In pedicle screws placement using a free-hand technique or a fluoroscopic guided technique the main difficulties are facing to the bone morphology (i.e in deformity cases) and it could be easily reproduced in a patient’s specific spine simulator (we can choose the case). The aim of this work is to evaluate the use of 3D printed patient- specific models (3D printing) not only as a surgical planning tool but also as a surgical training tool in spine surgery and in particular in pedicle screws placement. The manufacturing of patient-specific physical replica involves the elaboration of CT dataset and rapid prototyping techniques. . Five resident surgeons were involved in different training sessions on simulators. To evaluate the exact screws position we performed a CT evaluation of each instrumented simulators. Statistical analysis was conducted using SPSS software. A total of 120 pedicle screws were positioned, 90 screws were well-positioned and 30 screws were bad-positioned. There were a significant difference (p = 0.000008) between the bad-positioning screw rate of the “senior” resident (13/72) and those of “young” participants (17/48). Timeline analysis of pedicle instrumentation training showed the presence of a learning effect, with a lower error rate in the latest session (p=000001). We believe that the use of patient- specific surgical simulators, especially for those surgical tasks in which the complexity is mainly linked to the spine morphology (i.e. deformity), may represent a valid alternative to the use of cadavers that generally present a standard or otherwise poorly predictable anatomy.

Patients Specific Spine Simulators for Surgical Training and Rehearsal in Pedicle Screws Placement: A New Way for Surgical Education

Parchi, Paolo Domenico;Condino, Sara;Carbone, Marina;Ferrari, Mauro;Scaglione, Michelangelo;Ferrari, Vincenzo
2020-01-01

Abstract

In pedicle screws placement using a free-hand technique or a fluoroscopic guided technique the main difficulties are facing to the bone morphology (i.e in deformity cases) and it could be easily reproduced in a patient’s specific spine simulator (we can choose the case). The aim of this work is to evaluate the use of 3D printed patient- specific models (3D printing) not only as a surgical planning tool but also as a surgical training tool in spine surgery and in particular in pedicle screws placement. The manufacturing of patient-specific physical replica involves the elaboration of CT dataset and rapid prototyping techniques. . Five resident surgeons were involved in different training sessions on simulators. To evaluate the exact screws position we performed a CT evaluation of each instrumented simulators. Statistical analysis was conducted using SPSS software. A total of 120 pedicle screws were positioned, 90 screws were well-positioned and 30 screws were bad-positioned. There were a significant difference (p = 0.000008) between the bad-positioning screw rate of the “senior” resident (13/72) and those of “young” participants (17/48). Timeline analysis of pedicle instrumentation training showed the presence of a learning effect, with a lower error rate in the latest session (p=000001). We believe that the use of patient- specific surgical simulators, especially for those surgical tasks in which the complexity is mainly linked to the spine morphology (i.e. deformity), may represent a valid alternative to the use of cadavers that generally present a standard or otherwise poorly predictable anatomy.
File in questo prodotto:
File Dimensione Formato  
2020 Patients_Specific_Spine_Simulators_for_Surgical_Training_and_Rehearsal_in_Pedicle_Screws_Placement_A_New_Way_for_Surgical_Education.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1057378
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact