possible gate configuration (a) leading
to the potential profile (b) that we are analyzing.
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the barriers. Therefore, we will reach a localized transport regime,
with zero conductance and no suppression of the shot noise power
spectral density (with respect to the value 2el predicted by Schottky™
in the case of charge carriers propagating independently through the
device, where e is the elementary charge and I is the average current
value). In a metallic ribbon, instead, one transport mode is exactly
orthogonal to the barriers and thus is able to ballistically cross all the
barriers with unit transmission. Therefore, the normalized conduc-
tance G will approach the quantum of conductance Gy = 2¢*/h
(where h is Planck’s constant) and shot noise will vanish.

On the other hand, resonant tunneling through the states
quasilocalized inside each barrier will operate a selection of the
charge carriers on the basis of their energy. The modes with an
energy equal to that of the quasibound states inside the barrier will
experience enhanced transmission, while the others will be sup-
pressed. If the potential profile is made up of identical barriers,
each barrier will perform the same selection and the overall device
will preserve such a dependence of the transmission on the energy.
Instead, in the case of different barriers, a more uniform behavior
as a function of energy will appear.

We will finally consider the case of barriers that are tilted with
respect to the ribbon edges, although all by the same angle (only the
analysis of the transport behavior of a single tilted barrier has been
previously reported in the literature™®). In this case, the barriers, intro-
ducing mode-mixing in the device, make it possible to reach the
diffusive transport regime. In particular, this gives rise to a shot noise
suppression factor F (Fano factor) equal to 1/3, where the Fano factor
is defined as the ratio of the actual value of the shot noise power spec-
tral density S; to the “full” value 2el predicted by Schottky. We have
verified that this conclusion is valid also in devices made up of more
traditional semiconducting materials, for example, in quantum wires
fabricated by confining the two-dimensional electron gas (2DEG) of
GaAs/AlGaAs heterostructures. This behavior differs from what we
reported in the past for 2DEG-based devices,” for barriers orthogonal
to the transport direction. Indeed, in that case, the absence of
mode-mixing made it actually impossible to reach the diffusive
regime and thus, by increasing the number of barriers, a direct cross-
over from the ballistic to the localized regime was observed.””*

Il. SIMULATION METHOD

We have performed our analysis using our in-house developed
envelope-function based transport simulator,”” which can compute
conductance and noise in graphene structures with different geom-
etries and potential profiles.”***®" As we have previously stated,
around the Dirac points, the wave function of graphene can be
written in terms of four envelope functions, which have to satisfy
the Dirac-Weyl equation. In order to simplify the calculations, the
code divides the armchair graphene ribbon into a series of sections,
where the Dirac-Weyl equation can be more easily solved. Each
section has a width W (along the transverse direction y) equal to
that of the ribbon, while its length in the transport direction x is
chosen in such a way as to be able to consider the potential U in
each section approximately independent of x. With this choice, the
envelope functions inside each section can be written as the
product of a transverse component d)gl(y) aqd of a plgne wave
propagating in the transport direction e™*: Fj(x, y) = e™*®j(y).
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Substituting these expressions into the Dirac-Weyl equation, with
Dirichlet boundary conditions for the graphene wave function at
the ribbon edges, we obtain a differential problem in the transverse
components CDZ’(y) and in the longitudinal wave vector k. Then,
this differential problem can be transformed into an equivalent one
with periodic boundary conditions.””**** This makes it possible to
solve the problem in the reciprocal space, overcoming the issue of
fermion doubling and increasing the efficiency of the numerical
procedure.” In particular, everything is reduced to an eigenpro-
blem where the eigenvectors are made up of the Fourier compo-
nents of a quantity related to the transverse components of the
envelope functions, while the eigenvalues are the longitudinal wave
vectors. Within each of the sections, we solve this problem, obtain-
ing the modes which propagate in that part of the device. Then, we
compose the results obtained in different sections using a recursive
scattering matrix approach. At the interface between adjacent
sections, we enforce the continuity of the wave functions on both
A and B sublattices. In particular, exploiting the linearity of the
problem, we imagine to inject a single mode at a time from the left
and from the right side of the interface, we enforce the continuity
across the interface, and we project the resulting relations onto a
basis of sine functions. In this way, we obtain a system of linear
equations in the transmission and reflection coefficients across the
interface. These coefficients represent the elements of the scattering
matrix of the region surrounding the interface. The scattering
matrices of the different regions of the device are then combined,
using standard techniques,”” in such a way as to obtain the scatter-
ing matrix of the overall device and, in particular, its transmission
matrix t. From the transmission matrix, the value of the conduc-
tance G and of the Fano factor F can be obtained using the
Landauer-Biittiker formulas,®” =’

2¢° S Y iwil —wy)
G=2_ w F=—==t_———, 1
h ZW 2el >oiwi W

where w; is the generic eigenvalue of the matrix t7¢ and the sums
run over all the modes propagating in the input and output leads.

The results are uniformly averaged over the energy range
delimited by the electrochemical potentials of the input and output
leads (assuming to operate at low temperature, we consider a step-
like behavior of the Fermi-Dirac distribution function). In the case
of the Fano factor, the averages have to be performed separately for
the numerator and for the denominator of the expression of F in
Eq. (1) (and thus for S; and I), consistent with the experimental
procedure for its measurement.®

In our calculations, we have included the effect of the contacts
considering regions with a negative potential energy U. (in our
simulations equal to —0.2eV) at the entrance and exit of the
device. However, the introduction of the two regions with negative
potential energies has a significant effect on the results only in a
small energy interval around zero (the interval in which otherwise
no mode would be injected into the device).

For each simulation, the length of the ribbon has been chosen
in such a way as to accommodate the investigated number of barri-
ers, leaving a distance between the contacts and the first/last barrier
of the order of the average interbarrier distance.

ARTICLE scitation.org/journalljap

The simulation code is written in Fortran and exploits
Lapack routines.”” The simulations have been performed on a
100-core cluster based on Intel Xeon processors, parallelizing the
calculations performed for different energies.

lll. NUMERICAL RESULTS

Unless otherwise specified, in our calculation, we have consid-
ered graphene ribbons with a width of 200 nm, with armchair
edges, and with a potential profile given by a series of 0.3 eV high
tunnel barriers (even though we have verified that the results are
valid also for smaller ribbons). We have assumed an energy differ-
ence of 0.4 meV between the Fermi levels of the input and output
leads, much greater than kgT (with kg being the Boltzmann cons-
tant and T being the absolute temperature, assumed less than 1 K).
However, further simulations performed at higher temperature
have shown that the selective conductance behavior that we will
discuss in the following is still visible for temperatures up to a few
tens of Kelvin.

The initial simulations have been performed for a semicon-
ducting ribbon, containing N = 1626 dimer lines between the
lower and the upper edge, with a potential consisting of a series of
identical barriers, with a rectangular profile, each one 40 nm long
and 0.3 eV high. Using a linear congruential generator, we have
randomly chosen each interbarrier distance d, with a uniform
probability distribution, between 150 nm and 250 nm.

We have repeated the simulations for several numbers of
cascaded barriers. For each set of barriers, we have computed the
conductance and the Fano factor behavior as a function of the
injection energy E. More in detail, for each value of E, we have
averaged (in the way described in Sec. II) the results obtained for
5 energy values uniformly distributed in a 0.4 meV wide interval
centered around E (in our simulations 5 values are sufficient, due
to the limited variability of the results in this energy interval).
Keeping the potential profile fixed and varying the injection energy
is equivalent to keeping the injection energy fixed and shifting the
potential profile (in the opposite direction). Therefore, this simula-
tion corresponds also to maintaining the Fermi levels of the left
and right contacts (differing by 0.4 meV) constant, while shifting
the potential profile through the electrostatic action of a bottom
gate located underneath the entire device (we remember that the
barriers are instead induced by a series of top gates; Fig. 1). The
results are shown in Figs. 2(a) and 2(b) for the conductance G
(normalized with respect to the conductance quantum G, = 2¢?/h)
and for the Fano factor F, respectively.

The behavior obtained for a single barrier agrees with that
reported in the literature.” The conductance starts from a zero
value for E =0, because for this energy, the density of states
outside the barrier vanishes (no mode propagates for E =0 in a
semiconducting ribbon). As E is increased, the average behavior of
the conductance first increases and then decreases, as an effect of
the evolution of the density of states outside and inside the barrier.
Superimposed to this average behavior, there are oscillations, with
several local maxima and minima. Finally, the conductance reaches
a nonzero minimum value when the energy E equates the height of
the potential barrier (and the density of states inside the barrier
vanishes). Such a nonzero conductance minimum, characteristic of
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FIG. 2. Behavior, as a function of the injection energy E, of the normalized con-
ductance G/Gy (a) and of the Fano factor F (b) for the semiconducting ribbon
(N = 1626) with a potential consisting of a series of identical unevenly spaced
rectangular barriers.

graphene, is an effect of the evanescent modes propagating through
the barrier and is also associated with a 1/3 value of the Fano
factor.”” This value (characteristic of the diffusive transport regime)
has been attributed to the presence of a Zitterbewegung motion in
graphene, which gives rise to a diffusivelike behavior.”’

Increasing the number of cascaded identical barriers, the con-
ductance drops for all the energies but the difference between the
local minima and the local maxima strongly increases, i.e., the
device becomes more selective in energy. Finally, for a rather large
number of barriers, the conductance vanishes and a strongly local-
ized regime is reached. Regarding the Fano factor, increasing the
number of barriers, we observe a more irregular behavior as a func-
tion of E, which reflects the more complex interference pattern in
the device. Finally, when transport becomes localized, i.., for a
sufficiently large number of barriers, the Fano factor approaches
F =1 (no shot noise suppression). Indeed, this is a characteristic
feature of the localized regime. While, in general, Pauli exclusion
introduces correlations between charge carriers, which generate
deviations in the shot noise power spectral density from the value
2el, when the transmission vanishes the different transition events
actually become uncorrelated and the full value of 2eI is recovered.

ARTICLE scitation.org/journalljap

In order to better understand the observed behavior, we have
analyzed the effect of the series of barriers on the single modes
propagating through the device. In this case, the barriers, being
orthogonal to the ribbon edges, do not introduce any mixing
among the different modes. Therefore, each mode transmits across
the ribbon independently of the others and the transmission matrix
is diagonal, with each element on the diagonal corresponding to
the transmission of a single mode.

In analogy with what happens in unconfined graphene, we
evaluate the angle of incidence of each mode against the barriers in
the following way. Outside the barriers, we can write the generic
i-th mode in the form y;(y) exp (ix.ix). We define x; and x); as
the components (in the transport and transverse directions, respec-
tively) of the wave vector (measured from the Dirac point) of the
i-th mode outside the barriers. Exploiting the dispersion_relation
(valid in the regions with zero potential) E = +hvg,/x3; + K,
(where # is the reduced Planck constant and vr is the Fermi veloc-
ity of graphene), we define the modulus of the angle of incidence
of the i-th mode against the barriers as

\/ (E/(hvp))* — i,

K yi
| ) =arctan| ¥———-"1]. (2)
i [

|6;] = arctan(
K

X1

For each fixed value of E, we order the modes by increasing
|6i], ie., by decreasing |ry| (or increasing |x,|). Therefore, the
lowest modes are those nearest to the condition of orthogonality to
the barriers.

In Figs. 3(a) and 3(b), we report a plot of the transmission
(resulting from our numerical simulations) of each mode as a func-
tion of the mode index i and of the injection energy E, for the
cases of a single barrier (a) and of ten cascaded identical barriers
(b). As will be discussed, this behavior can be explained in terms of
Klein tunneling and of resonant tunneling through the quasilocal-
ized states in the barriers.

First of all, we observe that, on the average, the transmission is
larger for low-order modes, while it decreases by increasing the
mode index (and thus increasing the incidence angle |6;]). This is an
effect of Klein tunneling: modes impinging closer to orthogonality
against the barriers experience a larger transmission. Therefore, a
series of tunnel barriers could be used as a mode filter: after a certain
number of barriers, the highest-order modes have substantially disap-
peared and only the modes with the lowest incidence angle survive,
although with reduced amplitude. This could be useful whenever it is
necessary to perform a selection of the modes propagating through
the graphene structure. For example, some devices (such as that pro-
posed in Refs. 70 and 71, which is based on quantum interference)
work well in the presence of a small and selected number of propa-
gating modes. Therefore, an implementation in graphene of these
devices would benefit from the upstream presence of a mode-filtering
section made up of a series of tunnel barriers.

In this case, we notice that by increasing the number of barri-
ers also the transmission of the lowest-order mode (the mode with
i =1) decreases, until it disappears for a large enough number
of barriers. Indeed, in a semiconducting ribbon, no mode with
Ky = 0 exists. More in detail, the Dirichlet boundary conditions at
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FIG. 3. Plot of the mode transmission (resulting from our numerical simulations)
as a function of the mode index i and of the injection energy E, for the consid-
ered semiconductor ribbon with a single rectangular barrier (a), the cascade of
10 identical unevenly spaced rectangular barriers (b), and the cascade of 10 dif-
ferent unevenly spaced rectangular barriers (c).

the ribbon edges limit the allowed values of the total transverse
wave vector to multiples of 7/ W. The Dirac point has ordinate (in
the reciprocal space) 47/(3a), while W = (N + 1)a/2 (a is the gra-
phene lattice constant and N is the number of dimer lines across
the ribbon width). Therefore, in a semiconducting ribbon (where N
is not equal to 3M — 1, with M an integer), the minimum value of
the modulus |x;| of the difference between the transverse compo-
nent of the allowed wave vectors and the ordinate of the Dirac
point is equal to 7/(3W). More in general, the i-th mode has

T
|K‘),,‘| = E—

i1
S with =it {’TJ —1,2,457 ... (3)

(i.e., the set of values ¢ is obtained by removing the multiples of 3
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from the sequence of the natural numbers). Since no mode exists
with x; = 0 (i.e., orthogonal to the barriers), crossing the barriers
all the modes (including the lowest one) experience attenuation
(although in different amounts) and, if we sufficiently increase the
number of barriers, vanishes.

Beyond this average behavior, we observe a dependence on the
energy of the transmission of the single modes [a dependence that
we have already observed in the overall device conductance, reported
in Fig. 2(a)]. This feature can be explained in terms of resonant
tunneling with the states quasilocalized inside each of the barriers.

Let us consider a single Lg long and Up high barrier. We indi-
cate with x, and «, the components (in the direction orthogonal
and parallel to the barrier, respectively) of the wave vector in the
regions outside the barrier. In a similar way, we define « and «, as
the components of the wave vector inside the tunnel barrier.
Let us focus on the range of energies between 0 and Up. Outside
the barrier, the carriers in the i-th mode have an energy

E = hvgy /% + ;. The barrier actually represents an Lg-long

potential well for the hole states.”® Therefore, inside the barrier
quasiconfined states form, with discrete values of the longitudinal
component of the wave vector, given by «’, = mnr/Lg (with m
being an integer). Moreover, assuming sufficiently regular barrier
edges, the component of the wave vector parallel to the barrier does
not change when the carriers pass from the region outside the
barrier to the region inside the barrier and vice versa:’” the i-th
mode outside the barrier is coupled only to the i-th mode inside
the barrier and ), = x; = {m/(3W). As a consequence, the quasi-
bound states inside the barrier have the following energies:

2 2
Ei,m = UB — FlVF\ / K;cm + K‘/’W»

4)
=Up— hvp\/ (mr/Lp)* + (bn/(3W))’,

with £ related to i by Eq. (3). Focusing on the i-th mode, when the
carriers outside the barrier impinge against it with an energy E
identical to E;, (the energy of one of the states quasilocalized
inside the barrier), the transmission has a maximum. As we see in
Fig. 4, where we plot these values E;,, as a function of the mode
index i, these energies fit well with the energies for which the trans-
mission maxima are observed in Fig. 3: the generic mode i experi-
ences a maximum transmission for the energy values E = E;,,.
Therefore, the barrier operates an energy filtering on the wave func-
tion impinging against it.

Since we are considering the case of identical barriers, i.e., of
barriers with the same length L and height U, the energy values
E;,, for which the transmission is maximum are the same for all
the barriers. Therefore, any additional barrier further refines the
energy selection already operated by the previous ones. As a conse-
quence, increasing the number of barriers, we observe (besides the
general reduction of transmission deriving from the increased back-
scattering) a larger energy filtering effect, i.e., an enhanced ratio of
the local maxima to the local minima of the conductance as a func-
tion of energy. This energy filtering effect could be useful, for
example, for the implementation of low-noise devices’* or more in
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FIG. 4. Energies E;, [obtained from Egs. (3) and (4)] of the states quasilocal-
ized inside a tunnel barrier in the considered semiconducting ribbon, plotted as
a function of the mode index i.

general of devices which require or take advantage from the injec-
tion of charges with a limited number of well-defined energies.

A first estimation of the position of the peaks observed in the
behavior of the total conductance as a function of energy [reported
in Fig. 2(a)] can be made focusing on the modes nearest to the
orthogonality condition (due to Klein tunneling, these modes,
characterized by a small x|, have the highest transmission). The
energies E, at which these modes experience resonant tunneling
can be obtained from Eq. (4), disregarding «; and considering
different values of the integer m (corresponding to different states
quasilocalized inside the barriers): E,, = Up — fivg(mn/Lg).

Since, through the quantity I = GV (the quantity V being the
voltage applied between the device contacts), the conductance
appears at the denominator of the Fano factor, this effect has a
direct impact also on the behavior of the Fano factor as a function
of energy [as we see in Fig. 2(b)].
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FIG. 5. Behavior, as a function of the injection energy E, of the normalized con-
ductance G/ G, for the considered semiconducting ribbon, with a potential con-
sisting of one or two identical rectangular barriers.
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We notice that, since we are considering the case of different
interbarrier distances, the resonant tunneling effects deriving from
the alignment of the injection energy with the energies of the states
quasilocalized in the regions between adjacent barriers (which actu-
ally represent wells for electrons) can be disregarded. Indeed, the
energies of these quasilocalized states are not the same for interbar-
rier regions with different lengths. The difference between the inter-
barrier distances also makes it possible to disregard the formation
of new Dirac points that has been reported in the literature for the
case of evenly spaced barriers. The only exception is the case of two
cascaded barriers, where the resonance with the states quasilocal-
ized in the region between the barriers gives rise to further oscilla-
tions, superimposed onto those deriving from the resonance with
the states quasilocalized inside the barriers (see Fig. 5). In our case,
the oscillations due to the resonance with the states quasilocalized
in the interbarrier regions have an energy separation smaller than
those due to the resonance with the states quasilocalized inside the
barriers, since the distance between the barriers is larger than the
length of each barrier.

In Fig. 6, on a polar plot, we report the transmission for the
various modes as a function of the modulus of their incidence
angle, for a fixed energy (in our case, E = 0.2 eV). The results for a
single barrier and for 10 unevenly spaced identical barriers are
represented with red circles and green squares, respectively, and

—o— 1 barrier
= 10 identical barriers
—4A— 10 different barriers
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FIG. 6. Polar plot of the mode transmission as a function of the modulus of the
incidence angle |6;| (represented in the figure by the counterclockwise angle
from the horizontal axis) for the semiconducting ribbon (N = 1626) with: a
single rectangular barrier (red dots), 10 unevenly spaced identical rectangular
barriers (green squares), and 10 unevenly spaced different rectangular barriers
(blue triangles).
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can be obtained from the sections, taken for the considered energy
E, of the maps reported in Fig. 3. This plot provides further graphi-
cal evidence for the phenomenon of Klein tunneling (modes closer
to the condition of orthogonality experience larger transmission),
with some oscillations due to resonant tunneling, since, for a fixed
value of E, a discrete number of modes exists for which the reso-
nant tunneling condition E ~ E;,, is reached.

We have then simulated the behavior of the same semicon-
ducting ribbon when the barriers are not identical. In particular,
we have considered 0.3 eV high rectangular barriers, differing for
their length, which we have randomly chosen (with a uniform
probability distribution) between 5nm and 75nm. All the other
parameters are left identical to those for the previous calculations.
The results are reported in Figs. 3(c), 6 (with blue triangles), and 7.
Also in these structures, we observe a larger transmission for
low-order modes, as an effect of Klein tunneling. Regarding reso-
nant tunneling, instead, in this case, the energies of the states
quasilocalized inside one barrier differ from those of the other
barriers because the barriers have different lengths Lg. Therefore,
energies for which the impinging carriers experience maximum
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FIG. 7. Behavior, as a function of the injection energy E, of the normalized con-
ductance G/Gy (a) and of the Fano factor F (b) for the semiconducting ribbon
(N = 1626) with a potential consisting of a series of different unevenly spaced
rectangular barriers.
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(or minimum) transmission across all the barriers do not exist. As
a consequence, the behavior of the conductance as a function of
energy is smoothed out, without any evidence of local maxima
or minima between E =0 and E = Up [Fig. 7(a)]. This clearly
affects also the behavior of the Fano factor as a function of energy
[Fig. 7(b)], the maps of the transmission as a function of the mode
index and of the energy [Fig. 3(c)], and the polar plots of the
transmission as a function of the modulus of the incidence angle
[blue triangles in Fig. 6]: for more than one barrier, the effect of
resonant tunneling actually disappears.

We have then analyzed the case of a metallic graphene ribbon
with a series of unevenly spaced identical potential barriers, with a
rectangular profile. In this case, the ribbon has N = 1625 dimer
lines across its width and thus N is equal to 3M — 1, with M an
integer (M = 542).

In Figs. 8-11, we report results analogous to those previously
shown for the case of the semiconducting ribbon. In Fig. 8, we plot
the behavior of the conductance and of the Fano factor as a func-
tion of the injection energy E; in Figs. 9(a) and 9(b), we report the
maps of the mode transmission as a function of the mode index i
and of the injection energy E; and in Fig. 11, we represent a polar
plot of the transmission of the modes as a function of the modulus
of their incidence angle for a fixed injection energy E = 0.2 eV.

Also in this case, on the average, modes with a smaller angle of
incidence against the barriers experience a much larger transmission,
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FIG. 8. Behavior, as a function of the injection energy E, of the normalized con-
ductance G/Gy (a) and of the Fano factor F (b) for the metallic ribbon
(N = 1625) with a potential consisting of a series of identical unevenly spaced
rectangular barriers.
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FIG. 9. Plot of the mode transmission as a function of the mode index i and of
the injection energy E, for the metallic ribbon (N = 1625) with a single rectangu-
lar barrier (a), the cascade of 10 identical unevenly spaced rectangular barriers
(b), and the cascade of 10 different unevenly spaced rectangular barriers (c).

due to Klein tunneling. We also observe the effect of resonant tun-
neling, with a transmission that strongly depends on the injection
energy (and, in particular, on the presence or absence at that energy
of a state quasilocalized inside the barriers). Again, the dependence
on energy increases with the number of identical barriers, as a conse-
quence of the combined filtering action of the barriers.

The difference with respect to the case of the semiconducting
ribbon is that in this case, being N = 3M — 1, the modulus |x,;| of
the difference between the allowed values of the transverse wave
vector (enforced to multiples of 7/W by the Dirichlet boundary
conditions at the ribbon edges) and the ordinate of the Dirac point
takes on the following values:

Iy :E% wichz?:EJ ~0,3,3,66 ... (5

ARTICLE scitation.org/journalljap

035 T T T T

0.3} 8

0.25*""'0....... 1
LN}
0.2*""""'0000.0::....--.0 )
o0
0.15‘.........“...."........::::..0o B
......

El.]m (eV)

..O..o......'.'.'.. e
00 4,
oo
.

0.1} oo ]
ooooo.ooo............ '.0.0...
°*°c0,

0.05 -

0 | I A LT I
0 5 10 15 20 25 30 35
Mode index i

FIG. 10. Energies E;, [obtained from Egs. (4) and (5)] of the states quasilocal-
ized inside a tunnel barrier in the considered metallic ribbon, plotted as a func-
tion of the mode index i.

[which in this case replaces Eq. (3)]. Substituting this expression
into Eq. (4), we obtain the energies for which the transmission for
the different modes reaches its local maxima. These values,
reported in Fig. 10 as a function of the mode index i, fit well the
energies for which we have found the transmission maxima (see
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FIG. 11. Polar plot of the mode transmission as a function of the modulus of
the incidence angle |6;| for the metallic ribbon (N = 1625) with: a single rectan-
gular barrier (red dots), 10 unevenly spaced identical rectangular barriers (green
squares), and 10 unevenly spaced different rectangular barriers (blue triangles).
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Fig. 9). In particular, the lowest mode (with i = 1) has x),; = 0.
This means that this mode also propagates for E = 0 [and actually
in our simulations G = Gy for E = 0, as shown in Fig. 8(a)] and
also that it has 6; = 0, i.e., this mode impinges orthogonally against
the barriers. As a consequence of Klein tunneling, this mode does
not experience any backscattering and is transmitted perfectly by
the device, for any number of barriers. Therefore, sufficiently
increasing the number of barriers, one propagating mode remains
and ballistically transmits across the structure, giving a total nor-
malized conductance G/Gy equal to 1 [see Fig. 8(a)]. As a conse-
quence, the Fano factor approaches zero [see Fig. 8(b)], which is
the value characteristic of perfect transmission. Indeed, in this case,
the effect of Pauli exclusion regularizes the transport dynamics
across the device (because each state can be occupied by one elec-
tron at a time and there is a finite number of available states) and
shot noise vanishes.”* Therefore, the behavior of the Fano factor is
heavily dependent on the exact width of the ribbon, as a result of a
significant change in the transport regime.

In Figs. 9(c), 11 (with blue triangles), and 12, we report the
results for the same metallic ribbon when the barriers are not
identical and, in particular, differ for their length, randomly chosen
between 5nm and 75nm. The conclusion is analogous to that
reached in the case of the semiconducting ribbon: when the cas-
caded barriers differ, the effect of resonant tunneling disappears
(while Klein tunneling is still present).
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FIG. 12. Behavior, as a function of the injection energy E, of the normalized
conductance G/Gy (a) and of the Fano factor F (b) for the metallic ribbon
(N = 1625) with a potential consisting of a series of different unevenly spaced
rectangular barriers.
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It is also interesting to consider what happens around E = 0
in the cases we have reported. For semiconducting ribbons, no
propagating mode exists for E = 0: therefore, the conductance is
zero and the Fano factor is 1. Instead, for metallic ribbons, for
E = 0 the lowest mode can propagate, giving rise to a nonzero con-
ductance G = Gy and to a vanishing Fano factor. It can be interest-
ing to compare these results with what has been observed for a
single barrier by Tworzydlo et al.”” Indeed, for E = 0, the overall
device extending from the left lead to the right one can be seen as
a single long barrier with respect to the regions with negative
potential that represent the contacts. In this case, the length of the
overall equivalent barrier (i.e., the length of the device) is not much
smaller than the width of the ribbon. Therefore, we are exactly in
the conditions in which Tworzydlo et al. predicted a behavior
different for metallic and semiconducting ribbons, with conduc-
tance zero for semiconducting ribbons (for structures with a length
much larger than the width, the evanescent modes are not able
to give a nonzero contribution) and nonzero for metallic ones
(where a propagating mode exists for zero energy), in agreement
with our results. The presence of barriers inside the device does not
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FIG. 13. Behavior, as a function of the injection energy E, of the normalized
conductance G/Gy (a) and of the Fano factor F (b) for the semiconducting
ribbon (N = 1626) with a potential consisting of a series of identical unevenly
spaced Lorentzian barriers.
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alter these results: neither in the semiconducting ribbons (where
the barriers represent a further obstacle to the transmission, which
is zero already in the their absence), nor in the metallic ribbons
(where the mode with zero energy, having «,; = 0, is orthogonal to
the barriers and thus does not experience any scattering from the
barriers themselves). Note that the situation is different from what
is observed for E = Up for the case of a single barrier: in that
case, the barrier that we have to consider is the real barrier, which
has a length much smaller than the ribbon width. In those condi-
tions, Tworzydlo et al. predict a nonzero conductance [equal to
(4€%/(h))(W /Lp)] and a 1/3 Fano factor both for semiconducting
and for metallic ribbons, in agreement with our numerical results.

We have performed analogous simulations on barriers that are
not rectangular. We report the results for a semiconducting ribbon
with N = 1626 (see Figs. 13 and 14) and for a metallic ribbon with
N = 1625 (see Fig. 15), considering barriers with a Lorentzian
profile, with a 0.3 eV peak. The half-width at half-maximum of the
barriers is equal to 20 nm in the case of identical barriers, while it
is a random value extracted with a uniform probability distribution
between 2.5nm and 37.5nm in the case of different barriers. For
the interbarrier distances, we have chosen values similar to those
considered in the simulations for rectangular barriers. Due to the
longer computational times required by the simulation of ribbons
with smoothly varying potential barriers, in this case, we have
considered a smaller number of cascaded barriers.
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FIG. 14. Polar plot of the mode transmission as a function of the modulus
of the incidence angle |6;| for the semiconducting ribbon (N = 1626) with a
single Lorentzian barrier (red dots), 10 unevenly spaced identical Lorentzian
barriers (green squares), and 10 unevenly spaced different Lorentzian barriers
(blue triangles).
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In Figs. 13 and 15, we show the behavior of the conductance
and of the Fano factor as a function of the injection energy for
different numbers of Lorentzian barriers in the case of identical
barriers in a semiconducting ribbon and in a metallic ribbon,
respectively. The results obtained in the case of different barriers
differ from these for the absence of strong oscillations with
energy.

Apart from the values of the energies of the quasiconfined
states inside the barriers, which depend on the specific barrier
profiles, we see that the main features observed in the case of rect-
angular barriers are preserved. However, in this case, the oscilla-
tions of the conductance and of the Fano factor as a function of
energy are much larger: indeed, barriers with a smoother potential
profile are known to present a more selective Klein tunneling
effect.””” This is confirmed by the polar plot of the mode trans-
mission as a function of the modulus of the incidence angle that
we show in Fig. 14 for the case of a semiconducting ribbon with
identical or different unevenly spaced Lorentzian barriers.

In order to assess if our conclusions can survive in a realistic
scenario, we have repeated the simulations performed on rectangu-
lar barriers adding disorder to the previously considered potential
profile. This disorder, which can represent the electrostatic effect of
the charged impurities unavoidably present near the graphene
ribbon, has been simulated through a superposition of randomly
located Gaussian scatterers.”” We have assumed a scatterer
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FIG. 15. Behavior, as a function of the injection energy E, of the normalized
conductance G/Gy (a) and of the Fano factor F (b) for the metallic ribbon
(N = 1625) with a potential consisting of a series of identical unevenly spaced
Lorentzian barriers.

J. Appl. Phys. 125, 244302 (2019); doi: 10.1063/1.5092512
Published under license by AIP Publishing.

125, 244302-10


https://aip.scitation.org/journal/jap

Journal of

Applied Physics

concentration equal to 5 x 10’ cm~2 and for each Gaussian func-
tion, a half-width at half-maximum of 35 nm and a random height
uniformly distributed between —10meV and 10meV (values
which are consistent with a low but still realistic level of disorder).
As we show (for example, for the case of identical barriers) in
Figs. 16 and 17, in this case, the main features obtained in the
previous simulations are still clearly visible. Therefore, these effects
(that would be washed out by a sufficiently strong potential
disorder) should, however, be observable in a practical experiment
on very clean samples.

Finally, we have performed a simulation for barriers that are
at an angle different from 90° with respect to the ribbon edges,
although all at the same angle. In particular, we have considered
0.3 eV high barriers with a rectangular profile, tilted by 45° with
respect to the ribbon edges. In Figs. 18 and 19, we show the results
of our simulations, performed for a semiconducting ribbon with
N = 1626 and for a metallic ribbon with N = 1625, in the case of
identical barrier lengths (analogous considerations are valid in the
case of different barriers). The lengths, measured in the x direction,
are identical to those considered in the previous simulations.
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FIG. 16. Behavior, as a function of the injection energy E, of the normalized
conductance G/Gy (a) and of the Fano factor F (b) for the semiconducting
ribbon (N = 1626) with a potential consisting of a series of identical unevenly
spaced rectangular barriers, in the presence of potential disorder.
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FIG. 17. Behavior, as a function of the injection energy E, of the normalized
conductance G/Gy (a) and of the Fano factor F (b) for the metallic ribbon
(N = 1625) with a potential consisting of a series of identical unevenly spaced
rectangular barriers, in the presence of potential disorder.

Therefore, as a result of the 45° tilt, the barriers we have simulated
have a thickness of 40 nm/+/2, with interbarrier distances varying
from 150 nm/+/2 to 250 nm/+/2.

Analyzing the behavior of the conductance as a function of
energy and comparing it with that observed in the case of barriers
orthogonal to the ribbon edges, we observe a larger conductance
suppression, besides the presence (already noticed in Ref. 56 for a
single tilted barrier) of a greater number of fine structures in the
G(E) curve in the low-energy range (and especially for a small
number of barriers).

Apart from this, we still observe features qualitatively similar
to those seen in the case of barriers orthogonal to the ribbon edges,
with mode-filtering (in particular, note that in the case of a metallic
ribbon one transmission mode still passes unaltered through the
series of barriers, as it was observed for a single tilted barrier in
Ref. 56) and, in case of identical barriers, energy filtering. Indeed,
if here we focus our attention on the states that diagonalize the
transmission matrix, we observe that the physical phenomena
(Klein tunneling and resonant tunneling) which dominated trans-
port for barriers orthogonal to the ribbon edges are still important
in the case of tilted barriers.

However, looking at the behavior of the Fano factor as a func-
tion of energy [reported in the panels (b) of Figs. 18 and 19], we
notice an interesting feature: for a large range of energies the Fano
factor approaches 1/3, the value typical of diffusive transport.
The presence of a diffusive transport regime is confirmed by the
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FIG. 18. Behavior, as a function of the injection energy E, of the normalized
conductance G/Gy (a) and of the Fano factor F (b) for the semiconducting
ribbon (N = 1626) with a potential consisting of a series of identical unevenly
spaced rectangular barriers, ftilted by a 45° angle with respect to the ribbon
edges.

fact that we have observed a linear behavior of the resistance as a
function of the length of the region with potential barriers.

In general, diffusive transport takes place when the device
length is much larger than the mean free path and much smaller
than the localization length (which is of the order of the mean free
path times the number of propagating modes). When the device
length is much smaller than the mean free path, transport is ballis-
tic, while when the device is much longer than the localization
length, transport is strongly localized.

However, in the case of barriers orthogonal to the transport
direction, the barriers do not introduce any mixing among the
modes and thus the different modes independently propagate along
the ribbon. Therefore, the system can be considered as a superposi-
tion of several single-mode systems, for which the localization length
is of the order of the mean free path and thus reaching the diffusive
regime is practically impossible. This is, indeed, what we have seen
in the simulations with nontilted barriers, where no trend toward
1/3 has been observed in the behavior of the Fano factor.

Instead, when the barriers are tilted, they introduce mixing
among the modes and thus the ribbon, instead of being a collection
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FIG. 19. Behavior, as a function of the injection energy E, of the normalized
conductance G/Gy (a) and of the Fano factor F (b) for the metallic ribbon
(N = 1625) with a potential consisting of a series of identical unevenly spaced
rectangular barriers, tilted by a 45° angle with respect to the ribbon edges.

of single-mode systems, represents a real multimode channel.
Therefore, the localization length can be much greater than the
mean free path and the diffusive regime (with the 1/3 suppression
of the Fano factor) can be reached, as we have indeed observed in
our simulations.

The situation is analogous to the one previously investigated
in the literature’””® for a series of unevenly spaced barriers in a
wire obtained confining the two-dimensional electron gas (2DEG)
in a semiconductor heterostructure (for example, GaAs/AlGaAs).
In that case, for barriers orthogonal to the transport direction, a
quantum simulation found a transport behavior changing from bal-
listic to localized as the number of barriers was increased, without
experiencing the diffusive regime.”’

Since the arguments that we have used to explain our numerical
results in a graphene ribbon in the presence of tilted barriers are
quite general, they should be valid also for a wire in a GaAs/AlGaAs
heterostructure. In order to test the validity of this conjecture, we
have performed some simulations for a 800 nm wide wire with a
number (varying from 1 to 20) of 45° tilted rectangular barriers,
with a 0.25 eV height and a 0.2 nm length. The distance between the
adjacent barriers has been chosen randomly between 90 nm and
110 nm. We have considered an injection energy E = 9 meV, averag-
ing the results over 41 energy values uniformly distributed between
896 meV and 9.04 meV. The simulations have been performed
using an envelope-function model and a numerical approach based
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on recursive Green’s function, written using a mixed representation:
in the real space along the transport direction and in the space of the
eigenmodes in the transverse direction.”””” We have found that for
more than 4 barriers, the Fano factor is close to 1/3. This confirms
that also in semiconductors more traditional than graphene, the
tilting of the barriers and the mode-mixing it generates can give rise
to a diftusive transport regime.

IV. CONCLUSION

We have studied an armchair graphene ribbon with a series of
randomly spaced tunnel barriers, observing the influence of the
geometric details of the device on its conductance and shot noise
behavior, which is dominated by Klein tunneling and by resonant
tunneling through the states quasilocalized in the barriers.

From the results of our simulations, we conclude that the
effect of resonant tunneling strongly depends on the similarity
between the barriers: in the case of identical barriers, this structure
actually represents an energy filter for the impinging carriers.
Instead, Klein tunneling gives rise to mode-filtering, since modes
with a smaller incidence angle experience larger transmission. For
a high number of barriers, two different transport regimes are
reached, depending on the exact width of the ribbon: in semicon-
ducting ribbons, transport is strongly localized, while in metallic
ribbons, the lowest mode passes unaltered through the device.

We have also analyzed the case of tilted barriers, where we
have shown that transport can become diffusive. Furthermore, we
have verified that this is true not only in graphene but also in more
traditional semiconductors.

As we have shown in our simulations, this multiplicity of
behaviors has a strong impact on the shot noise suppression factor,
which approaches the values 0, 1/3, or 1 when perfect transmission,
diffusive dynamics, or strong localization is reached, respectively.
Therefore, the analysis and measurement of shot noise turns out to
be a very useful tool for the study of the transport regime taking
place in the device.

Since we have found that these effects should also persist in
the case of barriers with a smooth profile and in the presence of
low levels of potential disorder, they should be detectable in actual
measurements. Experiments performed on graphene ribbons biased
by a series of unevenly spaced negatively biased top gates would be
useful to validate our analysis and could represent an important
step forward toward the application of these devices as energy and
mode filters in graphene-based electronics.
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