The present paper illustrates the main results of an experimental campaign conducted using the CPRTF (Cavitating Pump Rotordynamic Test Facility) at Alta S.p.A. The tests were carried out on the DAPAMITO inducer, a three-bladed axial pump designed and manufactured by Alta S.p.A. using a simplified analytical model for the prediction of geometry and noncavitating performance of typical space rocket inducers. The transparent inlet section of the facility was instrumented with several piezoelectric pressure transducers located at three axial stations: inducer inlet, outlet and the middle of the axial chord of the blades. At each axial station at least two transducers were mounted with given angular spacing in order to cross-correlate their signals for amplitude, phase and coherence analysis. However, probably because of the high value of the blade tip clearance, very few flow instabilities have been detected on the inducer, including: steady asymmetric cavitation caused by the different extension of the cavitating regions on the blades; cavitation surge at a frequency equal to 0.16 times the inducer rotational frequency; a higher-order axial phenomenon at 7.2 times the rotational frequency.

Cavitation and Flow Instabilities in a 3- Bladed Axial Inducer Designed by Means of a Reduced Order Analytical Model

PASINI, ANGELO;D'AGOSTINO, LUCA
2009-01-01

Abstract

The present paper illustrates the main results of an experimental campaign conducted using the CPRTF (Cavitating Pump Rotordynamic Test Facility) at Alta S.p.A. The tests were carried out on the DAPAMITO inducer, a three-bladed axial pump designed and manufactured by Alta S.p.A. using a simplified analytical model for the prediction of geometry and noncavitating performance of typical space rocket inducers. The transparent inlet section of the facility was instrumented with several piezoelectric pressure transducers located at three axial stations: inducer inlet, outlet and the middle of the axial chord of the blades. At each axial station at least two transducers were mounted with given angular spacing in order to cross-correlate their signals for amplitude, phase and coherence analysis. However, probably because of the high value of the blade tip clearance, very few flow instabilities have been detected on the inducer, including: steady asymmetric cavitation caused by the different extension of the cavitating regions on the blades; cavitation surge at a frequency equal to 0.16 times the inducer rotational frequency; a higher-order axial phenomenon at 7.2 times the rotational frequency.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/128914
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact