A compact, low-profile, two-port dual-band circularly polarized (CP) stacked patch antenna for radio-frequency identification (RFID) multiple-input-multiple-output (MIMO) readers is proposed, which employs the shared-aperture technique. The proposed antenna adopts a 1.524 mm thickness Rogers Ro4350b substrate with relative permittivity of 3.48. Two pairs of isolated ports are working at two microwave- (MW-) RFID bands (2.4-2.485 GHz and 5.725-5.875 GHz) with high port isolation of 25 dB and 30 dB, respectively. A shared metal slot layer is designed to separate two feeding structures of the lower band and upper band for port isolation enhancement as well as saving space. Corner-truncated square slot and patch configurations have been designed to obtain CP modes. In the lower and upper MW-RFID bands, the relative impedance bandwidths are 12.2% and 5.7%, and the maximum realized gains are higher than 7.3 dBic. Moreover, two-element configurations have been combined for an RFID MIMO system that occupies a dimension of 119 mm × 119 mm × 12.9 mm. The MIMO antenna performance of envelope correlation coefficient (ECC) is lower than 0.03, and diversity gain is close to 10 dB.

Compact Dual-Band Circularly Polarized Stacked Patch Antenna for Microwave-Radio-Frequency Identification Multiple-Input-Multiple-Output Application

Michel A.;Nepa P.;
2021-01-01

Abstract

A compact, low-profile, two-port dual-band circularly polarized (CP) stacked patch antenna for radio-frequency identification (RFID) multiple-input-multiple-output (MIMO) readers is proposed, which employs the shared-aperture technique. The proposed antenna adopts a 1.524 mm thickness Rogers Ro4350b substrate with relative permittivity of 3.48. Two pairs of isolated ports are working at two microwave- (MW-) RFID bands (2.4-2.485 GHz and 5.725-5.875 GHz) with high port isolation of 25 dB and 30 dB, respectively. A shared metal slot layer is designed to separate two feeding structures of the lower band and upper band for port isolation enhancement as well as saving space. Corner-truncated square slot and patch configurations have been designed to obtain CP modes. In the lower and upper MW-RFID bands, the relative impedance bandwidths are 12.2% and 5.7%, and the maximum realized gains are higher than 7.3 dBic. Moreover, two-element configurations have been combined for an RFID MIMO system that occupies a dimension of 119 mm × 119 mm × 12.9 mm. The MIMO antenna performance of envelope correlation coefficient (ECC) is lower than 0.03, and diversity gain is close to 10 dB.
2021
Zhang, E.; Michel, A.; Nepa, P.; Qiu, J.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1140659
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 2
social impact