Background: Human-likeliness of robot movements is a key component to enable a safe and effective human-robot interaction, since it contributes to increase acceptance and motion predictability of robots that have to closely interact with people, e.g. for assistance and rehabilitation purposes. Several parameters have been used to quantify how much a robot behaves like a human, which encompass aspects related to both the robot appearance and motion. The latter point is fundamental to allow the operator to interpret robotic actions, and plan a meaningful reactions. While different approaches have been presented in literature, which aim at devising bio-aware control guidelines, a direct implementation of human actions for robot planning is not straightforward, still representing an open issue in robotics. Methods: We propose to embed a synergistic representation of human movements for robot motion generation. To do this, we recorded human upper-limb motions during daily living activities. We used functional Principal Component Analysis (fPCA) to extract principal motion patterns. We then formulated the planning problem by optimizing the weights of a reduced set of these components. For free-motions, our planning method results into a closed form solution which uses only one principal component. In case of obstacles, a numerical routine is proposed, incrementally enrolling principal components until the problem is solved with a suitable precision. Results: Results of fPCA show that more than 80% of the observed variance can be explained by only three functional components. The application of our method to different meaningful movements, with and without obstacles, show that our approach is able to generate complex motions with a very reduced number of functional components. We show that the first synergy alone accounts for the 96% of cost reduction and that three components are able to achieve a satisfactory motion reconstruction in all the considered cases. Conclusions: In this work we moved from the analysis of human movements via fPCA characterization to the design of a novel human-like motion generation algorithm able to generate, efficiently and with a reduced set of basis elements, several complex movements in free space, both in free motion and in case of obstacle avoidance tasks.
Exploiting upper-limb functional principal components for human-like motion generation of anthropomorphic robots
Averta G.;Della Santina C.;Valenza G.;Bicchi A.;Bianchi M.Ultimo
Supervision
2020-01-01
Abstract
Background: Human-likeliness of robot movements is a key component to enable a safe and effective human-robot interaction, since it contributes to increase acceptance and motion predictability of robots that have to closely interact with people, e.g. for assistance and rehabilitation purposes. Several parameters have been used to quantify how much a robot behaves like a human, which encompass aspects related to both the robot appearance and motion. The latter point is fundamental to allow the operator to interpret robotic actions, and plan a meaningful reactions. While different approaches have been presented in literature, which aim at devising bio-aware control guidelines, a direct implementation of human actions for robot planning is not straightforward, still representing an open issue in robotics. Methods: We propose to embed a synergistic representation of human movements for robot motion generation. To do this, we recorded human upper-limb motions during daily living activities. We used functional Principal Component Analysis (fPCA) to extract principal motion patterns. We then formulated the planning problem by optimizing the weights of a reduced set of these components. For free-motions, our planning method results into a closed form solution which uses only one principal component. In case of obstacles, a numerical routine is proposed, incrementally enrolling principal components until the problem is solved with a suitable precision. Results: Results of fPCA show that more than 80% of the observed variance can be explained by only three functional components. The application of our method to different meaningful movements, with and without obstacles, show that our approach is able to generate complex motions with a very reduced number of functional components. We show that the first synergy alone accounts for the 96% of cost reduction and that three components are able to achieve a satisfactory motion reconstruction in all the considered cases. Conclusions: In this work we moved from the analysis of human movements via fPCA characterization to the design of a novel human-like motion generation algorithm able to generate, efficiently and with a reduced set of basis elements, several complex movements in free space, both in free motion and in case of obstacle avoidance tasks.File | Dimensione | Formato | |
---|---|---|---|
paper_HL_motion_generation_JNER_REV2_reduced.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
3.65 MB
Formato
Adobe PDF
|
3.65 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.