A new three-dimensional model for the warm-ion turbulence at the tokamak edge plasma and in the scrape-off layer is proposed, and used to study the dynamics of plasma blobs in the scrape-off layer. The model is based on the nonlinear interchange mode, coupled with the nonlinear resistive drift mode, in the presence of the magnetic curvature drive, the density inhomogeneity, the electron dynamics along the open magnetic field lines, and the electron-ion and electron-neutral collisions. Within the present model, the effect of the sheath resistivity decreases with the distance from the wall, resulting in the bending and the break up of the plasma blob structure. Numerical solutions exhibit the coupling of interchange modes with nonlinear drift modes, causing the collapse of the blob in the lateral direction, followed by a clockwise rotation and radial propagation. The symmetry breaking, caused both by the parallel resistivity and the finite ion temperature, introduces a poloidal component in the plasma blob propagation, while the overall stability properties and the speed are not affected qualitatively.

Effects of the parallel electron dynamics and finite ion temperature on the plasma blob propagation in the scrape-off layer

PEGORARO, FRANCESCO
2008-01-01

Abstract

A new three-dimensional model for the warm-ion turbulence at the tokamak edge plasma and in the scrape-off layer is proposed, and used to study the dynamics of plasma blobs in the scrape-off layer. The model is based on the nonlinear interchange mode, coupled with the nonlinear resistive drift mode, in the presence of the magnetic curvature drive, the density inhomogeneity, the electron dynamics along the open magnetic field lines, and the electron-ion and electron-neutral collisions. Within the present model, the effect of the sheath resistivity decreases with the distance from the wall, resulting in the bending and the break up of the plasma blob structure. Numerical solutions exhibit the coupling of interchange modes with nonlinear drift modes, causing the collapse of the blob in the lateral direction, followed by a clockwise rotation and radial propagation. The symmetry breaking, caused both by the parallel resistivity and the finite ion temperature, introduces a poloidal component in the plasma blob propagation, while the overall stability properties and the speed are not affected qualitatively.
2008
Jovanovic, D; Shukla, Pk; Pegoraro, Francesco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/122123
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 23
social impact