Advancements in techniques to rapidly and non-destructively detect the impact of tropospheric ozone (O3) on crops are required. This study demonstrates the capability of full-range (350-2500 nm) reflectance spectroscopy to characterize responses of asymptomatic sage leaves under an acute O3 exposure (200 ppb for 5 h). Using partial least squares regression, spectral models were developed for the estimation of several traits related to photosynthesis, the oxidative pressure induced by O3, and the antioxidant mechanisms adopted by plants to cope with the pollutant. Physiological traits were well predicted by spectroscopic models (average model goodness-of-fit for validation (R2): 0.65-0.90), whereas lower prediction performances were found for biochemical traits (R2: 0.42-0.71). Furthermore, even in the absence of visible symptoms, comparing the full-range spectral profiles, it was possible to distinguish with accuracy plants exposed to charcoal-filtered air from those exposed to O3. An O3 effect on sage spectra was detectable from 1 to 5 h from the beginning of the exposure, but ozonated plants quickly recovered after the fumigation. This O3-tolerance was confirmed by trends of vegetation indices and leaf traits derived from spectra, further highlighting the capability of reflectance spectroscopy to early detect the responses of crops to O3.

Early detection of sage (Salvia officinalis L.) responses to ozone using reflectance spectroscopy

Marchica A.
Primo
;
Cotrozzi L.
;
Lorenzini G.;Nali C.;Pellegrini E.
Penultimo
;
Remorini D.
Ultimo
2019-01-01

Abstract

Advancements in techniques to rapidly and non-destructively detect the impact of tropospheric ozone (O3) on crops are required. This study demonstrates the capability of full-range (350-2500 nm) reflectance spectroscopy to characterize responses of asymptomatic sage leaves under an acute O3 exposure (200 ppb for 5 h). Using partial least squares regression, spectral models were developed for the estimation of several traits related to photosynthesis, the oxidative pressure induced by O3, and the antioxidant mechanisms adopted by plants to cope with the pollutant. Physiological traits were well predicted by spectroscopic models (average model goodness-of-fit for validation (R2): 0.65-0.90), whereas lower prediction performances were found for biochemical traits (R2: 0.42-0.71). Furthermore, even in the absence of visible symptoms, comparing the full-range spectral profiles, it was possible to distinguish with accuracy plants exposed to charcoal-filtered air from those exposed to O3. An O3 effect on sage spectra was detectable from 1 to 5 h from the beginning of the exposure, but ozonated plants quickly recovered after the fumigation. This O3-tolerance was confirmed by trends of vegetation indices and leaf traits derived from spectra, further highlighting the capability of reflectance spectroscopy to early detect the responses of crops to O3.
2019
Marchica, A.; Lore, S.; Cotrozzi, L.; Lorenzini, G.; Nali, C.; Pellegrini, E.; Remorini, D.
File in questo prodotto:
File Dimensione Formato  
Marchica_2019_plants-08-00346.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 4.77 MB
Formato Adobe PDF
4.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1013958
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 22
social impact